1. OUTLINE

1.1 Features

Ultra-Low Power Technology

- 1.6 V to 5.5 V operation from a single supply
- Stop (RAM retained): $0.24 \mu \mathrm{~A}$, (LVD enabled): $0.32 \mu \mathrm{~A}$
- Halt (RTC + LVD): $0.60 \mu \mathrm{~A}$
- Snooze: T.B.D
- Operating: $66 \mu \mathrm{~A} / \mathrm{MHz}$

16-bit RL78 CPU Core

- Delivers 44 DMIPS at maximum operating frequency of 32 MHz
- Instruction execution: 86\% of instructions can be executed in 1 to 2 clock cycles
- CISC architecture (Harvard) with 3-stage pipeline
- Multiply signed \& unsigned: 16×16 to 32 -bit result in 1 clock cycle
- MAC: 16×16 to 32 -bit result in 2 clock cycles
- 16-bit barrel shifter for shift \& rotate in 1 clock cycle
- 1-wire on-chip debug function

Code Flash Memory

- Density: 16 KB to 256 KB
- Block size: 1KB
- On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- Data flash with background operation
- Data flash size: 4 KB to 8 KB size options
- Erase cycles: 1 Million (typ.)
- Erase/programming voltage: 1.8 V to 5.5 V

RAM

- 2.5 KB to 24 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 32 MHz with +/- 1\% accuracy over voltage (1.8 V to 5.5 V) and temperature ($-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
- Pre-configured settings: $64 \mathrm{MHz}, 48 \mathrm{MHz}, 32 \mathrm{MHz}$, $24 \mathrm{MHz}, 16 \mathrm{MHz}, 12 \mathrm{MHz}, 8 \mathrm{MHz}, 4 \mathrm{MHz}$ \& 1 MHz
- $64 \mathrm{MHz}, 48 \mathrm{MHz}$ for timer RD

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 14 setting options (Interrupt and/or reset function)

General Purpose I/O

- 5 V tolerant, high-current (up to 20 mA per pin)
- Open-drain, on-chip pull-up resistor

Data Transfer Controller (DTC)

- 39 sources \& 24 different settings
- Transfer data: 8 bits/16 bits
- Normal mode and repeat mode

Event Link Controller (ELC)

- Reduce interrupt intervention
- Link 26 events to specified peripheral function

Multiple Communication Interfaces

- Up to $8 \times \mathrm{I}^{2} \mathrm{C}$ master
- Up to $2 \times{ }^{2} \mathrm{C}$ multi-master
- Up to $8 \times$ CSI/SPI (7-, 8-bit)
- Up to $4 \times$ UART (7-, 8-, 9-bit)
- Up to $1 \times$ LIN

Extended-Function Timers

- Multi-function 16-bit timers: Up to 8 channels
- Motor control timer (3 ph - complementary mode)
- Timer with encoder function: 16-bit, 1 channel
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- Interval timer: 12-bit, 1 channel
- 15 kHz watchdog timer: 1 channel (window function)

Rich Analog

- ADC: Up to 20 channels, 10-bit resolution, $2.1 \mu \mathrm{~s}$ conversion time
- Supports 1.6 V
- $2 \times$ window comparators, with ELC connection
- D/A converter: 2 channels, 8-bit resolution
- Internal voltage reference (1.45 V)
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- RAM parity error check
- RAM write protection
- SFR write protection
- Illegal memory access detection
- Clock stop/frequency detection
- ADC self-test
- I/O port read back function (echo)

Operating Ambient Temperature

- Standard: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Extended: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ <under planning>

Package Type and Pin Count

From $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ to $14 \mathrm{~mm} \times 20 \mathrm{~mm}$
QFP: 32, 44, 48, 52, 64, 80,100
QFN: 32, 40, 48
SSOP: 30
LGA: 36, 64

O ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G14			
			30 pins	32 pins	36 pins	40 pins
192 KB	8 KB	20 KB	-	-	-	R5F104EH
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF
64 KB	4 KB	5.5 KB Note 1	R5F104AE	R5F104BE	R5F104CE	R5F104EE
48 KB	4 KB	5.5 KB Note 1	R5F104AD	R5F104BD	R5F104CD	R5F104ED
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA

Flash ROM	Data flash	RAM	RL78/G14			
			44 pins	48 pins	52 pins	64 pins
256 KB	8 KB	24 KB Note 2	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF
64 KB	4 KB	5.5 KB Note 1	R5F104FE	R5F104GE	R5F104JE	R5F104LE
48 KB	4 KB	5.5 KB Note 1	R5F104FD	R5F104GD	R5F104JD	R5F104LD
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	-	-

Flash ROM	Data flash	RAM	80 pins	RL78/G14	
			R5F104MJ	R5F104PJ	
256 KB	8 KB	24 KB Note 2	R5F104MH	R5F104PH	
192 KB	8 KB	20 KB	R5F104MG	R5F104PG	
128 KB	8 KB	16 KB	R5F104MF	R5F104PF	
96 KB	8 KB	12 KB			

Note 1. This is about 4.5 KB when the self-programming function and data flash function are used.
Note 2. This is about 23 KB when the self-programming function and data flash function are used.

1.2 Ordering Information

(1/2)

Pin count	Package	Part Number		
30 pins	30-pin plastic SSOP $(7.62$ mm (300))	R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP		
R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP,				
R5F104AFDSP, R5F104AGDSP			,	R5F104BAANA, R5F104BCANA, R5F104BDANA, R5F104BEANA,
:---				

Pin count	Package	Part Number
64 pins	64 -pin plastic LQFP (12×12)	R5F104LCAFA, R5F104LDAFA, R5F104LEAFA, R5F104LFAFA, R5F104LGAFA, R5F104LHAFA, R5F104LJAFA R5F104LCDFA, R5F104LDDFA, R5F104LEDFA, R5F104LFDFA, R5F104LGDFA, R5F104LHDFA, R5F104LJDFA
	64-pin plastic LQFP (fine pitch) (10×10)	R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB
	64-pin plastic FLGA (5×5)	R5F104LCALA, R5F104LDALA, R5F104LEALA, R5F104LFALA, R5F104LGALA, R5F104LHALA, R5F104LJALA R5F104LCDLA, R5F104LDDLA, R5F104LEDLA, R5F104LFDLA, R5F104LGDLA, R5F104LHDLA, R5F104LJDLA
	64-pin plastic LQFP (14×14)	R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP
80 pins	80-pin plastic LQFP (fine pitch) (12×12)	R5F104MFAFB, R5F104MGAFB, R5F104MHAFB, R5F104MJAFB R5F104MFDFB, R5F104MGDFB, R5F104MHDFB, R5F104MJDFB
	80-pin plastic LQFP (14×14)	R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA
100 pins	100-pin plastic LQFP (fine pitch) (14×14)	R5F104PFAFB, R5F104PGAFB, R5F104PHAFB, R5F104PJAFB R5F104PFDFB, R5F104PGDFB, R5F104PHDFB, R5F104PJDFB
	100-pin plastic LQFP (14×20)	R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA

Figure 1-1 Part Number, Memory Size, and Package of RL78/G14
Part No. R 5 F 104 LEAxxxFB

1.3 Pin Configuration (Top View)

1.3.1 30-pin products

- 30-pin plastic SSOP (7.62 mm (300))

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.2 32-pin products

-32-pin plastic WQFN (fine pitch) (5×5)
-32-pin plastic LQFP (7×7)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.3 36-pin products

- 36-pin plastic FLGA (4×4)

	A B		C D		E	F	
6	P60/SCLA0	VdD	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62/ $\overline{\mathrm{SSI}}$ (00	P61/SDAA0	Vss	REGC	RESET	P120/ANI19/ VCOUTO Note	5
4	P72/SO21	$\begin{aligned} & \text { P71/SI21/ } \\ & \text { SDA21 } \end{aligned}$	P14/RxD2/SI20/ SDA20/TRDIODO/ (SCLAO)	P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJIOO)	P00/TI00/TxD1/ TRGCLKA/ (TRJOO)	P01/TO00/ RxD1/TRGCLKB/ TRJIOO	4
3	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/TRGIOA/ (TRJOO)	$\begin{aligned} & \text { P70/SCK21/ } \\ & \text { SCL21 } \end{aligned}$	$\begin{aligned} & \text { P15/PCLBUZ1/ } \\ & \hline \text { SCK20/SCL20/ } \\ & \text { TRDIOB0/ } \\ & \text { (SDAAO) } \end{aligned}$	P22/ANI2/ ANOO Note	P20/ANIO/ AVrefp	P21/ANI1/ AVrefm	3
2	P30/INTP3/ SCK00/SCLOO/ TRJO0	P16/TI01/TO01/ INTP5/TRDIOC0/ IVREFO Note/ (RXD0)	P12/SO11/ TRDIOB1/ IVREF1 Note	P11/SI11/ SDA11/ TRDIOC1	P24/ANI4	P23/ANI3/ ANO1 Note	2
1	P51/INTP2/ SOOO/TxD0/ TOOLTxD/ TRGIOB	P17/TIO2/TO02/ TRDIOAO/ TRDCLKO/ IVCMPO Note/ (TXDO)	P13/TxD2/ SO20/TRDIOA1/ IVCMP1 Note	$\begin{aligned} & \mathrm{P} 10 / \overline{\mathrm{SCK} 11 /} \\ & \text { SCL11/ } \\ & \text { TRDIOD1 } \end{aligned}$	P147/ANI18/ VCOUT1 Note	P25/ANI5	1
	A	B	C	D	E	F	

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.4 40-pin products

- 40-pin plastic WQFN (fine pitch) (6×6)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.5 44-pin products

- 44-pin plastic LQFP (10×10)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.6 48-pin products

- 48-pin plastic LQFP (fine pitch) (7×7)

Note Mounted on the 96 KB or more code flash memory products.
Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

- 48-pin plastic WQFN (7 $\times 7$)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.7 52-pin products

-52-pin plastic LQFP (10 $\times 10$)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.3.8 64-pin products

-64-pin plastic LQFP (14×14)
-64-pin plastic LQFP (12×12)
-64-pin plastic LQFP (fine pitch) (10×10)

Note
Mounted on the 96 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as Vss pin.
Caution 2. Make Vdd pin the same potential as EVddo pin, or the potential that is higher than the EVddo pin.
Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VdD and EVddo pins and connect the Vss and EVsso pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).
-64-pin plastic FLGA (5 $\times 5$)

Note Mounted on the 96 KB or more code flash memory products.
Caution 1. Make EVsso pin the same potential as Vss pin.
Caution 2. Make Vdd pin the same potential as EVddo pin, or the potential that is higher than the EVddo pin.
Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
(Remarks are listed on the next page.)

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the Vdd and EVdDo pins and connect the Vss and EVsso pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 , 1 (PIORO, 1).

1.3.9 80-pin products

- 80-pin plastic LQFP (14×14)
- 80-pin plastic LQFP (fine pitch) (12 $\times 12$)

Caution Make EVsso pin the same potential as Vss pin.
Caution 1. Make Vdd pin the same potential as EVddo pin, or the potential that is higher than the EVddo pin.
Caution 2. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDDo pins and connect the Vss and EVsso pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1)

1.3.10 100-pin products

- 100-pin plastic LQFP (fine pitch) (14×14)

Caution Make EVsso, EVss1 pins the same potential as Vss pin.

Caution 1. Make Vdd pin the same potential as EVddo pin, or the potential that is higher than the EVddo pin. Make EVdd1 pin the same potential as EVddo pin.
Caution 2. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDDo and EVDD1 pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIOR0, 1).

- 100-pin plastic LQFP (fine pitch) (14 × 20)

Caution Make EVsso, EVss1 pins the same potential as Vss pin.
Caution 1. Make Vdd pin the same potential as EVddo pin, or the potential that is higher than the EVddo pin.
Make EVDD1 pin the same potential as EVdDo pin
Caution 2. Connect the REGC pin to Vss pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the Vdd, EVddo and EVdD1 pins and connect the Vss, EVsso and EVss1 pins to separate ground lines.
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0,1 (PIORO, 1).

