

RE01 Group

Evaluation Kit RE01 256KB (EK-RE01 256KB)

User's Manual

RE Family / RE0 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corporation without notice. Please review the latest information published by Renesas Electronics Corporation through various means, including the Renesas Electronics Corporation website (http://www.renesas.com).

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Precaution against Electrostatic Discharge (ESD)
 - A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on
 - The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
- 3. Input of signal during power-off state
 - Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
- 4. Handling of unused pins
 - Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
- 5. Clock signals
 - After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses
 - Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
- 8. Differences between products
 - Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Disclaimer

By using this Evaluation Kit, the user accepts the following terms:

The Evaluation Kit is not guaranteed to be error free, and the entire risk as to the results and performance of the Evaluation Kit is assumed by the User. The Evaluation Kit is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the Evaluation Kit. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this Evaluation Kit, even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any Evaluation Kit product:

This Evaluation Kit is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

- ensure attached cables do not lie across the equipment
- · reorient the receiving antenna
- increase the distance between the equipment and the receiver
- · connect the equipment into an outlet on a circuit different from that which the receiver is connected
- power down the equipment when not in use
- consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following measures be undertaken;

- The user is advised that mobile phones should not be used within 10m of the product when in use.
- The user is advised to take ESD precautions when handling the equipment.

The Evaluation Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product.

How to Use This Manual

1. Objective and Target Users

This manual is designed to provide the user with an understanding of the Evaluation Kit Evaluation Board hardware functionality, and electrical characteristics. It is intended for users designing sample code on the Evaluation Kit Evaluation Board platform, using the many different incorporated peripheral devices.

The manual comprises of an overview of the capabilities of the Evaluation Kit product, but does not intend to be a guide to embedded programming or hardware design.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to Evaluation Kit for RE01 256KB. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
User's Manual	Describes the technical details of the	Evaluation Kit RE01 256KB	R20UT4801EJ
	Evaluation Kit hardware.	User's Manual	(This manual)
Quick Start Guide	Provides simple instructions setup	Evaluation Kit RE01 256KB	R20UT4808EJ
	the Evaluation Kit for RE01 256KB	Quick Start Guide	
	and run the first sample.		
Schematics	Full detail circuit schematics of the	Evaluation Kit RE01 256KB	R20UT4802EJ
	Evaluation Kit Main Board.	main board schematics	
Schematics	Full detail circuit schematics of the	MIP-LCD expansion board	R20UT4564EJ
	MIP-LCD Expansion Board.	schematics	
Hardware Manual Provides technical details of the		RE01 Group Products with	R01UH0894JJ
	RE01 device.	256-Kbyte Flash Memory	
		User's Manual: Hardware RE01	

2. List of Abbreviations and Acronyms

Abbreviation	Full Form	
BLE	Bluetooth Low Energy	
DNF	Do Not Fit	
E2	Renesas On-chip Debugging Emulator	
EH	Energy Harvesting	
EHC	Energy Harvesting Control Circuit	
EMC	Electromagnetic Compatibility	
ESD	Electrostatic Discharge	
FPC	Flexible Printed Circuits	
I-jet [™]	IAR System® JTAG Emulator	
J-Link [™]	SEGGER debug probe	
J-Link [™] OB	SEGGER On-board debug probe	
IRQ	Interrupt Request	
LDO	Low Dropout	
LED	Light Emitting Diode	
MIP-LCD	Memory In Pixel - Liquid Crystal Display	
MLCD	Memory In Pixel - Liquid Crystal Display	
n/c (NC)	Not Connected	
PC	Personal Computer	
Pmod™	This is a Digilent Pmod™ Compatible connector. Pmod™ is registered to <u>Digilent Inc.</u> Digilent-Pmod_Interface_Specification	
RAM	Random Access Memory	
RFP	Renesas Flash Programmer	
SCI	Serial Communications Interface	
SPI	Serial Peripheral Interface	
USB	Universal Serial Bus	

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

1. Ov	/erview	S
1.1	Purpose	9
1.2	Kit Contents	9
1.3	Board Specifications	10
1.4	Board Exterior	12
2. Bo	pard Layout	14
2.1	Component Layout	
2.2	Board Dimensions.	
2.3	Component Placement	
2.4	Board Initial Settings	
∠.¬	Board Initial Country's	۷۰
3. Inte	ternal Board Connections	21
4 Day	over Cumply	24
	ower Supply	
4.1	Power Supply System	
4.2	Power Supply Source	
4.3	External Power Supply	26
5 On	peration/Start-up Mode	30
5. Op 5.1	Normal Operation	
5.2	EHC Operation	
5.3	RE01 Start-up Mode	
0.0	The or other up wood	
6. De	ebug	43
6.1	J-Link™ OB	43
6.2	I-jet TM , J-Link TM	46
6.3	É2	
6.4	Flash Programmer -Renesas Flash Programmer	52
6.5	Flash Programmer -SEGGER J-Flash Lite	
6.6	Emulator connection in EHC mode	
7. Cu	urrent Measurement Circuit	
7.1	Current measurement when using the on-board regulator 3.3V	60
7.2	Current measurement when not using on-board regulator 3.3V	62
7.3	Current measurement during EHC operation	
	ser Circuitry	
	Reset Circuit	
8.2	Clock Circuit	
8.3	Switches	
8.4	LED	
8.5	Pmod™ Interface	
8.6	USB Serial Conversion	
8.7	MLCD (Memory In Pixel Liquid Crystal Display) Interface	
8.8	Flash Memory	
8.9	Arduino UNO Interface	
8.10	External DC/DC Circuit	82
Λ II.	anders	0.4
	eaders	
9.1	RE01 Headers	84
10 C	Code Development	38
10.1	Overview	
10.1	Mode Support	
	Address Space	
	_ · ·	

11. Additional Information89	
------------------------------	--

Evaluation Kit RE01 256KB

R20UT4801EJ0102 Rev.1.02 Apr 16, 2021

1. Overview

1.1 Purpose

This Evaluation Kit is an evaluation tool for Renesas RE01 device. This manual describes the technical details of the Evaluation Kit hardware.

1.2 Kit Contents

Kit contents included in the Evaluation Kit are shown in **Table 1-1**.

Table 1-1: Kit Contents

No	Kit Contents	
1	Main board	Part No.: RTK70E0118C00001BJ
2	MIP-LCD Expansion board	Part No.: RTK70E015DB00000BJ
3	Solar panel	Part No.: AM-1815CA (Panasonic)
4	USB cable	Type-A male to micro-B male
5	IC clip	Red, Black

1.3 Board Specifications

Board specifications are shown in Table 1-2, Table 1-3.

Table 1-2: Board Specifications

Item	Specifications				
	Part No.: R7F0E01182CFP				
Target Device	Package: 100-pin LFQFP				
	On-chip memory: ROM 256KB, RAM 128KB				
On-Board Memory	SPI Serial Flash: 64Mbit				
Innut Clark	RE01 Main: 32MHz				
Input Clock	RE01 Sub: 32.768kHz				
	Debugger: 5V Input				
	Power Supply IC: 5V Input, 3.3V Output				
Power Supply	Power Supply IC: 2.6V Input, 3.3V Output (For peripheral circuit power supply when using energy harvesting function)				
	Power Supply IC: 2.6V or 3.3V Input, 1.25V Output (external DC/DC)				
	Power Supply IC: 2.6V or 3.3V Input, 0.85V Output (external DC/DC)				
	I-jet TM / J-Link TM / E2 20-pin box header				
Debug Interface*1	USB Connector for J-Link TM OB				
	Operation Mode Configuration: double-pole, double-throw x 4				
Slide Switch	Start-up Mode Configuration: single-pole, double-throw x 2				
	Internal LDO Configuration: double-pole, single-throw x 2				
	Reset Switch x 1				
Push Switch	User Switch x 2				
	Discharge Switch x 2				
	Power Indicator: (Green) x 1				
LED	For users: (Orange) x 1, (Red) x 1				
	J-Link [™] OB Power Indicator: (Green) x 1				
MLCD	FPC Connector: 0.3mm pitch,19 pin x 1				
MECD	MIP-LCD ⁺⁵ : TN0104ANVAANN-GN00(KYOCERA)				
USB Serial Converter Interface	Connector: USB-MicroB				
USB Serial Converter interface	Driver: USB Interface IC (Part No. FT230XQ)				
MIP-LCD Expansion Board Interface *2	2.54mm pitch: 12 pin x 1(PMOD1)				
Pmod™	PMOD1 *2: Angle type、12-pin connector				
External Battery Interface	3.5mm pitch: 2 pin x 1*3				
Solar Panel Interface	2.54mm pitch: 2 pin x 1				
Arduino UNO Interface	2.54mm pitch: 10 pin x 1 (J6),8 pin x 2 (J10, J18),6 pin x 1 (J19)				
RE01 Header*4	2.54mm pitch: 50 pin x 2 (J7, J8, J9, J21)				
	Ny Whan using I Link OP do not connect to other emulators. When using				

^{*1:} Use each debugger exclusively. When using J-Link OB, do not connect to other emulators. When using another emulator, do not connect to J-Link OB.

