Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R1LV0816ASD -5SI, 7SI

8Mb Advanced LPSRAM (512k word x 16bit / 1M word x 8bit)

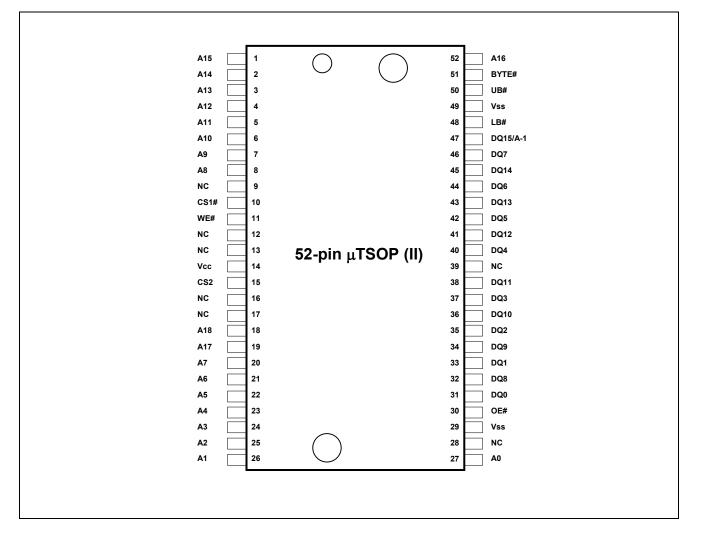
REJ03C0397-0001 Preliminary Rev.0.01 2009.12.08

Description

The R1LV0816ASD is a family of low voltage 8-Mbit static RAMs organized as 524,288-words by 16-bit, fabricated by Renesas's high-performance 0.15um CMOS and TFT technologies. The R1LV0816ASD is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives.

The R1LV0816ASD is packaged in a 52pin thin small outline mount device [µTSOP/ 10.79mm x 10.49 mm with the pin-pitch of 0.40mm]. It gives the best solution for a compaction of mounting area as well as flexibility of wiring pattern of printed circuit boards.

Features

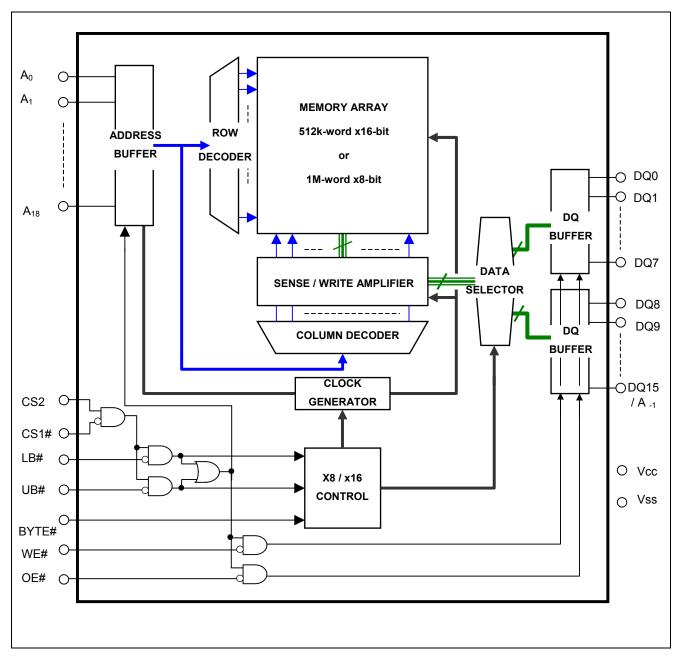

- Single 2.4-3.6V power supply
- Small stand-by current: 1.2µA (Vcc=3.0V, typ.)
- No clocks, No refresh
- All inputs and outputs are TTL compatible
- Easy memory expansion byCS2, CS1#, LB# and UB#
- Common Data I/O
- Three-state outputs: OR-tie capability
- OE# prevents data contention in the I/O bus
- Operation temperature: -40 ~ +85°C

Ordering information

Туре No.	Power supply	Access time	Temperature Range	Package		
R1LV0816ASD-5SI	2.7V to 3.6V 55 ns		250 mil 52 nin plaatie TSOD (II)			
R120010A3D-331	2.4V to 2.7V	.4V to 2.7V 70 ns -40 ~ +85°C		350 mil 52-pin plastic μ-TSOP (II)		
R1LV0816ASD-7SI				(normal-bend type) (52PTG)		

