## Renesns

## FEATURES:

- Low ON resistance: $\operatorname{rds}(o n)=5 \Omega$
- Fast transition time: ttran $=6 \mathrm{~ns}$
- Wide bandwidth: 1.3 GHz (-3dB point)
- Crosstalk: 90 dB at $50 \mathrm{KHz},-40 \mathrm{~dB}$ at $5 \mathrm{MHz},-30 \mathrm{~dB}$ at 30 MHz
- Off-isolation: -70 dB at $50 \mathrm{KHz},-40 \mathrm{~dB}$ at $5 \mathrm{MHz},-30 \mathrm{~dB}$ at 30 MHz
- Single 5V supply
- Can be used as multiplexer or demultiplexer
- TTL-compatible control inputs
- Ultra-low quiescent current: $3 \mu \mathrm{~A}$
- Switch turn on time of 6.5 ns
- Available in QSOP package


## APPLICATIONS:

- High-speed video signal switching/routing
- HDTV-quality video signal routing
- Phase reversal
- Data acquisition
- ATE systems
- Telecomm routing
- Token Ring transceivers
- High-speed networking


## DESCRIPTION:

The QS4A201 is a high-performance CMOS two-by-two analog cross point switch. This device provides two sets of five high-speed CMOS switches providing "cross point" connection between inputs and outputs. The low ON resistance of the QS4A201 allows inputs to be connected to outputs with low insertion loss and high bandwidth. TTL-compatible control circuitry with "Break-Before-Make" feature prevents contention.

The QS4A201 with 1.3 GHz bandwidth makes it ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. High performance and low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A201 is offered in the QSOP package and has several advantages over conventional packages such as PDIP and SOIC, including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance

The QS4A201 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

## FUNCTIONAL BLOCK DIAGRAM



IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

## PIN CONFIGURATION



## ABSOLUTE MAXIMUM RATINGS(1)

| Symbol | Description | Max | Unit |
| :--- | :--- | :---: | :---: |
| VTERM $^{(2)}$ | Supply Voltage to Ground | -0.5 to +7 | V |
| VTERM $^{(3)}$ | DC Switch Voltage Vs | -0.5 to +7 | V |
| - | Analog Input Voltage | -0.5 to +7 | V |
| VTERM ${ }^{(3)}$ | DC Input Voltage VIN | -0.5 to +7 | V |
| VAC | AC Input Voltage (pulse width $\leq 20 \mathrm{~ns}$ ) | -3 | V |
| IOUT | DC Output Current | 120 | mA |
| Pmax | Maximum Power Dissipation | 0.7 | W |
| TSTG | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

## PIN DESCRIPTION

| Pin Names | $I / 0$ | Description |
| :---: | :---: | :--- |
| $A x, B x$ | $1 / 0$ | Ports A, B |
| $C x, D x$ | $1 / 0$ | Ports C, D |
| $\bar{E}$ | I | Bus Switch Enable |
| $S$ | I | Bus Exchange |

## FUNCTION TABLE(1)

| $\overline{\mathbf{E}}$ | $\mathbf{S}$ | Ax | Bx | Function |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | $X$ | $Z$ | $Z$ | Disable |
| $L$ | $L$ | $C x$ | $D x$ | Enable |
| $L$ | $H$ | $D x$ | $C x$ | Exchange |

## NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$

| Symbol | Parameter | Test Conditions | Min. | Typ. ${ }^{(1)}$ | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Switch |  |  |  |  |  |  |
| VIN | AnalogSignal Range ${ }^{(2)}$ |  | -0.5 | 1 | Vcc - 1 | V |
| ros(on) | Drain-source ON resistance ${ }^{(2,3)}$ | $\mathrm{VCC}=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$ | - | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{Vcc}=\mathrm{Min} ., \mathrm{V}$ IN $=2.4 \mathrm{~V}$, $\mathrm{ION}=15 \mathrm{~mA}$ | - | 13 | 17 |  |
| IC(OFF) | Channel OffLeakage Current | $\mathrm{Ax}, \mathrm{Bx}=\mathrm{Vcc}$ or 0V; $\mathrm{Cx}, \mathrm{Dx}=0 \mathrm{~V}$ or Vcc; $\overline{\mathrm{E}}=\mathrm{Vcc}$ | - | 1 | - | nA |
| IC(ON) | Channel On Leakage Current | $A x=B x=0 V$ <br> (each channel is turned on sequentially) | - | 1 | - | nA |
| Digital Control |  |  |  |  |  |  |
| VIH | Input HIGH Voltage | Guaranteed Logic HIGH for Control Pins | 2 | - | - | V |
| VIL | InputLOW Voltage | Guaranteed Logic LOW for Control Pins | - | - | 0.8 | V |
| Dynamic Characteristics |  |  |  |  |  |  |
| ttrans | Exchange Switching Time S to Cx, Dx | $R L=1 \mathrm{~K} \Omega, C L=100 \mathrm{pF}$ <br> (See Transition Time) | 0.5 | - | 6.6 | ns |
| ton(E) | Enable Turn-OnTime $\bar{E}$ to Cx, Dx | $\begin{aligned} & \mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF} \\ & \text { (See Switching Time) } \end{aligned}$ | 0.5 | - | 6.5 | ns |
| toff(E) | Enable Turn-OffTime $\bar{E}$ to $C x, D x$ | $\mathrm{RL}=1 \mathrm{~K} \Omega, C \mathrm{~L}=100 \mathrm{pF}$ <br> (See Switching Time) | 0.5 | - | 6 | ns |
| PD | Group Delay ${ }^{(2,4 a)}$ | $\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$ | - | - | 250 | ps |
| f3dB | -3dB Bandwidth | $\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega$ | - | 1.3 | - | GHz |
|  | Off-isolation | $\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5.5 \mathrm{MHz}$ | - | -40 | - | dB |
| Xtalk | Crosstalk | $\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5.5 \mathrm{MHz}$ | - | -40 | - | dB |
| C(OFF) | Switch Off Capacitance | $\overline{\mathrm{E}}=\mathrm{Vcc}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$ | - | 5 | - | pF |
| C (ON) | Switch On Capacitance | $\overline{\mathrm{E}}=0 \mathrm{~V}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$ | - | 10 | - | pF |
| QCI | Charge Injection |  | - | 1.5 | - | pC |

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between $A$ and $C$ pins or $B$ and $D$ pins at indicated current through the switch. $O N$ resistance is determined by the lower of the voltages on the two (A, C, or B, D) pins.
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

## POWER SUPPLY CHARACTERISTICS

| Symbol | Parameter | Test Conditions | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: |
| IcC | Supply Current | Vcc = Max., VIN = GND or Vcc | 3 | $\mu \mathrm{~A}$ |

## TYPICALCHARACTERISTICS



Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$


Off-isolation and Crosstalk vs. Frequency


Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Ns}|$
2. Off-isolation $=20 \log |V o / V s|$


Insertion Loss vs. Frequency
NOTE:

1. Insertion Loss = $20 \log |\mathrm{Vo} / \mathrm{Vs}|$

## TYPICAL CHARACTERISTICS (CONTINUED)



Insertion Loss vs. Frequency

NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$


Ron LINK
On-Resistance vs. Vin

## TEST CIRCUITS



Transition Time


Switching Time

## TEST CIRCUITS (CONTINUED)



Insertion Loss
NOTES:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. All unused pins are grounded.

## Off-Isolation

NOTES:

1. Off-isolation $=20 \log |V \mathrm{~V} / \mathrm{Vs}|$
2. All unused pins are grounded.



Crosstalk
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Ns}|$
2. All unused pins are grounded.

## ORDERING INFORMATION



## DATASHEET DOCUMENT HISTORY

 and Reel information.
## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

## Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

## Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210 NTE74LS247 SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 74HCT4051D,118 74HC151D,653 MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX157FT(AJ) NL7SZ18MUR2G SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC257D.652 74HCT153D.652 74HC253D.652 74HC139D.652 74HCT139D.652
HEF4543BT. 652 TC74HC4052AFT(EL) 74HC139PW-Q100J SN74LVC257AMPWREP 74HC138DB. 112