^{*2:} PMOD1 is used both for MIP-LCD Expansion Board and PmodTM.

^{*3:} The external battery is not included in this product.

^{*4:} The connector is not included in this product.

^{*5:} The MIP-LCD is not included in this product.

Table 1-3: MIP-LCD Expansion Board Specification

Item	Specification		
	Part No.: TN0181ANVNANN-AN00*1 (KYOCERA)		
MIP-LCD	Size: 1.81 inch		
	Resolution: 200dpi (256(H) x 256(V))		
Main Board Interface	2.54mm pitch: 12 pin x 1(PMOD1)		

^{*1:} Please contact KYOCERA.

1.4 Board Exterior

The exterior of Evaluation Kit RE01 256KB is shown in this chapter. **Figure 1-1** and **Figure 1-2** show the exterior of the main board. **Figure 1-3** and **Figure 1-4** show the exterior of MIP-LCD expansion board.

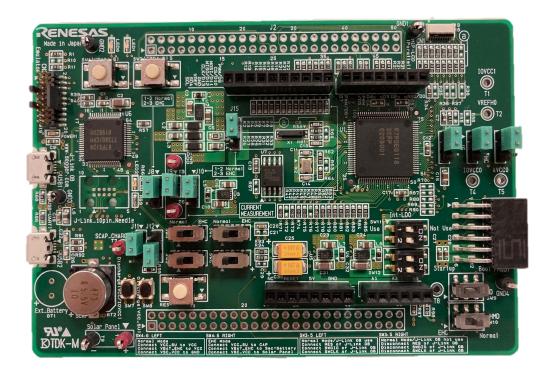


Figure 1-1: Main Board (Top)

Figure 1-2: Main Board (Bottom)

Figure 1-3: MIP-LCD Expansion Board (Top)

Figure 1-4: MIP-LCD Expansion Board (Bottom)

2. Board Layout

2.1 Component Layout

The component layout of Evaluation Kit are shown in Figure 2-1 and Figure 2-2.

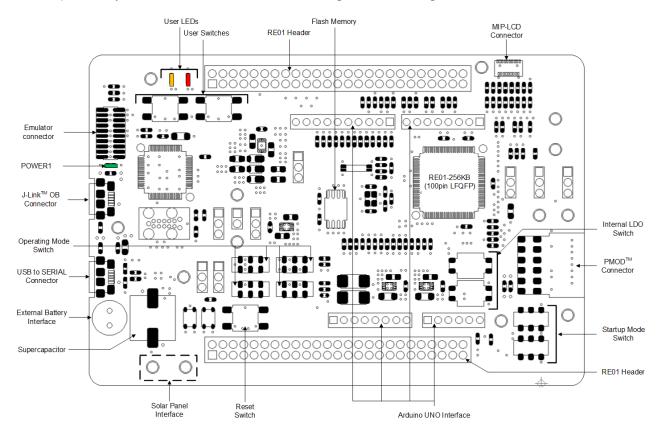


Figure 2-1: Main Board Layout

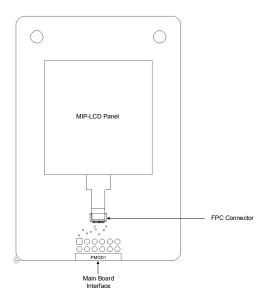


Figure 2-2: MIP-LCD Expansion Board Layout

2.2 Board Dimensions

Figure 2-3 and **Figure 2-4** below show the board dimensions and connector positions. All the through-hole connectors are on a common 2.54 mm pitch grid for easy interfacing.

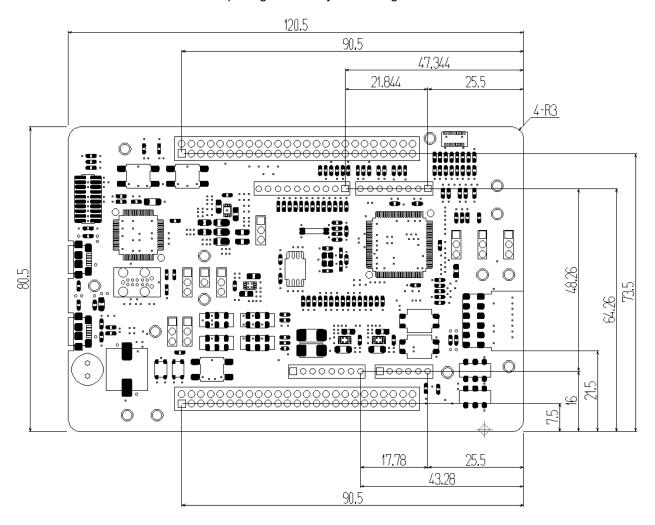


Figure 2-3: Main Board Dimensions (Unit: mm)

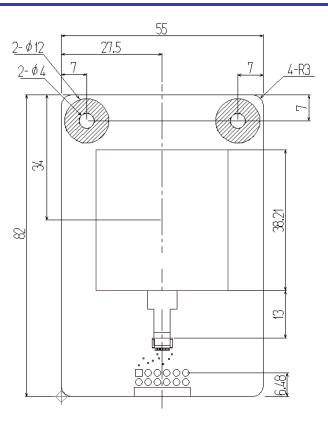


Figure 2-4: MIP-LCD Expansion Board Dimension (Unit: mm)

2.3 Component Placement

Figure 2-5, Figure 2-6, and Figure 2-7 show placement of individual components of Evaluation Kit. Component types and values are shown on the board schematics.

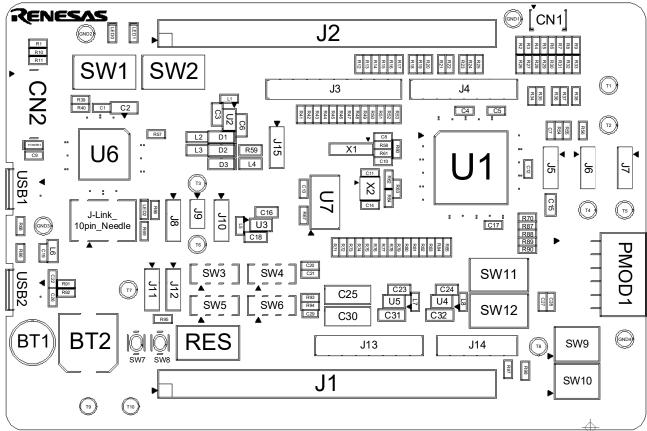


Figure 2-5: Main Board Component Placement (Top-Side View)

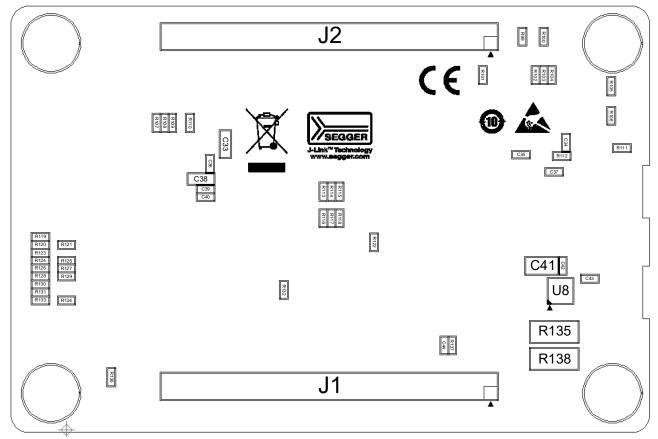


Figure 2-6: Main Board Component Placement (Bottom-Side View)

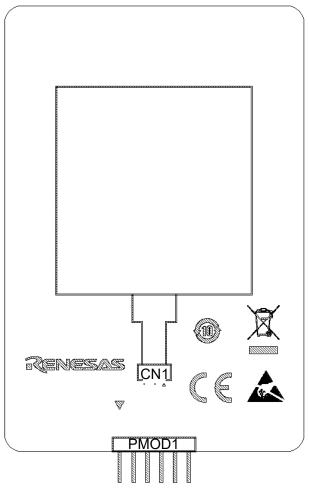


Figure 2-7: MIP-LCD Component Placement (Top-Side View)

2.4 Board Initial Settings

The switch settings of the default kit configuration are as follows. The component layout is shown in **Figure 2-8** and the detailed settings are shown in **Table 2-1**.