RENESAS

Pin Arrangement


RENESAS

Pin Description

Pin name	Function
Vcc	Power supply
Vss	Ground
A0 to A18	Address input (word mode)
A-1 to A18	Address input (byte mode)
DQ0 to DQ15	Data input/output
CS1#	Chip select 1
CS2	Chip select 2
WE#	Write enable
OE#	Output enable
LB#	Lower byte enable
UB#	Upper byte enable
BYTE#	Byte control mode enable
NC	Non connection

Block Diagram

Operation Table

CS1#	CS2	BYTE#	LB#	UB#	WE#	OE#	DQ0~7	DQ8~14	DQ15	Operation
Н	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand-by
Х	L	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	Stand-by
Х	Х	Н	Н	H	Х	Х	High-Z	High-Z	High-Z	Stand-by
L	Н	Н	L	Н	L	Х	Din	High-Z	High-Z	Write in lower byte
L	Н	Н	L	Н	H	L	Dout	High-Z	High-Z	Read in lower byte
L	Н	Н	L	H	H	Н	High-Z	High-Z	High-Z	Output disable
L	Н	Н	Н	L	L	Х	High-Z	Din	Din	Write in upper byte
L	Н	Н	Н	L	Н	L	High-Z	Dout	Dout	Read in upper byte
L	Н	Н	Н	L	H	Н	High-Z	High-Z	High-Z	Output disable
L	Н	Н	L	L	L	Х	Din	Din	Din	Word write
L	Н	Н	L	L	H	L	Dout	Dout	Dout	Word read
L	Н	Н	L	L	H	Н	High-Z	High-Z	High-Z	Output disable
L	Н	L	L	L	L	Х	Din	High-Z	A-1	Byte write
L	Н	L	L	L	H	L	Dout	High-Z	A-1	Byte read
L	Н	L	L	L	Н	Н	High-Z	High-Z	A-1	Output disable

Note 1. H: V_{IH} L: V_{IL} X: V_{IH} or V_{IL}

2. When BYTE#="L", both LB# and UB# must be active. (LB#=UB#="L")

Absolute Maximum Ratings

Parameter	Symbol	Value	unit
Power supply voltage relative to Vss	Vcc	-0.5 to +4.6	V
Terminal voltage on any pin relative to Vss	VT	-0.5 ^{*1} to Vcc+0.3 ^{*2}	V
Power dissipation	PT	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to 150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 1. -3.0V in case of AC (Pulse width ≤30ns)

2. Maximum voltage is +4.6V

Recommend Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Supply voltage	Vcc	2.4	3.0	3.6	V	-	
	Vss	0	0	0	V	-	
Input high voltage	V	2.0	-	Vcc+0.2	V	Vcc=2.4V to 2.7V	
	V _{IH}	2.2	-	Vcc+0.2	V	Vcc=2.7V to 3.6V	
Input low voltage	V	-0.2	-	0.4	V	Vcc=2.4V to 2.7V	1
	VIL	-0.2	-	0.6	V	Vcc=2.7V to 3.6V	1
Ambient temperature range	Та	-40	-	+85	°C	-	

Note 1. -3.0V in case of AC (Pulse width ≤30ns)

