RENESAS

R1LV0108E Series

1Mb Advanced LPSRAM (128k word x 8bit)

R10DS0049EJ0200 Rev.2.00 2011.01.14

Description

The R1LV0108E Series is a family of low voltage 1-Mbit static RAMs organized as 131,072-word by 8-bit, fabricated by Renesas's high-performance 0.15um CMOS and TFT technologies. The R1LV0108E Series has realized higher density, higher performance and low power consumption. The R1LV0108E Series is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives. It has been packaged in 32-pin SOP,32-pin TSOP and 32-pin sTSOP.

Features

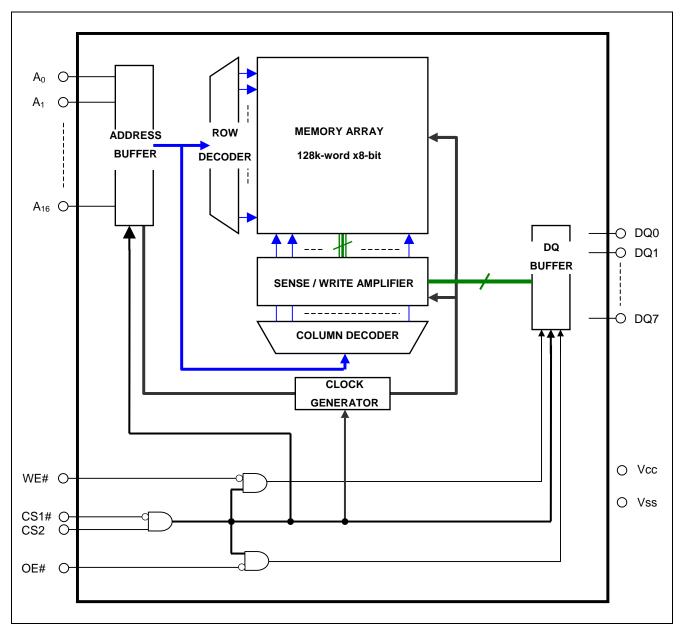
- Single 2.7~3.6V power supply
- Small stand-by current: 1µA (3.0V, typical)
- No clocks, No refresh
- All inputs and outputs are TTL compatible.
- Easy memory expansion by CS1# and CS2
- Common Data I/O
- Three-state outputs: OR-tie Capability
- OE# prevents data contention on the I/O bus

Ordering Information

Orderable Part Name	Access time	Temperature Range	Package	Shipping Container	Quantity	
R1LV0108ESP-5SR#B0	55 ns	0 ~ +70°C				
R1LV0108ESP-5SI#B0	55 115	-40 ~ +85°C		Tube	Max. 25pcs/Tube	
R1LV0108ESP-7SR#B0	70 ns	0 ~ +70°C	525-mil 32-pin	Tube	Max. 225pcs/Inner Bag Max. 900pcs/Inner Box	
R1LV0108ESP-7SI#B0	70 115	-40 ~ +85°C	plastic SOP			
R1LV0108ESP-5SR#S0	55 ns	0 ~ +70°C	PRSP0032DA-A			
R1LV0108ESP-5SI#S0	55 115	-40 ~ +85°C	(32P2M-A)	Embossed	1000nee/Deel	
R1LV0108ESP-7SR#S0	70 ns	0 ~ +70°C		tape	1000pcs/Reel	
R1LV0108ESP-7SI#S0	70 115	-40 ~ +85°C				
R1LV0108ESA-5SR#B0	55 ns	0 ~ +70°C				
R1LV0108ESA-5SI#B0	55 115	-40 ~ +85°C		Tray	Max. 234pcs/Tray	
R1LV0108ESA-7SR#B0	70 ns	0 ~ +70°C	8mm×13.4mm 32-pin plastic sTSOP	may	Max. 1872pcs/Inner Box	
R1LV0108ESA-7SI#B0	70115	-40 ~ +85°C	(normal-bend type)			
R1LV0108ESA-5SR#S0	55 ns	0 ~ +70°C		Embossed		
R1LV0108ESA-5SI#S0	55 115	-40 ~ +85°C	PTSA0032KB-A (32P3K-B)		1000pcs/Reel	
R1LV0108ESA-7SR#S0	70 ns	0 ~ +70°C	(02: 0: 02)	tape	1000pcs/Reel	
R1LV0108ESA-7SI#S0	70115	-40 ~ +85°C				
R1LV0108ESF-5SR#B0	55 ns	0 ~ +70°C				
R1LV0108ESF-5SI#B0	55 115	-40 ~ +85°C		Tray	Max. 156pcs/Tray	
R1LV0108ESF-7SR#B0	70 ==	0 ~ +70°C	8mm×20mm 32-pin plastic TSOP	Пау	Max. 1248pcs/Inner Box	
R1LV0108ESF-7SI#B0	70 ns	-40 ~ +85°C	(normal-bend type)			
R1LV0108ESF-5SR#S0	55 pc	0 ~ +70°C				
R1LV0108ESF-5SI#S0	55 ns	-40 ~ +85°C	PTSA0032KA-A (32P3H-E)	Embossed	1000pag/Rool	
R1LV0108ESF-7SR#S0	70 ns	0 ~ +70°C	(0=: 0:: 2)	tape	1000pcs/Reel	
R1LV0108ESF-7SI#S0	70 115	-40 ~ +85°C				