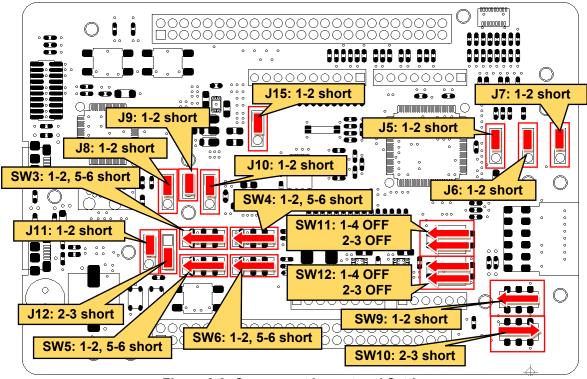


Figure 2-8: Component Layout and Settings

Table 2-1: Board Initial Settings

Item	Function	Setting	
SW3, SW5	Operation mode setting	1-2, 5-6: short	Normal mode (using J-Link™ OB)
	(Émulator setting)		,
SW4, SW6	Operation mode setting	1-2, 5-6: short	Normal mode
SW9	Start-up mode setting	1-2: short	Normal start-up
SW10		2-3: short	
SW11,	Internal LDO setting	1-4: OFF	Internal LDO use
SW12		2-3: OFF	
J5	Reference voltage generation	1-2: short	Reference voltage generation circuit not
	circuit setting		used
J6	IOVCC0 power supply setting	1-2: short	Use output voltage from DCDC converter
J7	IOVCC1 power supply setting	1-2: short	Use output voltage from DCDC converter
J8	Operation mode setting	1-2: short	Normal operation
J9	Current measurement setting	1-2: short	Current measurement not performed
J10	Operation mode setting	1-2: short	Normal start-up
J11	Supercapacitor charging	1-2: short	Charge from external power supply
	method selection		
J12	Secondary battery selection	2-3: short	Supercapacitor
J15	Operation mode setting	1-2: short	Normal start-up

3.Internal Board Connections

Figure 3-1 shows the connectivity between Evaluation Kit and RE01. The pin connections are listed in **Table 3-1** and **Table 3-2**.

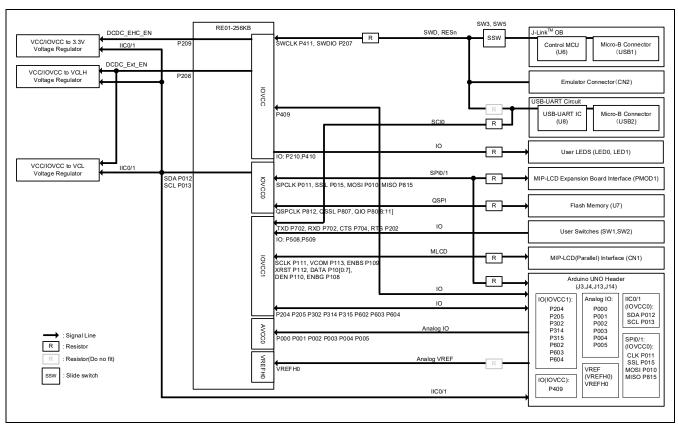


Figure 3-1: Internal Board Block Diagram

Table 3-1: List of RE01 functions, pin number and header connections(1/2)

Coto	Table 3-1: List of RE01 functions		RE01	Main board	
Category	Function	Port	Pin No.	Pin header	Power Domain
Clock	EXTAL	-	13	-	IOVCC
	XTAL	-	12	-	IOVCC
	XCIN	-	10	-	IOVCC
	XCOUT	-	9	-	IOVCC
Switch	RES	RES#	23	J1-23	IOVCC
	SW1	P509	74	J2-24	IOVCC1
	SW2	P508	75	J2-25	IOVCC1
LED	LED0	P210	32	J1-32	IOVCC
	LED1	P410	17	J1-17	IOVCC
PMOD*	PMOD_SSLA1_B_P015	P015	92	J2-42	IOVCC0
	PMOD_MOSIA_B_P010	P010	97	J2-47	IOVCC0
	PMOD_MISOA_B_CTS4_C	P815	98	J2-48	IOVCC0
	PMOD_RSPCKA_B_P011	P011	96	J2-46	IOVCC0
	PMOD_INT_AGTWOA1_B_P814	P814	99	J2-49	IOVCC0
	PMOD_RESET_RXD4_C	P813	100	J2-50	IOVCC0
	PMOD_IO0_P014	P014	93	J2-43	IOVCC0
	PMOD_IO1	P806	7	J1-7	IOVCC0
USB-Serial	USB_SCI_TXD	P703	40	J1-40	IOVCC
	USB_SCI_RXD	P702	41	J1-41	IOVCC
	USB_SCI_CTS	P704	39	J1-39	IOVCC1
	USB_SCI_RTS	P202	38	J1-38	IOVCC1
MIP-LCD	MLCD_VCOM	P113	56	J2-6	IOVCC1
	MLCD_ENBS	P109	60	J2-10	IOVCC1
	MLCD_XRST	P112	57	J2-7	IOVCC1
	MLCD_SI7	P100	71	J2-21	IOVCC1
	MLCD_SI6	P101	70	J2-20	IOVCC1
	MLCD_SI5	P102	69	J2-19	IOVCC1
	MLCD_SI4	P103	68	J2-18	IOVCC1
	MLCD_SI3	P104	67	J2-17	IOVCC1
	MLCD_SI2	P105	66	J2-16	IOVCC1
	MLCD_SI1	P106	65	J2-15	IOVCC1
	MLCD_SI0	P107	64	J2-64	IOVCC1
	MLCD_DEN	P110	59	J2-9	IOVCC1
	MLCD_SCLK	P111	58	J2-8	IOVCC1
	1				1

^{*:} Please refer to Section 8.5 Pmod™ Interface for the relationship with the pin number of the PMOD connector.

Table 3-2: List of RE01 functions, pin number and header connections (2/2)

Table 3-2: List of RE01 functions, pin number and header connections (2/2)					ons (2/2)
Category	Function	Port	Pin No.	Pin header	Power Domain
Flash	QSPI QSSL A	P807	6	J1-6	IOVCC0
Memory	QSPI QIO1 A	P810	3	J1-3	IOVCC0
	QSPI_QIO2_A	P809	4	J1-4	IOVCC0
	QSPI_QIO0_A	P811	2	J1-2	IOVCC0
	QSPI QSPCLK A	P812	1	J1-1	IOVCC0
	QSPI_QIO3_A	P808	5	J1-5	IOVCC0
Arduino	ARDUINO IO8	P409	18	J1-18/J3-1	IOVCC
UNO (J3)	ARDUINO IO9 GTIOC2A B	P302	48	J1-48/J3-2	IOVCC1
	ARDUINO SSLA1 B	P015	92	J2-42/J3-3	IOVCC0
	ARDUINO MOSIA B	P010	97	J2-47/J3-4	IOVCC0
	ARDUINO MISOA B	P815	98	J2-48/J3-5	IOVCC0
	ARDUINO_RSPCKA_B	P011	96	J2-46/J3-6	IOVCC0
	ARDUINO VREF**	-	84	J3-8	VREFH0
	ARDUINO_SDA0*	P012	95	J2-45/J3-9	IOVCC0
	ARDUINO SCL0*	P013	94	J2-44/J3-10	IOVCC0
Arduino	ARDUINO IO0 RXD5 B	P314	45	J1-45/J4-1	IOVCC1
UNO (J4)	ARDUINO_IO1_TXD5_B	P315	44	J1-44/J4-2	IOVCC1
	ARDUINO_IO2_IRQ7_B	P204	36	J1-36/J4-3	IOVCC1
	ARDUINO_IO3_IRQ8_C	P205	35	J1-35/J4-4	IOVCC1
	ARDUINO_IO4	P602	53	J2-3/J4-5	IOVCC1
	ARDUINO_IO5_GTIOC5A_B	P603	52	J2-2/J4-6	IOVCC1
	ARDUINO_IO6_GTIOC5B_B	P604	51	J2-1/J4-7	IOVCC1
	ARDUINO_IO7	P300	50	J1-50J4-8	IOVCC1
Arduino UNO (J13)	IOVCC0**/IOVCC1/AVCC0**	-	91/46/78	J13-1	IOVCC0/IOVCC1/ AVCC0
	LP_3V3	-	-	J13-2	-
	RESn	RES#	23	J1-23/ J13-3	IOVCC
	LP_3V3	-	-	J13-4	-
	Board_5V	-	-	J13-5	-
	VCC_MCU	-	14	J1-14/J13-8	IOVCC
Arduino UNO (J14)	ARDUINO_AN000	P000	89	J2-49/J14-1	AVCC0
	ARDUINO_AN001	P001	88	J2-48/J14-2	AVCC0
	ARDUINO_AN002	P002	87	J2-37/J14-3	AVCC0
	ARDUINO_AN003	P003	86	J2-36/J14-4	AVCC0
	ARDUINO_AN004	P004	85	J2-35/J14-5	AVCC0
	ARDUINO_AN005	P005	82	J2-32/J14-6	AVCC0
	•		•		•