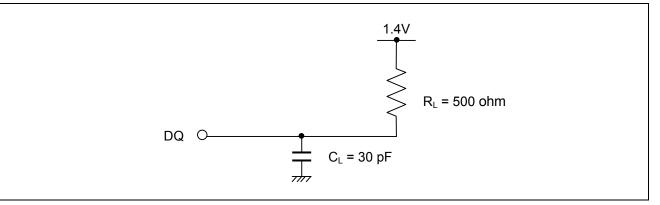
DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions	
Input leakage current	I _{LI}	-	-	1	μA	Vin = Vss	to Vcc	
Output leakage current	I _{LO}	-	-	1	μA	CS1# =V _I OE# =V _{IH}	Vcc -0.2V or BYTE# \leq 0.2V _H or CS2 =V _{IL} or or WE# =V _{IL} or # =V _{IH} , VI/O =Vss to Vcc	
Average operating current	Icc1	-	20 ^{*1}	35	mA	Min. cycle, duty =100%, II/O = 0mA BYTE# \geq Vcc -0.2V or BYTE# \leq 0.2 CS1# =V _{IL} , CS2 =V _{IH} , Others = V _{IH} /		
	I _{CC2}	-	2 ^{*1}	5	mA	BYTE# ≥ CS1# ≤ 0	as, duty =100%, II/O = 0mA Vcc -0.2V or BYTE# ≤ 0.2V .2V, CS2 ≥ V_{CC} -0.2V, -0.2V, V _{IL} ≤ 0.2V	
Standby current	I _{SB}	-	0.1 ^{*1}	0.3	mA	BYTE#≥ CS2 =V _{IL}	Vcc -0.2V or BYTE# ≤ 0.2V	
Standby current		-	1.2 ^{*1}	4	μA	~+25°C	Vin ≥ 0V BYTE# ≥ Vcc -0.2V or	
		-	3 ^{*2}	6	μA	~+40°C	BYTE# $\leq 0.2V$ (1) 0V $\leq CS2 \leq 0.2V$ or (2) CS4# $\geq V = 0.2V$	
	I _{SB1}	-	-	15	μA	~+70°C	(2) $CS1\# \ge V_{CC}-0.2V$, $CS2 \ge V_{CC}-0.2V$ or (3) $LB\# = UB\# \ge V_{CC}-0.2V$,	
		-	-	20	μA	~+85°C	$CS1\# \le 0.2V,$ $CS2 \ge V_{CC}-0.2V$	
Output high voltage	V _{OH}	2.4	-	-	V	$BYTE# \ge Vcc -0.2V \text{ or } BYTE# \le 0.2V$ $I_{OH} = -1mA$ $Vcc \ge 2.7V$ $BYTE# \ge Vcc -0.2V \text{ or } BYTE# \le 0.2V$ $I_{OH} = -0.1mA$ $BYTE# \ge Vcc -0.2V \text{ or } BYTE# \le 0.2V$ $I_{OL} = 2mA$ $Vcc \ge 2.7V$ $BYTE# \ge Vcc -0.2V \text{ or } BYTE# \le 0.2V$ $I_{OL} = 0.1mA$		
	V _{OH2}	2.0	-	-	V			
Output low voltage	V _{OL}	-	-	0.4	v			
	V _{OL2}	-	-	0.4	V			

Note 1.Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+25°C), and not 100% tested. 2.Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+40°C), and not 100% tested.

Capacitance

(Ta =25°C, f =1MHz)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	-	-	10	pF	Vin =0V	1
Input / output capacitance	C I/O	-	-	10	pF	V _{I/O} =0V	1

Note 1.Typical parameter is sampled and not 100% tested.

AC Characteristics

Test Conditions (Vcc = $2.4V \sim 3.6V$, Ta = $-40 \sim +85^{\circ}C$)

- Input pulse levels: VIL = 0.4V, VIH = 2.4V (Vcc = 2.7V ~ 3.6 V)
 VIL = 0.4V, VIH = 2.2V (Vcc = 2.4V ~ 2.7 V)
- Input rise and fall times: 5ns
- Input and output timing reference level: 1.4V
- Output load: See figures (Including scope and jig)

Read cycle

Parameter	Symbol	R1LV0816 (Not	ASD-5SI te 0)	R1LV081	6ASD-7SI	Unit	Note
		Min.	Max.	Min.	Max.		
Read cycle time	t _{RC}	55	-	70	-	ns	
Address access time	t _{AA}	-	55	-	70	ns	
Chip select access time	t _{ACS1}	-	55	-	70	ns	
	t _{ACS2}	-	55	-	70	ns	
Output enable to output valid	t _{OE}	-	30	-	35	ns	
Output hold from address change	t _{он}	10	-	10	-	ns	
LB#, UB# access time	t _{BA}	-	55	-	70	ns	
Chip select to output in low-Z	t _{CLZ1}	10	-	10	-	ns	2,3
	t _{CLZ2}	10	-	10	-	ns	2,3
LB#, UB# enable to low-Z	t _{BLZ}	5	-	5	-	ns	2,3
Output enable to output in low-Z	t _{OLZ}	5	-	5	-	ns	2,3
Chip deselect to output in high-Z	t _{CHZ1}	0	20	0	25	ns	1,2,3
	t _{CHZ2}	0	20	0	25	ns	1,2,3
LB#, UB# disable to high-Z	t _{BHZ}	0	20	0	25	ns	1,2,3
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	ns	1,2,3

