1. OUTLINE

$1.1 \quad$ Features

O Ultra-low power consumption technology

- $\operatorname{VDD}=$ single power supply voltage of 1.8 to 3.6 V
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed ($0.04167 \mu \mathrm{~s}$: @ 24 MHz operation with high-speed on-chip oscillator clock) to ultra-low speed ($30.5 \mu \mathrm{~s}$: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide and multiply/accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register $\times 8$) $\times 4$ banks
- On-chip RAM: 5.5 KB

O Code flash memory

- Code flash memory: 48 to 128 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

O Data flash memory

- Data flash memory: 8 KB
- Background operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: $1,000,000$ times (TYP.)
- Voltage of rewrites: VDD $=1.8$ to 3.6 V

O High-speed on-chip oscillator

- Select from $24 \mathrm{MHz}, 16 \mathrm{MHz}, 12 \mathrm{MHz}, 8 \mathrm{MHz}, 6$ $\mathrm{MHz}, 4 \mathrm{MHz}, 3 \mathrm{MHz}$, 2 MHz , and 1 MHz
- High accuracy: $\pm 1.0 \%$ (VDD $=1.8$ to $3.6 \mathrm{~V}, \mathrm{TA}=-20$ to $+85^{\circ} \mathrm{C}$)
\bigcirc Operating ambient temperature
- $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications)

O Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 10 levels)

O Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources (30 sources).
- Chain transfer function

O Event link controller (ELC)

- Event signals of 22 types can be linked to the specified peripheral function.

O Serial interfaces

- CSI/CSI (SPI supported): 4 channels
- UART:

4 channels

- $\mathrm{I}^{2} \mathrm{C} /$ simplified $\mathrm{I}^{2} \mathrm{C}$: 5 channels

O Timers

- 16-bit timer: 8 channels
- 8-bit timer: 2 channels
- 12-bit interval timer: 1 channel
- Real-time clock 2: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated lowspeed on-chip oscillator)

O LCD controller/driver

- Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.
- Segment signal output: 32 (28) to 45 (41) Note 1
- Common signal output: 4 (8) Note 1

A/D converter

- 12-bit resolution A/D converter (1.8 $\mathrm{V} \leq \mathrm{AVDD} \leq$ VDD $\leq 3.6 \mathrm{~V}$)
- Analog input: 10 to 15 channels (including a dedicated one for internal $1 / 2$ AVDD)
- Internal reference voltage (TYP. 1.45 V) and temperature sensor Note 2

D/A converter

- 12-bit resolution D/A converter (1.8 $\mathrm{V} \leq \mathrm{AVDD} \leq$ VDD $\leq 3.6 \mathrm{~V}$)
- Analog output: 2 channels
- Output voltage: 0.35 V to AV DD -0.47 V

Voltage reference

- The output voltage can be selected from among 1.5 V (typ.), 1.8 V (typ.), 2.048 V (typ.), and 2.5 V (typ.).
- Can be used as the internal reference voltage for A / D and D/A converters.
\bigcirc Comparator
- 1 channel
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode
- The external reference voltage or internal reference voltage can be selected as the reference voltage.

Operational amplifier

- General-purpose operational amplifier: 1 channel
- Rail-to-rail operational amplifier with analog MUX: 2 channels

O I/O ports

- I/O ports: 59 to 79 (N-ch open drain I/O [withstand voltage of 6 V$]$: 2)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

O Others

- On-chip BCD (binary-coded decimal) correction circuit

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.
Note 2. Selectable only in HS (high-speed main) mode.

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities

Flash ROM	Data Flash	RL78/L1A		
			80 pins	100 pins
128 KB	8 KB	5.5 KB	-	R5F11MPG
96 KB	8 KB	5.5 KB	R5F11MMF	R5F11MPF
64 KB	8 KB	5.5 KB	R5F11MME	R5F11MPE
48 KB	8 KB	5.5 KB	R5F11MMD	-

1.2 Ordering Information

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80 -pin plastic LFQFP $(12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$	A	R5F11MMDAFB\#30, R5F11MMEAFB\#30, R5F111MFAFB\#30 R5F11MMDAFB\#50, R5F11MMEAFB\#50, R5F11MMFAFB\#50
100 pins	$100-$ pin plastic LFQFP $(14 \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$	A	R5F11MPEAFB\#30, R5F11MPFAFB\#30, R5F11MPGAFB\#30 R5F11MPEAFB\#50, R5F11MPFAFB\#50, R5F11MPGAFB\#50

Figure 1-1 Part Number, Memory Size, and Package of RL78/L1A
Part No. R 5 F 11 MPEAxxxFB\#30

Caution Orderable part numbers are current as of when this manual was published.
Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

1.3 Pin Configuration (Top View)

1.3.1 80-pin products

- 80-pin plastic LFQFP (fine pitch) $(12 \times 12 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$

Caution Connect the REGC pin to VSS pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral l/O redirection register (PIOR).

1.3.2 100-pin products

- 100-pin plastic LFQFP (fine pitch) ($14 \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Caution Connect the REGC pin to VSS pin via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remark 1. For pin identification, see 1.4 Pin Identification.
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

AMP0+ to AMP2+	OP AMP + Input	PCLBUZ0, PCLBUZ1	: Programmable Clock Output/
AMP0- to AMP2-	OP AMP - Input		Buzzer Output
AMP00 to AMP2O	OP AMP Output	REGC	: Regulator Capacitance
AMP00PD to	: Low Resistance Switch	RESET	: Reset
AMP2OPD		RTC1HZ	Real-time Clock Correction
$\overline{\text { ADTRG }}$: A/D External Trigger Input	RxD0 to RxD3	Receive Data
ANI00 to ANI13	: Analog Input	SCK00, SCK10, SCK20,	: Serial Clock Input/Output
ANO0, ANO1	: Analog Output	SCK30	
AVDD	: Analog Power Supply	SCLA0	: Serial Clock Input/Output
AVREFM	: Analog Reference Voltage	SCL00, SCL10, SCL20, SCL30	: Serial Clock Output
	Minus	SDAA0, SDA00, SDA10,	Serial Data Input/Output
AVREFP	: Analog Reference Voltage	SDA20, SDA30	
	Plus	SEG0 to SEG44	: LCD Segment Output
AVSS	: Analog Ground	SI00, SI10, SI20, SI30	: Serial Data Input
CAPH, CAPL	Capacitor for LCD	SO00, SO10, SO20, SO30	Serial Data Output
COM0 to COM7	: LCD Common Output	$\overline{\text { SSIOO }}$	Slave Select Input
EXCLK	External Clock Input	TI00 to TIO7	: Timer Input
	(Main System Clock)	TO00 to TO07	: Timer Output
EXCLKS	External Clock Input	TOOLO	Data Input/Output for Tool
	(Sub System Clock)	TOOLRxD, TOOLTxD	: Data Input/Output for
INTP0 to INTP7	External Interrupt Input		External Device
IVCMP0	: Comparator Input	TxD0 to TxD3	: Transmit Data
IVREF0	Comparator Reference Input	VCOUT0	: Comparator Output
KR0 to KR7	: Key Return	VDD	: Power Supply
MUX00 to MUX03,	OP AMP output analog MUX	VL1 to VL4	: LCD Power Supply
MUX10 to MUX13	switch	VREFOUT	: Analog Reference Voltage
P00 to P07	: Port 0		Output
P11 to P17	: Port 1	VSS	: Ground
P20, P21 P23 to P27	: Port 2	X1, X2	: Crystal Oscillator
P30 to P37	: Port 3		(Main System Clock)
P40 to P44	: Port 4	XT1, XT2	: Crystal Oscillator
P50 to P57	: Port 5		(Subsystem Clock)
P60, P61	Port 6		
P70 to P77	: Port 7		
P80, P81	Port 8		
P100, P101	: Port 10		
P103 to P107			
P121 to P127	: Port 12		
P130, P137	: Port 13		
P140 to P143	: Port 14		
P150, P152 to P154	: Port 15		

1.5 Block Diagram

1.5.1 80-pin products

1.5.2 100-pin products

1.6 Outline of Functions

[80-pin, 100-pin products]
(1/2)

Item		80-pin	100-pin
		R5F11MMx ($\mathrm{x}=\mathrm{D}$ to F)	R5F11MPx ($\mathrm{x}=\mathrm{E}$ to G)
Code flash memory (KB)		48 to 96	64 to 128
Data flash memory (KB)		8	8
RAM (KB)		5.5	5.5
Memory space		1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz : VDD $=2.7$ to $3.6 \mathrm{~V}, 1$ to 8 MHz : VDD $=1.8$ to 2.7 V	
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MHz (VDD $=2.7$ to 3.6 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD $=2.4$ to 3.6 V), LS (low-speed main) operation mode: 1 to 8 MHz (VDD $=1.8$ to 3.6 V)	
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): VDD $=1.8$ to 3.6 V	
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD $=1.8$ to 3.6 V	
General-purpose register		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction execution time		$0.04167 \mu \mathrm{~s}$ (High-speed on-chip oscillator clock: $\mathrm{fHOCO}=\mathrm{fIH}=24 \mathrm{MHz}$ operation)	
		$0.05 \mu \mathrm{~s}$ (High-speed system clock: fMX $=20 \mathrm{MHz}$ operation)	
		$30.5 \mu \mathrm{~s}$ (Subsystem clock: fSUB $=32.768 \mathrm{kHz}$ operation)	
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation ($8 / 16$ bits) - Multiplication (8 bits $\times 8$ bits, 16 bits $\times 16$ bits), Division (16 bits $\div 16$ bits, 32 bits $\div 32$ bits) - Multiplication and Accumulation (16 bits $\times 16$ bits +32 bits) - Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.	
I/O port	Total	59	79
	CMOS I/O	52	71
	CMOS input	5	5
	CMOS output	0	1
	N-ch open-drain I/O (6 V tolerance)	2	2
Timer	16-bit timer TAU	8 channels (Timer outputs: 8, PWM outputs: 7 Note)	
	8-bit or 16-bit interval timer	2 channels (8 bits) / 1 channel (16 bits)	
	Watchdog timer	1 channel	
	12-bit interval timer	1 channel	
	Real-time clock 2	1 channel	
	RTC output	```1 1 Hz (subsystem clock: fSUB = 32.768 kHz)```	