^{*:} The default kit configuration uses a transfer rate of 50kbps or less. To increase the transfer rate, change the resistor values (R21, R22).

^{**:} Not connected by default. Please change the resistor based on your application.

4. Power Supply

4.1 Power Supply System

Figure 4-1 shows power supply system diagram of Evaluation kit.

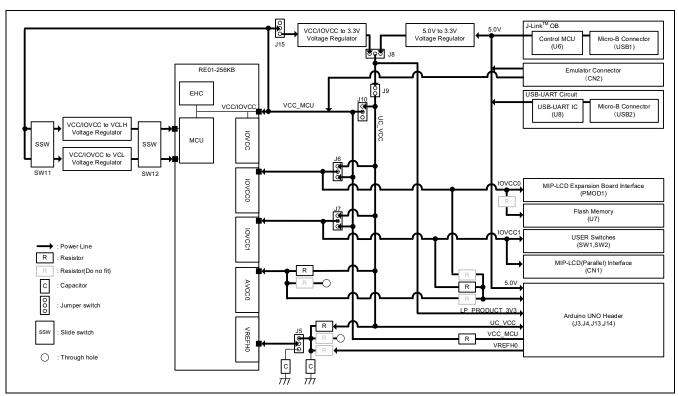


Figure 4-1: Power Supply System Diagram

4.2 Power Supply Source

Evaluation Kit is supplied by emulator through USB cable. The details of power supply components are shown in **Figure 4-2** and **Table 4-1**. When the Evaluation Kit is connected to another system then that system should supply power to the Evaluation Kit.

When operating in stand-alone mode, connect a USB cable to USB1 or USB2 and supply the voltage through VBUS. At that time, do not use J-Link™ OB or USB serial function.

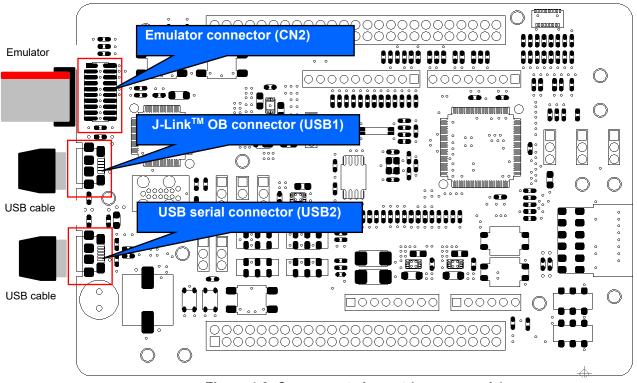


Figure 4-2: Components Layout (power supply)

Table 4-1: Power Supply Specifications

Source	Supply voltage	Supply current
I-jet™ (CN2)	5V	Maximum 420mA
J-Link [™] OB (USB1)	5V	Maximum 500mA
J-Link [™] (CN2)	5V	Maximum 300mA
E2 (CN2)	3.3V	Maximum 200mA
USB serial (USB2)	5V	Maximum 500mA

4.3 External Power Supply

It is possible to supply voltage to RE01 power terminal by using external power supply. This allows the entire or individual power domain to operate at any voltage (1.62 - 3.6V). Normally, the emulator supplies voltage equivalent to 3.3V, which is the voltage value after reduction by the regulator. (excluding device which can supply 3.3V)

4.3.1 All power pins

Figure 4-3 shows the component layout. Follow the steps below when supplying voltage from external power supply to all RE01 power pins:

- 1. Set SW3 and SW5 to EHC.
- 2. Open J8 jumper pin 1-2 and 2-3.
- 3. Supply voltage (1.62V-3.6V) from pin 2 of J8 or T6 using an external power supply.

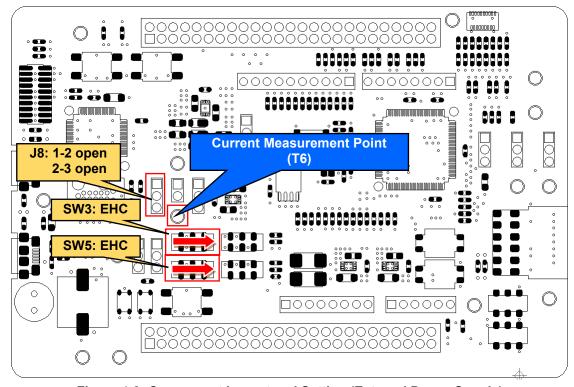


Figure 4-3: Component Layout and Setting (External Power Supply)

Keep the following in mind when using this feature:

- Debugging using J-Link OB is not possible. Please use another emulator. For details on the other emulators, refer to chapter 6 Debug.
- When using the E2 emulator, do not supply power from the emulator.

4.3.2 IOVCC0

Figure 4-4 shows the component layout. Follow the steps below when supplying voltage from external power supply to IOVCC0 pin:

- 1. Open J6 jumper pin 1-2 and 2-3.
- 2. Supply voltage (1.62V 3.6V) to any power supply pins other than IOVCC0 pin.
- 3. Supply voltage to T4.

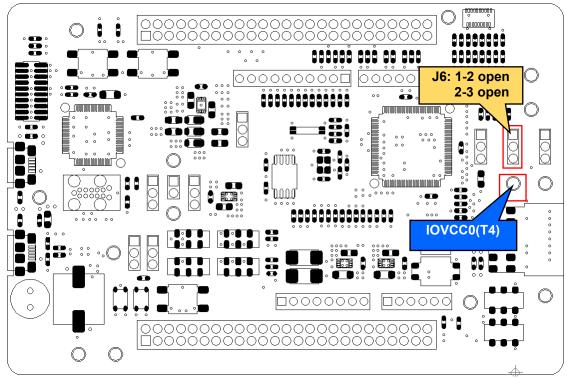


Figure 4-4: Component Layout and setting (External Power Supply)

4.3.3 IOVCC1

Figure 4-5 shows the component layout. Follow the steps below when supplying voltage from external power supply to IOVCC1 pin:

- 1. Open J7 jumper pin 1-2 and 2-3.
- 2. Supply voltage (1.62V 3.6V) to any power supply pins other than IOVCC1 pin.
- 3. Supply voltage to T1.

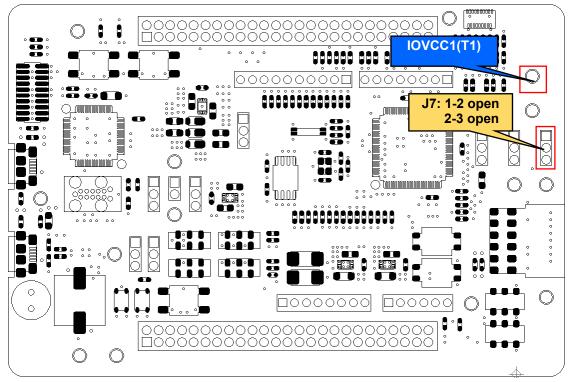


Figure 4-5: Component Layout and Setting (External Power Supply)

4.3.4 AVCC0

The component layout are shown in **Figure 4-6** and **Figure 4-7**. Follow the steps below when supplying voltage from external power supply to AVCC0 pin:

- 1. Remove R108.
- 2. Fit R107.
- 3. Supply voltage (1.62V 3.6V) to any power supply pins other than AVCC0 pin.
- 4. Supply voltage to T5.

