RENESAS

RC22308A/RC32308A

The RC22308A/RC32.308A Evaluation Board (EVB) allows users to evaluate high-performance synthesizer and jitter attenuator applications. This document describes the following:

- Basic hardware and GUI setup using Renesas IC Toolbox (RICBox) software
- Board power-up instructions
- Instructions to get active output signals using a provided configuration file
- Hardware modifications required for different conditions

Board Contents

- RC22308A/RC32308A evaluation board
- EVB manual
- Configuration software (installable plugin for RICBox)
- Configuration example file for four built-in device settings
- Board schematic and BOM

Features

- Three differential clock inputs
- Eight differential clock outputs
- On-board EEPROM stores startup-configuration data
- XIN terminal can use laboratory signal generator or OCXO/TCXO/XO components and board
- Laboratory power supply connectors
- USB-C power supply
- Serial port for configuration and register read out

Computer Requirements

- USB 2.0 or USB 3.0 interface
- Processor: minimum 1GHz
- Memory: minimum 512MB; recommended 1GB
- Available disk space:
 - Minimum: 600MB (1.5GB 64-bit)
 - Recommended: 1GB (2GB 64-bit)

Figure 1. RC32308A Block Diagram

Contents

1. Functional Description						
	1.1	Operati	onal Characteristics	. 4		
	1.2	Hardware Setup and Configuration				
		1.2.1.	Power and USB-C Connections to Computer Host	. 8		
		1.2.2.	Overdrive the XIN with an External Signal	10		
		1.2.3.	On-board Crystal Mount	11		
		1.2.4.	On-board XO Mount	12		
		1.2.5.	Clock Inputs	13		
		1.2.6.	Clock Outputs	13		
		1.2.7.	Serial Connection	14		
		1.2.8.	On-board EEPROM	15		
		1.2.9.	GPIO DIP Switch Selectors	16		
	1.3	Softwar	e Setup and Configuration	17		
		1.3.1.	Prepare the Software	17		
		1.3.2.	Launch the GUI	17		
		1.3.3.	Configure the Evaluation Board	19		
2.	Boar	d Desigr	٦	20		
	2.1	Bill of M	laterials (BOM)	22		
3.	Orde	ering Info	prmation	24		
4.	Revision History					

Figures

Figure 1. RC32308A Block Diagram	1
Figure 2. Evaluation Board	5
Figure 3. USB Power Jumpers	9
Figure 4. External 5V Board Input	9
Figure 5. External 5V Schematic	9
Figure 6. J90 Board Input	9
Figure 7. VDD Jumper Bypass Schematic	9
Figure 8. XIN Pin Overdrive Schematic	10
Figure 9. Crystal Mount Schematic	11
Figure 10. XO Path Connection Schematic	12
Figure 11. Dip Switch XO Output Enable	12
Figure 12. Input Clock Termination Schematic	13
Figure 13. Output Type Options	13
Figure 14. LVDS Input Clock Termination	14
Figure 15. HCSL Input Clock Termination	14
Figure 16. Communication Setup for I ² C Mode	14
Figure 17. EEPROM in Socket	15
Figure 18. EEPROM Pin Description	15
Figure 19. EEPROM Schematic	15
Figure 20. EEPROM Connection Resistors	16

16
16
17
17
18
18
19
19
19
20
21

1. Functional Description

The evaluation kit is used to demonstrate the RC22308A/RC32308A devices, a fully integrated clock synthesizer/generator and clock jitter attenuator. The kit can be used to evaluate major parameters including phase noise, spurious attenuation, clock frequency, output skew, phase alignment, device timing, and the signal waveform. The device on the board accepts any input frequency from 1kHz to 1GHz.

The RC22308A/RC32308A consists of a single APLL and DPLL design that allows for two separate frequency domains. The APLL can be used independently of the DPLL to generate synthesized clocks at the outputs that track the frequency of the input at the XIN pin. The DPLL can be used for jitter attenuation, clock filtering, and frequency translation while tracking clocks from the CLKIN pins. The DPLLs provide a programmable bandwidth and a DCO function for real-time frequency/phase adjustment.