Note The number of outputs varies, depending on the setting of channels in use and the number of the master.
(2/2)

Item		80-pin	100-pin
		R5F11MMx ($\mathrm{x}=\mathrm{D}$ to F)	R5F11MPx ($\mathrm{x}=\mathrm{E}$ to G)
Clock output/buzzer output		2	2
		- $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fMAIN $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fSUB $=32.768 \mathrm{kHz}$ operation)	
12-bit resolution A/D converter		10 channels	14 channels
12-bit resolution D/A converter		2 channels	2 channels
VREFOUT (voltage reference)		2.5 V/2.048 V/1.8 V/1.5 V	
Operational amplifier		3 channels	3 channels
AMPnO with analog MUX switch		2 channels (2 in-out/channel)	2 channels (4 in-out/channel)
Comparator		1 channel	1 channel
Serial interface		- CSI (SPI supported): 1 channel/UART (LIN-bus supported): 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 1$ channel - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel	
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel
LCD controller/driver		Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.	
Segment signal output		32 (28) Note 1	45 (41) Note 1
Common signal output		4 (8) Note 1	
Data transfer controller (DTC)		30 sources	30 sources
Event link controller (ELC)		Event input: 22, Event trigger output: 8	Event input: 22, Event trigger output: 8
Vectored interrupt sources	Internal	31	31
	External	9	9
Key interrupt		8	8
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note 2 - Internal reset by RAM parity error - Internal reset by illegal-memory access	
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.04 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.04 \mathrm{~V}$	
Voltage detector		- Rising edge: 1.88 V to 3.13 V (10 stages) - Falling edge: 1.84 V to 3.06 V (10 stages)	
On-chip debug function		Provided	
Power supply voltage		$\mathrm{VDD}=1.8$ to 3.6 V	
Operating ambient temperature		TA $=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications)	

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.
Note 2. The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (A: TA $=-40$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

This chapter describes the following electrical specifications.
Target products A: Consumer applications (TA $=-40$ to $+85^{\circ} \mathrm{C}$)

R5F11MxxAFB

Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1A User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($\mathrm{TA}=25^{\circ} \mathrm{C}$)
(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	AVDD	$\mathrm{AVDD} \leq \mathrm{VDD}$	-0.5 to +4.6	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	VI1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P121 to P127, P137, EXCLK, EXCLKS, RESET	-0.3 to VDD + 0.3 Note 2	V
	V12	P60, P61 (N-ch open-drain)	-0.3 to +6.5	V
	V14	IVCMP0	-0.7 to VDD + 0.7	V
	V15	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	-0.3 to AVDD + 0.3 Note 3	V
Output voltage	Vo1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P130	-0.3 to VDD +0.3 Note 2	V
	Vo2	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	-0.3 to AVDD + 0.3 Note 3	V
Analog input voltage	VAI2	ANI00 to ANI13	$\begin{gathered} -0.3 \text { to } A \operatorname{VDD}+0.3 \\ \text { and } \operatorname{AVREF}(+)+0.3 \text { Notes } 2,4 \end{gathered}$	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.
Note 3. Must be 4.6 V or lower.
Note 4. Do not exceed $\operatorname{AVREF}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. AVREF (+): Positive reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Absolute Maximum Ratings ($\mathrm{TA}=25^{\circ} \mathrm{C}$)
(2/3)

Parameter	Symbols	Conditions		Ratings	Unit
LCD voltage	VLII	VL1 input voltage Note 1		-0.3 to +2.8	V
	VLI2	VL2 input voltage Note 1		-0.3 to +6.5	V
	VLI3	VL3 input voltage Note 1		-0.3 to +6.5	V
	VLI4	VL4 input voltage Note 1		-0.3 to +6.5	V
	VLI5	CAPL, CAPH input voltage Note 1		-0.3 to +6.5	V
	VLO1	VL1 output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	VL4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH output voltage		-0.3 to +6.5	V
	VLO6	COM0 to COM7 SEG0 to SEG44 output voltage	External resistance division method	-0.3 to VdD + 0.3 Note 2	V
			Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
			Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor ($0.47 \pm 30 \%$) and connect a capacitor ($0.47 \pm 30 \%$) between the CAPL and CAPH pins.
Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings ($\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}$)
(3/3)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	$\mathrm{IOH1}$	Per pin		-40	mA
		Total of all pins -170 mA	P40 to P44, P130	-70	mA
			P00 to P07, P11 to P17, P30 to P37, P50 to P57, P70 to P77, P80, P81, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	-0.1	mA
		Total of all pins		-1.6 Note	mA
Output current, low	IoL1	Per pin		40	mA
		Total of all pins 170 mA	P40 to P44, P130	70	mA
			P00 to P07, P11 to P17, P30 to P37, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127	100	mA
	IOL2	Per pin	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	0.4	mA
		Total of all pins		6.4 Note	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Note Do not exceed the rated value of current even in simultaneous output from the maximum of 16 AVDD-group pins.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$	1.0		8.0	
XT1 clock oscillation frequency (fXT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.
Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1A User's Manual.

2.2.2 On-chip oscillator characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

<R>

2.3.1 Pin characteristics

(TA $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, AVss = Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	IOH 1	Per pin for P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130				-10.0 Note 2	mA
		Total of P00 to P07, P11 to P17,	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			-15.0	mA
		P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130 (When duty = 70\% Note 3)	$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			-7.0	mA
	IOH 2	Per pin for P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			$\begin{gathered} -0.1 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154 (When duty $=70 \%$ Note 3)	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			-1.6	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin (IOH1) and AVDD pin (IOH2) to an output pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor is 70%.
The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70\% to n\%).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$

$$
\text { Total output current of pins }=(-10.0 \times 0.7) /(50 \times 0.01)=-14.0 \mathrm{~mA}
$$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution

P00 to P02, P11, P12, P14, P35 to P37, P40, P41, P43, P44, P80, and P81 do not output high level in N-ch opendrain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
(TA $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, AVss = Vss $=\mathbf{0} \mathrm{V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130				$\begin{gathered} 20.0 \\ \text { Note } 2 \end{gathered}$	mA
		Per pin for P60 and P61				$\begin{gathered} 15.0 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P40 to P44, P130	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			15.0	mA
		(When duty $=70 \%$ Note 3)	$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			9.0	mA
		Total of P00 to P07, P11 to P17,	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			35.0	mA
		P30 to P37, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127 (When duty $=70 \%$ Note 3)	$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			20.0	mA
		Total of all pins (When duty $=70 \%$ Note 3)				50.0	mA
	IOL2	$\begin{aligned} & \text { Per pin for P20, P21, P23 to P27, } \\ & \text { P100, P101, P103 to P107, P140 to } \\ & \text { P143, P150, P152 to P154 } \end{aligned}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			0.4 Note 2	mA
		Total of P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154 (When duty = 70\% Note 3)	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			6.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin (Iol1) and AVss pin (lol2).
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor is 70%.
The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).

- Total output current of pins $=(\mathrm{IOL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$ Total output current of pins $=(10.0 \times 0.7) /(50 \times 0.01)=14.0 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, AVss = Vss $=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Port P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P81, P125 to P127	Normal input buffer	0.8 VDD		VDD	V
	VIH2	$\begin{aligned} & \text { P00, P01, P11, P14, P35, P36, P40, } \\ & \text { P41, P44, P80 } \end{aligned}$	TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	2.0		VDD	V
			TTL input buffer $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$	1.50		VDD	V
	VIH3	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154		0.7 AVDd		AVDD	V
	VIH4	P60, P61		0.7 VdD		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 Vdd		VDD	V
Input voltage, low	VIL1	Port P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80 to P81, P125 to P127	Normal input buffer	0		0.2 Vdd	V
	VIL2	$\begin{aligned} & \text { P00, P01, P11, P14 ,P35, P36, P40, } \\ & \text { P41, P44, P80 } \end{aligned}$	TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0		0.5	V
			TTL input buffer $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154		0		0.3 AVDd	V
	VIL4	P60, P61		0		0.3 VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 VDD	V

Caution The maximum value of ViH of pins P00 to P02, P11, P12, P14, P35 to P37, P40, P41. P43, P44, P80, and P81 is Vdd, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, AVss = Vss $=0 \mathrm{~V}$)
<R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH 1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOH}=-2.0 \mathrm{~mA} \end{aligned}$	VDD - 0.6			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOH}=-1.5 \mathrm{~mA} \end{aligned}$	VDD - 0.5			V
	VoH2	$\begin{aligned} & \text { P20, P21, P23 to P27, P100, P101, } \\ & \text { P103 to P107, P140 to P143, P150, } \\ & \text { P152 to P154 } \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \end{aligned}$	AVDD 0.5			V
Output voltage, low	Vol1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOL}=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL}=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOL}=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	$\begin{aligned} & \text { P20, P21, P23 to P27, P100, P101, } \\ & \text { P103 to P107, P140 to P143, P150, } \\ & \text { P152 to P154 } \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOL}=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	Vol3	P60, P61	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOL}=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{IOL}=2.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P00 to P02, P11, P12, P14, P35 to P37, P40, P41. P43, P44, P80, and P81 do not output high level in N-ch opendrain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
(TA $=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}, \mathbf{1 . 8} \mathrm{V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, AVss $=\mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	```P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P137, RESET```	$\mathrm{VI}=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ІІІн3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	V I $=\mathrm{VDD}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
	ILIH4	$\begin{aligned} & \text { P20, P21, P23 to P27, P100, P101, } \\ & \text { P103 to P107, P140 to P143, P150, } \\ & \text { P152 to P154 } \end{aligned}$	$\mathrm{V}_{1}=\mathrm{AV}$ D				1	$\mu \mathrm{A}$
Input leakage current, low	ILLL1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P137, $\overline{\text { RESET }}$	V I $=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	$\mathrm{V}_{1}=\mathrm{Vss}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
	ILIL4	$\begin{aligned} & \text { P20, P21, P23 to P27, P100, P101, } \\ & \text { P103 to P107, P140 to P143, P150, } \\ & \text { P152 to P154 } \end{aligned}$	V I $=\mathrm{AVss}$				-1	$\mu \mathrm{A}$
On-chip pull-up	RU1	P00 to P07, P11 to P17, P30 to P37,	V I $=\mathrm{Vss}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	10	20	100	k Ω
resistance		P50 to P57, P70 to P77, P80, P81, P125 to P127		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$	10	30	100	
	Ru2	P40 to P44	$\mathrm{V}_{1}=\mathrm{Vss}$		10	20	100	k Ω