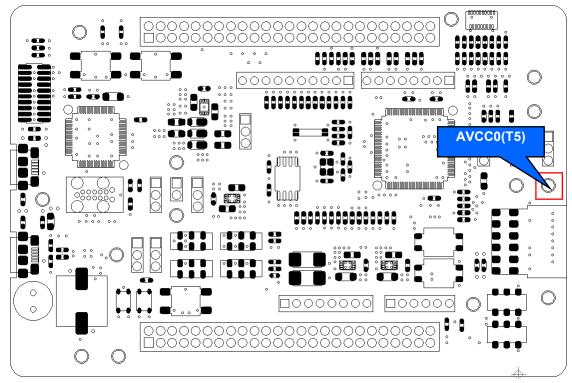


Figure 4-6: Component Layout (External Power Supply (Top))

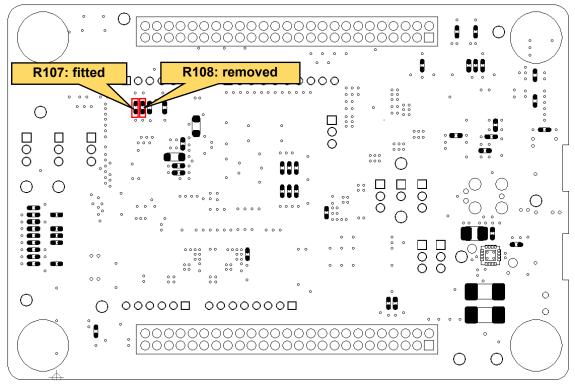
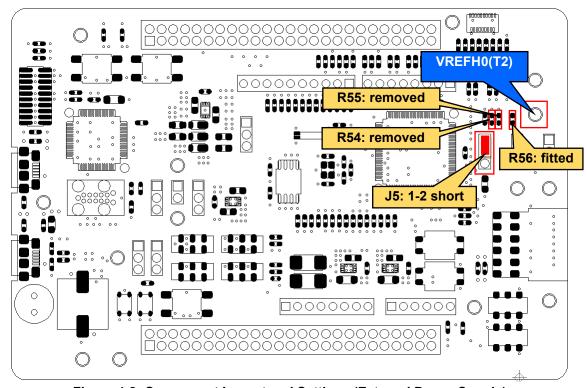


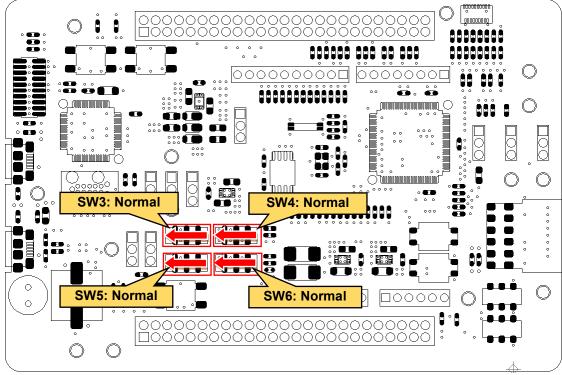
Figure 4-7: Component Layout (External Power Supply (Bottom))

4.3.5 VREFH0

The component layout and settings are shown in **Figure 4-8**. Follow the steps below when supplying voltage from external power supply to VREF0 pin:

- 1. Remove R54 and R55
- 2. Fit R56.
- 3. Short J5 jumper pin 1-2.
- 4. Supply voltage (1.62V AVCC0) to any power supply pins other than VREF0 pin.
- 5. Supply voltage to T2.




Figure 4-8: Component Layout and Settings (External Power Supply)

5. Operation/Start-up Mode

Evaluation Kit for RE01 supports 2 operation and start-up modes: normal and energy harvesting (hereinafter, EHC).

5.1 Normal Operation

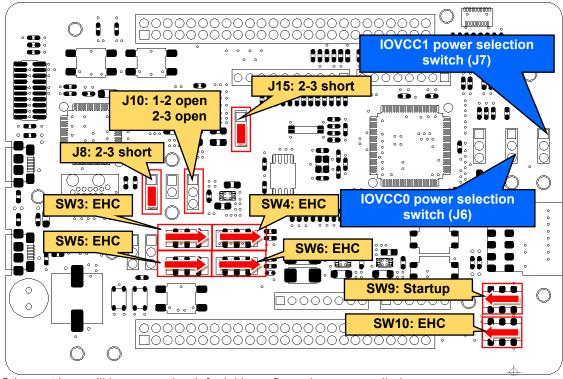
In normal operation, power is supplied from emulator or external power supply. To use normal operation mode, several switch settings must be made. The layout and details of the switch setting are shown in **Figure 5-1** and **Table 5-1**.

Other settings will be as per the default kit configuration, as supplied.

Figure 5-1: Component Layout and Settings (Normal Operation)

Table 5-1: Configuration Details (Normal Operation)

Component Name	Setting	
SW3, SW5*1	1-2, 5-6	Normal Operation *2
SW4, SW6	1-2, 5-6	Normal Operation *2


^{*1:} Also depends on debug function used. For more information, refer to Section 6. Debug.

^{*2:} The settings are supported in default configuration, as supplied.

5.2 EHC Operation

RE01 supports energy harvesting function. In EHC operation, the power is supplied from the included solar panel. User circuit can start operating when voltage is supplied to VSC_VCC pin of RE01.

Switch settings are required to operate the energy harvesting function. The related component layout and setting details are shown in **Figure 5-2**, **Table 5-2**, and **Table 5-3**. For more information of energy harvesting control circuit for RE01 specifications, refer to RE01 Group User's Manual's Hardware.

Other settings will be as per the default kit configuration, as supplied.

Figure 5-2: Component Layout and Settings (EHC Operation)

Table 5-2: Configuration Details (EHC Operation)

Component Name	Setting	
J8	2-3	short
J10	1-2, 2-3	open
J15	2-3	short
SW3-SW6	2-3, 6-7	EHC
SW9	1-2	Startup*1
SW10	1-2	EHC

^{*1:} The setting is supported in default configuration, as supplied.

Table 5-3: Switch Details (J6, J7)

Component Name	Settings		
J6	1-2	Supply voltage generated by DC/DC converter to IOVCC0 pin of RE01	
	2-3	Supply voltage generated by VCC/IOVCC pin of RE01 to IOVCC0 pin of RE01	
J7	1-2	Supply voltage generated by DC/DC converter to IOVCC1 pin of RE01	
	2-3	Supply voltage generated by VCC/IOVCC pin of RE01 to IOVCC1 pin of RE01	

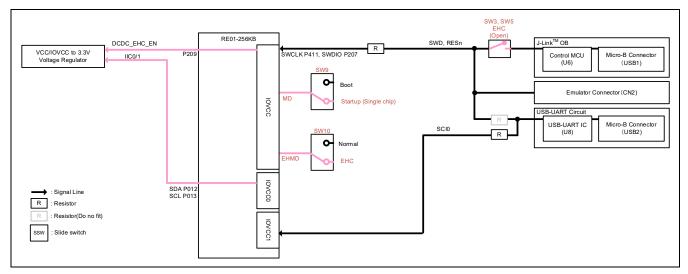


Figure 5-3: Block diagram of Signal line (EHC Operation)

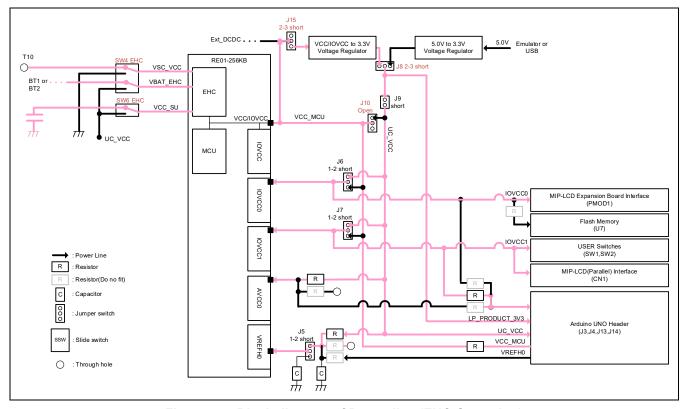


Figure 5-4: Block diagram of Power line (EHC Operation)

5.2.1 Solar Panel

This product is equipped with solar panel interface (T9, T10). The component layout and details are displayed in **Figure 5-5** and **Table 5-4**. Connect the included solar panel to T9 and T10 using the attached IC clip.