Pin Arrangement

NC 32 Vcc A16 31 A15 2 CS2 A14 30 3 WE# A12 4 29 A7 5 28 A13 A6 6 27 **A**8 A5 26 A9 7 32-pin SOP 25 8 A11 **A**4 А3 9 24 OE# 23 A10 A2 10 A1 22 CS1# 11 21 DQ7 A0 12 DQ0 13 20 DQ6 DQ5 DQ1 19 14 DQ2 15 18 DQ4 GND 16 17 DQ3 A11 32 OE# 1 A9 31 2 A10 A8 CS1# 3 30 A13 4 29 DQ7 WE# 5 28 DQ6 CS2 27 DQ5 6 A15 26 DQ4 32-pin sTSOP Vcc 8 25 DQ3 NC 24 GND 9 A16 10 23 DQ2 A14 22 DQ1 11 A12 12 21 DQ0 A7 13 20 A0 A6 14 19 A1 A5 15 18 A2 A4 16 17 A3 A11 32 OE# 1 A9 31 A10 2 **A**8 3 30 CS1# A13 29 DQ7 4 WE# 5 28 DQ6 CS2 6 27 DQ5 A15 26 DQ4 7 32-pin TSOP 25 Vcc DQ3 8 NC 24 GND 9 (normal-bend) 23 A16 10 DQ2 A14 11 22 DQ1 A12 21 DQ0 12 A7 13 20 A0 A6 14 19 A1 A5 15 18 A2 17 A4 16 A3



Pin Description

Pin name	Function	
Vcc	Power supply	
Vss	Ground	
A0 to A16	Address input	
DQ0 to DQ7	Data input/output	
CS1#	Chip select 1	
CS2	Chip select 2	
WE#	Write enable	
OE#	Output enable	
NC	Non connection	

Block Diagram

Operation Table

CS1#	CS2	WE#	OE#	DQ0~7	Operation
Х	L	Х	Х	High-Z	Stand-by
Н	Х	Х	Х	High-Z	Stand-by
L	Н	L	Х	Din	Write
L	Н	Н	L	Dout	Read
L	Н	Н	Н	High-Z	Output disable

Note 1. H: V_{IH} L:V_{IL} X: V_{IH} or V_{IL}

Absolute Maximum

Parameter	Symbol	Symbol Value			
Power supply voltage relative to Vss	Vcc	-0.3 te	o +4.6	V	
Terminal voltage on any pin relative to Vss	VT	-0.3 ^{*1} to '	-0.3 ^{*1} to Vcc+0.3 ^{*2}		
Power dissipation	PT	0.7		W	
	Topr ^{*3}	R Ver.	0 to +70	°C	
Operation temperature	ropr	I Ver.	-40 to +85		
Storage temperature range	Tstg	-65 to 150		°C	
Ctorage temperature range under bios	Tbias ^{*3}	R Ver.	0 to +70	°C	
Storage temperature range under bias	IDIAS	I Ver.	-40 to +85		

Note 1. -3.0V for pulse ≤ 30 ns (full width at half maximum)

2. Maximum voltage is +4.6V.

3. Ambient temperature range depends on R/I-version. Please see table on page 1.

DC Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
Supply voltage		Vcc	2.7	3.0	3.6	V	
		Vss	0	0	0	V	
Input high voltage		V _{IH}	2.0	-	Vcc+0.3	V	
Input low voltage		V _{IL}	-0.3	-	0.6	V	1
Ambient temperature range	R Ver.	То	0	-	+70	°C	2
	I Ver.	Та	-40	-	+85	°C	2

Note 1. -3.0V for pulse ≤ 30 ns (full width at half maximum)