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(TA = $\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode Note 5	$\mathrm{fIH}=24 \mathrm{MHz}$ Note 3	Basic operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		1.7		mA
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		1.7		
					Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		3.6	6.1	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		3.6	6.1	
				$\mathrm{fIH}=16 \mathrm{MHz}$ Note 3	Normal operation	$\mathrm{VdD}=3.6 \mathrm{~V}$		2.7	4.7	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		2.7	4.7	
			LS (low-speed main) mode Note 5	$\mathrm{fIH}=8 \mathrm{MHz}$ Note 3	Normal operation	$\mathrm{VDD}=3.6 \mathrm{~V}$		1.2	2.1	mA
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		1.2	2.1	
			HS (high-speed main) mode Note 5	$\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.0	5.1	mA
						Resonator connection		3.2	5.2	
				$\begin{aligned} & \mathrm{fMX}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.9	5.1	
						Resonator connection		3.2	5.2	
				$\begin{aligned} & \text { fMX }=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.5	4.4	
						Resonator connection		2.7	4.5	
				$\begin{aligned} & \text { fMX }=16 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.5	4.4	
						Resonator connection		2.7	4.5	
				$\begin{aligned} & \mathrm{fMX}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.9	3.0	
						Resonator connection		1.9	3.0	
				$\begin{aligned} & \text { fMX }=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.9	3.0	
						Resonator connection		1.9	3.0	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.1	2.0	mA
						Resonator connection		1.1	2.0	
				$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.1	2.0	
						Resonator connection		1.1	2.0	
			Subsystem clock operation	$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.0	5.4	$\mu \mathrm{A}$
						Resonator connection		4.3	5.4	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.0	5.4	
						Resonator connection		4.3	5.4	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.1	7.1	
						Resonator connection		4.4	7.1	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.3	8.7	
						Resonator connection		4.7	8.7	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \text { TA }=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	12.0	
						Resonator connection		5.2	12.0	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, rail to rail operational amplifier (with analog multiplexer), general-purpose operational amplifier, voltage reference, low-resistance switch, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, 8-bit interval timer, and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiH: Frequency when the high-speed on-chip oscillator (24 MHz max.)
Remark 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
($\mathrm{TA}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, Vss $=\mathbf{0} \mathrm{V}$)
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high-speed main) mode Note 7	$\mathrm{fIH}=24 \mathrm{MHz}$ Note 4	VDD $=3.6 \mathrm{~V}$		0.42	1.83	mA
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.42	1.83	
				$\mathrm{fIH}=16 \mathrm{MHz}$ Note 4	$\mathrm{V} D=5.0 \mathrm{~V}$		0.39	1.38	
					$\mathrm{VDD}=3.0 \mathrm{~V}$		0.39	1.38	
			LS (low-speed main) mode Note 7	$\mathrm{fiH}=8 \mathrm{MHz}$ Note 4	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.25	0.71	mA
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		0.25	0.71	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.26	1.55	mA
					Resonator connection		0.4	1.68	
				$\begin{aligned} & \mathrm{fMX}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.25	1.55	
					Resonator connection		0.4	1.68	
				$\begin{aligned} & \text { fMX }=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.6 \mathrm{~V} \end{aligned}$	Square wave input		0.23	1.22	
					Resonator connection		0.36	1.39	
				$\begin{aligned} & \mathrm{fMx}=16 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.22	1.22	
					Resonator connection		0.35	1.39	
				$\begin{aligned} & \text { fMX }=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.18	0.82	
					Resonator connection		0.28	0.90	
				$\begin{aligned} & \mathrm{fMx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		0.18	0.81	
					Resonator connection		0.28	0.89	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.09	0.51	mA
					Resonator connection		0.15	0.56	
				$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		0.10	0.52	
					Resonator connection		0.15	0.57	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.32	0.75	$\mu \mathrm{A}$
					Resonator connection		0.51	0.83	
				$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.41	0.83	
					Resonator connection		0.62	1.00	
				$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \text { TA }=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.52	1.17	
					Resonator connection		0.75	1.36	
				$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.82	1.97	
					Resonator connection		1.08	2.16	
				$\begin{aligned} & \text { fSUB }=32.768 \mathrm{kHz} \text { Note } 5 \\ & \mathrm{TA}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.38	3.37	
					Resonator connection		1.62	3.56	
	$\begin{aligned} & \text { IDD3 } \\ & \text { Note } 6 \end{aligned}$	STOP mode Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.16	0.51	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.22	0.51	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.27	1.10	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.37	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.6	3.30	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, ail to rail operational amplifier (with analog multiplexer), general-purpose operational amplifier, voltage reference, low-resistance switch, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC $=1$ and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer, 8-bit interval timer, and watchdog timer.
Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, 8 -bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fiH: Frequency when the high-speed on-chip oscillator (24 MHz max.)
Remark 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 4. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}^{2}=25^{\circ} \mathrm{C}$
($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, $\mathrm{Vss}=\mathbf{0} \mathrm{V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		$\mu \mathrm{A}$
RTC2 operating current	IRTC Notes 1, 3	fSuB $=32.768 \mathrm{kHz}$			0.02		$\mu \mathrm{A}$
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fSUB $=32.768 \mathrm{kHz}$			0.02		$\mu \mathrm{A}$
8-bit interval timer operating current	ITMRT Notes 1, 19	$\begin{aligned} & \text { fSUB = } \\ & 32.768 \mathrm{kHz} \end{aligned}$	8-bit counter mode \times 2-channel operation		0.12		$\mu \mathrm{A}$
			16-bit counter mode operation		0.10		$\mu \mathrm{A}$
Watchdog timer operating current	IWDT Notes 1, 5	$\mathrm{fiL}=15 \mathrm{kHz}$			0.22		$\mu \mathrm{A}$
A/D converter operating current	IADC Notes 6, 7	$\mathrm{AV} D \mathrm{~S}=3.0 \mathrm{~V}$, when conversion at maximum speed			0.7	1.7	mA
A/D converter AVREF(+) current	IAVREF Note 8	AVdD $=3.0 \mathrm{~V}, \mathrm{HVSEL}[1: 0]=00 \mathrm{~B}$ Note 7			40	80	$\mu \mathrm{A}$
		AVdD $=3.0 \mathrm{~V}, \mathrm{HVSEL}[1: 0]=01 \mathrm{~B}$ Note 10			40	80	
Internal reference voltage (1.45 V) current	IADREF Notes 1, 9				85		$\mu \mathrm{A}$
Temperature sensor operating current	ITMPS Note 1				85		$\mu \mathrm{A}$
D/A converter operating current	IDAC Notes 7, 11	Per D/A converter channel			0.4	0.8	mA
D/A converter AVREF(+) current	IDAREF Note 10	AVREFP $=3.0$ V, REF[2:0] = 110B, Per channel			35	80	$\mu \mathrm{A}$
Comparator operating current	ICMP Notes 1, 12	$\mathrm{V} D=3.6 \mathrm{~V}$, Regulator output voltage $=2.1 \mathrm{~V}$	Window mode		7.0		$\mu \mathrm{A}$
			Comparator high-speed mode		2.6		$\mu \mathrm{A}$
			Comparator low-speed mode		1.2		$\mu \mathrm{A}$
		$\mathrm{VDD}=3.6 \mathrm{~V}$, Regulator output voltage $=1.8 \mathrm{~V}$	Window mode		4.1		$\mu \mathrm{A}$
			Comparator high-speed mode		1.5		$\mu \mathrm{A}$
			Comparator low-speed mode		0.9		$\mu \mathrm{A}$
General-purpose operational amplifier operating current (for 1 unit)	IAMP1 Notes 7, 18	$\mathrm{AVDD}=3.0 \mathrm{~V}$	Low-power consumption mode		2	4	$\mu \mathrm{A}$
			High-speed mode		140	280	$\mu \mathrm{A}$
Rail to rail operational amplifier operating current (for 1 unit)	IAMP2 Notes 7, 18	$\mathrm{AVDD}=3.0 \mathrm{~V}$	Low-power consumption mode		10	16	$\mu \mathrm{A}$
			High-speed mode		210	350	$\mu \mathrm{A}$
LVD operating current	ILVI Notes 1, 13				0.06		$\mu \mathrm{A}$
Self-programming operating current	IFSP Notes 1, 14				2.0	12.2	mA
BGO operating current	Ibgo Notes 1, 15				2.0	12.2	mA
SNOOZE operating current	ISNOZ Note 1	CSI/UART opera			0.70	0.84	mA
Voltage reference operating current	IVREF	$\mathrm{AV} D \mathrm{D}=\mathrm{VDD}=3.0$				40	$\mu \mathrm{A}$

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
LCD operating current	ILCD1 Notes 16, 17	External resistance division method	$\begin{aligned} & \text { fLCD }=\text { fsub } \\ & \text { LCD clock }=128 \mathrm{~Hz} \end{aligned}$	1/3 bias 4-time slice	$\begin{aligned} & \mathrm{VDD}=3.6 \mathrm{~V}, \\ & \mathrm{~V} L 4=3.6 \mathrm{~V} \end{aligned}$		0.14		$\mu \mathrm{A}$
	ILCD2 Note 16	Internal voltage boosting method	$\begin{aligned} & \text { fLCD }=\text { fsub } \\ & \text { LCD clock }=128 \mathrm{~Hz} \end{aligned}$	1/3 bias 4-time slice	$\begin{aligned} & \mathrm{VDD}=3.0 \mathrm{~V}, \\ & \mathrm{VL4}=3.0 \mathrm{~V} \\ & (\mathrm{VLCD}=04 \mathrm{H}) \end{aligned}$		0.61		$\mu \mathrm{A}$
	ILCD3 Note 16	Capacitor split method	$\begin{aligned} & \text { fLCD }=\text { fSUB } \\ & \text { LCD clock }=128 \mathrm{~Hz} \end{aligned}$	1/3 bias 4-time slice	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V}, \\ & \mathrm{~V} \mathrm{L4}=3.0 \mathrm{~V} \end{aligned}$		0.12		$\mu \mathrm{A}$

(Notes and Remarks are listed on the next page.)