1.1 Operational Characteristics

The board is equipped with on-board LDOs that require a 5V supply. If connecting to a high-speed USB interface, the evaluation board can be powered directly from the USB connection. The board is designed to operate over the industrial temperature range from -40°C to +85°C, ambient temperature.

It is recommended to use proper grounding during board operations to avoid ESD damage to the EVB.

1.2 Hardware Setup and Configuration

The following sections describe the crystal, input clock, serial, GPIO, and output and power functions used for setting up device testing.

Figure 2. Evaluation Board

See Table 1 and Figure 2 for the RC22308A/RC32308A evaluation board pin descriptions and functions.

Table 1. RC22308A/RC32308A Evaluation Board Pin Descript	ions
--	------

Label No. Name		On-Board Connector Label	Function	
1	RC22308A/RC32308A	U4	Evaluation device 64-pin QFN.	
2	I2C for FTDI or Aardvark connector J119		6-pin header of I2C connector for SCL and SDA pins.	
3	USB interface	U16	USB type jack for connection with the user's computer and interaction with RICBox software.	
4	XIN SMA Connector	J2	External clock input signal to XIN pin.	

RC22308A/RC32308A Evaluation Board Manual

Label No.	Name	On-Board Connector Label	Function	
5	CLKIN0/nCLKIN0 – CLKIN1/nCLKIN1	J27, J37, J39, J50	External clock input connectors for Jitter Attenuation functionality.	
6	Out0,1,3	J13, J16, J18, J22, J28, J33	SMA output test points.	
7	Out5,6,7	J40, J43, J47, J51, J54, J58	SMA output test points.	
8	Out8,9	J60, J67, J70, J75	SMA output test points.	
9	DIP switches	SW1	GPIO pull-up/down control.	
10	VDD 5V input connector	J123	5V input supply to voltage regulators.	
11	GND connector	J125	Board ground for external supply.	
12	Direct supply connector	J90	Voltage supply connector for direct pin supply.	
13	I2C/SPI pin control pull- up/down resistors	J244, J245, J246, J247	SDA_SDIO, SCL_SCLK, SDO_A1, NCS_A0, LOCK pin 10KOhms to GND or VDDD33_SERIAL.	
14	VDD_VCO, VDDXO_DCD, VDDO0, VDDO1, VDD_FOD0 voltage selection	J96, J98, J111, J109, J249	1.8V regulator jumper selection.	
15	VDDO3, VDD_GPIO, VDDO5, VDDO6, VDDO7 voltage selection	J105, J92, J101, J99, J97	1.8V regulator jumper selection.	
16	VDDO8_FOD1, VDDO9_FOD2, VDD_CLK, VDDD33_DIA, VDDD33_SERIAL voltage selection	J94, J110, J104, J102, J100	1.8/3.3V regulator jumper selection.	
17	EEPROM address selection	J74	EEPROM pins A1 and A2 pull-up/down to GND or VDDD33_SERIAL.	
18	EEPROM socket	U5	8-pin dip EEPROM socket.	
19	EEPROM WP	J71	Pull-up/down EEPROM write-protect pin	
20	FTDI I2C/SPI controller	U17	I2C/SPI control interface between PC and RC22308A/RC32308A	
21	I2C/SPI path connection	J120	Combine or fanout SDI/SDO lines from the FTDI chip.	
22	Level translator enable	J243	Enable/Disable I2C level translators.	
23	I2C pull-ups and path connectors	J61, J62, J65, J66	Connect level translators SDA/SCLK to RC22308A/RC32308A pins and pull-up to VDDD33_SERIAL.	
24	Voltage regulators	U13, U14, U15	Receive 5V input and supply 1.8/3.3V to EVB power domains.	
25 FTDI voltage selection J25		J259	Control FTDI voltage source between USB input and 5V board supply.	