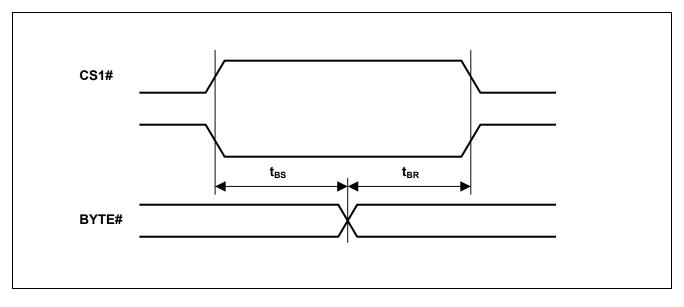
Write Cycle

Parameter	Symbol	R1LV0816 (Not	ASD-5SI te 0)	R1LV081	6ASD-7SI	Unit	Note
		Min.	Max.	Min.	Max.		
Write cycle time	t _{wc}	55	-	70	-	ns	
Address valid to end of write	t _{AW}	50	-	65	-	ns	
Chip select to end of write	t _{CW}	50	-	65	-	ns	5
Write pulse width	t _{WP}	40	-	55	-	ns	4
LB#, UB# valid to end of write	t _{BW}	50	-	65	-	ns	
Address setup time	t _{AS}	0	-	0	-	ns	6
Write recovery time	t _{WR}	0	-	0	-	ns	7
Data to write time overlap	t _{DW}	25	-	35	-	ns	
Data hold from write time	t _{DH}	0	-	0	-	ns	
Output enable from end of write	t _{ow}	5	-	5	-	ns	2
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	ns	1,2
Write to output in high-Z	t _{WHZ}	0	20	0	25	ns	1,2

Note 0. If Vcc is 2.4-2.7V, parameters of R1LV0816ASA-7SI and R1LV0816ASD-7SI7SI are applied.

- 1. t_{CHZ} , t_{OHZ} , t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
- 2. Typical parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for given device and from device to device.
- 4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or low UB#. A write begins at the latest transitions among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low.

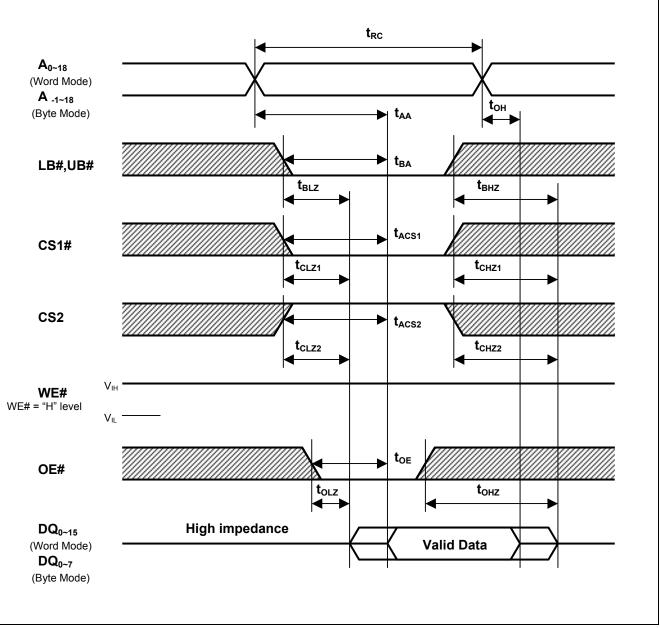
A write ends at the earliest transitions among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. t_{WP} is measured from the beginning of write to the end of write.


- 5. t_{CW} is measured from the later of CS1# going low or CS2 going high to the end of write.
- 6. $t_{\mbox{\scriptsize AS}}$ is measured the address valid to the beginning of write.