2. Ambient temperature range depends on R/I-version. Please see table on page 1.

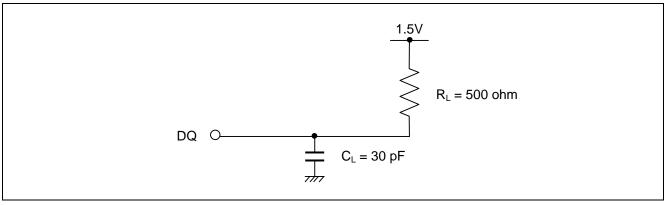
DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions		
Input leakage current	I _U	-	-	1	μA	Vin = Vss to Vcc			
Output leakage current	I _{LO}	-	-	1	μΑ	CS1# =V _{IH} or CS2 =V _{IL} or OE# =V _{IH} , VI/O =Vss to Vcc			
Average operating current	I _{CC1}	-	15	25	mA	Min. cycle, duty =100%, II/O = 0m CS1# = V_{IL} , CS2 = V_{IH} , Others = V_I			
	Icc2	-	2	5	mA	CS1# ≤ 0.2	s, duty =100%, II/O = 0mA 2V, CS2 ≥ Vcc-0.2V, 0.2V, V _{IL} ≤ 0.2V		
Standby current	I _{SB}	-	-	0.33	mA	"CS2 = V_{IL} " or "CS2 = V_{IH} and CS1# = V_{IH} ", Others = Vss to Vcc			
Standby current		-	1 ^{*1}	2	μΑ	~+25°C	Vin = Vss to Vcc		
		-	-	3	μΑ	~+40°C	(1) $CS2 \le 0.2 \text{ or}$		
	I _{SB1}	-	-	8	μΑ	~+70°C	- (2) CS1# ≥ Vcc-0.2V, CS2 ≥ Vcc-0.2V		
		-	-	10	μΑ	~+85°C			
Output high voltage	Vон	2.4	-	-	V	I _{OH} = -0.5n	nA		
	V _{OH2}	Vcc - 0.5	-	-	V	I _{OH} = -0.05	I _{OH} = -0.05mA		
Output low voltage	V _{OL}	-	-	0.4	V	$I_{OL} = 2mA$			

Note 1. Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 25°C), and not 100% tested.

Capacitance

	(Vcc =	2.7V ~	3.6V, f	= 1MHz	z, Ta =	0 ~ +70°C / -40	~ +85°C ^{*2})
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	-	-	8	pF	Vin =0V	1
Input / output capacitance	C I/O	-	-	10	pF	VI/O =0V	1
	1 1 1 1 0 0						


Note 1. This parameter is sampled and not 100% tested.

2. Ambient temperature range depends on R/I-version. Please see table on page 1.

AC Characteristics

Test Conditions (Vcc = $2.7V \sim 3.6V$, Ta = $0 \sim +70^{\circ}C / -40 \sim +85^{\circ}C^{*1}$)

- Input pulse levels: VIL = 0.4V, VIH = 2.2V
- Input rise and fall time: 5ns
- Input and output timing reference level: 1.5V
- Output load: See figures (Including scope and jig)

Note 1. Ambient temperature range depends on R/I-version. Please see table on page 1.

Read Cycle

Parameter	Symbol	R1LV010)8E**-5S*	R1LV010	8E**-7S*	Unit	Note
Faranielei	Symbol	Min.	Max.	Min.	Max.	Unit	NOLE
Read cycle time	t _{RC}	55	-	70	-	ns	
Address access time	t _{AA}	-	55	-	70	ns	
Chip select access time	t _{ACS1}	-	55	-	70	ns	
Chip select access time	t _{ACS2}	-	55	-	70	ns	
Output enable to output valid	t _{OE}	-	30	-	35	ns	
Output hold from address change	t _{OH}	5	-	10	-	ns	
Chip select to output in low-Z	t _{CLZ1}	5	-	10	-	ns	2,3
Chip select to output in low-2	t _{CLZ2}	5	-	10	-	ns	2,3
Output enable to output in low-Z	toLZ	5	-	5	-	ns	2,3
Chip decalest to sutput in high 7	t _{CHZ1}	0	20	0	25	ns	1,2,3
Chip deselect to output in high-Z	t _{CHZ2}	0	20	0	25	ns	1,2,3
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	ns	1,2,3