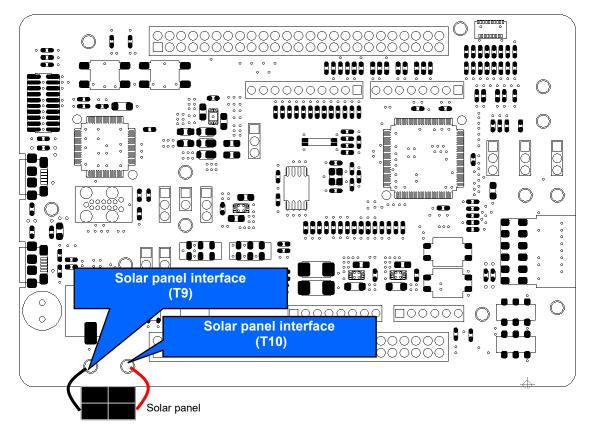


Figure 5-5: Component Layout (EHC Operation)

Table 5-4: Solar Panel Interface

	Solar Panel Interface (T9, T10)						
Pin Name	RE01		Pin	Name	RE01		
	Name	Port	Pin	FIII	Name	Port	Pin
Т9	GROUND	-	-	T10	-	VSC_VCC	29

5.2.2 Supercapacitor / External Battery

Supercapacitor / external battery can be connected to VBAT_EHC pin in RE01. Switch settings are required in order to use supercapacitor / external battery. Component layout and configuration details are shown in **Figure 5-6** and **Table 5-5**.

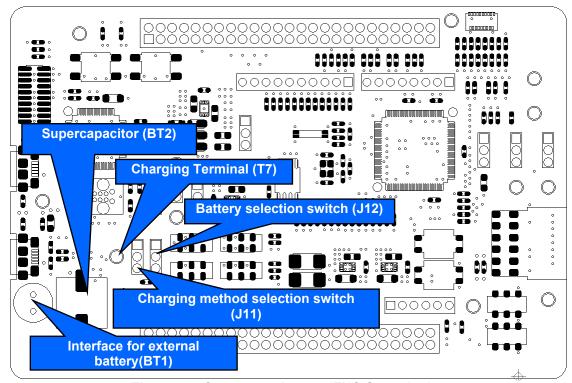


Figure 5-6: Component Layout (EHC Operation)

Table 5-5: Switch Configuration(J12)

Component Name	Setting	
J12	1-2	External battery
	2-3	Supercapacitor

When using supercapacitor, the supercapacitor itself may need to be charged because it may have been discharged. There are 2 charging methods that can be selected through switch setting. The related component layout and settings are shown in **Figure 5-6** and **Table 5-6**. When charging, use J12 in the open setting.

- Charging from external power supply Connect a stabilized power supply to the charging terminal (T7).
- Charging from the voltage converted on board supplied by an emulator Connect an emulator to CN2 port or a USB cable to USB1/USB2 port.

Set the charging voltage (2.6V or 3.0V) to the value specified in Secondary Battery (VBAT) Charging Voltage Select Bit (VBATSEL) in Option Function Select Register 1 (OFS1).

Table 5-6: Switch Configuration(J11)

Component Name	Setting	
J11	1-2	Charging from external power supply
	2-3	Charge by using board voltage

Set J11 to 1-2 after charging is completed.

Make sure that the external battery is already installed before selecting the external battery. The component layout and setting are described in **Figure 5-6** and **Table 5-7**.

The recommended external battery is SLB Series (Nichicon). Because the included solar panel*1 generates 42μ A, it might take time to charge the recommended external battery, depending on the operation setting of RE01. Depending on your evaluation content, consider charging before mounting.

*1: Panasonic AM-1815CA operating voltage 3.0 V, operating current 42.0μA (white fluorescent lamp-200lx(25°C))

Table 5-7:	External	Battery	(BT2)
-------------------	----------	---------	-------

	External Battery (BT2)						
Din	Signal Name	RE01		Pin	Signal Name	RE01	
Pin	Signal Name	Port	Pin	PIII	Signal Name	Port	Pin
1	-	VBAT_EHC	28	2	GROUND	-	-

5.2.3 Storage Capacitor

RE01 has a 200uF capacitor connected to the VCC_SU pin. Depending on your board environment, it may be necessary to change the capacitor's capacitance connected to VCC_SU pin. If necessary, mount a capacitor on C29 (size: 1608). Component layout is shown in **Figure 5-7**. For more information about storage capacitor specifications, refer to RE01 Group User's Manual's Hardware.

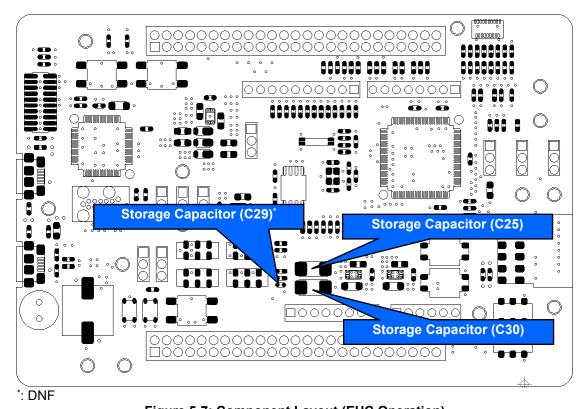


Figure 5-7: Component Layout (EHC Operation)

5.2.4 DC/DC Converter Control

DC/DC converter must be enabled to supply the voltage to the user circuit when using energy harvesting function. To enable DC/DC converter, output a high level from P209 and make sure that there is enough charging voltage in external battery/supercapacitor. This voltage equals to the value of VBATSEL setting (2.6V or 3.0V).

5.2.5 How to Use

5.2.5.1 When Operating Peripheral Circuits after Steady Operation Period

Follow the steps below to operate peripheral circuits after EHC steady operation period. The settings below are intended for the case where supercapacitor (charged) is used. The program has to be downloaded to RE01 internal flash memory in advance.

Sample code is also available on Renesas website, entitled "Maintenance free power management by RE energy harvesting controller (R01AN4837)".

- 1. Follow the setting shown in **Figure 5-2** and **Table 5-2**.
- 2. Follow the setting shown in Figure 5-8 and Table 5-8.
- 3. Connect the solar panel to the solar panel interface (T9 and T10).

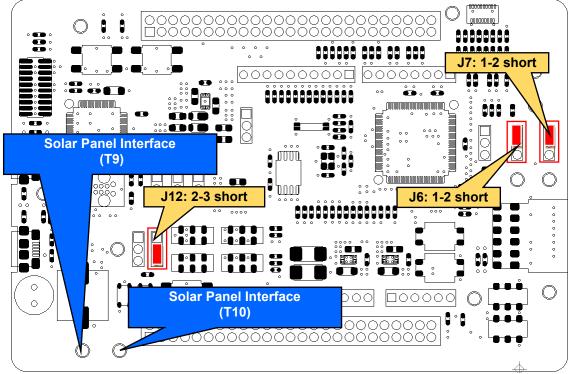


Figure 5-8: Component Layout and Settings (EHC Operation)

Table 5-8: Configuration Details (EHC Operation)

Component Name	Setting	
J6, J7	1-2	short
J12	2-3	short

The settings in the table above are supported in default configuration, as supplied.

5.2.5.2 When using the MIP-LCD Expansion Board During Secondary Battery Charging Period

Follow the steps below to operate MIP LCD expansion board during secondary battery charging period. The setting below are intended for the case where supercapacitor (charged) is used. The program has to be downloaded to RE01 internal flash memory in advance.

Sample code is also available on Renesas website, entitled "Energy harvesting launch operation and quick start SMIP display demo using Evaluation Kit RE01 256KB (R01AN5406)".

- 1. Follow the settings shown in **Figure 5-2** and **Table 5-2**.
- 2. Follow the settings shown in Figure 5-9 and Table 5-9.
- 3. Connect MIP-LCD expansion board to the PMOD connector (PMOD1). (Refer to Section 8.5.1 MIP-LCD Expansion Board for more details).
- 4. Connect the solar panel to solar panel interface (T9, T10).