1.4 Pin Identification

ANIO to ANI14,:	Analog input	RxD0 to RxD3:	Receive data
ANI16 to ANI20		$\overline{\text { SCK00, }}$ SCK01, $\overline{\text { SCK10, }}$	Serial clock input/output
ANO0, ANO1:	Analog output	$\overline{\text { SCK11, }}$ SCK20, $\overline{\text { SCK21, }}$	
AVREFm:	A/D converter reference	$\overline{\text { SCK30, }}$ SCK31	
	potential (- side) input	SCLA0, SCLA1, SCL00,:	Serial clock input/output
AVrefp:	A/D converter reference	SCL01, SCL10, SCL11,	
	potential (+ side) input	SCL20, SCL21, SCL30,	
EVddo, EVddi:	Power supply for port	SCL31	
EVsso, EVssi:	Ground for port	SDAA0, SDAA1, SDA00,:	Serial data input/output
EXCLK:	External clock input	SDA01, SDA10, SDA11,	
	(main system clock)	SDA20, SDA21, SDA30,	
EXCLKS:	External clock input	SDA31	
	(sub system clock)	SI00, SI01, SI10, SI11,:	Serial data input
INTP0 to INTP11:	External interrupt input	SI20, SI21, SI30, SI31	
IVCMP0, IVCMP1:	Comparator input	SO00, SO01, SO10,:	Serial data output
IVREFO, IVREF1:	Comparator reference input	SO11, SO20, SO21,	
KR0 to KR7:	Key return	SO30, SO31	
P00 to P06:	Port 0	$\overline{\text { SSIOO: }}$	Serial interface chip select input
P10 to P17:	Port 1	TIOO to TIO3,:	Timer input
P20 to P27:	Port 2	TI10 to TI13	
P30, P31:	Port 3	TO00 to TO03,:	Timer output
P40 to P47:	Port 4	TO10 to TO13, TRJO0	
P50 to P57:	Port 5	TOOLO:	Data input/output for tool
P60 to P67:	Port 6	TOOLRxD, TOOLTxD:	Data input/output for external device
P70 to P77:	Port 7	TRDCLK0, TRGCLKA,:	Timer external input clock
P80 to P87:	Port 8	TRGCLKB	
P100 to P102:	Port 10	TRDIOAO, TRDIOB0,:	Timer input/output
P110, P111:	Port 11	TRDIOC0, TRDIOD0,	
P120 to P124:	Port 12	TRDIOA1, TRDIOB1,	
P130, P137:	Port 13	TRDIOC1, TRDIOD1,	
P140 to P147:	Port 14	TRGIOA, TRGIOB, TRJIO	0
P150 to P156:	Port 15	TxD0 to TxD3:	Transmit data
PCLBUZ0, PCLBUZ1:	Programmable clock	VCOUT0, VCOUT1:	Comparator output
	output/buzzer output	VDD:	Power supply
REGC:	Regulator capacitance	Vss:	Ground
RESET:	Reset	X1, X2:	Crystal oscillator (main system clock)
RTC1HZ:	Real-time clock correction clock (1 Hz) output	XT1, XT2:	Crystal oscillator (subsystem clock)

1.5 Block Diagram

1.5.1 30-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.2 32-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.3 36-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.4 40-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.6 48-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.7 52-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.8 64-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.9 80-pin products

1.5.10 100-pin products

1.6 Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.
(1/2)

Item		30-pin	32-pin	36-pin	40-pin
		$\begin{gathered} \text { R5F104Ax } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Bx } \\ (\mathrm{x}=\mathrm{A}, \mathrm{C} \text { to } \mathrm{E}) \end{gathered}$	$\begin{gathered} \text { R5F104Cx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{aligned} & \text { R5F104Ex } \\ & (x=A, C \text { to } E) \end{aligned}$
Code flash memory (KB)		16 to 64	16 to 64	16 to 64	16 to 64
Data flash memory (KB)		4	4	4	4
RAM (KB)		2.5 to 5.5 Note			
Memory space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz : $\mathrm{VDD}=2.7$ to $5.5 \mathrm{~V}, 1$ to 8 MHz : $\mathrm{VDD}=1.8$ to $2.7 \mathrm{~V}, 1$ to 4 MHz : $\mathrm{VDD}=1.6$ to 1.8 V			
	High-speed on-chip oscillator clock (fiн)	High-speed operation: 1 to $32 \mathrm{MHz}(\mathrm{VDD}=2.7$ to 5.5 V), High-speed operation: 1 to 16 MHz ($\mathrm{VDD}=2.4$ to 5.5 V), Low-speed operation: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V$)$, Low-voltage operation: 1 to $4 \mathrm{MHz}(\mathrm{VDD}=$ 1.6 to 5.5 V)			
Subsystem clock		-			XT1 (crystal) oscillation 32.768 kHz (TYP.): VDD $=1.6$ to 5.5 V
Low-speed on-chip oscillator clock		15 kHz (TYP.): $\mathrm{VDD}=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: $\mathrm{fiH}=32 \mathrm{MHz}$ operation)			
		0.05μ (High-speed system clock: fmx $=20 \mathrm{MHz}$ operation)			
		-			$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation ($8 / 16$ bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	26	28	32	36
	CMOS I/O	21	22	26	28
	CMOS input	3	3	3	5
	CMOS output	-	-	-	-
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	16 (TAU: 4, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 10 (TAU: 3, Timer RD: 6, Timer RG: 1)			
	RTC output	-			1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)

Note In the case of the 5.5 KB , this is about 4.5 KB when the self-programming function and data flash function are used.
(2/2)

Item		30-pin	32-pin	36-pin	40-pin
		$\begin{gathered} \text { R5F104Ax } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Bx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Cx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{aligned} & \text { R5F104Ex } \\ & (x=A, C \text { to } E) \end{aligned}$
Clock output/buzzer output		2	2	2	2
		[30-pin, 32-pin, 36-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) [40-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)			
8/10-bit resolution A/D converter		8 channels	8 channels	8 channels	9 channels
Serial interface		[30-pin, 32-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $I^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel [36-pin, 40-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels			
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		28 sources			29 sources
Event link controller (ELC)		Event input: 20 Event trigger output: 7			
Vectored interrupt sources	Internal	24	24	24	24
	External	6	6	6	7
Key interrupt		-	-	-	4
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $\quad 1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		VDD $=1.6$ to 5.5 V			
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.
[30-pin, 32-pin, 36 -pin, 40 -pin products (code flash memory 96 KB to 256 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.

Item		30-pin	32-pin	36-pin	40-pin
		R5F104Ax $(x=F, G)$	$\begin{gathered} \text { R5F104Bx } \\ (x=F, G) \end{gathered}$	$\begin{aligned} & \text { R5F104Cx } \\ & (x=F, G) \end{aligned}$	$\begin{aligned} & \text { R5F104Ex } \\ & (x=F \text { to } H) \end{aligned}$
Code flash memory (KB)		96 to 128	96 to 128	96 to 128	96 to 192
Data flash memory (KB)		8	8	8	8
RAM (KB)		12 to 16	12 to 16	12 to 16	12 to 20
Memory space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz : $\mathrm{VDD}=2.7$ to 5.5 V , 1 to 8 MHz : $\mathrm{VDD}=1.8$ to 2.7 V , 1 to 4 MHz : $\mathrm{VDD}=1.6$ to 1.8 V			
	High-speed on-chip oscillator clock (fir)	High-speed operation: 1 to 32 MHz (VDD $=2.7$ to 5.5 V), High-speed operation: 1 to 16 MHz (VDD $=2.4$ to 5.5 V), Low-speed operation: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V$)$, Low-voltage operation: 1 to $4 \mathrm{MHz}(\mathrm{VDD}=$ 1.6 to 5.5 V)			
Subsystem clock		-			XT1 (crystal) oscillation 32.768 kHz (TYP.): $V_{D D}=1.6$ to 5.5 V
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: $\mathrm{fiH}=32 \mathrm{MHz}$ operation)			
		0.05μ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)			
		-			$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation ($8 / 16$ bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	26	28	32	36
	CMOS I/O	21	22	26	28
	CMOS input	3	3	3	5
	CMOS output	-	-	-	-
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	16 (TAU: 4, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 10 (TAU: 3, Timer RD: 6, Timer RG: 1)			
	RTC output	-			1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)

Item		30-pin	32-pin	36-pin	40-pin
		$\begin{gathered} \text { R5F104Ax } \\ (x=F, G) \end{gathered}$	$\begin{gathered} \text { R5F104Bx } \\ (x=F, G) \end{gathered}$	$\begin{gathered} \text { R5F104C } x \\ (x=F, G) \end{gathered}$	$\begin{aligned} & \text { R5F104Ex } \\ & (x=F \text { to } H) \end{aligned}$
Clock output/buzzer output		2	2	2	2
		[30-pin, 32-pin, 36-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) [40-pin products] - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fmain $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsus $=32.768 \mathrm{kHz}$ operation)			
8/10-bit resolution A/D converter		8 channels	8 channels	8 channels	9 channels
D/A converter		1 channel	2 channels		
Comparator		2 channels			
Serial interface		[30-pin, 32-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}: 1$ channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel [36-pin, 40-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels			
	${ }^{12} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		28 sources			29 sources
Event link controller (ELC)		Event input: 20 Event trigger output: 7			
Vectored interrupt sources	Internal	24	24	24	24
	External	6	6	6	7
Key interrupt		-	-	-	4
Reset		- Reset by $\overline{\text { RESET }}$ pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		VDD $=1.6$ to 5.5 V			
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.
[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Gx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{aligned} & \text { R5F104Jx } \\ & (x=C \text { to } E) \end{aligned}$	$\begin{aligned} & \text { R5F104Lx } \\ & (x=C \text { to } E) \end{aligned}$
Code flash memory (KB)		16 to 64	16 to 64	32 to 64	32 to 64
Data flash memory (KB)		4	4	4	4
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	4 to 5.5 Note	4 to 5.5 Note
Memory space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz : VDD $=2.7$ to 5.5 V , 1 to 8 MHz : $\mathrm{VDD}=1.8$ to 2.7 V , 1 to 4 MHz : VDD $=1.6$ to 1.8 V			
	High-speed on-chip oscillator clock (fï)	High-speed operation: 1 to 32 MHz (VDD $=2.7$ to 5.5 V), High-speed operation: 1 to 16 MHz (VDD $=2.4$ to 5.5 V), Low-speed operation: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V), Low-voltage operation: 1 to $4 \mathrm{MHz}(\mathrm{VDD}=1.6$ to 5.5 V)			
Subsystem clock		XT1 (crystal) oscillation 32.768 kHz (TYP.): VdD $=1.6$ to 5.5 V			
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fiH $=32 \mathrm{MHz}$ operation)			
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)			
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)			
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	40	44	48	58
	CMOS I/O	31	34	38	48
	CMOS input	5	5	5	5
	CMOS output	-	1	1	1
	N -ch open-drain I/O (6 V tolerance)	4	4	4	4
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	16 (TAU: 4, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 10 (TAU: 3, Timer RD: 6, Timer RG: 1)			
	RTC output	1 - 1 Hz (subsystem clock: fsub $=32.768$ kHz)			

Note In the case of the 5.5 KB , this is about 4.5 KB when the self-programming function and data flash function are used.
(2/2)