Note 1. Current flowing to VDD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing to the AVDD.
Note 8. Current flowing from the reference voltage source of A / D converter.
Note 9. Operation current flowing to the internal reference voltage.
Note 10. Current flowing to the AVREFP.
Note 11. Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
Note 14. Current flowing only during self-programming.
Note 15. Current flowing only during data flash rewrite.
Note 16. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
Note 17. Not including the current that flows through the external divider resistor divider resistor.
Note 18. Current flowing only to the operational amplifier. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IAMP when the operational amplifier operates in the operating mode, HALT mode, or STOP mode.
Note 19. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8 -bit interval timer operates in the operating mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fCLK: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

2.4 AC Characteristics

2.4.1 Basic operation

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmAIN) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.0417		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.125		1	$\mu \mathrm{S}$
		Subsystem clock (fSUB) operation		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	28.5	30.5	31.3	$\mu \mathrm{s}$
		In the selfprogramming mode	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.0417		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{S}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
External main system clock frequency	fex	EXCLK		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1.0		20.0	MHz
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	MHz
				$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		8.0	MHz
	fExt	EXCLKS			32		35	kHz
External main system clock input high-level width, low-level width	$\begin{aligned} & \text { tEXH, } \\ & \text { tEXL } \end{aligned}$	EXCLK		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	24			ns
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	30			ns
				$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	60			ns
	tEXHS, tEXLS	EXCLKS			13.7			$\mu \mathrm{s}$
Timer input high-level width, low-level width	tTIH, tTIL	TI00 to TI07			1/fMCK + 10			ns
Timer output frequency	fтo	$\begin{aligned} & \text { TOOO to } \\ & \text { TOO7 } \end{aligned}$	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			8	MHz
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			8	MHz
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			4	MHz
Buzzer output frequency	fPCL	$\begin{aligned} & \text { PCLBUZ0, } \\ & \text { PCLBUZ1 } \end{aligned}$	HS (high-speed main) mode LS (low-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			8	MHz
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			8	MHz
				$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			4	MHz
Interrupt input highlevel width, low-level width	tINTH, tINTL	INTP0 to INTP7		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1			$\mu \mathrm{s}$
Key interrupt input low-level width	tKR	KR0 to KR7		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	250			ns
RESET low-level width	tRSL	RESET			10			$\mu \mathrm{s}$

Remark fMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number ($m=0$),
n : Channel number ($\mathrm{n}=0$ to 7))

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)

TCY vs VDD (LS (low-speed main) mode)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

TIOO to TIO7

TO00 to TO07

Interrupt Request Input Timing

Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} D \leq 3.6 \mathrm{~V}$, VSS = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$\begin{aligned} & \text { 2.7 } \mathrm{V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \\ & \begin{array}{l} \text { Theoretical value of the } \\ \text { maximum transfer rate } \\ \mathrm{fMCK}=\text { fCLK Note } 3 \end{array} \end{aligned}$		fMCK/6 Note 2		fMCK/6	bps
				4.0		1.3	Mbps
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Theoretical value of the maximum transfer rate $\mathrm{fMCK}=\mathrm{fCLK}$ Note 3		fMCK/6 Note 2		fMCK/6	bps
				2.6		1.3	Mbps
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3		-		fMCK/6 Note 2	bps
				-		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
Note 2. The following conditions are required for low voltage interface.
$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$: MAX. 1.3 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
HS (high-speed main) mode: $\quad 24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q : UART number ($\mathrm{q}=0$ to 3), g : PIM and POM number ($\mathrm{g}=0,1,3,4,8$)
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} D \leq 3.6 \mathrm{~V}$, $\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 \geq fCLK/2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	167		250		ns
SCKp high-/low-level width	$\begin{aligned} & \text { tKH1, } \\ & \text { tKL1 } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tKCY1/2-10		tkcy $1 / 2-50$		ns
SIp setup time (to SCKp \uparrow) Note 1	tsik1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		33		110		ns
SIp hold time (from SCKp \uparrow) ${ }^{\text {Note } 2}$	tKSI1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 3	tKSO1	$\mathrm{C}=20 \mathrm{pF}$ Note 4			10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and $C K P m n=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(\mathrm{n}=0)$, g : PIM and POM number $(\mathrm{g}=4)$
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m : Unit number,
n : Channel number $(\mathrm{mn}=00)$)
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 \geq fCLK/4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	167		500		ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	250		500		ns
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-		500		ns
SCKp high-/low-level width	tKH1, tKL1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tKCY1/2-18		tKCY1/2-50		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		tKCY1/2-38		tKCY1/2-50		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		tKCY1/2-50		ns
Slp setup time (to SCKp \uparrow) Note 1	tSIK1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		44		110		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		75		110		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		110		ns
SIp hold time (from SCKp \uparrow) Note 2	tKSI1	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		19		19		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		19		ns
Delay time from SCKp \downarrow to SOp output Note 3	tKSO1	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		25		50	ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		25		50	ns
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		50	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn = 1. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow "$ when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. \quad C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(\mathrm{p}=00,10,20,30)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3,4,8$)
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}$, $\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tKCY2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	fMCK > 16 MHz	8/fmсk		-		ns
			fMCK $\leq 16 \mathrm{MHz}$	6/fmск		6/fmck		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		6/fmck and 500		6/fmck and 500		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		6/fmck and 750		ns
SCKp high-/low-level width	tKH2, tKL2	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$		tKCY2/2-8		tксү2/2-8		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		tксү2/2-18		ns
SIp setup time (to SCKp \uparrow) Note 1	tsIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fmск + 20		1/fmск + 30		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fmск + 30		1/fмск + 30		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		1/fмск + 30		ns
SIp hold time (from SCKp \uparrow) Note 2	tKSI2	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1/fmск + 31		1/fмск + 31		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		1/fmск + 31		ns
Delay time from SCKp \downarrow to SOp output Note 3	tKSO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		$\begin{gathered} \text { 2/fmск } \\ +44 \end{gathered}$		$\begin{gathered} \text { 2/fmck } \\ +110 \end{gathered}$	ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		$\begin{gathered} \text { 2/fmск } \\ +75 \end{gathered}$		$\begin{gathered} \hline \text { 2/fmск } \\ +110 \end{gathered}$	ns
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		$\begin{gathered} \text { 2/fmск } \\ +110 \end{gathered}$	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and $C K P m n=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SCKp and SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p : CSI number $(p=00,10,20,30)$, m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number $(\mathrm{g}=0,1,3,4,8)$
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))

CSI mode connection diagram (during communication at same potential)

Remark 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00,10,20,30)$
Remark 2. m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p : CSI number ($p=00,10,20,30$)
Remark 2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)
(5) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} D \leq 3.6 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		400 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$		400 Note 1		400 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		ns
Hold time when SCLr = "H"	tHIGH	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		ns
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fmCK + } 85$ Note 2		$\text { 1/fMCK + } 145$ Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fмск + } 145$ Note 2		$\text { 1/fmck + } 145$ Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 1 / \text { fmck }+230 \\ \text { Note } 2 \end{gathered}$		$\begin{gathered} 1 / \text { fmck }+230 \\ \text { Note } 2 \end{gathered}$		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SCLr, SDAr) load capacitance
Remark 2. r: IIC number ($r=00,10,20,30$), g: PIM number ($g=0,1,3,4,8$),
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$),
n : Channel number ($\mathrm{n}=0,2$), $\mathrm{mn}=0,02,10,12$)
(6) Communication at different potential (1.8 V, 2.5 V) (UART mode)
($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)(1/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate Notes 1, 2		reception	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$		fmCK/6 Note 1		fmCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4		4.0		1.3	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$		fMCK/6 Notes 1, 2, 3		fMCK/6 Notes 1, 2, 3	bps
			Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 4		4.0		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is $4,800 \mathrm{bps}$ only.
Note 2. Use it with $V D D \geq \mathrm{Vb}$.
Note 3. The following conditions are required for low voltage interface.
$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$:
MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$:
MAX. 1.3 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
HS (high-speed main) mode: $\quad 24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdd tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($\mathrm{q}=0$ to 3), g : PIM and POM number ($\mathrm{g}=0,1,3,4,8$)
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(6) Communication at different potential (1.8 V, 2.5 V) (UART mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 2		transmission	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} \mathrm{Cb} & =50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega, \\ \mathrm{Vb} & =2.3 \mathrm{~V} \end{aligned}$		1.2 Note 2		1.2 Note 2	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega, \\ & \mathrm{Vb}=1.6 \mathrm{~V} \end{aligned}$		0.43 Note 5		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

1
Maximum transfer rate $=\frac{}{\left\{-\mathrm{Cb}_{\mathrm{b}} \times \mathrm{R}_{\mathrm{b}} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{b}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \operatorname{Rb} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. Use it with $V_{D D} \geq \mathrm{V}_{\mathrm{b}}$.
Note 4. The smaller maximum transfer rate derived by using $f M C K / 6$ or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value $)=\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\}$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ to 3), g : PIM and POM number ($g=0,1,3,4,8$)
Remark 3. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 $\geq 2 / \mathrm{fCLK}$	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	300		1150		ns
SCKp high-level width	tKH1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		tKç1/2-120		tKCY1/2-120		ns
SCKp low-level width	tKL1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		tKcy1/2-10		tKCY1/2-50		ns
Slp setup time (to SCKp \uparrow) Note 1	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		121		479		ns
SIp hold time (from SCKp \uparrow) Note 1	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		ns
Delay time from SCKp \downarrow to SOp output Note 1	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$			130		130	ns
SIp setup time (to SCKp \downarrow) Note 2	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		33		110		ns
SIp hold time (from SCKp \downarrow) Note 2	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		10		10		ns
Delay time from SCKp \uparrow to SOp output Note 2	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and $C K P m n=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line ($\mathrm{SCKp}, \mathrm{SOp}$) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line ($\mathrm{SCKp}, \mathrm{SOp}$) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00)$, m : Unit number $(m=0)$,
n : Channel number $(\mathrm{n}=0)$, g: PIM and POM number $(\mathrm{g}=4)$
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$)
(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)(1/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tKCY1 \geq 4/fCLK	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	500 Note		1150		ns
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 1.8 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1150 Note		1150		ns
SCKp high-level width	tKH1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		tкCY1/2-170		tKCy1/2-170		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		tксү1/2-458		tKCY1/2-458		ns
SCKp low-level width	tKL1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		tксү1/2-18		tKCy1/2-50		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		tкCY1/2-50		tKCY1/2-50		ns

Note Use it with $V_{D D} \geq \mathrm{Vb}_{\mathrm{b}}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Viн and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)(2/2)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp \uparrow) Note 1	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	177		479		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	479		479		ns
SIp hold time (from SCKp \uparrow) Note 1	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		ns
Delay time from SCKp \downarrow to SOp output Note 1	tKSO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		195		195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		483		483	ns
SIp setup time (to SCKp \downarrow) Note 2	tSIK1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	44		110		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	110		110		ns
SIp hold time (from SCKp \downarrow) Note 2	tKSI1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 3, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		ns
Delay time from SCKp \uparrow to SOp output Note 2	tKsO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		25		25	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note 3, } \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		25		25	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. Use it with $\mathrm{VDD} \geq \mathrm{Vb}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line ($\mathrm{SCKp}, \mathrm{SOp}$) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line ($\mathrm{SCKp}, \mathrm{SOp}$) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00,10,20,30)$, m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 3$)$, g : PIM and POM number ($\mathrm{g}=0,1,3,4,8$)
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00,02,10,12$)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn =0.)