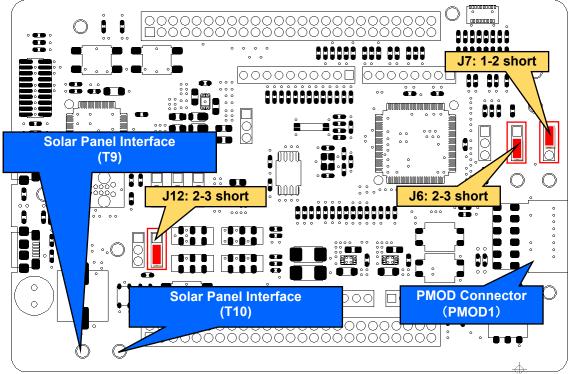


Figure 5-9: Component Layout and Settings (EHC Operation)

Table 5-9: Configuration Details (EHC Operation)

Component Name	Setting	
J6	2-3	short
J7	1-2	short*1
J12	2-3	short*1

^{*1:} The settings are supported in default configuration, as supplied.

5.2.5.3 When using Parallel MIP-LCD during Secondary Battery Charging Period

Follow the steps below to operate parallel MIP LCD during secondary battery charging period. The setting below are intended for the case where supercapacitor (charged) is used. The program has to be downloaded to RE01 internal flash memory in advance.

- 1. Follow the settings shown in Figure 5-2 and Table 5-2.
- 2. Follow the settings shown in Figure 5-10 and Table 5-10.
- 3. Connect parallel MIP-LCD to the MIP-LCD connector (CN1). (Refer to Section 8.7 MLCD (Memory In Pixel Liquid Crystal Display) Interface for more details).
- 4. Connect the solar panel to solar panel interface (T9, T10).

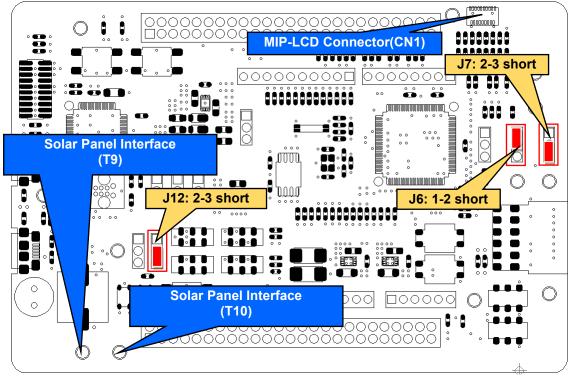


Figure 5-10: Component Layout and Settings (EHC Operation)

Table 5-10: Configuration Details (EHC Operation)

Component Name	Setting		
J6	1-2	short*1	
J7	2-3	short	
J12	2-3	short*1	

^{*1:} The settings are supported in default configuration, as supplied.

5.2.5.4 Discharge Switch (SW7, SW8)

Discharge switches are included in the main board. SW7 is used to discharge RE01 VCC/IOVCC power supply line. SW8 is used to discharge storage capacitors (C25, C29, and C30). This discharge switches must be used when the user uses energy harvesting function, operate the main board, then restart the energy harvesting function again from the beginning. Press the discharge switches before using energy harvesting function every time the energy harvesting function is started up from the beginning. The discharge switches are shown in **Figure 5-11.**

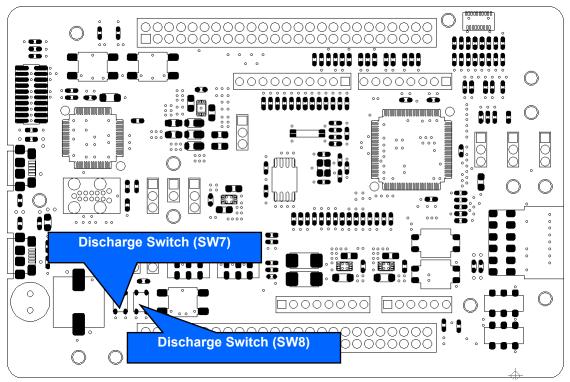


Figure 5-11: Component Layout (EHC Operation)

5.3 RE01 Start-up Mode

RE01 supports 3 start-up modes. Switch settings are necessary to select the start-up mode. Component layout and settings related to start-up modes are explained in **Figure 5-12** and **Table 5-11**. For more details of start-up modes for RE01, refer to RE01 Group User's Manual's Hardware.

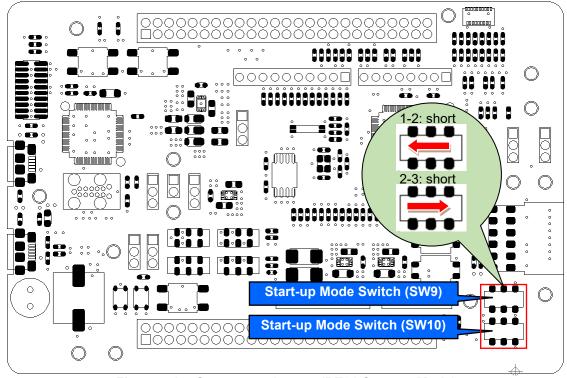


Figure 5-12: Component Layout (RE01 Start-up Mode)

Table 5-11: Configuration Details (RE01 Start-up Mode)

Switch Setting		Start-up Mode
MD (SW9)	EHMD (SW10)	
1-2: short	1-2: short	Energy Harvest Start-up Mode
1-2: short	2-3: short	Normal Start-up Mode *1
2-3: short	_*2	SCI/USB Boot Mode

^{*1:} The setting is supported in default configuration, as supplied.

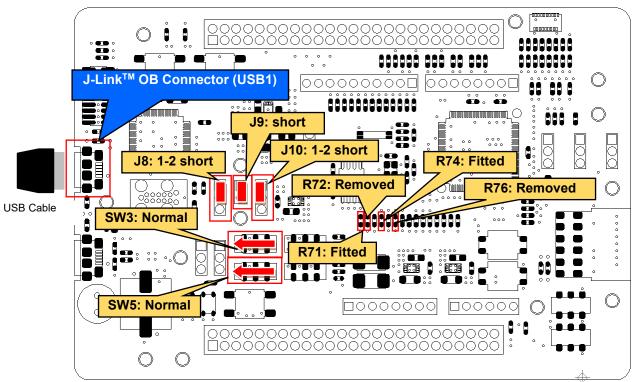
^{*2:} Don't care

6. Debug

This board supports emulators as listed in Table 6-1.

Table 6-1: Supported Emulators

Supported Emulator	Chapter Reference
J-Link [™] OB	6.1, 6.5
J-Link TM	6.2, 6.5
I-Jet [™]	6.2
E2	6.3, 6.4


6.1 J-Link™ OB

This main board is equipped with Segger J-Link[™] OB. RE01 debugging is possible by connecting the included USB cable to this board and host PC.

6.1.1 Component Layout and Settings when using J-Link™ OB

When using J-LinkTM OB, several switch and resistor settings must be set. **Figure 6-1** and **Table 6-2** shows the component layout and detailed settings for using J-LinkTM OB. This function is supported in the default configuration, as supplied.

Figure 6-2 and **Figure 6-3** show the connection relationship between the power supply and signals in this setting change.

Other settings will be as per the default kit configuration, as supplied.

Figure 6-1: Component Layout and Settings (J-Link™ OB)

Table 6-2: Configuration Details (J-Link[™] OB)

Component	Setting	,	
SW3, SW5	1-2, 5-6	Normal	
J8	1-2	short	
J9	-	short	
J10	1-2	short	
R71, R74	Fitted		
R72, R76	Removed		

The settings in the table above are supported in the default configuration, as supplied.