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{gathered} \text { R5F104Gx } \\ (x=A, C \text { to } E) \end{gathered}$	$\begin{aligned} & \text { R5F104Jx } \\ & (x=C \text { to E) } \end{aligned}$	$\begin{aligned} & \text { R5F104Lx } \\ & (x=C \text { to } E) \end{aligned}$
Clock output/buzzer output		2	2	2	2
		```- 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)```			
8/10-bit resolution A/D converter		10 channels	10 channels	12 channels	12 channels
Serial interface		[44-pin products]   - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$ : 1 channel   - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels   [48-pin, 52-pin products]   - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$ : 2 channels   - CSI: 1 channel/UART: 1 channel/simplified I ${ }^{2} \mathrm{C}: 1$ channel   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels   [64-pin products]   - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2}{ }^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels   - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels			
	${ }^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		29 sources	30 sources		31 sources
Event link controller (ELC)		Event input: 20   Event trigger output: 7			
Vectored interrupt sources	Internal	24	24	24	24
	External	7	10	12	13
Key interrupt		4	6	8	8
Reset		- Reset by $\overline{\text { RESET }}$ pin   - Internal reset by watchdog timer   - Internal reset by power-on-reset   - Internal reset by voltage detector   - Internal reset by illegal instruction execution Note   - Internal reset by RAM parity error   - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$   - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		$\mathrm{VDD}=1.6$ to 5.5 V			
Operating ambient temperature		TA $=-40$ to $+85^{\circ} \mathrm{C}$			

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.
[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 96 KB to 256 KB )]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=F \text { to } H, \mathrm{~J}) \end{gathered}$	$\begin{aligned} & \text { R5F104Gx } \\ & (x=F \text { to H, J) } \end{aligned}$	$\begin{gathered} \text { R5F104Jx } \\ (\mathrm{x}=\mathrm{F} \text { to H, J) } \end{gathered}$	$\begin{gathered} \text { R5F104Lx } \\ (x=F \text { to } H, \mathrm{~J}) \end{gathered}$
Code flash memory (KB)		96 to 256	96 to 256	96 to 256	96 to 256
Data flash memory (KB)		8	8	8	8
RAM (KB)		12 to 24 Note			
Memory space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)   1 to 20 MHz : $\mathrm{VDD}=2.7$ to 5.5 V , 1 to 8 MHz : $\mathrm{VDD}=1.8$ to 2.7 V , 1 to 4 MHz VDD $=1.6$ to 1.8 V			
	High-speed on-chip oscillator clock (fir)	High-speed operation: 1 to 32 MHz (VDD $=2.7$ to 5.5 V ), High-speed operation: 1 to 16 MHz (VDD $=2.4$ to 5.5 V ), Low-speed operation: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V ), Low-voltage operation: 1 to $4 \mathrm{MHz}(\mathrm{VdD}=1.6$ to 5.5 V )			
Subsystem clock		XT1 (crystal) oscillation   32.768 kHz (TYP.): VDD $=1.6$ to 5.5 V			
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 5.5 V			
General-purpose register		8 bits $\times 32$ registers ( 8 bits $\times 8$ registers $\times 4$ banks)			
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fiH $=32 \mathrm{MHz}$ operation)			
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)			
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)			
Instruction set		- Data transfer (8/16 bits)   - Adder and subtractor/logical operation (8/16 bits)   - Multiplication ( 8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division ( 16 bits $\div 16$ bits, 32 bits $\div 32$ bits)   - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits)   - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.			
I/O port	Total	40	44	48	58
	CMOS I/O	31	34	38	48
	CMOS input	5	5	5	5
	CMOS output	-	1	1	1
	N -ch open-drain I/O (6 V tolerance)	4	4	4	4
Timer	16-bit timer	8 channels   (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	16   (TAU: 4, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 10 (TAU: 3, Timer RD: 6, Timer RG: 1)			
	RTC output	1   - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$ )			

Note In the case of the 24 KB , this is about 23 KB when the self-programming function and data flash function are used.

Item		44-pin	48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Fx } \\ (x=F \text { to H, J) } \end{gathered}$	$\begin{gathered} \text { R5F104Gx } \\ (x=F \text { to } H, \mathrm{~J}) \end{gathered}$	$\begin{gathered} \text { R5F104Jx } \\ (x=F \text { to } H, \mathrm{~J}) \end{gathered}$	$\begin{gathered} \text { R5F104Lx } \\ (x=F \text { to } H, \mathrm{~J}) \end{gathered}$
Clock output/buzzer output		2	2	2	2
		```• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmAIN = 20 MHz operation) - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)```			
8/10-bit resolution A/D converter		10 channels	10 channels	12 channels	12 channels
D/A converter		2 channels			
Comparator		2 channels			
Serial interface		[44-pin products] - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified $I^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels [48-pin, 52-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels - CSI: 1 channeI/UART: 1 channel/simplified $I^{2} \mathrm{C}: 1$ channel - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels [64-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}$: 2 channels - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels			
	${ }^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		29 sources	30 sources		31 sources
Event link controller (ELC)		Event input: 20 Event trigger output: 7			
Vectored interrupt sources	Internal	24	24	24	24
	External	7	10	12	13
Key interrupt		4	6	8	8
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug function		Provided			
Power supply voltage		VDD $=1.6$ to 5.5 V			
Operating ambient temperature		$\mathrm{TA}=-40 \text { to }+85^{\circ} \mathrm{C}$			

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.
[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIORO, 1) are set to 00H.
(1/2)

Item		80-pin	100-pin
		$\begin{gathered} \text { R5F104Mx } \\ (\mathrm{x}=\mathrm{F} \text { to } \mathrm{H}, \mathrm{~J}) \end{gathered}$	$\begin{gathered} \text { R5F104Px } \\ (x=F \text { to } H, \mathrm{~J}) \end{gathered}$
Code flash memory (KB)		96 to 256	96 to 256
Data flash memory (KB)		8	8
RAM (KB)		12 to 24 Note	12 to 24 Note
Memory space		1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz : VDD $=2.7$ to 5.5 V , 1 to 8 MHz : $\mathrm{VDD}=1.8$ to 2.7 V , 1 to 4 MHz : VDD $=1.6$ to 1.8 V	
	High-speed on-chip oscillator clock (fir)	High-speed operation: 1 to $32 \mathrm{MHz}(\mathrm{VDD}=2.7$ to 5.5 V), High-speed operation: 1 to 16 MHz (VDD $=2.4$ to 5.5 V), Low-speed operation: 1 to $8 \mathrm{MHz}(\mathrm{VDD}=1.8$ to 5.5 V), Low-voltage operation: 1 to $4 \mathrm{MHz}(\mathrm{VDD}=1.6$ to 5.5 V)	
Subsystem clock		XT1 (crystal) oscillation 32.768 kHz (TYP.): VDD $=1.6$ to 5.5 V	
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.6$ to 5.5 V	
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time		$0.03125 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: fiH $=32 \mathrm{MHz}$ operation)	
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)	
		30.5μ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.	
I/O port	Total	74	92
	CMOS I/O	64	82
	CMOS input	5	5
	CMOS output	1	1
	N -ch open-drain I/O (6 V tolerance)	4	4
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)	
	Watchdog timer	1 channel	
	Real-time clock (RTC)	1 channel	
	12-bit interval timer	1 channel	
	Timer output	20 (TAU: 8, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 13 (TAU: 6, Timer RD: 6, Timer RG: 1)	
	RTC output	1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)	

Note In the case of the 24 KB , this is about 23 KB when the self-programming function and data flash function are used.

Item		80-pin	100-pin
		$\begin{gathered} \text { R5F104Mx } \\ (x=F \text { to } H, J) \end{gathered}$	$\begin{aligned} & \text { R5F104Px } \\ & (x=F \text { to } H, J) \end{aligned}$
Clock output/buzzer output		2	2
		- $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fMAIN $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
8/10-bit resolution A/D converter		17 channels	20 channels
D/A converter		2 channels	2 channels
Comparator		2 channels	2 channels
Serial interface		[80-pin, 100-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified $I^{2} \mathrm{C}: 2$ channels	
	${ }^{2} \mathrm{C}$ bus	2 channels	2 channels
Data transfer controller (DTC)		39 sources	39 sources
Event link controller (ELC)		Event input: 26 Event trigger output: 9	
Vectored interrupt sources	Internal	32	32
	External	13	13
Key interrupt		8	8
Reset		- Reset by $\overline{\text { RESET }}$ pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access	
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$	
Voltage detector		1.63 V to 4.06 V (14 stages)	
On-chip debug function		Provided	
Power supply voltage		VDD $=1.6$ to 5.5 V	
Operating ambient temperature		$\mathrm{TA}^{\prime}=-40$ to $+85^{\circ} \mathrm{C}$	

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

Caution 1. The RL78/G14 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$) (1/2)
(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVddo, EVdD1	EVDD0 = EVdD1	-0.5 to +6.5	V
	Vss		-0.5 to +0.3	V
	EVsso, EVss1	EVss0 = EVss 1	-0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	V11	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\begin{gathered} -0.3 \text { to EVDDo }+0.3 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{gathered}$	V
	V12	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-0.3 to EVDDo +0.3 Note 2	V
	Vo2	P20 to P27, P150 to P156	-0.3 to VDD +0.3	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVdDo +0.3 Note 2	V
	VAI2	ANIO to ANI14	-0.3 to VDD +0.3 Note 2	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

Absolute Maximum Ratings ($\mathrm{TA}=25^{\circ} \mathrm{C}$) (2/2)
(2/2)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	$\mathrm{IOH1}$	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	IOH 2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IoL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3.10 100-pin products.

2.2 Oscillator Characteristics

2.2.1 Main system clock oscillator characteristics

$\left(\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	$$	X1 clock oscillation frequency (fx) Note	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		8.0	
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	1.0		4.0	
Crystal resonator	Vss X1 \quad X2	X1 clock oscillation frequency (fx) Note	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		8.0	
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	1.0		4.0	

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution 1. When using the X 1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Caution 2. Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.2.2 On-chip oscillator characteristics

($\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Note 1	fIH			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy Note 2		-20 to $+85^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-1		+1	\%
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	-5		+5	\%
		-40 to $-20^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{VDD}<5.5 \mathrm{~V}$	-1.5		+1.5	\%
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	-5.5		+5.5	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.
When SSOP (30-pin), WQFN (32-, 40-, 48-pin), FLGA (36-pin), LQFP (7 $\times 7$) ($48-\mathrm{pin}$), LQFP (10×10) (52-pin), LQFP $(12 \times 12)(64-, 80-\mathrm{pin})$, LQFP $(14 \times 14)(80-, 100-\mathrm{pin})$, LQFP $(14 \times 20)(100-\mathrm{pin})$ products, these specifications show target values, which may change after device evaluation.

2.2.3 Subsystem clock oscillator characteristics

Resonator	Recommended Circuit	Items	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		XT1 clock oscillation frequency (fxt) Note		32	32.768	35	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Caution 2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.3 DC Characteristics

2.3.1 Pin characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	$\mathrm{IOH1}$	$\begin{array}{\|l} \text { Per pin for P00 to P06, } \\ \text { P10 to P17, P30, P31, } \\ \text { P40 to P47, P50 to P57, } \\ \text { P64 to P67, P70 to P77, } \\ \text { P80 to P87, P100 to P102, P110, } \\ \text { P111, P120, P130, P140 to P147 } \end{array}$	$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDO $\leq 5.5 \mathrm{~V}$			$\begin{aligned} & -10.0 \\ & \text { Note } 2 \end{aligned}$	mA
		$\begin{aligned} & \text { Total of P00 to P04, P40 to P47, } \\ & \text { P102, P120, P130, P140 to P145 } \\ & \text { (When duty }=70 \% \text { Note } 3 \text {) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			-55.0	mA
			$2.7 \mathrm{~V} \leq$ EVDDo < 4.0 V			-10.0	mA
			$1.8 \mathrm{~V} \leq$ EVDDO $<2.7 \mathrm{~V}$			-5.0	mA
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			-2.5	mA
		```Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty = 70% Note 3)```	$4.0 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$			-80.0	mA
			$2.7 \mathrm{~V} \leq$ EVdDo $<4.0 \mathrm{~V}$			-19.0	mA
			$1.8 \mathrm{~V} \leq$ EVdDo < 2.7 V			-10.0	mA
			$1.6 \mathrm{~V} \leq$ EVdDo $<1.8 \mathrm{~V}$			-5.0	mA
		Total of all pins (When duty $=70 \%$ Note 3 )	$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			$\begin{gathered} -135.0 \\ \text { Note } 4 \end{gathered}$	mA
	IOH 2	Per pin for P20 to P27, P150 to P156	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$-0.1$   Note 2	mA
		Total of all pins   (When duty $=70 \%$ Note 3 )	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDDo, EVDD1, VDD pins to an output pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor is $70 \%$.
The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$

$$
\text { Total output current of pins }=(-10.0 \times 0.7) /(50 \times 0.01)=-14.0 \mathrm{~mA}
$$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Note 4. The applied current for the products of industrial application (R5F104xxDxx) is -100 mA .
Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
( $\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IoL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				$\begin{gathered} 20.0 \\ \text { Note } 2 \end{gathered}$	mA
		Per pin for P60 to P63				$15.0$ $\text { Note } 2$	mA
		$\begin{aligned} & \text { Total of P00 to P04, P40 to P47, } \\ & \text { P102, P120, P130, P140 to P145 } \\ & \text { (When duty }=70 \% \text { Note } 3 \text { ) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			70.0	mA
			$2.7 \mathrm{~V} \leq$ EVdDo $<4.0 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			9.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}$			4.5	mA
		```Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty = 70% Note 3)```	$4.0 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$			80.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $<4.0 \mathrm{~V}$			35.0	mA
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			20.0	mA
			$1.6 \mathrm{~V} \leq$ EVDDo < 1.8 V			10.0	mA
		Total of all pins (When duty $=70 \%$ Note 3)				150.0	mA
	IoL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty $=70 \%$ Note 3)	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			5.0	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins

Note 2. However, do not exceed the total current value
Note 3. Specification under conditions where the duty factor is 70%
The output current value that has changed the duty ratio can be calculated with the following expression
(when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\operatorname{lol} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and $\mathrm{Iol}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(50 \times 0.01)=14.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVdDo		EVddo	V
	VIH2	```P01, P03, P04, P10, P14 to P17, P30, P31, P43, P44, P50, P53 to P55, P80, P81, P142, P143```	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	2.2		EVddo	V
			TTL input buffer $3.3 \mathrm{~V} \leq \text { EVDDO < } 4.0 \mathrm{~V}$	2.0		EVdDo	V
			TTL input buffer $1.6 \mathrm{~V} \leq \text { EVDDO }<3.3 \mathrm{~V}$	1.50		EVddo	V
	VIH3	P20 to P27, P150 to P156		0.7 VDD		VDD	V
	VIH4	P60 to P63		0.7 EVdDo		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDDo	V
	VIL2	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P31, P43, P44, P50, } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	0		0.8	V
		$\begin{aligned} & \text { P53 to P55, P80, P81, P142, } \\ & \text { P143 } \end{aligned}$	TTL input buffer $2.7 \mathrm{~V} \leq \text { EVDDO }<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $1.6 \mathrm{~V} \leq \text { EVDDO }<2.7 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVddo	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 VDD	V

Caution The maximum value of Vıн of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVddo, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VoH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V}, \\ & \text { IOH1 }=-10.0 \mathrm{~mA} \end{aligned}$	EVdDo-1.5			V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-3.0 \mathrm{~mA} \end{aligned}$	EVdDo-0.7			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-1.5 \mathrm{~mA} \end{aligned}$	EVDDo-0.5			V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \text { EVDDO }<1.8 \mathrm{~V} \text {, } \\ & \mathrm{IOH} 1=-1.0 \mathrm{~mA} \end{aligned}$	EVdDo-0.5			V
	VoH2	P20 to P27, P150 to P156	$\begin{aligned} & \text { 1.6 } \mathrm{V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 2=-100 \mu \mathrm{~A} \end{aligned}$	Vdd - 0.5			V
Output voltage, low	Vol1	```P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147```	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \text { IoL1 }=20.0 \mathrm{~mA} \end{aligned}$			1.3	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL1}=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL1}=4.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL1}=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{IOL1}=0.3 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { IOL2 }=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \text { IOL3 }=15.0 \mathrm{~mA} \end{aligned}$			2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \text { IoL3 }=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL3}=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL} 3=2.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \text { lol3 }=1.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
($\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\mathrm{V}_{1}=$ EVDDo				1	$\mu \mathrm{A}$
	ILIH2	$\frac{\mathrm{P} 20 \text { to P27, P137, P150 to P156, }}{\mathrm{RESET}}$	V I $=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ІІнз	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, EXCLK, XT1, XT2, } \\ & \text { EXCLKS) } \end{aligned}$	V I $=\mathrm{V}$ DD	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\mathrm{V}_{\mathrm{I}}=\mathrm{EV}$ Sso				-1	$\mu \mathrm{A}$
	ILIL2	$\frac{\mathrm{P} 20 \text { to P27, P137, P150 to P156, }}{\frac{\text { RESET }}{}}$	$\mathrm{V} 1=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILLı3	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, EXCLK, XT1, XT2, } \\ & \text { EXCLKS) } \end{aligned}$	V I $=\mathrm{V}$ ss	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pll-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	V I $=\mathrm{EVs}$	In input port	10	20	100	$\mathrm{k} \Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
(TA = -40 to $+85{ }^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	High-speed operation Notes 3, 5	f носо $=64 \mathrm{MHz}$,	Basic	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		2.4		mA
				$\mathrm{fIH}=32 \mathrm{MHz}$	operation	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		2.4		
				$\begin{aligned} & \mathrm{fH} \text { осо }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \end{aligned}$	Basic operation	VDD $=5.0 \mathrm{~V}$		2.1		
						$\mathrm{VDD}=3.0 \mathrm{~V}$		2.1		
			High-speed operation Notes 3, 5	$\begin{aligned} & \mathrm{fHOCO}=64 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		5.2	8.7	mA
						$\mathrm{VDD}=3.0 \mathrm{~V}$		5.2	8.7	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		4.8	8.1	
						$V D D=3.0 \mathrm{~V}$		4.8	8.1	
				$\begin{aligned} & \mathrm{fHoco}=48 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		4.1	6.9	
						$V D D=3.0 \mathrm{~V}$		4.1	6.9	
				$\begin{aligned} & \mathrm{fHOco}=24 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		3.8	6.3	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		3.8	6.3	
				$\begin{aligned} & \mathrm{fHOco}=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		2.8	4.6	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		2.8	4.6	
			Low-speed operation Notes 3, 5	$\begin{aligned} & \mathrm{fHOCO}=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.3	2.0	mA
						$\mathrm{VDD}=2.0 \mathrm{~V}$		1.3	2.0	
			Low-voltage operation Notes 3, 5	$\begin{aligned} & \mathrm{fHOCO}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.3	1.8	mA
						$\mathrm{VDD}=2.0 \mathrm{~V}$		1.3	1.8	
			High-speed operation Notes 2,5	$\begin{aligned} & \mathrm{f} M \mathrm{x}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.3	mA
						Resonator connection		3.5	5.5	
				$\begin{aligned} & \mathrm{f} M \mathrm{X}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.3	
						Resonator connection		3.5	5.5	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
				$\begin{aligned} & \mathrm{f} M \mathrm{X}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
			Low-speedoperation Notes 2,5	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	1.9	mA
						Resonator connection		1.2	2.0	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz}, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	1.9	
						Resonator connection		1.2	2.0	
			Subsystem clock operation Note 4	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7		$\mu \mathrm{A}$
						Resonator connection		4.7		
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	6.7	
						Resonator connection		4.8	6.7	
				$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	7.5	
						Resonator connection		4.8	7.5	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.4	8.9	
						Resonator connection		5.4	8.9	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current (except for background operation (BGO)). However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When real-time counter and watchdog timer is stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
High speed operation: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
\text { VDD = 2.4 V to 5.5 V@1 MHz to } 16 \mathrm{MHz}
$$

Low speed operation: VDD $=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
Low voltage operation: VDD $=1.6 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. $f_{m x}$: High-speed system clock frequency ($X 1$ clock oscillation frequency or external main system clock frequency)
Remark 2. fнoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiн: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

Note $\quad \mathrm{fIH}$ is controlled by hardware to be set to two frequency division of fHoco when fHoco is set to 64 MHz or 48 MHz , and the same clock frequency as fHoco when fHoco is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set fcLk to fiH.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(1) Flash ROM: $\mathbf{1 6}$ to $\mathbf{6 4 ~ K B}$ of 30- to 64-pin products
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=$ EVss $0=0 \mathrm{~V}$)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	High-speed operation Notes 4, 7	$\begin{aligned} & \mathrm{fHoco}=64 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.80	3.09	mA
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.80	3.09	
				$\begin{aligned} & \mathrm{fHOcO}=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \end{aligned}$	V DD $=5.0 \mathrm{~V}$		0.54	2.40	
					V DD $=3.0 \mathrm{~V}$		0.54	2.40	
				$\begin{aligned} & \mathrm{fHOCO}=48 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.62	2.40	
					V DD $=3.0 \mathrm{~V}$		0.62	2.40	
				$\begin{aligned} & \mathrm{fHOCO}=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.44	1.83	
					$\mathrm{VdD}=3.0 \mathrm{~V}$		0.44	1.83	
				$\begin{aligned} & \mathrm{fHOco}=16 \mathrm{MHz}, \\ & \mathrm{fIH}=16 \mathrm{MHz} \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.40	1.38	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.40	1.38	
			Low-speed operation Notes 4, 7	$\begin{aligned} & \mathrm{fHOCO}=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \end{aligned}$	V DD $=3.0 \mathrm{~V}$		260	710	$\mu \mathrm{A}$
					$\mathrm{VDD}=2.0 \mathrm{~V}$		260	710	
			Low-voltage operation Notes 4, 7	$\begin{aligned} & \mathrm{fHOCO}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \end{aligned}$	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		420	700	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		420	700	
			High-speed operation Notes 3, 7	$\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	1.55	mA
					Resonator connection		0.53	1.74	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	1.55	
					Resonator connection		0.49	1.74	
				$\begin{aligned} & \mathrm{fmX}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	0.86	
					Resonator connection		0.30	0.93	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	0.86	
					Resonator connection		0.30	0.93	
			Low-speed operation Notes 3, 7	$\begin{aligned} & \mathrm{fMx}=7 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		95	550	$\mu \mathrm{A}$
					Resonator connection		145	590	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz}, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		95	550	
					Resonator connection		145	590	
			Subsystem clock operation Note 5	$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.25		$\mu \mathrm{A}$
					Resonator connection		0.44		
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.33	1.17	
					Resonator connection		0.52	1.36	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.36	1.97	
					Resonator connection		0.55	2.16	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.97	3.37	
					Resonator connection		0.16	3.56	
	IDD3	STOP mode Note 6	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18		$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.24	0.51	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.26	1.10	
			TA $=+70^{\circ} \mathrm{C}$				0.29	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.90	3.30	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1). When high-speed onchip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
Note 6. When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
High speed operation: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
\text { VDD = 2.4 V to 5.5 V@1 MHz to } 16 \mathrm{MHz}
$$

Low speed operation: VDD $=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
Low voltage operation: VDD $=1.6 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fносо: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note $\quad f \mathrm{IH}$ is controlled by hardware to be set to two frequency division of fHoco when froco is set to 64 MHz or 48 MHz , and the same clock frequency as fнoco when fHoco is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set fcLk to fiH.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to $\mathbf{1 0 0}$-pin products
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EV} \mathrm{DD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	High-speed operation Notes 3, 5	froco $=64 \mathrm{MHz}$,	Basic	$\mathrm{VdD}=5.0 \mathrm{~V}$		2.6		mA
				$\mathrm{fIH}=32 \mathrm{MHz}$	operation	$\mathrm{VDD}=3.0 \mathrm{~V}$		2.6		
				$\begin{aligned} & \mathrm{fHOCO}=32 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \end{aligned}$	Basic operation	VDD $=5.0 \mathrm{~V}$		2.3		
						$V \mathrm{DD}=3.0 \mathrm{~V}$		2.3		
			High-speed operation Notes 3, 5	$\begin{aligned} & \mathrm{fHOCO}=64 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{VdD}=5.0 \mathrm{~V}$		5.8	10.2	mA
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		5.8	10.2	
				$\begin{aligned} & \mathrm{fHOco}=32 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		5.4	9.6	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		5.4	9.6	
				$\begin{aligned} & \mathrm{fHOCO}=48 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \end{aligned}$	Normal operation	V DD $=5.0 \mathrm{~V}$		4.5	7.8	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.5	7.8	
				$\begin{aligned} & \mathrm{fHOCO}=24 \mathrm{MHz} \\ & \mathrm{fIH}=24 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		4.2	7.4	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		4.2	7.4	
				$\begin{aligned} & \mathrm{fHOCO}=16 \mathrm{MHz}, \\ & \mathrm{fIH}=16 \mathrm{MHz} \end{aligned}$	Normal operation	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		3.1	5.3	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		3.1	5.3	
			Low-speed operation Notes 3, 5	$\begin{aligned} & \mathrm{fHOCO}=8 \mathrm{MHz}, \\ & \mathrm{fIH}=8 \mathrm{MHz} \end{aligned}$	Normal operation	V DD $=3.0 \mathrm{~V}$		1.4	2.3	mA
						$V \mathrm{DD}=2.0 \mathrm{~V}$		1.4	2.3	
			Low-voltage operation Notes 3, 5	$\begin{aligned} & \mathrm{fHOCO}=4 \mathrm{MHz}, \\ & \mathrm{fIH}=4 \mathrm{MHz} \end{aligned}$	Normal operation	V DD $=3.0 \mathrm{~V}$		1.4	1.9	mA
						$V D D=2.0 \mathrm{~V}$		1.4	1.9	
			High-speed operation Notes 2,5	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.2	mA
						Resonator connection		3.9	6.4	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.2	
						Resonator connection		3.9	6.4	
				$\begin{aligned} & \mathrm{fmX}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.2	3.6	
						Resonator connection		2.3	3.7	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.2	3.6	
						Resonator connection		2.3	3.7	
			Low-speed operation Notes 2,5	$\begin{aligned} & \mathrm{f} M \mathrm{x}=8 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.3	2.2	mA
						Resonator connection		1.3	2.3	
				$\begin{aligned} & \mathrm{f} M \mathrm{x}=8 \mathrm{MHz}, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.3	2.2	
						Resonator connection		1.3	2.3	
			Subsystem clock operation Note 4	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.0		$\mu \mathrm{A}$
						Resonator connection		5.0		
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.0	7.1	
						Resonator connection		5.0	7.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.1	8.8	
						Resonator connection		5.1	8.8	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	10.5	
						Resonator connection		5.5	10.5	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.5	14.5	
						Resonator connection		6.5	14.5	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDo and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The values below the MAX. column include the peripheral operation current (except for background operation (BGO)). However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When real-time counter and watchdog timer is stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
High speed operation: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
\text { VDD = 2.4 V to 5.5 V@1 MHz to } 16 \mathrm{MHz}
$$

Low speed operation: VDD $=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
Low voltage operation: VDD $=1.6 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fнoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiн: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

Note $\quad \mathrm{fIH}$ is controlled by hardware to be set to two frequency division of fHoco when fHoco is set to 64 MHz or 48 MHz , and the same clock frequency as fHoco when fHoco is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set fcle to fil.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products
(TA = -40 to $+85{ }^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2	HALT mode Note 2	High-speed operation Notes 4, 7	$\begin{aligned} & \mathrm{fHOCO}=64 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.88	3.32	mA
					Vdd $=3.0 \mathrm{~V}$		0.88	3.32	
				$\begin{aligned} & \mathrm{fHOcO}=32 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \end{aligned}$	$\mathrm{VdD}=5.0 \mathrm{~V}$		0.62	2.63	
					VDD $=3.0 \mathrm{~V}$		0.62	2.63	
				$\begin{aligned} & \mathrm{fHOCO}=48 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.68	2.57	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.68	2.57	
				$\begin{aligned} & \mathrm{fHOCO}=24 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \end{aligned}$	V DD $=5.0 \mathrm{~V}$		0.50	2.00	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.50	2.00	
				$\begin{aligned} & \mathrm{fHOCO}=16 \mathrm{MHz}, \\ & \mathrm{fIH}=16 \mathrm{MHz} \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.44	1.49	
					Vdd $=3.0 \mathrm{~V}$		0.44	1.49	
			Low-speed operation Notes 4, 7	$\begin{aligned} & \text { fHOCO }=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \end{aligned}$	VDD $=3.0 \mathrm{~V}$		290	800	$\mu \mathrm{A}$
					V DD $=2.0 \mathrm{~V}$		290	800	
			Low-voltage operation Notes 4, 7	$\begin{aligned} & \mathrm{fHoco}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \end{aligned}$	Vdd $=3.0 \mathrm{~V}$		440	755	$\mu \mathrm{A}$
					VDD $=2.0 \mathrm{~V}$		440	755	
			High-speed operation Notes 3, 7	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	1.63	mA
					Resonator connection		0.50	1.85	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	1.63	
					Resonator connection		0.50	1.85	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	0.89	
					Resonator connection		0.30	0.97	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	0.89	
					Resonator connection		0.30	0.97	
			Low-speed operation Notes 3, 7	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz}, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		110	580	$\mu \mathrm{A}$
					Resonator connection		160	630	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz}, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		110	580	
					Resonator connection		160	630	
			Subsystem clock operation Note 5	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.28		$\mu \mathrm{A}$
					Resonator connection		0.47		
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.34	0.66	
					Resonator connection		0.53	0.85	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.37	2.35	
					Resonator connection		0.56	2.54	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.61	4.08	
					Resonator connection		0.80	4.27	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.55	8.09	
					Resonator connection		1.74	8.28	
	IDD3	STOP mode Note 6	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19		$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.25	0.57	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.28	2.26	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.52	3.99	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.46	8.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDo and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, EVDD1 or Vss, EVsso, EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1). When high-speed onchip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
Note 6. When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
High speed operation: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
\text { VDD = 2.4 V to 5.5 V@1 MHz to } 16 \mathrm{MHz}
$$

Low speed operation: VDD $=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
Low voltage operation: VDD $=1.6 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fнoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note fiH is controlled by hardware to be set to two frequency division of fHoco when fHoco is set to 64 MHz or 48 MHz , and the same clock frequency as fнoco when fHoco is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set fcLk to fiH.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(3) Common to RL78/G14 all products
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
RTC operating current	IRTC Notes 1, 2	fsub $=32.768 \mathrm{kHz}$	Real-time clock operation		0.02		$\mu \mathrm{A}$
			12-bit interval timer operation		0.02		
Watchdog timer operating current	IWDT Notes 2, 3	$\mathrm{fIL}=15 \mathrm{kHz}$			0.22		$\mu \mathrm{A}$
A/D converter operating current	IADC Note 4	When conversion at maximum speed	Normal mode, AVREFP = VDD $=5.0 \mathrm{~V}$		1.3	1.7	mA
			Low voltage mode, AV REFP $=\mathrm{VDD}=3.0 \mathrm{~V}$		0.5	0.7	mA
A/D converter reference voltage current	IADREF				75		$\mu \mathrm{A}$
D/A converter operating current	IDAC Notes $5,9$	Per D/A converter channel				1.5	mA
Comparator operating current	ICMP Notes$6,9$	Vdd $=5.0 \mathrm{~V}$, Regulator output voltage $=2.1 \mathrm{~V}$	Window comparator mode		12.5		$\mu \mathrm{A}$
			High-speed comparator mode		6.5		$\mu \mathrm{A}$
			Low-speed comparator mode		1.7		$\mu \mathrm{A}$
		VDD $=5.0 \mathrm{~V}$, Regulator output voltage $=1.8 \mathrm{~V}$	Window comparator mode		8.0		$\mu \mathrm{A}$
			High-speed comparator mode		4.0		$\mu \mathrm{A}$
			Low-speed comparator mode		1.3		$\mu \mathrm{A}$
Temperature sensor operating current	ITMPS				75		$\mu \mathrm{A}$
LVD operating current	ILVI Note 7				0.08		$\mu \mathrm{A}$
BGO operating current	Ibgo Note 8				2.50	12.20	mA

Note 1. Current flowing only to the real-time clock (excluding the operating current of the XT1 oscillator). The TYP. value of the current value of the RL78/G14 is the sum of the TYP. values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. The IDD1 and IDD2 MAX. values also include the real-time clock operating current. However, IDD2 subsystem clock operation includes the operational current of the real-time clock.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The current value of the RL78/G14 is the sum of IDD1, IDD2 or IDD3 and IwDT when the watchdog timer operates in STOP mode.
Note 4. Current flowing only to the A/D converter. The current value of the RL78/G14 is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 5. Current flowing only to the D/A converter. The current value of the RL78/G14 is the sum of IDD1 or IDD2 and IADC when the D/A converter operates in an operation mode or the HALT mode.
Note 6. Current flowing only to the comparator circuit. The current value of the RL78/G14 is the sum of IDD1, IDD2 or IDD3 and IcMP when the comparator circuit operates in the Operating, HALT or STOP mode.
Note 7. Current flowing only to the LVD circuit. The current value of the RL78/G14 is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
Note 8. Current flowing only to the BGO. The current value of the RL78/G14 is the sum of IDD1 or IDD2 and IBGo when the BGO operates in an operation mode.
Note 9. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fcLk: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.4 AC Characteristics

2.4.1 Basic operation

($\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss $1=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	High-speed main mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{S}$
			Low voltage main mode	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{S}$
			Low-speed main mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	28.5	30.5	31.3	$\mu \mathrm{s}$
		In the self programming mode	High-speed main mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{S}$
			Low voltage main mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{S}$
			Low-speed main mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{S}$
External main system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			1.0		8.0	MHz
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			1.0		4.0	MHz
	fexs				32		35	kHz
External main system clock input high-level width, low-level width	tехн, tEXL	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			24			ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			60			ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			120			ns
	tEXHS, tEXLS				13.7			$\mu \mathrm{S}$
TIOO to TIO3, TI10 to TI13 input high-level width, low-level width	ttil, till				$\begin{gathered} 1 / f \mathrm{fMCK}+10 \\ \text { Note } \end{gathered}$			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	100			ns
				$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$	300			ns
				$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$	500			ns
Timer RJ input highlevel width, low-level width	fwh, fwL	TRJIO		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	40			ns
				$1.8 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$	120			ns
				$1.6 \mathrm{~V} \leq$ EVDDo < 1.8 V	200			ns

Note The following conditions are required for low voltage interface when EVDDO < VDD
$1.8 \mathrm{~V} \leq$ EVDDo < 2.7 V : MIN. 125 ns $1.6 \mathrm{~V} \leq$ EVDDo < 1.8 V : MIN. 250 ns

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register m (TMRmn). m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 3))

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
TO00 to TO03, TO10 to T13 output frequency	fтo	High-speed main mode	$4.0 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$			16	MHz
			2.7 V < EVDDo < 4.0 V			8	MHz
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
		Low voltage main mode	$1.6 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$			2	MHz
		Low-speed main mode	$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
PCLBUZO, PCLBUZ1 output frequency	fPCL	High-speed main mode	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			16	MHz
			2.7 V < EVDDo < 4.0 V			8	MHz
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
		Low voltage main mode	$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
		Low-speed main mode	$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
Interrupt input high-level width, low-level width	$\begin{aligned} & \text { tinth, } \\ & \text { tintl } \end{aligned}$	INTP0	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
		INTP1 to INTP11	$1.6 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{S}$
Key interrupt input low-level width	tKR	$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		250			ns
		$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$		1			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	tRSL			10			$\mu \mathrm{S}$

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3.10 100-pin products.

2.5 Peripheral Functions Characteristics

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output)
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq$ EVdDo $=\mathrm{EVDD1} \leq 5.5 \mathrm{~V}$, Vss $=$ EVsso $=\mathrm{EV} s \mathrm{~s} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate Note 1					fmck/6 Note 2	bps
		Theoretical value of the maximum transfer rate fcLk $=32 \mathrm{MHz}$, fmck $=$ fcLk			5.3	Mbps

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Note 1. Transfer rate in the SNOOZE mode is MAX. 9600 bps and MIN. 4800 bps.
Note 2. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo < 2.7 V : MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ EVDDo < 2.4 V : MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$: MAX. 0.6 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remark 1. $\mathrm{q}: ~ \mathrm{UART}$ number ($\mathrm{q}=0$ to 3), g : PIM and POM number ($\mathrm{g}=0,1,5,14$)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(2) During communication at same potential (CSI mode) (master mode (fMCK/2), $\overline{\operatorname{SCKp}} \ldots$ internal clock output) ($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tKCY1	$2.7 \mathrm{~V} \leq$ EVDDO $\leq 5.5 \mathrm{~V}$	62.5 Note 1			ns
$\overline{\text { SCKp }}$ high-/low-level width	tkH1, tKL1	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	tк¢ү1/2-7			ns
		$2.7 \mathrm{~V} \leq$ EVDDO $\leq 5.5 \mathrm{~V}$	tKcy1/2-10			ns
SIp setup time (to $\overline{\text { SCKp }} \uparrow$) Note 2	tsIK1	$4.0 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	23			ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	33 Note 5			ns
SIp hold time (from $\overline{\text { SCKp }} \uparrow$) Note 3	tKSI1	$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	10			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output Note 4	tKSO1	$\mathrm{C}=20 \mathrm{pF}$ Note 6			10	ns

Note 1. The value must also be $2 / f c L K$ or more.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to $\overline{\operatorname{SCKp}} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{\text { SCKp } \downarrow \text { " when }}$ DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\operatorname{SCKp}} \uparrow "$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. Using the fmck within 24 MHz .
Note 6. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and $\overline{\text { SCKp }}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. This specification is valid only when CSIOO's peripheral I/O redirect function is not used.
Remark 2. p : CSI number $(p=00), m$: Unit number $(m=0), n$: Channel number $(n=0)$, g : PIM and POM numbers $(\mathrm{g}=1)$
Remark 3. fМск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(3) During communication at same potential (CSI mode) (master mode (fMCK/4), $\overline{\text { SCKp }} \ldots$ internal clock output) ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}$ dDo $=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tKCY1	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	125 Note 1			ns
		$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	250 Note 1			ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	500 Note 1			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	1000 Note 1			ns
$\overline{\text { SCKp }}$ high-/low-level width	$\begin{aligned} & \text { tKH1, } \\ & \text { tKL1 } \end{aligned}$	$4.0 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	tксү1/2-12			ns
		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	tK¢¢1/2-18			ns
		$2.4 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	tксү1/2-38			ns
		$1.8 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	tксү1/2-50			ns
		$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	tKcy1/2-100			ns
SIp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) Note 2	tSIK1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	44			ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	44			ns
		$2.4 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	75			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	110			ns
		$1.6 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	220			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) Note 3	tKSI1		19			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output Note 4	tKSO1	$\mathrm{C}=30 \mathrm{pF}$ Note 5			25	ns

Note 1. The value must also be 4/fclk or more.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to $\overline{\operatorname{SCKp} \downarrow \text { " when }}$ DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{\operatorname{SCKp}} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow "$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. $\quad C$ is the load capacitance of the $\overline{S C K p}$ and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and $\overline{\text { SCKp }}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,01,10,11,20,21,30,31)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, $\mathrm{g}:$ PIM number $(\mathrm{g}=0,1,3$ to 5,14$)$
Remark 2. fМСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time Note 5	tKcy2	$4.0 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	20 MHz < fMCK	8/fмск			ns
			$\mathrm{fmCK} \leq 20 \mathrm{MHz}$	6/fмск			ns
		$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$	16 MHz < fMCK	8/fмск			ns
			fMCK $\leq 16 \mathrm{MHz}$	6/fмск			ns
		$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$	16 MHz < fMCK	8/fmск			ns
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	6/fmск			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $<1.8 \mathrm{~V}$		6/fмск			ns
$\overline{\text { SCKp }}$ high-/low-level width	$\begin{aligned} & \text { tKH2, } \\ & \text { tKL2 } \end{aligned}$	$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		tксү2/2			ns
SIp setup time (to $\overline{\text { SCKp }} \uparrow$) Note 1	tsIK2	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		1/fмск + 20			ns
		$1.8 \mathrm{~V} \leq$ EVDDo < 2.7 V		1/fмск + 30			ns
		$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$		1/fмск +40			ns
SIp hold time (from $\overline{\operatorname{SCKp}} \uparrow$) Note 2	tKSI2	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1/fмск + 31			ns
		$2.4 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$		1/fмск + 31			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $<2.4 \mathrm{~V}$		1/fмск + 31			ns
		$1.6 \mathrm{~V} \leq$ EVdDo < 1.8 V		1/fмск + 250			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output Note 3	tKSO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			2/fмск + 44	ns
			$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			2/fмск + 44	ns
			$2.4 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$			2/fмск + 75	ns
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.4 \mathrm{~V}$			2/fмск + 110	ns
			$1.6 \mathrm{~V} \leq$ EVdDo $<1.8 \mathrm{~V}$			2/fмск + 220	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to $\overline{\mathrm{SCKp}} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow "$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(p=00,01,10,11,20,21,30,31)$, m : Unit number $(m=0,1)$,
n : Channel number ($\mathrm{n}=0$ to 3), g : PIM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n: Channel number ($\mathrm{mn}=00$ to 03,10 to 13))

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3.10 100-pin products.
(4) During communication at same potential (CSI mode) (slave mode, $\overline{\text { SCKp }} \ldots$ external clock input) ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss $1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SSIOO setup time }}$	tssik	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	120			ns
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$	200			ns
			$1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}$	400			ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1/fмск + 120			ns
			$1.8 \mathrm{~V} \leq$ EVDDO $<2.7 \mathrm{~V}$	1/fмск + 200			ns
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$	1/fмск + 400			ns
$\overline{\text { SSIOO }}$ hold time	tkssı	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1/fмск + 120			ns
			$1.8 \mathrm{~V} \leq$ EVDDO $<2.7 \mathrm{~V}$	1/fмск + 200			ns
			$1.6 \mathrm{~V} \leq$ EVDDO $<1.8 \mathrm{~V}$	1/fмск + 400			ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	120			ns
			$1.8 \mathrm{~V} \leq$ EVDDO $<2.7 \mathrm{~V}$	200			ns
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$	400			ns

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and $\overline{\text { SCKp }}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark $\quad \mathrm{p}$: CSI number $(\mathrm{p}=00)$, m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0), \mathrm{g}:$ PIM number $(\mathrm{g}=3,5)$
CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSIOO))

Remark 1. p: CSI number ($\mathrm{p}=00,01,10,11,20,21,30,31$)
Remark 2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn $=1$, or DAPmn = 1 and CKPmn =0.)

Remark 1. p: CSI number ($p=00,01,10,11,20,21,30,31$)
Remark 2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(5) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		1000	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$		400	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \text { EVDDo }<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$		300	kHz
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$		250	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1550		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1850		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1550		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1850		ns
Data setup time (reception)	tSU:DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 1 / \mathrm{fMCK}+85 \\ \text { Note } \end{gathered}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 1 / \mathrm{fMCK}+145 \\ \text { Note } \end{gathered}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 1 / \text { fmCk }+230 \\ \text { Note } \end{gathered}$		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 1 / \text { fMCK }+290 \\ \text { Note } \end{gathered}$		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	0	405	ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	0	405	ns

Note \quad Set the fмск value to keep the hold time of SCLr = "L" and SCLr = "H".
(Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3.10 100-pin products.

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode mode connection diagram (during communication at same potential)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Caution Select the TTL input buffer and the N-ch open drain output (EVdDo tolerance) mode for the SDAr pin and the N-ch open drain output (EVdDo tolerance) mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register h (POMh).

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance
Remark 2. r : IIC number ($\mathrm{r}=00,01,10,11,20,21,30,31$), g : PIM number ($\mathrm{g}=0,1,3$ to 5,14),
h: POM number ($\mathrm{h}=0,1,3$ to $5,7,14$)
Remark 3. $f М \subset К$: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number $(m=0,1)$, n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00$ to 03,10 to 13)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(6) Communication at different potential ($2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode) (dedicated baud rate generator output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}$)
(1/2)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Transfer rate Notes 1, 2		reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$				fmck/6 Note 1	bps
				Theoretical value of the maximum transfer rate fcLk $=32 \mathrm{MHz}, \mathrm{fmCK}=\mathrm{fcLK}$			5.3	Mbps
			$2.7 \mathrm{~V} \leq$ EVDDo < 4.0 V ,				fMCK/6 Note 1	bps
			$2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$	Theoretical value of the maximum transfer rate fcLK $=32 \mathrm{MHz}, \mathrm{fMCK}=\mathrm{fcLK}$			5.3	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$				fмск/6 Note 1 to Note 3	bps
				Theoretical value of the maximum transfer rate fcLk $=8 \mathrm{MHz}$, fmck $=$ fcLk			1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode : MAX. 9600 bps, MIN. 4800 bps
Note 2. Use it with EVddo $\geq \mathrm{Vb}$.
Note 3. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq$ EVDDo < 2.7 V : MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ EVDDo < 2.4 V : MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}:$ MAX. 0.6 Mbps
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVdDo tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ to 3), g : PIM and POM number ($(\mathrm{F}=0,1,5,14$)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)
Remark 4. $V_{I H}$ and VIL below are observation points for the $A C$ characteristics of the serial array unit when communicating at different potentials in UART mode.
$4.0 \mathrm{~V} \leq \mathrm{EVDDO}^{5} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V}} \leq 4.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \mathrm{~V}$ IL $=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{VDO}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}^{2} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V} \mathrm{~V}=0.5 \mathrm{~V}$
$1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}: \mathrm{V} \mathrm{V}=1.50 \mathrm{~V}, \mathrm{~V} \mathrm{~V}=0.32 \mathrm{~V}$
Remark 5. UART2 cannot communicate at different potential when bit 1 (PIORO1) of peripheral I/O redirection register 0 (PIORO) is 1.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(6) Communication at different potential ($2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode) (dedicated baud rate generator output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$				Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega, \mathrm{Vb}=2.7 \mathrm{~V}$			$\begin{gathered} 2.8 \\ \text { Note } 3 \end{gathered}$	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$				Notes 2, 4	bps
				Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega, \mathrm{V} \mathrm{b}=2.3 \mathrm{~V}$			$\begin{gathered} 1.2 \\ \text { Note } 5 \end{gathered}$	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$				Notes 2, 6, 7	bps
				Theoretical value of the maximum transfer rate $\mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega, \mathrm{Vb}=1.6 \mathrm{~V}$			$\begin{gathered} 0.40 \\ \text { Note } 8 \end{gathered}$	Mbps

Note 1. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$
1

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.2}{\mathrm{Vb}_{b}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. Transfer rate in the SNOOZE mode: MAX. $9600 \mathrm{bps}, \mathrm{MIN} .4800 \mathrm{bps}$
Note 3. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 4. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
Note 6. Use it with EVDDo $\geq \mathrm{Vb}$.

Note 7. The smaller maximum transfer rate derived by using $\mathrm{f} \mathcal{\mathrm { C }} \mathrm{K} / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100[\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 8. This value as an example is calculated when the conditions described in the "Conditions" column are met.
Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDDo tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ to 3), g : PIM and POM number ($g=0,1,5,14$)
Remark 3. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
Remark 4. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.
$4.0 \mathrm{~V} \leq \mathrm{EVDDO}^{5} 55.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}^{5} \leq 4.0 \mathrm{~V}: \mathrm{VIH}^{2}=2.2 \mathrm{~V}, \mathrm{VIL}^{2}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq$ EVddo $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$ VIH $=2.0 \mathrm{~V}, \mathrm{VIL}=0.5 \mathrm{~V}$
$1.8 \mathrm{~V} \leq$ EVddo $<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ VIH $=1.50 \mathrm{~V}$, $\mathrm{VIL}=0.32 \mathrm{~V}$
Remark 5. UART2 cannot communicate at different potential when bit 1 (PIORO1) of peripheral I/O redirection register 0 (PIORO) is 1.

UART mode connection diagram (during communication at different potential)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

UART mode bit width (during communication at different potential) (reference)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVdDo tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register \mathbf{g} (POMg).