Label No. Name		On-Board Connector Label	Function
26 I2C pull-up resistors		J117, J118	Pull-up to FTDI 3.3V.
27	LDO input voltage selection jumper	J124	Control LDO voltage source between USB and external 5V supply.

For proper functionality out of the box, the jumpers on board should be placed to allow the correct voltages at each LDO and domain. The jumpers should be arranged as described in Table 2.

Label/Function	Jumper	Default Orientation	
Connect nCS_LS to IC from FTDI	J45	OFF	
Connect MISO_LS to IC from FTDI	J46	OFF	
Connect SCL_SCLK_LS to IC from FTDI	J61	ON	
Connect SDA_SDIO_LS to IC from FTDI	J62	ON	
I2C Pull-up to VDDD33_SERIAL	J65	ON	
I2C Pull-up to VDDD33_SERIAL	J66	ON	
EEPROM Write Protect	J71	OFF	
EEPROM Address Select	J74	OFF	
VDD_GPIO	J92	Either 1P8V_0 or 1P8V_1	
VDDO8_FOD1	J94	Either 1P8V_0 or 1P8V_1	
VDD_VCO	J96	Either 1P8V_0 or 1P8V_1	
VDD07	J97	Either 1P8V_0 or 1P8V_1	
VDDXO_DCD	J98	Either 1P8V_0 or 1P8V_1	
VDDO6	J99	Either 1P8V_0 or 1P8V_1	
VDDD33_SERIAL	J100	3P3V	
VDDO5	J101	Either 1P8V_0 or 1P8V_1	
VDDD33_DIA	J102	Either 1P8V_0 or 1P8V_1	
VDD_CLK	J104	Either 1P8V_0 or 1P8V_1	
VDDO3	J105	Either 1P8V_0 or 1P8V_1	
VDDO1	J109	Either 1P8V_0 or 1P8V_1	
VDDO9_FOD2	J110	Either 1P8V_0 or 1P8V_1	
VDDO0	J111	Either 1P8V_0 or 1P8V_1	
I2C Pull-up	J117	ON	
I2C Pull-up	J118	ON	
Bus Communication Selection	J119	Between FTDI_SDO and AVK_SDA and between FTDI_SCL and AVK_SCL	
SDO and SDI Connection for I2C	J120	Between FTDI_SDO_J and FTDI_SDI_J	

Label/Function	Jumper	Default Orientation
GND	J121	OFF
Enable I2C Level Translators	J243	Between FTDI_3P3V and Center
SDA_SDIO	J244	OFF
SCL_SCLK	J245	OFF
SDO_A1	J246	OFF
NCS_A0	J247	Between center and HI
LOCK_C	J248	OFF
VDD_FOD0	J249	Either 1P8V_0 or 1P8V_1

Note: 1P8V_0 and 1P8V_1 refer to separate LDO supply on the board. They can be used to isolate pin supplies from each other for performance optimization.

1.2.1. Power and USB-C Connections to Computer Host

The EVB is connected to a computer host via the USB3.0 to USB-C cable. It is recommended that the cable be connected to a USB3.0 port; however, a USB2.0 port acceptable due to the RC22308A/RC32308A for I²C/SPI communications only. The USB-C provides +5V as power source to the on-board regulators. The on-board regulators support 3.3V and 1.8V voltages to the entire EVB. These voltages can be set by various jumpers located around the RC22308A/RC32308A.

The RC22308A/RC32308A voltage source can be derived from the on-board voltage regulators for 3.3V, 1.8V, or directly from the J90 banana connector with an external supply. The J90 connection can be used to measure total supply current into pins as reference. When jumpers are used to select power from J90 connector, the USB connection will still be required to connect RICBox.

- Power connection
 - Set the power supply voltage to 5V and the current limit to 2A
 - +5V (J123) = +5V
 - GND (J125) = GND
- Expected current draw: ~ 0.6A
 - After programming the device ~ 0.5A to 0.9A during normal operation depending on the device configuration

1.2.1.1. Power the Device with USB Connection

- Set jumper on J124 between pins 1 and 2
- Set jumper on J259 between pins 1 and 2
- Ensure that the EVB connects to a USB 3.0 port or newer

Figure 3. USB Power Jumpers

1.2.1.2. Power the Device with External Power Supply Connection and On-board Voltage Regulators

- Set jumper on J124 between pins 2 and 3
- Set jumper on J259 between pins 2 and 3
- Ensure 5V at banana jack J123 and GND connection

Figure 4. External 5V Board Input

Figure 5. External 5V Schematic

Note: Allow for up to 2A of current with direct power supply. The device current will be increased during register write and calibration.

1.2.1.3. Power the Device Pins with External Power Supply Connection J90

- Ensure 1.8V or 3.3V at banana jack J90 and GND connection depending on the power pin
- Change the corresponding domain jumper selection to VDD

Figure 6. J90 Board Input

Figure 7. VDD Jumper Bypass Schematic

Note: J90 can supply voltage for the entire device. This option can be used to power the entire device when all voltage pin jumper settings are configured for VDD. All pins must be powered with 1.8V in this case. Only VDDD33_SERIAL and VDDD33_DIA are 3.3V tolerant.

Note: All individual voltage domains run at 1.8V. Only VDDD33_SERIAL and VDDD33_DIA are compatible with 3.3V. Supplying 3.3V to any other domain may cause damage to the RC22308A/RC32308A device.

1.2.2. Overdrive the XIN with an External Signal

The RC22308A/RC32308A device can support between 25MHz and 80MHz on the XIN (crystal oscillator input) pin. There are three options for providing an input signal to the device XIN pin:

- An external signal (J2 SMA connector) typically from a signal generator; see section 0. This option is configured by default.
- An on-board crystal mount (U3); see section 1.2.2
- Two on-board XO mounts (U27); see section 1.2.3

To overdrive XIN with an external signal (see Figure 8):

- 1. Populate C1 with 0.1µF capacitor to ensure that J2 has a connected path to the RC32308A device.
- 2. Depopulate C2, C3, C229, R6, and R424 to ensure that excess trace is not used.
- 3. Populate R4 with 50 Ω for input termination (ensure signal is >~1.3V amplitude).
- 4. Place input clock signal at J2 and ensure that the signal is within specification for the XIN pin.

Figure 8. XIN Pin Overdrive Schematic

1.2.3. On-board Crystal Mount

The crystal mounting position can only be used if there is no other signal present on the XIN path (see Figure 9). In order to set up the evaluation board for crystal input:

- 1. Depopulate C1, C229, R6, R423, and R424 to ensure there is no excess trace in the XIN pin.
- 2. Populate C2 and C3 to externally tune the input crystal frequency.

Note: The EVB stray capacitance has been measured to be ~8.24pF.

3. Mount crystal to U3. Remove R400 or R402 if the crystal only has three pads.

Figure 9. Crystal Mount Schematic

1.2.4. On-board XO Mount

For an XO to work properly at U27, the following must be set up:

- 1. Populate C229 with 0 Ohms, or $0.1 \mu F$ if ac-coupling.
- 2. Depopulate U3, C1, C2, R6, R423, and R424.
- 3. Populate R407 with 0 Ohms if pin 4 of the XO is being used as output; or populate R408 if pin 5 is the output.
- 4. Ensure that the XO output is below ~1.3V amplitude signal in order to support proper XIN pin characteristics.
 - a. R407can be populated with a low value resistor (33Ω) to reduce the XO output amplitude; otherwise, R407 can be populated with 0 Ohms.

Figure 10. XO Path Connection Schematic

5. Dip switch number 7 or 8 to pull the XO output enable pin high or low depending on the XO datasheet.

Figure 11. Dip Switch XO Output Enable

1.2.5. Clock Inputs

The RC32308A can accept two differential clock inputs to be used as a jitter attenuator source. To enable proper connection, make sure the input termination resistor setup corresponds to the input signal that is connected. The evaluation board allows for terminations across to a GND source at each input connection.

Figure 12. Input Clock Termination Schematic

The RC32308A contains internal AC-coupling for LVDS, HCSL, and LVCMOS signals. Supported frequency ranges of the clock inputs are 1kHz to 1GHz in differential mode, and 1kHz to 250MHz in single-ended mode.

Note: Clock inputs are only used with RC32308A devices.

1.2.6. Clock Outputs

Each of the 12 differential output pairs can be programmed to LVDS, HCSL, or CMOS logic type.

- The HCSL mode supports HCSL by default and can be modified to support other modes by changing the amplitude and enabling/disabling the internal termination.
- For the CMOS output type, the output phase of each pin can be programmed to be 180 degrees out-of-phase, in-phase, or single pin output.
- LVDS outputs can be configured to 350mV or 400mV swing up to 1V common mode voltage.
- Each output can also be tri-stated when not being used.

Output terminations on the evaluation board can be populated to support the different output types.

Figure 13. Output Type Options

Place 50Ω across each leg, for a total 100Ω across, to terminate for LVDS.

Place 50Ω to GND at each leg for HCSL terminations.

Figure 15. HCSL Input Clock Termination

1.2.7. Serial Connection

The EVB can be connected to a computer via a USB3.0 to USB-C connector. The on-board USB-to-MPSSE Bridge (FTDI FT232HQ) can handle the data communication. The +5V from the USB-C powers the on-board regulators (see section 1.2.1.1).

The Bus Source connector J119 is used to select the source of the communication bus. The bus will be l^2C for most communication but can also be SPI for specific tests. Pins 1 and 2 in J119 are SDA and SCL from the FTDI chip. Pins 3 and 4 pass the SDA and SCL to the l^2C level shifter. To use the on-board FTDI chip, install jumpers on pins 1-3 and 2-4. The board is shipped with these jumpers installed. Theoretically, any l^2C adapter can be connected to pins 3 and 4 for SDA and SCL. Pin 6 can be used as the ground connection for the l^2C connection. Pins 3, 4, 5, and 6 are arranged such that a Total Phase l^2C Host Adapter (part number: TP240141) can be plugged onto pins 3, 4, 5, and 6 only (see Figure 16).

For default I²C operation, jumpers are installed on pins 1-3 and 2-4 (see jumper J119 in Table 2).

Note: For SPI operation instructions, contact Renesas support.

1.2.8. On-board EEPROM

The EVB also supports an external EEPROM IC for loading of an RC22308A/RC32308A configuration programmed into the EEPROM as an option. To load the configurations from EEPROM, the EEPROM load enable bit must be set in device OTP. If the enable bit is not set, the EEPROM load will be skipped.

The EVB provides a socket of 8-lead DIP8 SOIC-8 socket (Figure 17) so other EEPROM devices of different memory size can be tested.

8-lead PDIP/SOIC/TSSOP (Top View) NC 1 8 Vcc A1(1)/NC WP 2 7 SCL A2 3 6 1 5 SDA GND

Figure 17. EEPROM in Socket

Figure 18. EEPROM Pin Description

Figure 19. EEPROM Schematic

The A1 and A2 pins are the EEPROM address inputs that can be pulled either high or low using jumpers at J74 to define the device address. By default, the jumpers can be removed so that A1 and A2 are left floating as they are internally pulled down to GND in most EEPROM devices.

The WP pin is the write-protect input. When the WP pin is pulled down to GND (Low), the EEPROM can have normal write operations. When it is pulled up directly to V_{CC} (High), all write operations are inhibited. The WP pin can be controlled with a jumper at J71.

