Renesns

FEATURES:

- Low ON resistance: $\operatorname{rds}(0 \mathrm{~N})=5 \Omega$
- Fast transition time: ttran $=6 \mathrm{~ns}$
- Wide bandwidth: 700 MHz (-3dB point)
- Crosstalk: -110 dB at $50 \mathrm{KHz},-68 \mathrm{~dB}$ at $5 \mathrm{MHz},-66 \mathrm{~dB}$ at 30 MHz
- Off-isolation: -90 dB at $50 \mathrm{KHz},-60 \mathrm{~dB}$ at $5 \mathrm{MHz},-50 \mathrm{~dB}$ at 30 MHz
- Single 5V supply
- Can be used as multiplexer or demultiplexer
- TTL-compatible control inputs
- Ultra-low quiescent current: $3 \mu \mathrm{~A}$
- Available in QSOP package

APPLICATIONS:

- High-speed video signal switching/routing
- HDTV-quality video signal multiplexing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Switch between multiple video sources
- Token Ring transceivers
- High-speed networking

DESCRIPTION:

The QS4A210 is a high-performance CMOS two-channel SP4T multiplexer/demultiplexer with individual enables. The low On-resistance of the QS4A210 allows inputs to be connected to outputs with low insertion loss and high bandwidth. TTL-compatible control circuitry with "Break-Before-Make" feature prevents contention.

The QS4A210 with 700MHz bandwidth makes it ideal for high-performance video signal switching, audio signal switching, and telecom routing applications. Low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A210 is offered in the QSOP package which has several advantages over conventional packages such as PDIP and SOIC, including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance, resulting in lower ground bounce

The QS4A210 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
-	Analog Input Voltage	-0.5 to +7	V
VTERM ${ }^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
IOUT	DC Output Current	120	mA
PmaX	Maximum Power Dissipation	0.7	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

PIN DESCRIPTION

Pin Names	$I / 0$	Description
IxA	$1 / 0$	Demux Port A
$\mathrm{I} \times \mathrm{B}$	I / O	Demux Port B
$\overline{\mathrm{EA}}, \overline{\mathrm{EB}}$	I	Enable Inputs
$\mathrm{So}, \mathrm{S} 1$	I	Select Inputs
YA, YB	$\mathrm{I} / 0$	Mux Port A, B

FUNCTION TABLE(1)

Enable		Select		Mux/Demux Ports		Function
$\overline{\mathrm{E}} \overline{\mathrm{A}}$	$\overline{\mathrm{E}} \overline{\mathrm{B}}$	S1	So	YA	YB	
H	X	X	X	Z	X	Disable A
X	H	X	X	X	Z	Disable B
L	L	L	L	10A	10B	S1-0 $=0$
L	L	L	H	11A	11B	S1-0 $=1$
L	L	H	L	12A	12B	S1-0 $=2$
L	L	H	H	13A	13B	S1-0 $=3$

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Analog Switch						
VIN	Analog Signal Range ${ }^{(2)}$		-0.5	1	Vcc-1	V
ros(on)	Drain-source ON resistance ${ }^{(2,3)}$	$\mathrm{Vcc}=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, $\mathrm{ION}=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{Vcc}=$ Min., $\mathrm{VIN}=2.4 \mathrm{~V}$, $\mathrm{IoN}=15 \mathrm{~mA}$	-	13	17	
IC(0FF)	Channel OffLeakage Current	$\mathrm{IN}^{\prime}=\mathrm{Vcc}$ or $0 \mathrm{~V} ; \mathrm{Y}_{\mathrm{N}}=0 \mathrm{~V}$ or $\mathrm{Vcc} ; \overline{\mathrm{EA}}=\overline{\mathrm{EB}}=\mathrm{Vcc}$	-	2	-	nA
IC(ON)	Channel On Leakage Current	$I_{N}=Y_{N}=0 V$ (each channel is turned on sequentially)	-	2	-	nA
Digital Control						
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	InputLOWVoltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
Dynamic Characteristics						
tTRANS	Switching Time of Mux Sx to Y	$\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$ (See Transition Time)	0.5	-	6.6	ns
ton(EN)	Enable Turn-On Time $\overline{E A}=\overline{E B}$ to Y	$R L=1 \mathrm{~K} \Omega, C L=100 \mathrm{pF}$ (See Switching Time)	0.5	-	6	ns
toff(EN)	Enable Turn-OffTime $\overline{\mathrm{EA}}=\overline{\mathrm{EB}}$ to Y	$R L=1 \mathrm{~K} \Omega, C L=100 \mathrm{pF}$ (See Switching Time)	0.5	-	6	ns
ヤPD	Group Delay ${ }^{(2,4)}$	$\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$	-	-	250	ps
f3dB	-3dB Bandwidth	$\mathrm{VIN}=1 \mathrm{Vp}$-p, $\mathrm{RL}=75 \Omega$	-	700	-	MHz
	Off-isolation	$\mathrm{VIN}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5.5 \mathrm{MHz}$	-	-60	-	dB
Xtalk	Crosstalk	$\mathrm{VIN}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5.5 \mathrm{MHz}$	-	-68	-	dB
Cmux(OfF)	Mux Off Capacitance	$\overline{\mathrm{EA}}=\overline{\mathrm{EB}}=\mathrm{Vcc}, \mathrm{V}$ IN $=$ Vout $=0 \mathrm{~V}$	-	5.6	-	pF
Cdemux(off)	Demux OffCapacitance		-	7.4	-	pF
Cmux(on)	Mux On Capacitance	$\overline{\mathrm{EA}}=\overline{\mathrm{EB}}=0 \mathrm{~V}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	-	12	-	pF
Cdemux(on)	Demux On Capacitance	$\overline{\mathrm{EA}}=\overline{\mathrm{EB}}=0 \mathrm{~V}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	-	15	-	pF
Qcı	Charge Injection		-	1.5	-	pC

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between A and C pins or B and D pins at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (I, Y) pins.
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions	Max.	Unit
IccQ	QuiescentPower	VCc $=$ Max., VIN $=$ GND or Vcc, $f=0$	3	$\mu \mathrm{~A}$

TYPICAL CHARACTERISTICS

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Off-isolation and Crosstalk vs. Frequency

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |V o / V s|$

Insertion Loss vs. Frequency
NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

TYPICAL CHARACTERISTICS (CONTINUED)

Insertion Loss vs. Frequency

NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

TEST CIRCUITS

Ron LINK
On-Resistance vs. Vin

TEST CIRCUITS (CONTINUED)

Enable Switching Time

Insertion Loss
NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Crosstalk
NOTE:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Ns}|$

Off-Isolation
NOTE:

1. Off-isolation $=20 \log |V o / V s|$

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB.112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ