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ to 3), g : PIM and POM number ($g=0,1,5,14$)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(7) Communication at different potential ($2.5 \mathrm{~V}, 3 \mathrm{~V}$) (fmск/2) (CSI mode) (master mode, $\overline{\mathrm{SCKp}}$... internal clock output) ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EV}$ dDo $=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tKCY1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	200 Note 1			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	300 Note 1			ns
$\overline{\text { SCKp }}$ high-level width	tKH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	tkcy1/2-50			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	tкcyı/2-120			ns
$\overline{\text { SCKp }}$ low-level width	tKL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	tKcy1/2-7			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	tксү1/2-10			ns
SIp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) Note 2	tSIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	58			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	121			ns
Slp hold time (from $\overline{\operatorname{SCKp}} \uparrow$) Note 2	tKSI1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	10			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	10			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output Note 2	tKSO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$			60	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			130	ns
SIp setup time (to $\overline{\mathrm{SCKp}} \downarrow$) Note 3	tSIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	23			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	33			ns
SIp hold time (from $\overline{\text { SCKp }} \downarrow$) Note 3	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	10			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	10			ns
Delay time from $\overline{\mathrm{SCKp}} \uparrow$ to SOp output Note 3	tKSO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$			10	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			10	ns

(Notes, Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

CSI mode connection diagram (during communication at different potential)

Note 1. The value must also be $2 / f$ fclk or more.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 3. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVdDo tolerance) mode for the SOp pin and $\overline{S C K p}$ pin by using port input mode register $g(P I M g)$ and port output mode register g (POMg).

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line ($\overline{\mathrm{SCKp}}, \mathrm{SOp}$) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp}$) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00,01,10,20,30,31)$, m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 3. V_{V} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}: \mathrm{VIH}^{2}=2.2 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}$

$$
2.7 \mathrm{~V} \leq \text { EVDDo }<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}^{2} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}
$$

Remark 4. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Remark 5. This specification is valid only when CSIOO's peripheral I/O redirect function is not used.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(8) Communication at different potential (2.5 V, 3 V) (fMCK/4) (CSI mode) (master mode, $\overline{\mathrm{SCKp}} \ldots$ internal clock output) ($\mathrm{TA}=-40$ to $+85{ }^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tKCY1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	300 Note			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	500 Note			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1150 Note			ns
$\overline{\text { SCKp }}$ high-level width	tKH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	tкč1/2-75			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	tкcrı1/2-170			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	tксү1/2-458			ns
$\overline{\text { SCKp }}$ low-level width	tKı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	tк¢ү1/2-12			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	tк¢ү1/2-18			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	tкč1/2-50			ns

Note 1. The value must also be $4 / f \mathrm{fclk}$ or more.

Caution 1. Select the TTL input buffer for the SIp pin and the N -ch open drain output (EVDDo tolerance) mode for the SOp pin and $\overline{\text { SCKp }}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).
Caution 2. Use it with EVddo $\geq \mathrm{V}_{\mathrm{b}}$.
Remark 1. $\mathrm{Rb}[\Omega]$: Communication line ($\overline{\mathrm{SCKp}}, \mathrm{SOp}$) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp})$ load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p: CSI number ($p=00,01,10,20,30,31$), m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 3), g : PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 3. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}: \mathrm{VIH}=2.2 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V} \mathrm{~V}=0.5 \mathrm{~V}$
$1.8 \mathrm{~V} \leq \mathrm{EVDDO}^{<} 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}: \mathrm{V} \mathrm{VH}=1.50 \mathrm{~V}$, $\mathrm{VIL}=0.32 \mathrm{~V}$
Remark 4. 4. CSIO1 of 48-, 52-, 64 -pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(8) Communication at different potential (2.5 V, 3 V) (fMcK/4) (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SIp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) Note 1	tsIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	81			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	177			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDo}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	479			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) Note 1	tKSI1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	19			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{V}}=2.7 \mathrm{k} \Omega \end{aligned}$	19			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDo}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	19			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output Note 1	tKSO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			100	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{V}}=2.7 \mathrm{k} \Omega \end{aligned}$			195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$			483	ns
SIp setup time (to $\overline{\mathrm{SCKp}} \downarrow$) Note 2	tSIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \text { EVDDo } \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	44			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{V}}=2.7 \mathrm{k} \Omega \end{aligned}$	44			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{V}}=5.5 \mathrm{k} \Omega \end{aligned}$	110			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \downarrow$) Note 2	tкsı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \text { EVDDo } \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}^{2}=1.4 \mathrm{k} \Omega \end{aligned}$	19			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \text { EVDDo }<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	19			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	19			ns
Delay time from $\overline{\text { SCKp }} \uparrow$ to SOp output Note 2	tKSO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			25	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			25	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \text { EVDDo }<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{V}}=5.5 \mathrm{k} \Omega \end{aligned}$			25	ns

(Notes, Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

CSI mode connection diagram (during communication at different potential

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and $C K P m n=0$.

Caution 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVdDo tolerance) mode for the SOp pin and $\overline{S C K p}$ pin by using port input mode register $g(P I M g)$ and port output mode register \mathbf{g} (POMg).
Caution 2. Use it with EVdDo $\geq \mathrm{Vb}$.
Remark 1. $\mathrm{Rb}[\Omega]$: Communication line ($\overline{\mathrm{SCKp}}, \mathrm{SOp}$) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp}$) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00,01,10,20,30,31)$, m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 3. V_{V} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
$4.0 \mathrm{~V} \leq \mathrm{EVDDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$: $\mathrm{VIH}=2.2 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$: $\mathrm{VIH}=2.0 \mathrm{~V}, \mathrm{VIL}=0.5 \mathrm{~V}$
$1.8 \mathrm{~V} \leq$ EVDDo $<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$: $\mathrm{VIH}=1.50 \mathrm{~V}, \mathrm{VIL}=0.32 \mathrm{~V}$
Remark 4. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.)

Caution Select the TTL input buffer for the SIp pin and the N -ch open drain output (EVDDo tolerance) mode for the SOp pin and $\overline{\text { SCKp }}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(\mathrm{m}=0,1), \mathrm{n}$: Channel number $(\mathrm{n}=0$ to 3$)$,
$\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(9) Communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, $\overline{\text { SCKp }}$... external clock input) ($\mathrm{TA}=-40$ to $+85{ }^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EV} D \mathrm{D} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time Note 1	tKCY2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V} \end{aligned}$	$24 \mathrm{MHz} \leq$ fmck	14/fмск			ns
			20 MHz < fMCK $\leq 24 \mathrm{MHz}$	12/fмск			ns
			8 MHz < fMCK $\leq 20 \mathrm{MHz}$	10/fмск			ns
			$4 \mathrm{MHz}<\mathrm{fMCK} \leq 8 \mathrm{MHz}$	8/fмск			ns
			fMCK $\leq 4 \mathrm{MHz}$	6/fmск			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$	24 MHz < fmck	20/fмск			ns
			20 MHz < fMCK $\leq 24 \mathrm{MHz}$	16/fмск			ns
			16 MHz < fMCK $\leq 20 \mathrm{MHz}$	14/fмск			ns
			$8 \mathrm{MHz}<\mathrm{fMCK} \leq 16 \mathrm{MHz}$	12/fмск			ns
			$4 \mathrm{MHz}<\mathrm{fMCK} \leq 8 \mathrm{MHz}$	8/fмск			ns
			fMCK $\leq 4 \mathrm{MHz}$	6/fмск			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$	$24 \mathrm{MHz} \leq$ fmck	48/fмск			ns
			20 MHz < fMCK $\leq 24 \mathrm{MHz}$	36/fмск			ns
			$16 \mathrm{MHz}<\mathrm{fMCK} \leq 20 \mathrm{MHz}$	32/fмск			ns
			$8 \mathrm{MHz}<\mathrm{fMCK} \leq 16 \mathrm{MHz}$	26/fмск			ns
			$4 \mathrm{MHz}<\mathrm{fMCK} \leq 8 \mathrm{MHz}$	16/fмск			ns
			fmck $\leq 4 \mathrm{MHz}$	10/fмск			ns
$\overline{\text { SCKp }}$ high-/low-level width	$\begin{aligned} & \text { tKH2, } \\ & \text { tKL2 } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		tKCY2/2-12			ns
		$2.7 \mathrm{~V} \leq$ EVdDo $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		tKcy2/2-18			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		tKcy2/2-50			ns
SIp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) Note 3	tSIK2	$2.7 \mathrm{~V} \leq$ EVDDo $<5.5 \mathrm{~V}$		1/fмск + 20			ns
		$1.8 \mathrm{~V} \leq$ EVdDo $<3.3 \mathrm{~V}$		1/fмск + 30			ns
SIp hold time (from $\overline{\text { SCKp }} \uparrow$) Note 4	tKSI2			1/fмск + 31			ns
Delay time from $\overline{\text { SCKp }} \downarrow$ to SOp output Note 5	tKSO2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}^{2}=1.4 \mathrm{k} \Omega \end{aligned}$		1/fMCK + 250		2/fМСК + 120	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$				2/fMCK + 214	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$				2/fмСК + 573	ns

(Notes, Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

CSI mode connection diagram (during communication at different potential)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with EVDDo $\geq \mathrm{Vb}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to $\overline{\operatorname{SCKp}} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and $C K P m n=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{\operatorname{SCKp}} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\operatorname{SCKp}} \uparrow "$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (EVddo tolerance) mode for the SOp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number $(\mathrm{mn}=00,02,10)$)
Remark 4. V_{IH} and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode
$4.0 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$: V IH $=2.2 \mathrm{~V}$, $\mathrm{VIL}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq$ EVddo $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$: VIH $=2.0 \mathrm{~V}$, $\mathrm{VIL}=0.5 \mathrm{~V}$
$1.8 \mathrm{~V} \leq$ EVddo $<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$: $\mathrm{VIH}=1.50 \mathrm{~V}, \mathrm{VIL}=0.32 \mathrm{~V}$
Remark 5. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Caution Select the TTL input buffer for the SIp pin and $\overline{\text { SCKp }}$ pin and the N-ch open drain output (EVDDO tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(p=00,01,10,20,30,31)$, m : Unit number $(m=0,1)$, n : Channel number ($n=0$ to 3),
g: PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(10) Communication at different potential ($2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)
(1/2)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		1000	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		1000	kHz
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$		400	kHz
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		400	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \vee \text { Note } 1, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		300	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & \hline 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 1, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	245		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	200		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$	675		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	600		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 1, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	610		ns

(Notes, Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(10) Communication at different potential ($2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN .	MAX.	Unit
Data setup time (reception)	tSu:DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fмск }+135$ Note 2		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fmck + } 135$ Note 2		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fmck + } 190$ Note 2		ns
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fmck + } 190$ Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 1, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fmck + } 190$ Note 2		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.8 \mathrm{k} \Omega \end{aligned}$	0	355	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 1, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	ns

Note 1. Use it with EVDDo $\geq \mathrm{Vb}$.
Note 2. Set the fMck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (EVDDo tolerance) mode for the SDAr pin and the N-ch open drain output (EVdDo tolerance) mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg).
(Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

Simplified ${ }^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)

Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)

Caution Select the TTL input buffer and the N-ch open drain output (EVDDo tolerance) mode for the SDAr pin and the N-ch open drain output (EVDDo tolerance) mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg).