To establish a connection to the EEPROM, the SDA and SCL traces must be connected to the FTDI communication path. Populate R122 and R124 with 0 Ohms to make the connection. This will allow software features like RICBox to communicate with the EEPROM device.

Figure 20. EEPROM Connection Resistors

When the device attempts to load an EEPROM configuration during start-up, the FTDI I²C controller can cause interference. The FTDI device can be removed from the I²C trace path by removing jumpers J61 and J62. This will also disconnect RICBox from communicating with the RC22308A/RC32308A device.

Figure 21. FTDI to I²C Communication Jumpers

1.2.9. GPIO DIP Switch Selectors

The EVB has one DIP switch set (SW1) to support GPIO pins on the RC22308A/RC32308A device. GPIOs 0-3 can support a two-level input (low/high). The middle position of the DIP switches leaves the pin open so the GPIOs can be controlled with internal pull-up and pull-down resistors. Move to the "+" side to pull the pin high and move to the "-" side to pull the pin low. LEDs correspond to each GPIO to show the pin state.

Figure 22. GPIO Schematic and EVB DIP Switches

1.3 Software Setup and Configuration

1.3.1. Prepare the Software

For software installation instructions, see the <u>Renesas IC Toolbox Software Manual</u>, sections 1 and 11.

1.3.2. Launch the GUI

After successfully installing the Renesas IC Toolbox software, launch the software from the Windows[®] <Start> menu at the bottom-left corner of the screen.

- 1. Click **Start > RICBox** to open the initial RICBox window.
- 2. Click Create new project.

Figure 23. Create New Project in RICBox

- 3. Select FemtoClock3 from the "Select a Product Family" list.
- 4. Select the product variant to evaluate, then click *OK*. In this example, the RC32308A is selected.

elect a Product Family	Select a Product Variant
FemtoClock3	RC32312A
	RC22312A
	RC32308A
	RC22308A
	المستقدمة المستقد المستقد والمستقد والمستقد المستقد الم
	Back C

Figure 24. Selecting RC32308A Device GUI in RICBox

5. Follow the on-screen wizard (see Figure 25) to configure the device for general evaluation starting from "Inputs", then "DPLL", and finally "Outputs".

RENESAS			RICBox		- o ×
Configuring RC32312A				1 of 3	Inputs •
					Inputs
	Crystal			• TBD	DPLL
	Frequency	49.152MHz			Outputs
	Load Capacitance (pF)	8.24	Configurable Registers	/	*
	DPLL		Registers		
	Operation Mode	Synthesizer 👻 🖬	*	Wirerd Nevigetien Buttons	
	Reference Clocks				
	REFO	clk<0> ~			
	REF1	clk<0>			
	REF2	clk<0>			
	REF3	clk<0>			
	REF4	clk<0>			
	REF5	clk<0> ~			\mathbf{V}
	Input Clocks				
Cancel					Next Finish

Figure 25. RICBox Wizard Navigation

- 6. Click on the Finish button after the settings are decided and to review the control panel page.
- 7. Use the side panel menu buttons (see Figure 26) to navigate through the GUI for all five separate pages.

Figure 26. RICBox GUI Menu Buttons

1.3.3. Configure the Evaluation Board

1. To establish communication between the EVB and the GUI, click the **Not Connected** button in the lower right corner, then click **Connect**.

Figure 27. Connect to the Device in RICBox

2. Once the RICBox connection is established to the EVB, the "Not Connected" button will change to "Connected".

Figure 28. Connected Button

3. Click the **Program** button to write all the changed registers from the GUI to the on-board device. Any register changes made after clicking the Program button will occur in real-time and the device will update.