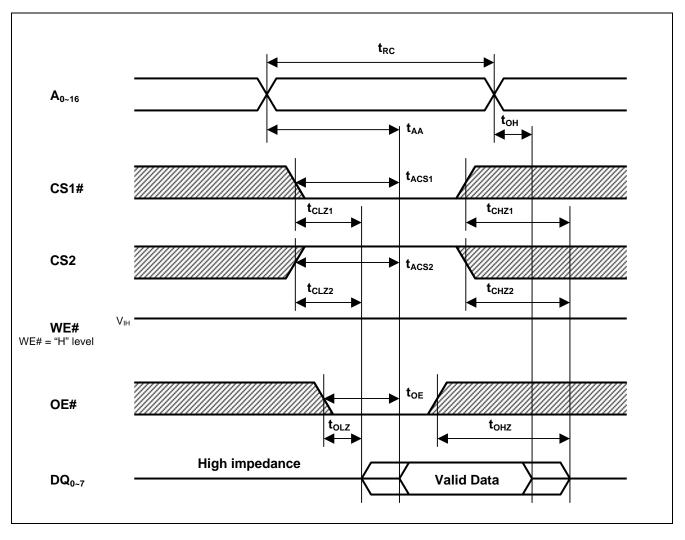
Write Cycle

Parameter	Symbol	R1LV01	08E**-5S*	R1LV010)8E**-7S*	Unit	Note
Falameter	Symbol	Min.	Max.	Min.	Max.	Unit	Note
Write cycle time	t _{WC}	55	-	70	-	ns	
Address valid to end of write	t _{AW}	50	-	55	-	ns	
Chip select to end of write t _{CW}		50	-	55	-	ns	5
Write pulse width two		45	-	50	-	ns	4
Address setup time	t _{AS}	0	-	0	-	ns	6
Write recovery time	t _{WR}	0	-	0	-	ns	7
Data to write time overlap	t _{DW}	25	-	30	-	ns	
Data hold from write time	t _{DH}	0	-	0	-	ns	
Output enable from end of write	tow	5	-	5	-	ns	2
Output disable to output in high-Z t _{OHZ}		0	20	0	25	ns	1,2
Write to output in high-Z	t _{WHZ}	0	20	0	25	ns	1,2

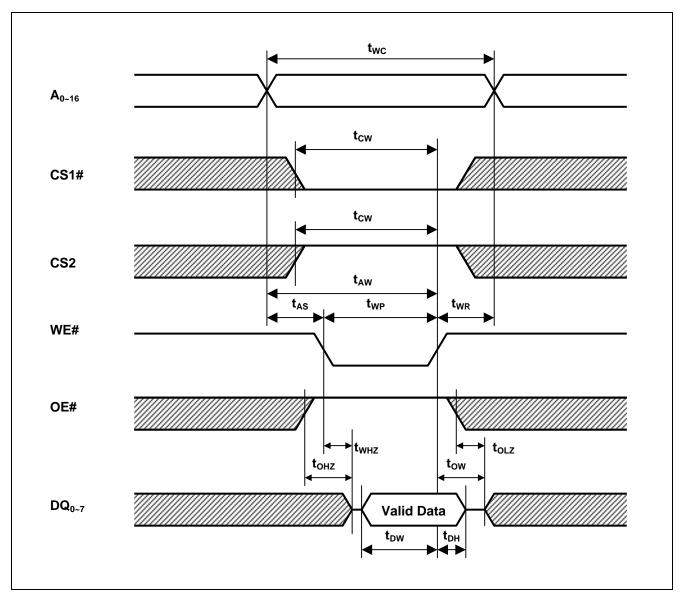
Note 1. t_{CHZ}, t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

2. This parameter is sampled and not 100% tested.

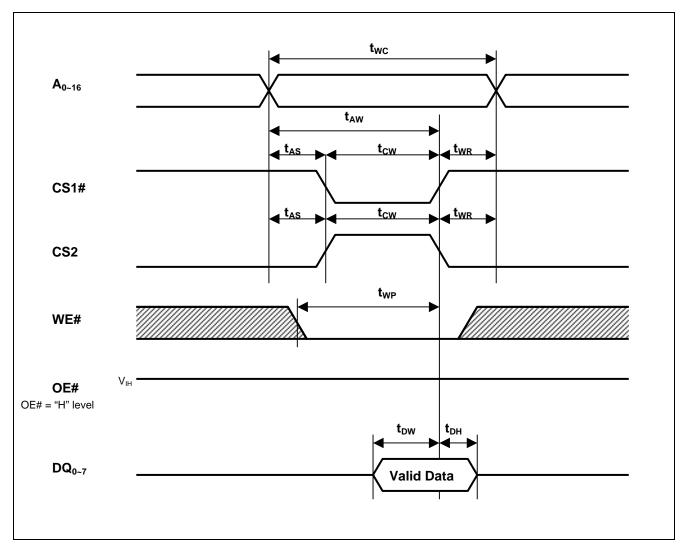
3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.


