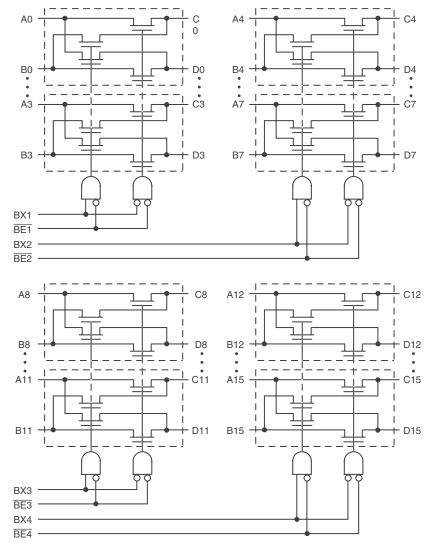


QUICKSWITCH® PRODUCTS **HIGH-SPEED 32-BIT BUS EXCHANGE** SWITCH IN MILLIPAQ™

IDTQS34X383

FEATURES:

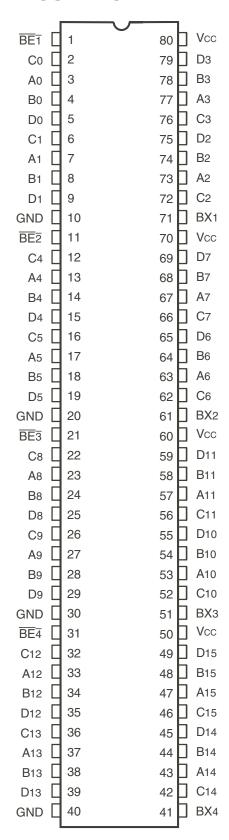

- 5Ω switches connect inputs to outputs
- Zero propagation delay
- Direct bus connect
- · Live insertion capability
- Low power CMOS proprietary technology
- Bus exchange allows nibble swap
- TTL-compatible control inputs
- Available in 80-pin Millipag package

DESCRIPTION:

The QS34X383 provides four sets of eight high-speed CMOS TTLcompatible bus switches. The low ON resistance (5 Ω) of the QS34X383 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The Bus Enable (BEx) signals turn the switches on. The Bus Exchange (BXx) signals provide nibble swap of the AB and CD pairs of signals. This exchange configuration allows byte swapping of buses in systems. It can also be used as a 16-bit 2-to-1 multiplexer and to create low delay barrel shifters, etc.

The QS34X383 is characterized for operation at -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

AUGUST 2012

PIN CONFIGURATION

MILLIPAQ TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	-0.5 to +7	V
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage Vเง	-0.5 to +7	V
VAC	AC Input Voltage (pulse width ≤ 20ns)	– 3	V
lout	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (TA = 85°C)	1.4	W
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0MHz, Vin = 0V, Vout = 0V)$

Pins	Max. ⁽¹⁾	Unit
Control Pins	8	pF
Quickswitch Channels (Switch OFF)	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	I/O	Description	
Ax, Bx	I/O	Buses A, B	
Cx, Dx	I/O	Buses C, D	
BEx	I	Bus Switch Enable	
BXx	I	Bus Exchange	

FUNCTION TABLE(1)

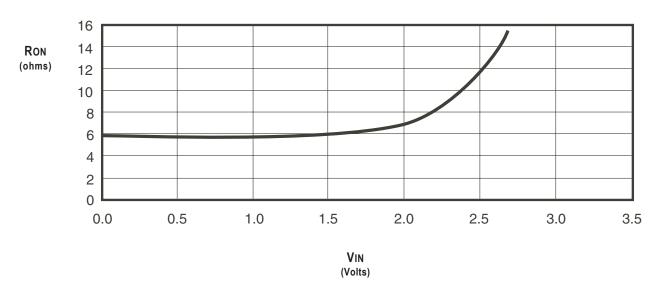
BEx	BXx	Ax	Вх	Function
Н	Х	Z	Z	Disconnect
L	L	Сх	Dx	Connect
L	Н	Dx	Сх	Exchange