2. Board Design

Figure 30. RC22308A/RC32308A Evaluation Board (Top)

Figure 31. RC22308A/RC32308A Evaluation Board (Bottom)

2.1 Bill of Materials (BOM)

ltem	Qty	Reference	Part	Mfr. Part #		
1	8	C1,C30,C71,C72,C96,C97,C117,C119	0.1uF	F C0603C104K5R		
4	31	C13,C18,C19,C24,C27,C33,C67,C69,C92,C94,C110,C1 16,C189,C190,C193,C194,C198,C200,C202,C204,C206, C207,C208,C209,C210,C218,C219,C220,C221,C228,C2 31		GCM155R71E104KE02D		
5	31	C38,C41,C46,C49,C50,C53,C54,C57,C58,C61,C62,C65, C75,C78,C79,C82,C83,C86,C100,C103,C104,C107,C12 9,C132,C145,C148,C149,C152,C195,C222,C225		GRM21BR71E104K		
6	32	C39,C40,C47,C48,C51,C52,C55,C56,C59,C60,C63,C64, C76,C77,C80,C81,C84,C85,C101,C102,C105,C106,C13 0,C131,C146,C147,C150,C151,C196,C223,C224,C232		GRM21BC71E106K		
7	6	C66,C68,C91,C93,C109,C115	10uF	GRM188D70J106MA73D		
8	6	C70,C73,C95,C98,C111,C118	22uF	GRM188R60J226M		
9	3	C74,C99,C124	1uF	GCM188R71E105KA64D		
10	30	C153,C154,C155,C156,C157,C158,C159,C160,C161,C1 62,C167,C168,C169,C170,C171,C172,C173,C174,C175, C176,C177,C178,C181,C182,C185,C186,C187,C188,C2 26,C227 0.1uF GRM033C81E1		GRM033C81E104M		
11	2	C191,C192 27pF GRM155		GRM1555C1E270J		
12	2	C197,C230 0.010uF GRM1		GRM155R71E103J		
13	1	C199 10uF CGA9N3X7S2		CGA9N3X7S2A106M230KE		
14	3	C201,C203,C205 4.7uF		ZRB15XR61A475ME01		
15	4	C212,C215,C216,C217	1000pF	GRM033R71E102J		
17	5	D1,D2,D3,D4,D5	LED RED	7017X1		
18	2	D9,D10 PGB1010603NR PGB10106		PGB1010603NR		
19	1	D11 LED White 19-117Z/T1D-CN1P2		19-117Z/T1D-CN1P2B3X/3T		
20	1	D12	D12 1N4448HLP 1N4448HLP			
21	18	FB1,FB3,FB4,FB5,FB6,FB7,FB8,FB9,FB10,FB11,FB13,F B14,FB15,FB16,FB20,FB21,FB22,FB26	220	BLM18BB221SN1D		
22	4	FB23,FB24,FB25,FB27 600 BLM18AG601SN		BLM18AG601SN1D		
23	14	J1,J3,J9,J11,J29,J30,J34,J42,J48,J52,J56,J64,J69,J91 SMA_JACK_STR50 073391-007		073391-0070		
24	23	J2,J13,J16,J18,J22,J27,J28,J33,J37,J39,J40,J43,J47,J5 0,J51,J54,J58,J59,J60,J67,J70,J73,J75 L42-0701		142-0701-801		
27	9	J45,J46,J61,J62,J65,J66,J117,J118,J126	Headerstrip 1X2	22-28-4023		
28	10	J71,J120,J124,J243,J244,J245,J246,J247,J248,J259	Headerstrip 1X3	22-28-4033		
29	2	J74,J119	Headerstrip 2X3	10-89-7062		
30	1	J76	Headerstrip 1X4	22-28-4043		
32	2	J90,J123	Banana Red	571-0500		
33	13	J92,J94,J96,J97,J98,J99,J101,J104,J105,J109,J110,J11 1,J249	Headerstrip 2X4	10-89-7080		
34	2	J100,J102 Headerstrip 2X5 10-89-7100		10-89-7100		