Remark $\quad p$: CSI number $(p=00,10,20,30), m$: Unit number $(m=0,1), n$: Channel number $(n=0,2)$,
$\mathrm{g}:$ PIM and POM number $(\mathrm{g}=0,1,3,4,8)$
(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)
($\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tKCY2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \end{aligned}$	20 MHz < fMCK $\leq 24 \mathrm{MHz}$	16/fмск		-		ns
			$16 \mathrm{MHz}<$ fmCk $\leq 20 \mathrm{MHz}$	14/fмск		-		ns
			$8 \mathrm{MHz}<\mathrm{fmCK} \leq 16 \mathrm{MHz}$	12/fмск		-		ns
			$4 \mathrm{MHz}<$ fMCK $\leq 8 \mathrm{MHz}$	8/fмск		16/fмск		ns
			fmCk $\leq 4 \mathrm{MHz}$	6/fмск		10/fмск		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \end{aligned}$	20 MHz < fMCK $\leq 24 \mathrm{MHz}$	36/fмск		-		ns
			16 MHz < fMCK $\leq 20 \mathrm{MHz}$	32/fмск		-		ns
			$8 \mathrm{MHz}<\mathrm{fmCK} \leq 16 \mathrm{MHz}$	26/ғмск		-		ns
			$4 \mathrm{MHz}<$ fMCK $\leq 8 \mathrm{MHz}$	16/fmск		16/fмск		ns
			fMck $\leq 4 \mathrm{MHz}$	10/fmск		10/fmск		ns
SCKp high-/low-level width	$\begin{array}{\|l} \hline \text { tKH2, } \\ \text { tKL2, } \end{array}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{tKCY} 2 / 2 \\ -18 \end{gathered}$		$\begin{gathered} \mathrm{tKCY} 2 / 2 \\ -50 \end{gathered}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{gathered} \mathrm{tKCY} 2 / 2 \\ -50 \end{gathered}$		$\begin{gathered} \text { tKCY2/2 } \\ -50 \end{gathered}$		ns
Slp setup time (to SCKp \uparrow) Note 3	tSIK2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		$\begin{gathered} 1 / \text { fmск } \\ +20 \end{gathered}$		$\begin{gathered} 1 / \text { fмск } \\ +30 \end{gathered}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$		$\begin{gathered} \text { 1/fмск } \\ +30 \end{gathered}$		$\begin{gathered} 1 / \text { fmск } \\ +30 \end{gathered}$		ns
Slp hold time (from SCKp \uparrow) Note 4	tKSI2			$\begin{gathered} 1 / \text { fmск } \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +31 \end{gathered}$		ns
Delay time from SCKp \downarrow to SOp output Note 5	tKSO2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V} \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} \text { 2/fmck } \\ +214 \end{gathered}$		$\begin{array}{r} \text { 2/fmck } \\ +573 \end{array}$	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$			$\begin{array}{r} 2 / f m с к \\ +573 \end{array}$		$\begin{array}{r} \text { 2/fmск } \\ +573 \end{array}$	ns

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with $V_{D D} \geq \mathrm{V}_{\mathrm{b}}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the Slp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(\mathrm{p}=00,10,20,30)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3), g : PIM and POM number $(\mathrm{g}=0,1,3,4,8)$
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00,02,10,12$)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.)

Remark $\quad \mathrm{p}: \operatorname{CSI}$ number $(\mathrm{p}=00,10,20,30)$, m : Unit number $(m=0,1)$,
n : Channel number ($\mathrm{n}=0$ to 3), $\mathrm{g}:$ PIM and POM number $(\mathrm{g}=0,1,3,4,8)$
(10) Communication at different potential (1.8 V, 2.5 V) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		300 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \text {, } \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1	kHz
Hold time when SCLr = " L "	tLow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		1550		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		1550		ns
Hold time when SCLr = " H "	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	200		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	600		610		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	610		610		ns
Data setup time (reception)	tSU:DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\text { 1/fмск + } 135$ Note 3		$1 / \mathrm{fmCK}+190$ Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} \text { 1/fMCK }+190 \\ \text { Note } 3 \end{gathered}$		$1 / \mathrm{fmCK}+190$ Note 3		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2 \text {, } \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} \text { 1/fMCK + } 190 \\ \text { Note } 3 \end{gathered}$		$\begin{gathered} \text { 1/fMCK }+190 \\ \text { Note } 3 \end{gathered}$		ns
Data hold time (transmission)	thD:DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}<2.7 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.
Note 2. Use it with $V_{D D} \geq V_{b}$.
Note 3. Set the fMCK value to keep the hold time of $\operatorname{SCLr}=$ " L " and $S C L r=$ " H ".

Caution Select the TTL input buffer and the \mathbf{N}-ch open drain output (VdD tolerance) mode for the SDAr pin and the \mathbf{N}-ch open drain output (VdD tolerance) mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

Simplified I2C mode connection diagram (during communication at different potential)

Simplified ${ }^{2}{ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[F]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. r: IIC number ($r=00,10,20,30$), g : PIM, POM number ($g=0,1,3,4,8$)
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$), n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,02,10,12)$

2.5.2 Serial interface IICA

(1) $\mathrm{I}^{2} \mathrm{C}$ standard mode
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard mode: fcLK $\geq 1 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	100	0	100	kHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-	0	100	kHz
Setup time of restart condition	tSU: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.7		$\mu \mathrm{S}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.0		4.0		$\mu \mathrm{S}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.0		$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tLow	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.7		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.0		$\mu \mathrm{S}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		250		250		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		250		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		0	3.45	$\mu \mathrm{s}$
Setup time of stop condition	tSu: sto	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.0		$\mu \mathrm{s}$
Bus-free time	tBuF	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		4.7		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$

(2) $\mathrm{I}^{2} \mathrm{C}$ fast mode

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode:$\text { fCLK } \geq 3.5 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	400	0	400	kHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	400	0	400	kHz
Setup time of restart condition	tSU: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		0.6		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tıow	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		100		100		ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		100		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0	0.9	0	0.9	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: STo	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		0.6		$\mu \mathrm{s}$
Bus-free time	tBuF	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		-		1.3		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
(3) $I^{2} \mathrm{C}$ fast mode plus
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} D \leq 3.6 \mathrm{~V}$, $\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fSCL	Fast mode plus: fCLK $\geq 10 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	0	1000	-		kHz
Setup time of restart condition	tSU: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26		-		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26		-		$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tLow	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.5		-		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	tHIGH	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26		-		$\mu \mathrm{s}$
Data setup time (reception)	tSU: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		50		-		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0	0.45	-		$\mu \mathrm{s}$
Setup time of stop condition	tSU: STO	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.26		-		$\mu \mathrm{S}$
Bus-free time	tBuF	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		0.5		-		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode plus: $\mathrm{Cb}=120 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = AVss = 0 V , reference voltage(+) = AVREFP, reference voltage(-) $=$ AVREFM $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			-	-	12	bit
Analog capacitance	Cs			-	-	15	pF
Analog input resistance	Rs			-	-	2.5	k Ω
Frequency	ADCLK	High-speed mode	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1	-	24	MHz
			$2.4 \mathrm{~V} \leq$ AVREFP $\leq \operatorname{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1	-	16	MHz
		Normal mode	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1	-	24	MHz
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1	-	16	MHz
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1	-	8	MHz
Conversion time Note	Tconv	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Permissible signal source impedance $\max =0.3 \mathrm{k} \Omega$ $\text { ADCLK }=24 \mathrm{MHz}$	3	-	-	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Permissible signal source impedance $\max =1.3 \mathrm{k} \Omega$ $\text { ADCLK }=16 \mathrm{MHz}$	4.5	-	-	$\mu \mathrm{s}$
		Normal mode ADCSR.ADHSC = 1 ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Permissible signal source impedance $\begin{aligned} & \max =1.1 \mathrm{k} \Omega \\ & \text { ADCLK }=24 \mathrm{MHz} \end{aligned}$	3.4	-	-	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Permissible signal source impedance $\begin{aligned} & \max =2.2 \mathrm{k} \Omega \\ & \text { ADCLK }=16 \mathrm{MHz} \end{aligned}$	5.1	-	-	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Permissible signal source impedance $\max =5 \mathrm{k} \Omega$ $\text { ADCLK = } 8 \text { MHz }$	10.1	-	-	$\mu \mathrm{s}$
Overall error	AINL	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.25	± 5.0	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.25	± 5.0	LSB
		Normal mode$\begin{aligned} & \text { ADCSR.ADHSC = } 1 \\ & \text { ADSSTRn }=28 \mathrm{H} \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \operatorname{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.25	± 5.0	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.25	± 5.0	LSB
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \operatorname{VdD} \leq 3.6 \mathrm{~V}$	-	± 3.0	± 8.0	LSB
Zero-scale error	Ezs	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 0.5	± 4.5	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 0.5	± 4.5	LSB
		Normal mode$\begin{aligned} & \text { ADCSR.ADHSC }=1 \\ & \text { ADSSTRn }=28 \mathrm{H} \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 0.5	± 4.5	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 0.5	± 4.5	LSB
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	-	± 1	± 7.5	LSB

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Full-scale error	Efs	High-speed mode ADCSR.ADHSC $=0$ $\text { ADSSTRn }=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	-	± 0.75	± 4.5	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 0.75	± 4.5	LSB
		Normal mode ADCSR.ADHSC $=1$ $\operatorname{ADSSTRn}=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 0.75	± 4.5	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 0.75	± 4.5	LSB
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	-	± 1.5	± 7.5	LSB
Differential linearity error	DLE	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	-	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	-	LSB
		Normal mode ADCSR.ADHSC = 1 ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	-	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	-	LSB
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	-	LSB
Integral linearity error	ILE	$\begin{aligned} & \text { High-speed mode } \\ & \text { ADCSR.ADHSC }=0 \\ & \text { ADSSTRn }=28 \mathrm{H} \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	± 3.0	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	± 4.5	LSB
		Normal mode ADCSR.ADHSC =1 $\text { ADSSTRn }=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	± 3.0	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.0	± 3.0	LSB
			$1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	± 1.25	± 3.0	LSB

Note The conversion time is the sum of sampling time and comparison time. The values indicated in the table are those in the case of 40 clock cycles of ADCLK per sampling state.

