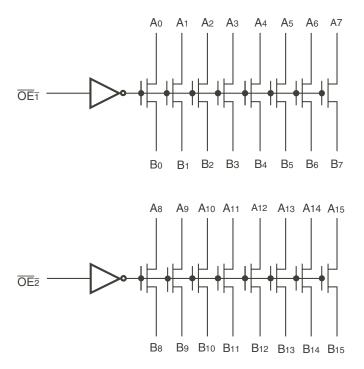
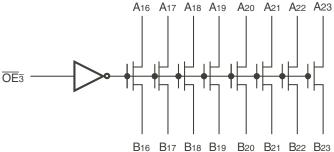


QUICKSWITCH[®] PRODUCTS HIGH-SPEED CMOS QUICKSWITCH 32-BIT MULTIWIDTH™ BUS SWITCHES

DESCRIPTION:

conventional logic devices.


FEATURES:


- · Enhanced N channel FET with no inherent diode to Vcc
- · Bidirectional switches connect inputs to outputs
- · Zero propagation delay, zero ground bounce
- QS34X245 is 32-bit version of QS3245
- Flow-through pinout for easy layout
- Undershoot clamp diodes on all switch and control inputs
- TTL-compatible control inputs
- Available in 80-pin MilliPaQ[™] package

APPLICATIONS:

- · Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Bus switching and isolation
- · Power conservation
- Logic replacement (data processing)
- Capacitance isolation
- Clock gating

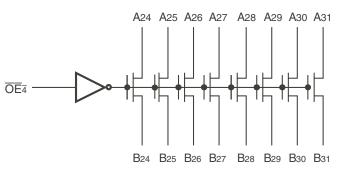
FUNCTIONAL BLOCK DIAGRAM

The QS34X245 is a member of the MultiWidth™ family of QuickSwitch

devices and provides a set of 32 high-speed CMOS compatible bus switches

in a flow-through pinout. This device is available in the MilliPaQ package,

the world's first small outline 32-bit solution. The low ON-resistance of the QS34X245 allows inputs to be connected to outputs without adding propa-


gation delay and without generating additional ground bounce noise. When

Output Enable (OEn) is low, the switches are turned on, connecting bus A

to bus B. When OEn is high, the switches are turned off. This device is ideally

suited for 32/64 bit applications where board space is at a premium. QuickSwitch devices provide speeds an order of magnitude faster than

The QS34X245 is characterized for operation at -40°C to +85°C.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

AUGUST 2012

PIN CONFIGURATION

	1		٦ ٦		1
NC		1	Ŭ	80	vcc
A0		2		79	
A1		3		78	во
A2		4		77	B1
A3		5		76	B2
A4		6		75	В3
A5		7		74	В4
A6		8		73	B5
A7		9		72	В6
GND		10		71	В7
NC		11		70	Vcc
A8		12		69	OE2
A9		13		68	B8
A10		14		67	В9
A11		15		66	B10
A12		16		65	B11
A13		17		64	B12
A14		18		63	B13
A15		19		62	B14
GND		20		61	B15
NC		21		60	vcc
A16		22		59	OE3
A17		23		58	B16
A18		24		57	B17
A19		25		56	B18
A20		26		55	B19
A21		27		54	B20
A22		28		53	B21
A23		29		52	B22
GND		30		51	B23
NC		31		50	vcc
A24		32		49	
A25		33		48	B24
A26		34		47	B25
A27		35		46	B26
A28		36		45	B27
A29		37		44	B28
A30		38		43	B29
A31		39		42	В30
GND		40		41	B31
		1			1

MILLIPAQ TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	–0.5 to +7	V
VTERM ⁽³⁾	DC Switch Voltage Vs	–0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	–0.5 to +7	V
VAC	AC Input Voltage (pulse width \leq 20ns)	-3	V
Ιουτ	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (TA =70°C)	1.4	W
Tstg	Storage Temperature	–65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE

(TA = +25°C, f = 1.0MHz, VIN = 0V, VOUT = 0V)

Pins	Тур.	Max. ⁽¹⁾	Unit
Control Pins	3	4	рF
Quickswitch Channels (Switch OFF)	7	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
OEn	OutputEnable
An	Data I/Os
Bn	Data I/Os

FUNCTION TABLE(1)

ŌĒn	Function		
Н	Disconnected		
L	An = Bn		

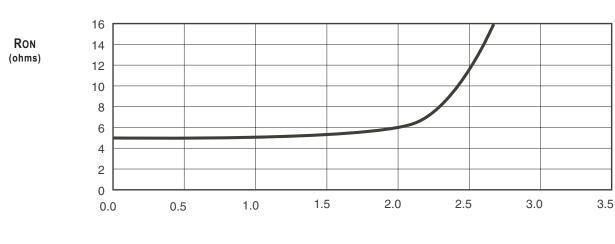
NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40 °C to +85 °C, Vcc = $5.0V \pm 5\%$


Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	_	—	0.8	V
lin	Input LeakageCurrent (Control Inputs)	$0V \le VIN \le VCC$	_	_	±1	μA
loz	Off-State Current (Hi-Z)	$0V \le VOUT \le VCC$, Switches OFF	_	_	±1	μA
Ron	Switch ON Resistance	Vcc = Min., VIN = 0V, ION = 30mA	—	5	7	Ω
		Vcc = Min., VIN = 2.4V, ION =15mA	_	10	15	
VP	Pass Voltage ⁽²⁾	$V_{IN} = V_{CC} = 5V$, IOUT = $-5\mu A$	3.7	4	4.2	V

NOTES:

1. Typical values are at Vcc = 5.0V, TA = 25°C.

2. Pass Voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

VIN (Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Max.	Unit
lccq	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f = 0	12	μΑ
Δlcc	Power Supply Current per Control Input HIGH (2)	Vcc = Max., VIN = 3.4V, f = 0	1.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽³⁾	Vcc = Max., A and B pins open	0.25	mA/MHz
		Control Inputs Toggling at 50% Duty Cycle		

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

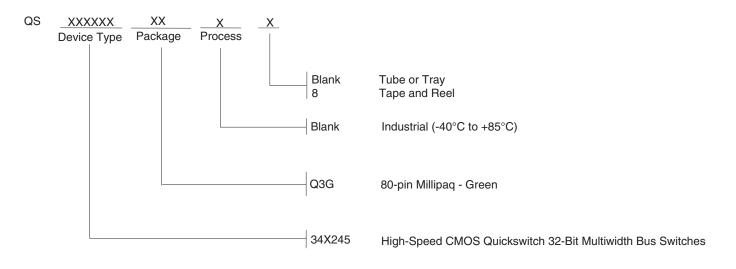
2. Per TLL driven input (VIN = 3.4V, control inputs only). A and B pins do not contribute to Δ Icc.

3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C$ to +85°C, Vcc = 5.0V ± 5%;

CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.


Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
tPLH	Data Propagation Delay ^(1,2)	—	—	0.25	ns
tPHL	An to/from Bn				
tPZL	Switch Turn-on Delay	0.5	—	5.6	ns
tРZH	OE to An/Bn				
tPLZ	Switch Turn-off Delay ⁽¹⁾	0.5	—	5.2	ns
tPHZ	OE to An/Bn				

NOTES:

1. Minimums are guaranteed but not production tested.

2. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

Datasheet Document History

10/14/08Pg. 5Updated the ordering information by removing the "IDT" notation.08/15/12Pg. 5Updated the ordering information by removing non RoHS part and by adding Tape and Reel information.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH400ZBEX PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 TC7WBL3305CFK,LF SN74CBT16245CDGGR PI5C3245QE 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE PI3B3125LEX 72V73273BBG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG QS3245SOG8 QS32X384QIG