RC22308A/RC32308A Evaluation Board Manual

ltem	Qty	Reference	Part	Mfr. Part #	
35	5	J112,J113,J114,J115,J121 Headerstrip 1X1 68000-401HL			
36	1	J125 Banana Black 571-0100		571-0100	
39	7	R2,R99,R100,R141,R149,R152,R155 4.70		CRCW06034K70FK	
40	6	R3,R144,R150,R153,R156,R200	1.50K	CRCW06031K50FK	
41	1	R4 50.0 CRCW0		CRCW060350R0FK	
45	10	R50,R59,R380,R381,R382,R383,R405,R406,R435,R436 0.00 ERJ-2GE0		ERJ-2GE0R00X	
47	6	R126,R127,R129,R131,R409,R410	1.00K	CRCW06031K00FKTA	
48	7	R171,R178,R186,R211,R212,R213,R214 10.0K RC0402JR-07		RC0402JR-0710KL	
49	3	R176,R183,R191 0.00 CRCW06030		CRCW06030000Z0	
50	2	R196,R197 4.70K RC0402JR-0		RC0402JR-074K7L	
51	2	R198,R199 5.10K CRCW0402		CRCW04025K10FK	
52	4	R201,R202,R203,R204 10.0 RC0402F		RC0402FR-0710RL	
53	1	R215 12.0K		CRCW040212K0FK	
54	1	R216	2.00K	CRCW04022K00FKED	
55	5	R375,R385,R386,R387,R388 20.0K		CPF-A-0603B20KE	
56	1	R384 7.50K CRCW06		CRCW06037K50FK	
57	5	R389,R390,R391,R392,R393 10.0K RC0603JR		RC0603JR-0710KL	
58	2	R423,R424 0.00 ERJ-1GN0		ERJ-1GN0R00C	
60	1	SW1 Slide 3Pos KAT11		KAT1108E	
62	5	U1,U6,U7,U8,U9 BSS138W BSS138		BSS138W	
64	1	U4 Socket\IC RC3230		RC32308A	
65	1	U5 IC DIP Socket 8 A 08-L		A 08-LC-TT	
66	3	U13,U14,U15 RAA214020 RAA2		RAA214020	
68	1	U17 FT232HQ FT232H		FT232HQ-REEL	
69	1	U19 ABM8W- 12.0000MHZ-6- B1U-T3 ABM8W-12.0000 B1U-T3		ABM8W-12.0000MHZ-6- B1U-T3	
70	1	U20	93LC56BT-I/OT	93LC56BT-I/OT	
71	2	U24,U25 PCA9517 PCA951		PCA9517	

3. Ordering Information

Part Number	Description
RC32308A-EVK	RC22308A/RC32308A Evaluation Board

4. Revision History

Revision	Date	Description
1.00	Jul 10, 2023	Initial release.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock & Timer Development Tools category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

 SI5XX-EVB
 ISL12020MDBEV1Z
 SI5360-A-EVB
 &P34S1208-1-EVK
 RC21008-EVB
 SI55XX-A-EVB
 SIT6723EBB_SIT5503AI

 WW033IT-40.000000
 RC21012-EVB
 5111
 5189
 TS3001DB
 TS3002DB
 MIKROE-2481
 TS3003DB
 2045
 CEVAL-055
 5V49EE901-EVB

 5V49EE902-EVB
 TS3006DB
 DSC-TIMEFLASH2-KIT1
 NB6N14SMNGEVB
 SI5367/68-EVB
 DEV5L2503
 DEV5X2503
 5P49V6968

 EVK
 3028
 AC164147
 DFR0469
 240
 495
 1198
 620
 DEV5P35021
 8T49N240-EVK
 5P49V6965-EVK
 CEVAL-033
 3296
 Si5383-D-EVB

 SI5XXUC-EVB
 SI5332-6EX-EVB
 SI5332-12EX-EVB
 Si52204-EVB
 29125
 3386
 ASD2831-R
 3435
 LFMISC079433Bulk
 ASGTX-EVAL

 AST3TQ-EVAL
 255
 SI5
 SI5
 SI5
 SI5
 SI5
 SI5
 SI5