Caution The characteristics above only apply when pins other than those of the A/D converter are not in use. The overall error includes the quantization error. Each of the offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error does not include the quantization error.
[Reference value for design (not guaranteed)]
We can provide the design reference values for the A/D converter. Note, however, that these values are not guaranteed and can only be used as a reference when using this function. See below for details.
(TA = 0 to $+50^{\circ} \mathrm{C}, 2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, VsS = AVsS = 0 V , reference voltage $(+$) = AVREFP, reference voltage $(-)=A V$ REFM $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			-	-	-Note 3	bit
Analog capacitance	Cs			-	-	-Note 3	pF
Analog input resistance	Rs			-	-	_Note 3	k Ω
Frequency	fcLk	High-speed mode	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-Note 3	-	-Note 3	MHz
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-Note 3	-	- Note 3	MHz
		Normal mode	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-Note 3	-	- Note 3	MHz
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-Note 3	-	-Note 3	MHz
			$2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-Note 3	-	-Note 3	MHz

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Conversion time	Tconv	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Permissible signal source impedance $\max =0.3 \mathrm{k} \Omega$ ADCLK $=24 \mathrm{MHz}$	-Note 3	-	-	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$ Permissible signal source impedance $\max =1.3 \mathrm{k} \Omega$ ADCLK $=16 \mathrm{MHz}$	-Note 3	-	-	$\mu \mathrm{s}$
		Normal mode$\text { ADCSR.ADHSC }=1$$\text { ADSSTRn }=28 \mathrm{H}$	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \\ & \text { Permissible signal source impedance } \\ & \max =1.1 \mathrm{k} \Omega \\ & \mathrm{ADCLK}=24 \mathrm{MHz} \end{aligned}$	-Note 3	-	-	$\mu \mathrm{s}$
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \\ & \text { Permissible signal source impedance } \\ & \max =2.2 \mathrm{k} \Omega \\ & \mathrm{ADCLK}=16 \mathrm{MHz} \end{aligned}$	-Note 3	-	-	$\mu \mathrm{s}$
			$\begin{aligned} & 2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \\ & \text { Permissible signal source impedance } \\ & \max =5 \mathrm{k} \Omega \\ & \mathrm{ADCLK}=8 \mathrm{MHz} \end{aligned}$	—Note 3	-	-	$\mu \mathrm{s}$
Overall error	AINL	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	- Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq$ AVREFP \leq AVDD \leq VDD $\leq 3.6 \mathrm{~V}$	-	-Note 3	—Note 3	LSB
		Normal mode ADCSR.ADHSC = 1 ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
Zero-scale error Notes 1, 2	Ezs	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	—Note 3	LSB
		Normal mode ADCSR.ADHSC = 1 $\text { ADSSTRn }=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	± 4.5	LSB
Full-scale error Notes 1, 2	EFS	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
		Normal mode$\begin{aligned} & \text { ADCSR.ADHSC }=1 \\ & \text { ADSSTRn }=28 \mathrm{H} \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	- Note 3	± 4.5	LSB
Differential linearity error	DLE	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	_Note 3	-	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-	LSB
		Normal mode ADCSR.ADHSC = 1$\text { ADSSTRn }=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	- Note 3	-	LSB
			$2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-	LSB
Integral linearity error	ILE	High-speed mode ADCSR.ADHSC $=0$ ADSSTRn $=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
		Normal mode ADCSR.ADHSC $=1$ $\text { ADSSTRn }=28 \mathrm{H}$	$2.7 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB
			$2.0 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	-Note 3	-Note 3	LSB

Note 1. MAX. value is the average value $\pm 3 \sigma$ at normalized distribution.
Note 2. These values are the results of characteristic evaluation.
Note 3. The reference value is not available.

Caution The characteristics above only apply when pins other than those of the A/D converter are not in use. The overall error includes the quantization error. Each of the offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error does not include the quantization error.

2.6.2 Temperature sensor, internal reference voltage output characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = 0 V , HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	TA $=+25^{\circ} \mathrm{C}$	-	1.05	-	V
Internal reference voltage	VBGR		1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature	-	-3.6	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tAMP	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	5	-	-	$\mu \mathrm{s}$

2.6.3 D/A converter characteristics

(1) When reference voltage $=$ AVrefp, AVrefm
($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Load resistance	R0		30			k Ω
Load capacitance	C0				50	pF
Output voltage range	Tout		0.35		$\begin{gathered} \text { AVDD - } \\ 0.47 \end{gathered}$	V
Differential linearity error	DNL			± 0.5	± 1.0	LSB
Integral linearity error	AINL			± 0.4	± 8.0	LSB
Zero-scale error	Ezs				± 20	mV
Full-scale error	Efs				± 20	mV
Output resistance	Ro			5		Ω
Conversion time	tcon				30	$\mu \mathrm{S}$

(2) When reference voltage $=\mathbf{A V D D}$, AVss
(TA $=\mathbf{- 4 0}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, Vss = AVss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES				12	bit
Load resistance	R0		30			$\mathrm{k} \Omega$
Load capacitance	C0				50	pF
Output voltage range	Tout		0.35		AVDD -	
				± 0.5	V	
Differential linearity error	DNL			± 0.4	± 8.0	LSB
Integral linearity error	AINL				± 30	mV
Zero-scale error	Ezs				± 30	mV
Full-scale error	EFS			5		Ω
Output resistance	Ro				30	$\mu \mathrm{~s}$
Conversion time	tcon					

2.6.4 Comparator

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivemp			-0.3		VDD +0.3	V
Output delay	td	$\begin{aligned} & \text { VDD }=3.0 \mathrm{~V} \\ & \text { Input slew rate }>50 \mathrm{mV} / \mu \mathrm{s} \end{aligned}$	Comparator high-speed mode, standard mode			1.2	$\mu \mathrm{s}$
			Comparator high-speed mode, window mode			2.0	$\mu \mathrm{s}$
			Comparator low-speed mode, standard mode		3	5.0	$\mu \mathrm{s}$
High-electric-potential judgment voltage	VTW+	Comparator high-speed mo	de, window mode		0.76 VDD		V
Low-electric-potential judgment voltage	VTw-	Comparator high-speed mo	de, window mode		0.24 VDD		V
Operation stabilization wait time	tCMP			100			$\mu \mathrm{s}$
Internal reference voltage Note	Vbgr	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, HS (hig	h-speed main) mode	1.38	1.45	1.50	V

Note Not usable in LS (low-speed main) mode, subsystem clock operation, or STOP mode.

2.6.5 Rail to rail operational amplifier characteristics

(TA = $\mathbf{- 4 0}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathrm{C}, \mathbf{2 . 2} \mathrm{V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, AVss = Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Circuit current	Icc1	Low-power consumption mode		-	10	16	$\mu \mathrm{A}$
	Icc2	High-speed mode		-	210	350	$\mu \mathrm{A}$
Common mode input range	Vicm1	Low-power consumption mode		0.1	-	AVdd-0.1	V
	Vicm2	High-speed mode		0.1	-	AVdd-0.1	V
Output voltage range	Vo1	Low-power consumption mode		0.1	-	AVdd-0.1	V
	Vo2	High-speed mode		0.1	-	AVdd-0.1	V
Input offset voltage	Fioff	Low-power consumption mode		-10	-	10	mV
		High-speed mode		-5	-	5	mV
Open gain	Av			-	120	-	dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mode		-	0.06	-	MHz
	GBW2	High-speed mode		-	1	-	MHz
Phase margin	PM	$\mathrm{CL}=22 \mathrm{pF}$		50	-	-	deg
Gain margin	GM	$\mathrm{CL}=20 \mathrm{pF}$		10	-	-	dB
Equivalent input noise	Vnoise1	$\mathrm{f}=1 \mathrm{kHz}$	Low-power consumption mode	-	900	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Vnoise2	$\mathrm{f}=10 \mathrm{kHz}$		-	450	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Vnoise3	$\mathrm{f}=1 \mathrm{kHz}$	High-speed mode	-	80	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Vnoise4	$\mathrm{f}=2 \mathrm{kHz}$		-	50	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Power supply reduction ratio	PSRR			-	90	-	dB
Common mode signal reduction ratio	CMRR			-	90	-	dB
Operation stabilization wait time	Tstd1	$\mathrm{CL}=20 \mathrm{pF}$ Low-power consumption mode		-	110	300	$\mu \mathrm{s}$
	Tstd2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode	-	5	14	$\mu \mathrm{s}$
Settling time	Tset1	$\mathrm{CL}=20 \mathrm{pF}$	Low-power consumption mode	-	110	300	$\mu \mathrm{s}$
	Tset2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode	-	4	14	$\mu \mathrm{s}$
Slew rate	Tselw1	$\mathrm{CL}=20 \mathrm{pF}$	Low-power consumption mode	0.01	0.04	-	$\mathrm{V} / \mu \mathrm{s}$
	Tselw2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode	0.3	0.7	-	V/us
Load current	lload1	Low-power consumption mode		-110	-	110	$\mu \mathrm{A}$
	Iload2	High-speed mode		-110	-	110	$\mu \mathrm{A}$
Load capacitance	CL			-	-	22	pF
Analog MUX ON resistance	Ron	One channe		-	-	1	k Ω

