FEATURES:

- Low ON resistance: $\mathrm{rds}(\mathrm{on})=5 \Omega$
- Wide bandwidth: 1.8 GHz (-3dB point)
- Crosstalk: 100 dB at $50 \mathrm{KHz},-70 \mathrm{~dB}$ at $5 \mathrm{MHz},-50 \mathrm{~dB}$ at 30 MHz
- Off-isolation: -70dB at $50 \mathrm{KHz},-45 \mathrm{~dB}$ at $5 \mathrm{MHz},-40 \mathrm{~dB}$ at 30 MHz
- Single 5V supply
- Bidirectional
- TTL-compatible control inputs
- Ultra-low quiescent current: $3 \mu \mathrm{~A}$
- Switch turn on time of 6.5 ns
- Available in QSOP package

APPLICATIONS:

- High-speed video signal switching/routing
- HDTV-quality video signal routing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Token Ring transceivers
- High-speed networking

DESCRIPTION:

The QS4A110 is a high-performance CMOS two-channel 5PST switch with 3-state outputs. The low ON resistance of the QS4A110 allows inputs to be connected to outputs with low insertion loss and high bandwidth.

The QS4A110, with 1.8 GHz bandwidth, is ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. Low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A110 is offered in the QSOP package which has several advantages over conventional packages such as PDIP and SOIC, including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance

The QS4A110 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	0 to +7	V
-	Analog Input Voltage	0 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIn	0 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
PmaX	Maximum Power Dissipation	0.7	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

PIN DESCRIPTION

Pin Names	$I / 0$	Description
$A x, B x$	I / O	Ports A, B
$C x, D x$	I / O	Ports C, D
$\bar{E}_{1}-\bar{E}_{2}$	I	Enable

FUNCTION TABLE(1)

\bar{E}_{1}	\bar{E}_{2}	Ax, Cx I/Os	Bx, Dx I/Os
H	H	Disconnected	Disconnected
L	H	Ax $=C x$	Disconnected
H	L	Disconnected	Bx $=D x$
L	L	$A x=C x$	$B x=D x$

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Analog Switch						
VIN	Analog Signal Range ${ }^{(2)}$		-0.5	1	Vcc-1	V
ros(on)	Drain-source ON resistance ${ }^{(2,3)}$	$\mathrm{Vcc}=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, $\mathrm{ION}=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{V}$ In $=2.4 \mathrm{~V}$, $\mathrm{IoN}=15 \mathrm{~mA}$	-	13	17	
IC(OFF)	Channel OffLeakage Current	$\mathrm{Ax}, \mathrm{Bx}=\mathrm{Vcc}$ or 0V; $\mathrm{Cx}, \mathrm{Dx}=0 \mathrm{~V}$ or Vcc; $\overline{\mathrm{E}}=\mathrm{Vcc}$	-	1	-	nA
IC(ON)	Channel On Leakage Current	$A x=B x=0 V$ (each channel is turned on sequentially)	-	1	-	nA
Digital Control						
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
Dynamic Characteristics						
ton(E)	Enable Turn-On Time \bar{E} to $A x, B x, C x$, or $D x$	$R L=1 \mathrm{~K} \Omega, C L=100 \mathrm{pF}$ (See Switching Time)	0.5	-	6	ns
toff(E)	Enable Turn-OffTime \bar{E} to $A x, B x, C x$, or $D x$	$\begin{aligned} & \text { RL = } 1 \mathrm{~K} \Omega, C L=100 \mathrm{pF} \\ & \text { (See Switching Time) } \\ & \hline \end{aligned}$	0.5	-	6.5	ns
PD	Group Delay ${ }^{(2,4 a)}$	$\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$	-	-	250	ps
f3dB	-3dB Bandwidth	$\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}$-p, RL $=75 \Omega$	-	1.8	-	GHz
	Off-isolation	$\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5.5 \mathrm{MHz}$	-	-45	-	dB
Xtalk	Crosstalk	$\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5.5 \mathrm{MHz}$	-	-70	-	dB
C(OFF)	Switch OffCapacitance	$\overline{\mathrm{E}}=\mathrm{Vcc}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	-	5	-	pF
C(ON)	Switch On Capacitance	$\overline{\mathrm{E}}=0 \mathrm{~V}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	-	10	-	pF
QCI	Charge Injection		-	1.5	-	pC

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between A and C pins or B and D pins at indicated current through the switch. $O N$ resistance is determined by the lower of the voltages on the two (A, C, or B, D) pins.
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions	Max.	Unit
ICC	Supply Current	VCC $=$ Max., VIN $=$ GND or VCC	3	$\mu \mathrm{~A}$

TYPICALCHARACTERISTICS

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Off-isolation and Crosstalk vs. Frequency

NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation = $20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Insertion Loss vs. Frequency
NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

TYPICAL CHARACTERISTICS (CONTINUED)

Insertion Loss vs. Frequency

NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Ron LINK

On-Resistance vs. Vin

TEST CIRCUITS

TEST CIRCUITS (CONTINUED)

Insertion Loss
NOTES:

1. Insertion Loss $=20 \log \mid$ Vo/Vs \mid
2. All unused pins are grounded.

Off-Isolation
NOTE:

1. Off-isolation = $20 \log |V o / V s|$

Crosstalk

NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Ns}|$
2. All unused pins are grounded.

ORDERING INFORMATION

QS

Blank 8

Tube or Tray
Tape and Reel

Quarter Size Outline Package - QSOP Green

High Performance CMOS Two Channel 5PST Switch

DATASHEET DOCUMENT HISTORY

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