4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE#.
A write begins at the latest transition among CS1# going low, CS2 going high and WE# going low.
A write ends at the earliest transition among CS1# going high, CS2 going low and WE# going high.
t_{WP} is measured from the beginning of write to the end of write.

- 5. t_{CW} is measured from the later of CS1# going low or CS2 going high to end of write.
- 6. t_{AS} is measured the address valid to the beginning of write.
- 7. t_{WR} is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle.
- 8. Don't apply inverted phase signal externally when DQ pin is output mode.


Timing Waveforms

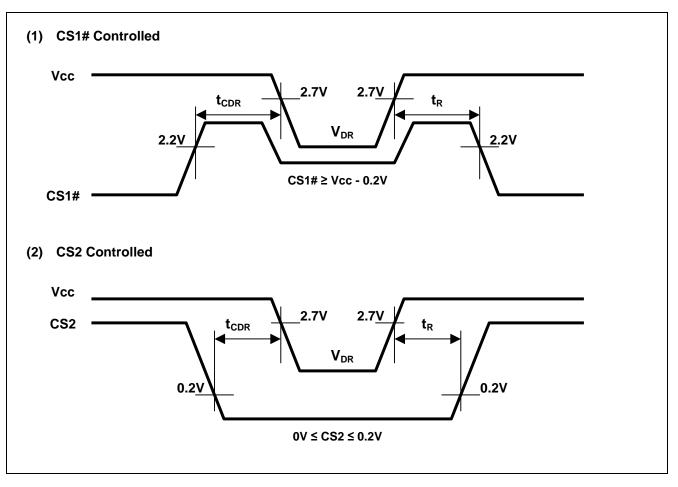
Read Cycle



Write Cycle (1) (WE# CLOCK)

Write Cycle (2) (CS1#, CS2 CLOCK)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions ^{*2}		
V_{CC} for data retention	V _{DR}	2.0	-	3.6	V	$Vin \ge 0V$ (1) $0V \le CS2 \le 0.2V$ or (2) $CS1\# \ge Vcc-0.2V$, $CS2 \ge Vcc-0.2V$		
		-	1 ^{*1}	2	μA	~+25°C	Vcc=3.0V, Vin ≥ 0V	
Data rotantian aurrant	ICCDR	-	-	3	μA	~+40°C	(1) 0V ≤ CS2 ≤ 0.2V or	
Data retention current		-	-	8	μA	~+70°C	(2) CS1# ≥ Vcc-0.2V, CS2 ≥ Vcc-0.2V	
		-	-	10	μA	~+85°C		
Chip deselect to data retention time	t _{CDR}	0	-	-	ns	See reton	tion waveform	
Operation recovery time	t _R	5	-	-	ms	See retention waveform.		


Low Vcc Data Retention Characteristics

Note 1. Typical parameter indicates the value for the center of distribution at 3.0V (Ta= 25°C), and not 100% tested.

CS2 controls address buffer, WE# buffer, CS1# buffer, OE# buffer and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE#, CS1#, OE#, DQ) can be in the high impedance state.
 If CS1# controls data retention mode, CS2 must be CS2 ≥ Vcc-0.2V or 0V ≤ CS2 ≤ 0.2V. The other input levels (address, WE#, OE#, DQ) can be in the high impedance state.

R1LV0108E Series Data Sheet

			Description						
Rev.	Date	Page	Summary						
1.00	2010.12.27	-	First Edition issued						
2.00	2011.01.14	2	Ordering Information is revised						

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for any application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +480-124235-1155, Tax: +480-2483-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China Tel: +482-13-877-1818, Fax: +480-24887-7859 Renesas Electronics Hong Kong Limited Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +482-2869-9318, Fax: +485-24887-9022/9044 Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipel, Taiwan Tel: +486-2-4175-9600, Fax: +4882-24175-9670 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2175-9600, Fax: +4882-24175-9670 Renesas Electronics Kong Acnong Amorop Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7755-9300, Fax: +405-2795-9510 Renesas Electronics Konge Co., Ltd. 11F, Samik Lavied or Bildy, 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +60-5755-930, Fax: +40-2-7555-9510

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA IS62WV12816ALL-70BLI 5962-8971203XA 5962-8971202ZA