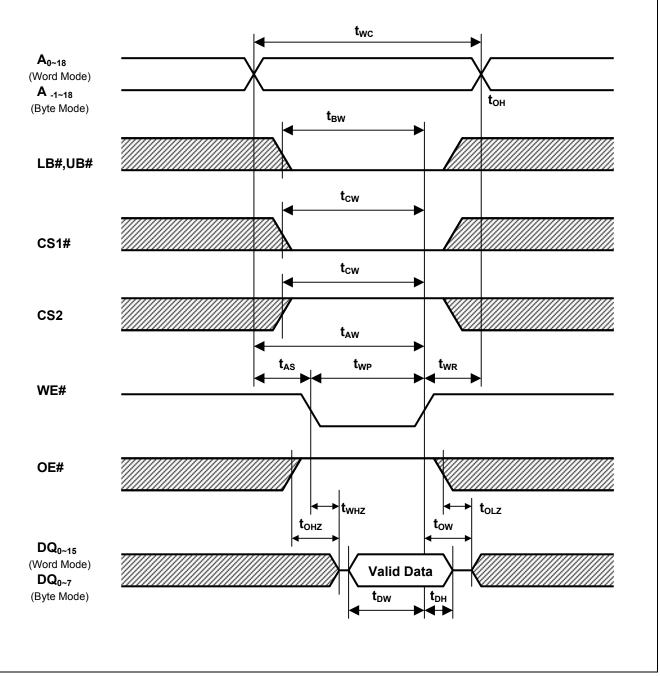
7. twR is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle

BYTE# function

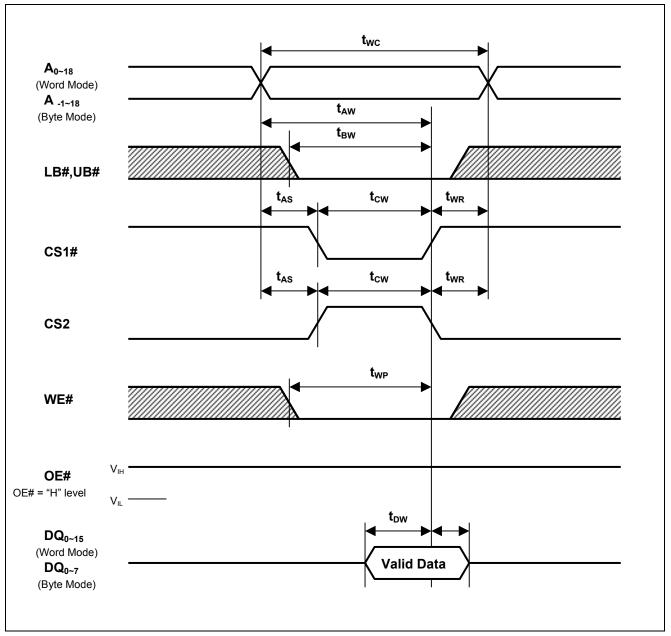
Parameter	Svmbol	R1LV081	6ASD-5SI	R1LV081	6ASD-7SI	Unit	Note
Falameter	Symbol	Min.	Max.	Min.	Max.	Unit	NOLE
Byte setup time	t _{BS}	5	-	5	-	ms	
Byte recovery time	t _{BR}	5	-	5	-	ms	


BYTE# Timing Waveforms

Timing Waveforms

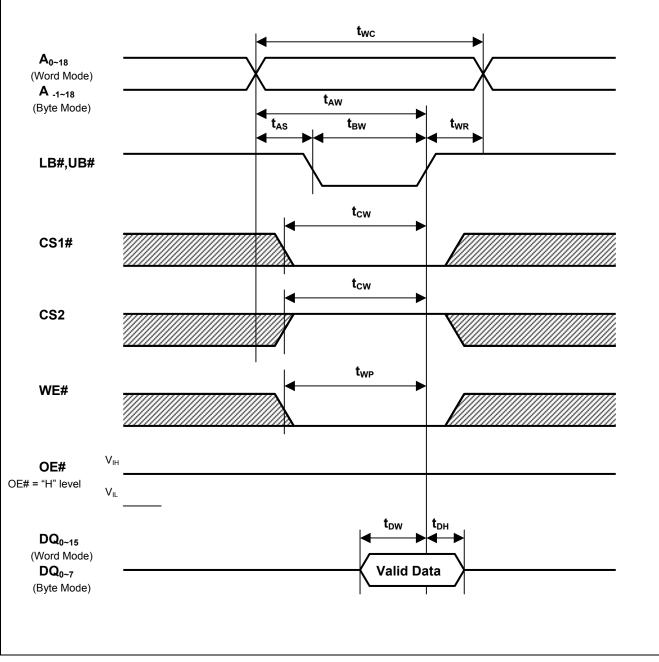

Read Cycle^{*1}

Note1.BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V


REJ03C0397-0001 Rev.0.01 2009.12.08

Write Cycle (1)^{*1} (WE# CLOCK)

Note1.BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V


Write Cycle (2)^{*1} (CS1#, CS2 CLOCK)

Note1.BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V

REJ03C0397-0001 Rev.0.01 2009.12.08

Write Cycle (3)^{*1} (LB#, UB# CLOCK)

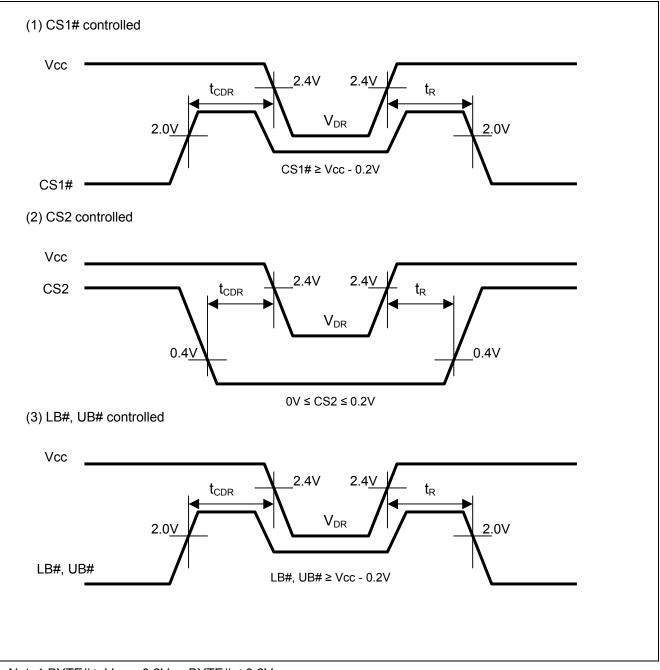
Note1.BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V

REJ03C0397-0001 Rev.0.01 2009.12.08

Data Retention Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions ^{*3}	
V_{CC} for data retention	V _{DR}	1.5	-	3.6	~	(1) 0V ≤ 0 (2) CS1# CS2 ≥ (3) LB# = CS1# ≤	Vcc -0.2V or BYTE# ≤ 0.2V CS2 ≤ 0.2V or ≥ V _{CC} -0.2V, V _{CC} -0.2V or : UB# ≥ V _{CC} -0.2V, ≤ 0.2V, V _{CC} -0.2V	
		-	1.2 ^{*1}	4	μA	~+25°C	Vcc=3.0V, Vin ≥ 0V BYTE# ≥ Vcc -0.2V or	
Data retention current		-	3 ^{*2}	6	μA	~+40°C	BYTE# $\leq 0.2V$ (1) 0V $\leq CS2 \leq 0.2V$ or (2) CS4# $\geq V$ = 0.2V	
	I _{CCDR}	-	-	15	μA	~+70°C	(2) CS1# \geq V _{CC} -0.2V, CS2 \geq V _{CC} -0.2V or (3) LB# = UB# \geq V _{CC} -0.2V,	
		-	-	20	μA	~+85°C	$CS1\# \le 0.2V,$ $CS2 \ge V_{CC}-0.2V$	
Chip select to data retention time	t _{CDR}	0	-	-	ns	See reter	ation waveform	
Operation recovery time	t _R	5	-	-	ms	See retention waveform.		

Note 1.Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+25°C), and not 100% tested.


2.Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+40°C), and not 100% tested.
3.CS2 controls address buffer, WE# buffer, CS1# Buffer, OE# buffer, LB#, UB# buffer and Din buffer.

If CS2 controls data retention mode, Vin levels (address, WE#, OE#, LB#, UB#, DQ) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be CS2 \ge V_{CC}-0.2V or 0V \le CS2 \le 0.2V. The other inputs levels (address, WE#, OE#, CS1#, LB#, UB#, DQ) can be in the high impedance state.

```
REJ03C0397-0001 Rev.0.01 2009.12.08
```


Data Retention Timing Waveforms^{*1}

Note1.BYTE# \geq Vcc - 0.2V or BYTE# \leq 0.2V

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA IS62WV12816ALL-70BLI 5962-8971203XA 5962-8971202ZA