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
Remark 2. r : IIC number $(r=00,01,10,11,20,30,31)$, g : PIM, POM number ($g=0,1,3$ to 5,14)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$),
n : Channel number $(\mathrm{n}=0,3), \mathrm{mn}=00$ to $03,10,12,13)$
Remark 4. V_{IH} and VIL^{2} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified ${ }^{2} \mathrm{C}$ mode.
$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$: $\mathrm{VIH}=2.2 \mathrm{~V}$, $\mathrm{VIL}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq$ EVddo $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}^{2} 2.7 \mathrm{~V}$: $\mathrm{VIH}=2.0 \mathrm{~V}, \mathrm{VIL}=0.5 \mathrm{~V}$
$1.8 \mathrm{~V} \leq$ EVDDO $<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}: \mathrm{VIH}^{2}=1.50 \mathrm{~V}, \mathrm{VIL}^{2}=0.32 \mathrm{~V}$

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.5.2 Serial interface IICA

($\mathrm{T} A=-40$ to $+85{ }^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		Standard Mode		Fast Mode		Fast Mode Plus		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fSCL	Fast mode plus: fcLk $\geq 10 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$					0	1000	kHz
		Fast mode: fcLk $\geq 3.5 \mathrm{MHz}$	$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$			0	400			kHz
		Normal mode: fcLk $\geq 1 \mathrm{MHz}$	$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	0	100					kHz
Setup time of restart condition Note 1	tsu:STA			4.7		0.6		0.26		$\mu \mathrm{s}$
Hold time	thD:STA			4.0		0.6		0.26		$\mu \mathrm{s}$
Hold time when SCLAO $=$ " L "	tLow			4.7		1.3		0.5		$\mu \mathrm{S}$
Hold time when SCLA0 = "H"	tHIGH			4.0		0.6		0.26		$\mu \mathrm{s}$
Data setup time (reception)	tsu:DAT			250		100		50		ns
Data hold time (transmission) Note 2	thd:DAT			0	3.45	0	0.9	0		$\mu \mathrm{S}$
Setup time of stop condition	tsu:Sto			4.0		0.6		0.26		$\mu \mathrm{s}$
Bus-free time	tBuF			4.7		1.3		0.5		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$
Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
Fast mode plus: $\mathrm{Cb}=120 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
IICA serial transfer timing

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.5.3 On-chip debug (UART)

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+8{ }^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EV}$ Ss $\left.0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate			115.2 k		1 M	bps

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(1) When AVref (+) = AVrefp/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVref (-) = AVrefm/ANI1 (ADREFM = 1), target ANI pin: ANI2 to ANI14 (supply ANI pin to VDD)
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V , Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution AVREFP $=$ VDD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 3.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 7.0	LSB
Conversion time	tconv	10-bit resolution AVREFP = VDD	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.25	\% FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<5.5 \mathrm{~V}$			± 0.50	\% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP $=$ VDD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.25	\% FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.50	\% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP $=$ VDD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 1.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Reference voltage (+)	AVrefp			1.6		VDD	V
Analog input voltage	Vain			0		AVREFP	V
	VBGR	$2.4 \mathrm{~V} \leq \mathrm{VDD}<5.5 \mathrm{~V},$ HS (high-speed main) mode		1.38	1.45	1.5	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(2) When AVref (+) = AVrefp/ANIO (ADREFP1 = 0, ADREFPO = 1), AVref (-) = AVrefm/ANI1 (ADREFM =1), target ANI pin: ANI16 to ANI20 (supply ANI pin to EVDDo)
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V , Reference voltage (+) = AVrefp, Reference voltage (-) = AVrefm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution AVREFP = VDD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 5.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 8.5	LSB
Conversion time	tconv	10-bit resolution AVRefp $=$ VdD	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVRefp = VdD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.35	\% FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVRefp $=$ VdD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.35	\% FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVRefp $=$ VdD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 3.5	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
Reference voltage (+)	AVREFP			1.6		VDD	V
Analog input voltage	VAIN			0		AVrefp and EVDDo	V
	VBGR	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V},$ HS (high-speed main) mode		1.38	1.45	1.5	V

Note 1. Excludes quantization error ($\pm 1 / 2 \mathrm{LSB}$).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.
(3) When AVref $(+)=\operatorname{Vdd}(\operatorname{ADREFP} 1=0, \operatorname{ADREFP} 0=0)$, $\operatorname{AVREF}(-)=\operatorname{Vss}(\operatorname{ADREFM}=0)$, target ANI pin: ANIO to ANI14, ANI16 to ANI20
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V , Reference voltage $(+)=\mathrm{VDD}$, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 7.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	± 10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\% FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.85	\% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\% FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.85	\% FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 4.0	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 6.5	LSB
Differential linearity error	DLE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Note 1			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
Analog input voltage	VAIN	ANIO to ANI14		0		VDD	V
		ANI16 to ANI20		0		EVdDo	V
	Vbgr	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.4$ HS (high-speed	ain) mode	1.38	1.45	1.5	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3.10 100-pin products.
(4) When AVref (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), AVref (-) = AVrefmlANI1 (ADREFM = 1), target ANI pin: ANIO to ANI14, ANI16 to ANI20
$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSs} 0=\mathrm{EVss} 1=0 \mathrm{~V}$, Reference voltage $(+)=\mathrm{VBGR}$, Reference voltage (-) = AVREFM $=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8			bit
Conversion time	tconv	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	EZS	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 1.0	LSB
Reference voltage (+)	Vbgr			1.38	1.45	1.5	V
Reference voltage (-)	AVREFM				Vss		V
Analog input voltage	Vain			0		Vbgr	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.6.2 Temperature sensor characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	$\mathrm{V}_{\text {TMPS25 }}$	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Reference output voltage	VCoNST	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV / C
Operation stabilization wait time	tAMP				5	$\mu \mathrm{~s}$

2.6.3 D/A converter characteristics

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
		Rload $=8 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
Settling time	tset	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			3	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{s}$

2.6.4 Comparator

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

2.6.5 POR circuit characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.54	V
	VPDR	Power supply fall time		1.50	1.53	V
Minimum pulse width	TPW		300			$\mu \mathrm{~s}$
Detection delay time					350	$\mu \mathrm{~s}$

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.6.6 LVD circuit characteristics

($\mathrm{T} A=-40$ to $+85{ }^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVIo	Power supply rise time	3.98	4.06	4.14	V
			Power supply fall time	3.90	3.98	4.06	V
		VLVII	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVI2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVI3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVI4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVI5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVIG	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVIT	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVI8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVI9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVI10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVI11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVI12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVI13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse width		tLw		300			$\mu \mathrm{S}$
Detection delay time		tLD				300	$\mu \mathrm{S}$

Caution Set the detection voltage (V_{Lv}) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$. The following shows the operating voltage range.
HS (high-speed main) mode: VdD = 2.7 to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz VDD $=2.4$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode: \quad VdD $=1.8$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low voltage main) mode: \quad VdD $=1.6$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark VLVI (n-1) > VLVIn: $\mathrm{n}=1$ to 13

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

LVD Detection Voltage of Interrupt \& Reset Mode
(TA = -40 to +85 ${ }^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	VLVI13	Vpoco, Vpoc1, Vpoc2 = 0, 0, 0, falling reset voltage: 1.6 V		1.60	1.63	1.66	V
	VLVI12	$\begin{aligned} & \text { LVISO, LVIS1 = 1, } 0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVI11	$\begin{aligned} & \text { LVIS0, LVIS1 = 0, } 1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVI4	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 0 \\ & (+1.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVI11	VPOC0, VPOC1, VPOC2 $=0,0,1$, falling reset voltage: 1.8 V		1.80	1.84	1.87	V
	VLVI10	$\begin{aligned} & \text { LVISO, LVIS1 = 1, } 0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVI9	$\begin{aligned} & \text { LVIS0, LVIS1 = 0, } 1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVI2	$\begin{aligned} & \text { LVIS0, LVIS1 = 0, } 0 \\ & (+1.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLVI8	VPoco, VPOC1, VPOC2 $=0,1,0$, falling reset voltage: 2.4 V		2.40	2.45	2.50	V
	VLVI7	$\begin{aligned} & \text { LVISO, LVIS1 = 1, } 0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVIG	$\begin{aligned} & \text { LVISO, LVIS1 }=0,1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVII	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 0 \\ & (+1.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	VLVI5	VPOC0, VPOC1, VPOC2 $=0,1,1$, falling reset voltage: 2.7 V		2.70	2.75	2.81	V
	VLVI4	$\begin{aligned} & \text { LVIS0, LVIS1 = 1, } 0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVI3	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	VLVIo	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 0 \\ & (+1.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

Caution Set the detection voltage (VLvI) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$. The following shows the operating voltage range.

HS (high-speed main) mode:	VDD $=2.7$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	VDD $=2.4$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	VDD $=1.8$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low voltage main) mode:	VDD $=1.6$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.7 Power Supply Rise Time

($\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=$ EVsso $=$ EVss1 $=0 \mathrm{~V}$)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDD rise inclination	TPUP			53.0	V/ms

2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.5 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.9 Flash Memory Programming Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $\left.+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVSs} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		32	MHz
Number of code flash rewrites	Cerwr	1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.	Retained for 20 years (Self/serial programming) Note	1,000			Times
Number of data flash rewrites			Retained for 1 years (Self/serial programming) Note		1,000,000		
			Retained for 5 years (Self/serial programming) Note	100,000			

Note When using flash memory programmer and Renesas Electronics self programming library.

Remark When updating data multiple times, use the flash memory as one for updating data.

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3 .10 100-pin products.

2.10 Timing Specs for Switching Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when a pin reset ends until the initial communication settings are specified	tSUINIT	POR and LVD reset must end before the pin reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until a pin reset ends	tsu	POR and LVD reset must end before the pin reset ends.	10			$\mu \mathrm{S}$
How long the TOOLO pin must be kept at the low level after a reset ends	thD	POR and LVD reset must end before the pin reset ends.	1			ms

$<1>$ The low level is input to the TOOLO pin.
$<2>$ The pins reset ends (POR and LVD reset must end before the pin reset ends.).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external and internal resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external and internal resets end

REVISION HISTORY	RL78/G14 Datasheet

Rev.	Date	Description	
		Page	Summary
0.01	Feb 10, 2011	-	First Edition issued
0.02	May 01, 2011	1 to 2	l.1 Features revised
		3	1.2 Ordering Information revised
		4 to 13	1.3 Pin Configuration (Top View) revised
		14	1.4 Pin Identification revised
		15 to 17	1.5 .1 30-pin products to 1.5.3 36-pin products revised
		23 to 26	1.6 Outline of Functions revised
0.03	Jul 28, 2011	1	1.1 Features revised
1.00	Feb 21, 2012	1 to 40	1. OUTLINE revised
		41 to 97	2. ELECTRICAL SPECIFICATIONS added

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or echnical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible fo the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer sofftware alone is very difificult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES
Renesas Electronics Corporation
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
le. +1-905-898-5441, Fax: +1-905-898-32
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe $\mathbf{G m b H}$
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: $+49-211-65030$, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
th Floor, Quantum Plaza, No. 27 ZZhiChunLu Haidian District, Beijing 100083, P.R.Chin
Renesas Electronics (Shanghi) 0 235-767
Renesas, Electronics (Shanghai) Co., Ltid.
Unit 204, 205, AZIA Center, No.1233 Luijazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: $+886-2-8175-9600$, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, $\# 06-10$, keppel Bay Tower, Singapore 098632
1 harbourFront Avenue, \#06-10, keppel Bay
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: $+60-3-7955-9390$, Fax: $+60-3-7955-9510$
Renesas Electronics Korea Co., Ltd.
Renesas Electronics Korea Co., Lid.
11F., Samik Lavied'or Bldg., $720-2$ Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: $+82-2-558-3737$, Fax: $+82-2-558-5141$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ARM Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :
MB9BF566NPMC-G-JNE2 MK60DX256ZVMD10 MKE02Z32VLC4R R7FS3A77C2A01CLK\#AC1 STM32F205ZGT6J STM32F439ZGY6TR CG8360AM CP8363AT CP8570AT R7FS7G27H2A01CLK\#AC0 CY8C4245LTI-DM405 CY8C4245PVS-482 MB9BF106NAPMC-G-JNE1 MB9BF122LPMC1-G-JNE2 MB9BF122LPMC-G-JNE2 MB9BF128SAPMC-GE2 MB9BF218TBGL-GE1 MB9BF529TBGL-GE1 XMC4500-E144F1024 AC MVF62NN151CMK40 CP8347AT XMC4402-F64K256 AB AT91SAM7XC128B-AUR STM32L063C8T6 STM32F215ZET6TR MKE06Z64VLD4 MKE02Z16VLC2R ATSAMD20G18A-UUT MAX32631ICQ+ MAX32630IWG+T MAX32630ICQ+ SIM3L167-C-GQR STM32L052C8T6D 5962-8506403MQA R7FS124773A01CNB\#AC0 MC-10105F1-821-FNA-M1-A STM32L031C6T6 MK22FN512VDC12R SPC560B54L3C6E0X STM32F411CEU6TR STM32F769AIY6TR STM32F042G4U6TR MB9AF342MAPMC-G-JNE2 S6E2CC8J0AGV2000A MB9AF008LWPMC-G-UNE2 MB9AF131KAPMC-G-SNE2 $\underline{\text { STM32F412ZGT6TR MB9BF121KPMC-G-JNE2 STM32L011K4T6D VA10800-D000003PCA }}$