[Reference value for design (not guaranteed)]
We can provide the design reference values for the rail-to-rail operational amplifier. Note, however, that these values are not guaranteed and can only be used as a reference when using this function. See below for details.
($\mathrm{TA}=\mathbf{0}$ to $50^{\circ} \mathrm{C}, 2.0 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, AVss = Vss $=\mathbf{0} \mathrm{V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Circuit current	Icc1	Low-power consumption mode		-	-Note 3	-Note 3	$\mu \mathrm{A}$
	Icc2	High-speed mode		-	_Note 3	- Note 3	$\mu \mathrm{A}$
Common mode input range	Vicm1	Low-power consumption mode		- Note 3	-	- Note 3	V
	Vicm2	High-speed mode		- Note 3	-	- Note 3	V
Output voltage range	Vo1	Low-power consumption mode		-Note 3	-	-Note 3	V
	Vo2	High-speed mode		-Note 3	-	-Note 3	V
Input offset voltage Note 1, Note 2	Fioff	Low-power consumption mode		-7	-	7	mV
		High-speed mode		-Note 3	-	-Note 3	mV
Open gain	Av			-Note 3	-Note 3	-	dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mode		-	-Note 3	-	MHz
	GBW2	High-speed mode		-	-Note 3	-	MHz
Phase margin	PM	$\mathrm{CL}=22 \mathrm{pF}$		-Note 3	-	-	deg
Gain margin	GM	$\mathrm{CL}=20 \mathrm{pF}$		-Note 3	-	-	dB
Equivalent input noise	Vnoise1	$\mathrm{f}=1 \mathrm{kHz}$	Low-power consumption mode	-	-Note 3	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Vnoise2	$\mathrm{f}=10 \mathrm{kHz}$		-	-Note 3	-	$\mathrm{nV} / \mathrm{VHz}$
	Vnoise3	$\mathrm{f}=1 \mathrm{kHz}$	High-speed mode	-	-Note 3	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Vnoise4	$\mathrm{f}=2 \mathrm{kHz}$		-	-Note 3	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Power supply reduction ratio	PSRR			-	-Note 3	-	dB
Common mode signal reduction ratio	CMRR			-	-Note 3	-	dB
Operation stabilization wait time	Tstd1	$\mathrm{CL}=20 \mathrm{pF}$	Low-power consumption mode	-	-Note 3	-Note 3	$\mu \mathrm{s}$
	Tstd2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode	-	-Note 3	-Note 3	$\mu \mathrm{s}$
Settling time	Tset1	$\mathrm{CL}=20 \mathrm{pF}$	Low-power consumption mode	-	-Note 3	-Note 3	$\mu \mathrm{s}$
	Tset2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode	-	-Note 3	- Note 3	$\mu \mathrm{s}$
Slew rate	Tselw1	$\mathrm{CL}=20 \mathrm{pF}$	Low-power consumption mode	-Note 3	-Note 3	-	V/ $/ \mathrm{s}$
	Tselw2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode	-Note 3	-Note 3	-	V/ $/ \mathrm{s}$
Load current	lload1	Low-power consumption mode		-Note 3	-	-Note 3	$\mu \mathrm{A}$
	lload2	High-speed mode		-Note 3	-	-Note 3	$\mu \mathrm{A}$
Load capacitance	CL			-	-	-Note 3	pF
Analog MUX ON resistance	Ron	One channe		-	-	-Note 3	k Ω

Note 1. MAX. value is the average value $\pm 3 \sigma$ at normalized distribution.
Note 2. These values are the results of characteristic evaluation.
Note 3. The reference value is not available.

2.6.6 General purpose operational amplifier characteristics

(TA = -40 to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, AVss = Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Circuit current	Icc1	Low-power consumption mode			2	4	$\mu \mathrm{A}$
	Icc2	High-speed mode			140	280	$\mu \mathrm{A}$
Common mode input range	Vicm1	Low-power consumption mode		0.2		AVDd-0.5	V
	Vicm2	High-speed mode		0.3		AVDD-0.6	V
Output voltage range	Vo1	Low-power consumption mode		0.1		AVDd-0.1	V
	Vo2	High-speed mode		0.1		AVDD-0.1	V
Input offset voltage	Fioff	3\%		-10		+10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mode			0.04		MHz
	GBW2	High-speed mode			1.7		MHz
Phase margin	PM	$\mathrm{CL}=20 \mathrm{pF}$		50			deg
Gain margin	GM	$\mathrm{CL}=20 \mathrm{pF}$		10			dB
Equivalent input noise	Vnoise1	$\mathrm{f}=1 \mathrm{kHz}$	Low-power consumption mode		230		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Vnoise2	$\mathrm{f}=10 \mathrm{kHz}$			200		$\mathrm{nV} / \sqrt{ }{ }^{\mathrm{Hz}}$
	Vnoise3	$\mathrm{f}=1 \mathrm{kHz}$	High-speed mode		90		$\mathrm{nV} / \sqrt{ }{ }^{-} \mathrm{Hz}$
	Vnoise4	$\mathrm{f}=2 \mathrm{kHz}$			70		$\mathrm{nV} / \sqrt{ }{ }^{-} \mathrm{Hz}$
Power supply reduction ratio	PSRR				90		dB
Common mode signal reduction ratio	CMRR				90		dB
Operation stabilization wait time	Tstd1	$C L=20 \mathrm{pF}$	Low-power consumption mode			650	$\mu \mathrm{s}$
	Tstd2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode			13	$\mu \mathrm{s}$
Settling time	Tset1	$\mathrm{CL}=20 \mathrm{pF}$	Low-power consumption mode			750	$\mu \mathrm{s}$
	Tset2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode			13	$\mu \mathrm{s}$
Slew rate	Tselw1	$\mathrm{CL}=20 \mathrm{pF}$	Low-power consumption mode		0.02		$\mathrm{V} / \mu \mathrm{s}$
	Tselw2	$\mathrm{CL}=20 \mathrm{pF}$	High-speed mode		1.1		$\mathrm{V} / \mu \mathrm{s}$
Load current	lload1	Low-power consumption mode		-100		100	$\mu \mathrm{A}$
	lload2	High-speed mode		-100		100	$\mu \mathrm{A}$
Load capacitance	CL					20	pF

2.6.8 $\quad 1 / 2$ AVDD voltage output

(TA = $\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage accuracy			-4.0		+4.0	$\%$
Sampling time for the corresponding channel			20.0			$\mu \mathrm{~s}$

2.6.9 POR circuit characteristics

$\left(\mathrm{TA}=-40\right.$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall timeNote 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	300			$\mu \mathrm{~s}$
	TPW2	STOP/SUB HALT/SUB RUN	300		$\mu \mathrm{~s}$	

Note 1. If the power supply voltage falls while the voltage detector is off, be sure to either shift to STOP mode or execute a reset by using the voltage detector or external reset pin before the power supply voltage falls below the minimum operating voltage specified in 2.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.10 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode
(TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVD2	Power supply rise time	3.07	3.13	3.19	V
		Power supply fall time	3.00	3.06	3.12	V
	VLVD3	Power supply rise time	2.96	3.02	3.08	V
		Power supply fall time	2.90	2.96	3.02	V
	VLVD4	Power supply rise time	2.86	2.92	2.97	V
		Power supply fall time	2.80	2.86	2.91	V
	VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V
	VLVD6	Power supply rise time	2.66	2.71	2.76	V
		Power supply fall time	2.60	2.65	2.70	V
	VLVD7	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V
	VLVD8	Power supply rise time	2.45	2.50	2.55	V
		Power supply fall time	2.40	2.45	2.50	V
	VLVD9	Power supply rise time	2.05	2.09	2.13	V
		Power supply fall time	2.00	2.04	2.08	V
	VLVD10	Power supply rise time	1.94	1.98	2.02	V
		Power supply fall time	1.90	1.94	1.98	V
	VLVD11	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V
Minimum pulse width	tLW		300			$\mu \mathrm{S}$
Detection delay time					300	$\mu \mathrm{s}$

Caution Set the detection voltage (VLvD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$. The following shows the operating voltage range. HS (high-speed main) mode: VdD = 2.7 to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz

VDD $=2.4$ to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode: VDD = 1.8 to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

LVD Detection Voltage of Interrupt \& Reset Mode
($\mathrm{TA}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Detection voltage	VLVdbo	VPOC0, VPOC1, VPOC2 $=0,0$, 1, falling reset voltage: 1.8 V		1.80	1.84	1.87	V
	VLVDB1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDCo	VPOC0, VPOC1, VPOC2 = 0, 1, 0, falling reset voltage: 2.4 V		2.40	2.45	2.50	V
	VLVDC1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDDo	VPOC0, VPOC1, VPOC2 $=0,1$, 1, falling reset voltage: 2.7 V		2.70	2.75	2.81	V
	VLVDD1	LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V

2.6.11 Low-resistance switch

($\mathrm{TA}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD} \leq \mathbf{3 . 6} \mathrm{V}$, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ON resistance 1	Ron1	AMP0OPD, AMP1OPD Load current $<0.1 \mathrm{~mA}$	-	16	50	
ON resistance 2	Ron2	AMP2OPD Load current $<0.1 \mathrm{~mA}$	-	10	30	
Load current	Icas	-	-	-	0.1	mA

[Reference value for design (not guaranteed)]
We can provide the design reference values for the low-resistance switch. Note, however, that these values are not guaranteed and can only be used as a reference when using this function. See below for details
($\mathrm{TA}=0$ to $+50^{\circ} \mathrm{C}, 2.0 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VdD} \leq \mathbf{3 . 6} \mathrm{V}$, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ON resistance 1 Note 1, Note 2	Ron1	AMP0OPD, AMP1OPD Load current < 0.1 mA	-	- Note 3	26	
ON resistance 2 Note 1, Note 2	Ron2	AMP2OPD Load current < 0.1 mA	-	- Note 3	15	Ω
Load current	Icas	-	-	-	- Note 3	mA

Note 1. MAX. value is the average value $\pm 3 \sigma$ at normalized distribution.
Note 2. These values are the results of characteristic evaluation.
Note 3. The reference value is not available.