NOTE

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
- Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

 $Following \ Conditions \ Apply \ Unless \ Otherwise \ Specified:$


Industrial: TA = -40°C to +85°C, VCC = 5.0V ± 5 %

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH for Control Pins		_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	_	_	0.8	V
lin	Input LeakageCurrent (Control Inputs)	0V ≤ VIN ≤ Vcc, Control Inputs	_	_	±5	μΑ
loz	Off-State Output Current (Hi-Z)	0V ≤ Vouт ≤ Vcc, Switches OFF	_	_	±5	μA
Ron	Switch ON Resistance ^(2,3)	Vcc = Min., Vin = 0V, Ion = 30mA	_	6	8	Ω
		VCC = Min., VIN = 2.4V, ION =15mA	_	12	17	

NOTES:

- 1. Typical values are at Vcc = 5.0V, TA = 25°C.
- 2. Max value of Ron is guaranteed but not production tested.
- 3. Measures by voltage drop between the AB and CD pin at the indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A or B, C or D) pins.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

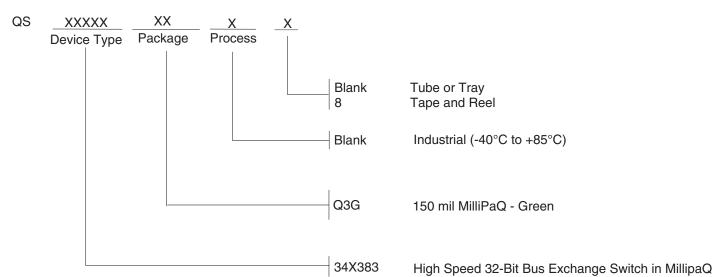
Symbol	Parameter	Test Conditions ⁽¹⁾	Max.	Unit
Iccq	Quiescent Power Supply Current	$Vcc = Max., \overline{BEx} = GND \text{ or } Vcc, f = 0$	6	mA
Δlcc	Power Supply Current per Control Input HIGH (2)	$Vcc = Max., \overline{BEx} = 3.4V, f = 0$	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽³⁾	Vcc = Max., A and B pins open	0.25	mA/MHz
		Control Inputs Toggling at 50% Duty Cycle		

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Per TLL driven input (VIN = 3.4V, control inputs only). A-D pins do not contribute to Δ lcc.
- 3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40$ °C to +85°C, $V_{CC} = 5.0V \pm 5\%$;


CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
tPLH .	Data Propagation Delay (2,3)	_	_	0.25	ns
t PHL	AxBx to CxDx, CxDx to AxBx				
tpzl	Switch Turn-on Delay	1.5	_	6.5	ns
t PZH	BEx to Ax, Bx, Cx, Dx				
tplz	Switch Turn-off Delay (2)	1.5	_	5.5	ns
tPHZ	BEx to Ax, Bx, Cx, Dx				
tBX	Switch Multiplex Delay (2)	1.5	_	6.5	ns
	BX to Ax, Bx, Cx, Dx				
Qcı	Charge Injection ^(4,5)	_	1.5	_	pC

NOTES:

- 1. Minimums are guaranteed but not production tested.
- 2. This parameter is guaranteed but not production tested.
- 3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
- 4. Measured at switch turn off, A to C, load = 50pF in parallel with 10 meg scope probe, VIN at I = 0V.
- 5. Measured at switch turn off through bus multiplexer, A to C ≥ A to D, B connected to C, load = 50pF in parallel with 10 meg scope probe, ViN at A = 0V. Charge injection is reduced because the injection from the turn off of the A to C switch is compensated by the turn on of the B to C switch.

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE. OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1
PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE
PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4

TC7WBL3305CFK,LF SN74CBT16245CDGGR PI5C3245QE 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE PI5C3384QE
PI3CH281QE QS3VH16244PAG8 PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE
PI3B3125LEX 72V73273BBG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG QS3245SOG8 QS32X384Q1G QS3VH126QG