2.7 Power supply voltage rising slope characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution 1. Make sure to keep the internal reset state by the LVD circuit or an external reset until VdD reaches the operating voltage range shown in 2.4 AC Characteristics.
Caution 2. When the voltages for VDD and AVDD differ and they rise at different rates, if AVDD is lower than 0.8 V at the time of the release from the internal reset state by the power-on reset (POR) circuit, the chip may not start normally. In such cases, apply either of the following countermeasures.

- Hold AVdd ≥ 0.8 V until VdD ≥ 1.47 V.
- Hold the $\overline{R E S E T}$ pin low until VdD $\geq 1.47 \mathrm{~V}$ and AVdd $\geq 0.8 \mathrm{~V}$.

2.8 LCD Characteristics

2.8.1 Resistance division method

(1) Static display mode
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$, V L4 (MIN.) $\leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) $1 / 2$ bias method, $1 / 4$ bias method
(TA $=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq .\mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) $1 / 3$ bias method
($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VL4}(\mathrm{MIN}) \leq .\mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

2.8.2 Internal voltage boosting method

(1) $1 / 3$ bias method
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	$\begin{aligned} & \hline \text { C1 to C4 Note } 1 \\ & =0.47 \mu \text { F Note } 2 \end{aligned}$	$\mathrm{VLCD}=04 \mathrm{H}$	0.90	1.00	1.08	V
			VLCD $=05 \mathrm{H}$	0.95	1.05	1.13	V
			VLCD $=06 \mathrm{H}$	1.00	1.10	1.18	V
			VLCD $=07 \mathrm{H}$	1.05	1.15	1.23	V
			VLCD $=08 \mathrm{H}$	1.10	1.20	1.28	V
			VLCD $=09 \mathrm{H}$	1.15	1.25	1.33	V
			VLCD $=0 \mathrm{AH}$	1.20	1.30	1.38	V
			VLCD $=0 \mathrm{OH}$	1.25	1.35	1.43	V
			VLCD $=0 \mathrm{CH}$	1.30	1.40	1.48	V
			VLCD $=0 \mathrm{DH}$	1.35	1.45	1.53	V
			VLCD $=0 \mathrm{EH}$	1.40	1.50	1.58	V
			VLCD $=0 \mathrm{FH}$	1.45	1.55	1.63	V
			$\mathrm{VLCD}=10 \mathrm{H}$	1.50	1.60	1.68	V
			VLCD $=11 \mathrm{H}$	1.55	1.65	1.73	V
			$\mathrm{VLCD}=12 \mathrm{H}$	1.60	1.70	1.78	V
			$\mathrm{VLCD}=13 \mathrm{H}$	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 Note $1=$	$0.47 \mu \mathrm{~F}$	$2 \mathrm{VL1}-0.1$	$2 \mathrm{VL1}$	$2 \mathrm{VL1}$	V
Tripler output voltage	VL4	C1 to C4 Note $1=$	$0.47 \mu \mathrm{~F}$	$3 \mathrm{VL1}-0.15$	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tVWAIT1			5			ms
Voltage boost wait time Note 3	tVWAIT2	C1 to C4 Note $1=$	$0.47 \mu \mathrm{~F}$	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON =1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	$\begin{aligned} & \text { C1 to C5 Note } 1 \\ & =0.47 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$	VLCD $=04 \mathrm{H}$	0.90	1.00	1.08	V
			VLCD $=05 \mathrm{H}$	0.95	1.05	1.13	V
			VLCD $=06 \mathrm{H}$	1.00	1.10	1.18	V
			VLCD $=07 \mathrm{H}$	1.05	1.15	1.23	V
			VLCD $=08 \mathrm{H}$	1.10	1.20	1.28	V
			VLCD $=09 \mathrm{H}$	1.15	1.25	1.33	V
			VLCD $=0 \mathrm{AH}$	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 Note $1=$	$0.47 \mu \mathrm{~F}$	$2 \mathrm{VL1}-0.08$	$2 \mathrm{VL1}$	$2 \mathrm{VL1}$	V
Tripler output voltage	VL3	C1 to C5 Note $1=$	$0.47 \mu \mathrm{~F}$	3 V L1-0.12	$3 \mathrm{VL1}$	$3 \mathrm{VL1}$	V
Quadruply output voltage	VL4	C1 to C5 Note $1=$	$0.47 \mu \mathrm{~F}$	4 V L1-0.16	$4 \mathrm{VL1}$	$4 \mathrm{VL1}$	V
Reference voltage setup time Note 2	tvWAIT1			5			ms
Voltage boost wait time Note 3	tvWAIT2	C1 to C5 ${ }^{\text {Note } 1}=$	$0.47 \mu \mathrm{~F}$	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=0.47 \mu \mathrm{~F} \pm 30 \%$
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON =1) until display is enabled (LCDON = 1).

2.8.3 Capacitor split method

(1) $1 / 3$ bias method
($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, 2.2 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C3 $=0.47 \mu \mathrm{~F}$ Note 2		VDD		V
VL2 voltage	VL2	C 1 to C3 $=0.47 \mu \mathrm{~F}$ Note 2	$2 / 3 \mathrm{VL4}-0.1$	$2 / 3 \mathrm{VL4}$	$2 / 3 \mathrm{VL4}+0.1$	V
VL1 voltage	VL1	C 1 to C3 $=0.47 \mu \mathrm{~F}$ Note 2	$1 / 3 \mathrm{VL4}-0.1$	$1 / 3 \mathrm{VL4}$	$1 / 3 \mathrm{VL4}+0.1$	V
Capacitor split wait time Note 1	tVWAIT		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON $=1$) until display is enabled (LCDON $=1$).
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD. C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND C3: A capacitor connected between VL2 and GND $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=0.47 \mu \mathrm{~F} \pm 30 \%$

2.9 RAM data retention characteristics

(TA $=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.10 Flash Memory Programming Characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fCLK	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years $\mathrm{TA}=85^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year $\mathrm{TA}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years $\mathrm{TA}=85^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years $\mathrm{TA}=85^{\circ} \mathrm{C}$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.11 Dedicated Flash Memory Programmer Communication (UART)

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

2.12 Timing Specs for Switching Modes

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tSUINIT	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until an external reset ends	tSU	POR and LVD reset must end before the external reset ends.	10			$\mu \mathrm{S}$
Time to hold the TOOLO pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	tHD	POR and LVD reset must end before the external reset ends.	1			ms

$<1>$ The low level is input to the TOOL0 pin.
<2> The external reset ends (POR and LVD reset must end before the external reset ends.).
$<3>$ The TOOLO pin is set to the high level.
<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsUINIT. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
tsu: How long from when the TOOLO pin is placed at the low level until an external reset ends
thD: Time to hold the TOOLO pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)

3. PACKAGE DRAWINGS

$3.1 \quad$ 80-pin products

R5F11MMDAFB, R5F11MMEAFB, R5F11MMFAFB

3.2 100-pin products

R5F11MPEAFB, R5F11MPFAFB, R5F11MPGAFB

REVISION HISTORY	RL78/L1A Datasheet

Rev.	Date	Description	
		Page	Summary
1.00	Aug 12, 2016	-	First Edition issued
1.10	Sep 30, 2019	p. 2	Modification of 1.1 Features
		p. 6	Modification of description in 1.4 Pin Identification
		p. 7	Modification of block diagram in 1.5.1 80-pin products
		p. 8	Modification of block diagram in 1.5.2 100-pin products
		p.12, 14	Modification of 2.1 Absolute Maximum Ratings
		p. 17 to 20	Modification of 2.3.1 Pin characteristics
		p. 28	Deletion of note 16 in 2.3.2 Supply current characteristics
		p. 36	Modification of 2.5.1 (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
		p. 42	Modification of remarks 2 and 3 in 2.5.1 (5) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
		p. 59	Modification of 2.6.1 A/D converter characteristics
		p. 60	Modification of table and addition of note in 2.6.1 A/D converter characteristics
		p. 64	Addition of description in 2.6.4 Comparator
		p. 65	Modification of 2.6.5 Rail to rail operational amplifier characteristics
		p. 68	Modification of 2.6.7 Voltage reference
		p. 68	Modification of 2.6.8 1/2 AVDD voltage output, and the location of this chapter has been moved.
		p. 72	Addition of caution 2 in 2.7 Power supply voltage rising slope characteristics
		p. 75	Modification of note 2 in 2.8.3 Capacitor split method
		p. 77	Modification of 2.12 Timing Specs for Switching Modes

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics Corporation
Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel:' +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for 16-bit Microcontrollers - MCU category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
M30302FCPFP\#U3 MB90F036APMC-GSE1 MB90F428GCPFR-GSE1 MB96F683RBPMC-GSAE1 R5F10MMGDFB\#30
R5F111PGGFB\#30 R5F117BCGNA\#20 DF3026XBL25V DF36014GFTV DF36014GFXV DF36024GFTV DF36034GFPV
R5F11B7EANA\#U0 R5F21172DSP\#U0 MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F345CAPFR-GSE1 MB90F568PMCR-
GE1 MB96F395RSAPMC-GSE2 DF36024GFXV MB96F018RBPMC-GSE1 MB90F867ASPFR-GE1 DF2239FA20IV R5F117BCGFP\#30
LC88F58B0AU-SQFPH MB90F548GPF-GE1 MB90214PF-GT-310-BND-AE1 MB90F342CESPQC-GSE2 MB90F428GAPF-GSE1
ML620Q504H-NNNTBWBX S912ZVH128F2VLL UPD78F1500AGK-GAK-AX HD64F3337SF16V MB90F428GCPF-GSE1
MB90F342ESPMC-G-JNE1 MB90022PF-GS-358E1 MB96F395RWAPMC-GSE2 MB96395RSAPMC-GS-110E2 MB90F883CSPMC-GE1
S912ZVHY64F1CLL S912ZVHY64F1VLQ ST10F280 MB96F338RSAPMCR-GK5E2 CY90096PF-G-002-BND-ERE1 ML62Q1569-
NNNGAZ0AX ML62Q1739-NNNGAZ0AX ML62Q1749-NNNGAZ0AX ML62Q1579-NNNGAZ0AX ML62Q1559-NNNGAZ0AX
ML62Q1729-NNNGAZ0AX