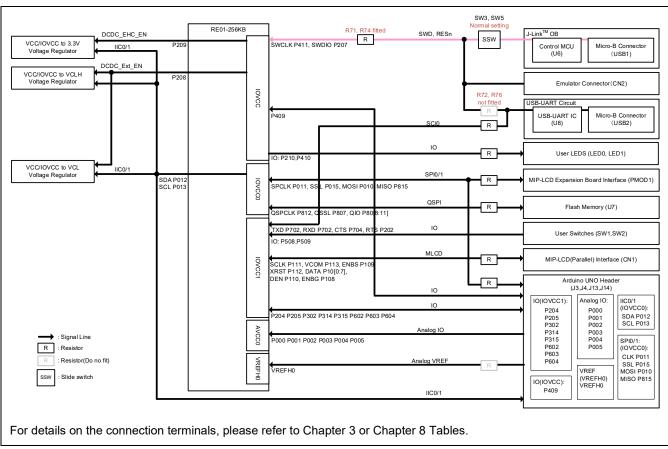


Figure 6-2: Block diagram of Signal line (J-Link™ OB)

Evaluation Kit RE01 256KB 6.Debug

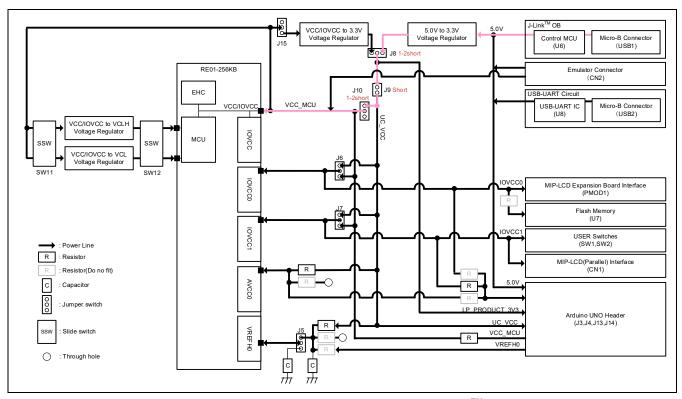


Figure 6-3: Block diagram of Power line (J-Link™ OB)

6.1.2 Debugger Connections

Figure 6-4 shows the connections between main board (J-Link OB) and host PC. When using J-Link OB, do not connect to other emulators.

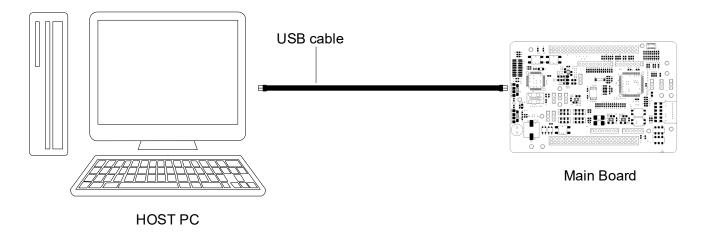
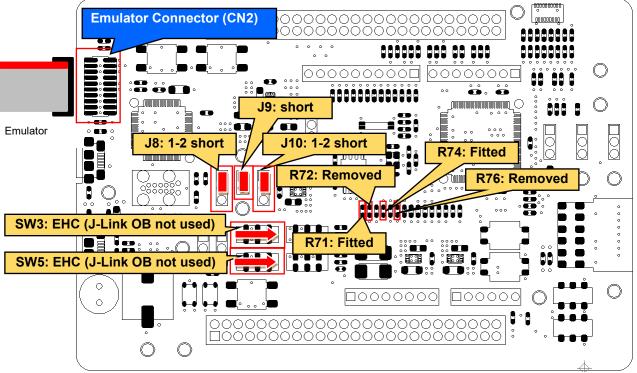


Figure 6-4: Debugger Connection Diagram (J-Link™ OB)


6.2 I-jet™, J-Link™

This main board can connect to IAR I-jet emulator or Segger J-Link™ emulator. RE01 can be debugged by using these emulators.

6.2.1 Component Layout and Settings when using I-jet[™], J-Link[™]

When using the emulator, several switch and resistor settings must be set. **Figure 6-5** and **Table 6-3** shows the component layout and detailed settings. This function is not supported in the default configuration, as supplied.

Figure 6-6 and **Figure 6-7** show the connection relationship between the power supply and signals in this setting change.

Other settings will be as per the default kit configuration, as supplied.

Figure 6-5: Component Layout and Settings (I-jet[™], J-Link[™])

Table 6-3: Configuration Details (I-jet[™], J-Link[™])

	Table of or configuration beta	iio (i jot , o ziiik)
Component	Setting	
SW3, SW5	2-3, 6-7	EHC (J-Link OB not used)
J8	1-2	short*1
J9	-	short*1
J10	1-2	short*1
R71, R74	Fitted*1	
R72, R76	Removed*1	

^{*1:} The settings are supported in default configuration, as supplied.

Evaluation Kit RE01 256KB 6.Debug

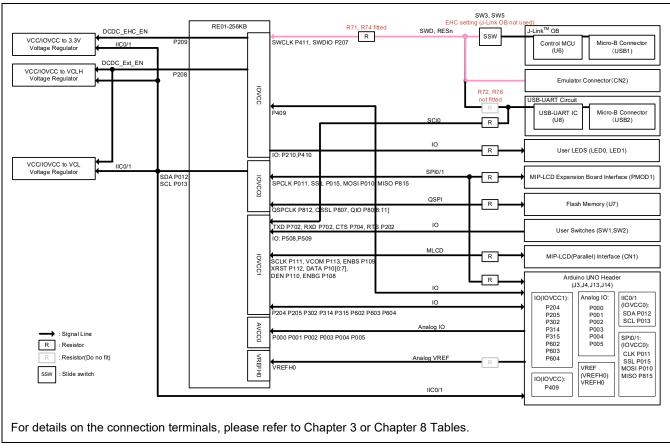


Figure 6-6: Block diagram of Signal line (I-jet™, J-Link™)

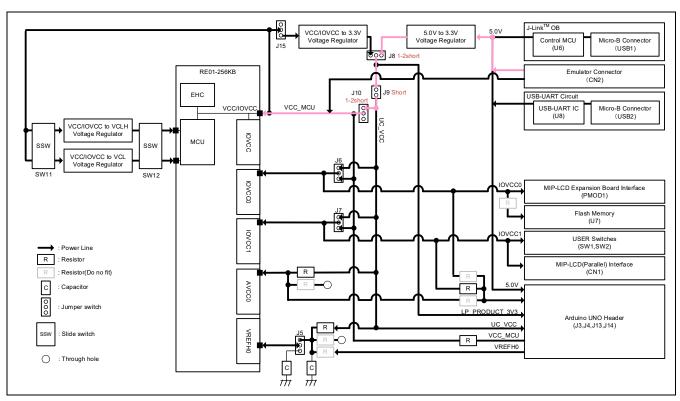


Figure 6-7: Block diagram of Power line (I-jet[™], J-Link[™])

Evaluation Kit RE01 256KB 6.Debug

6.2.2 Debugger Connections

Figure 6-8 shows the connections between main board, emulator, and host PC.

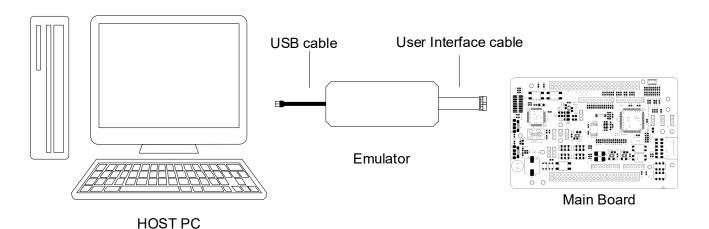
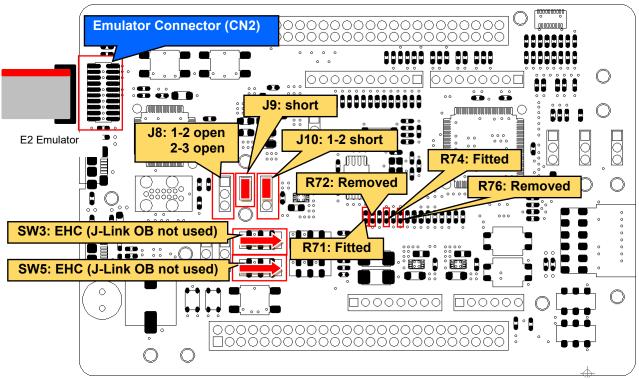


Figure 6-8: Debugger Connection Diagram (Excluding J-Link™ OB)


6.3 E2

This main board can connect to Renesas E2 emulator. RE01 can be debugged by using this emulator.

6.3.1 Component Layout and Settings when using E2

When using the emulator, several switch and resistor settings must be set. **Figure 6-9** and **Table 6-4** shows the component layout and detailed settings. This function is not supported in the default configuration, as supplied.

Figure 6-10 and **Figure 6-11** show the connection relationship between the power supply and signals in this setting change.

Other settings will be as per the default kit configuration, as supplied.

Figure 6-9: Component Layout and Settings (E2)

Table 6-4: Configuration Details (E2)

Component	Setting	
SW3, SW5	2-3, 6-7	EHC (J-Link OB not used)
J8	1-2, 2-3	open
J9	-	short*1
J10	1-2-	short*1
R71, R74	Fitted*1	
R72, R76	Removed*1	

^{*1:} The setting is supported in default configuration, as supplied.

Evaluation Kit RE01 256KB 6.Debug

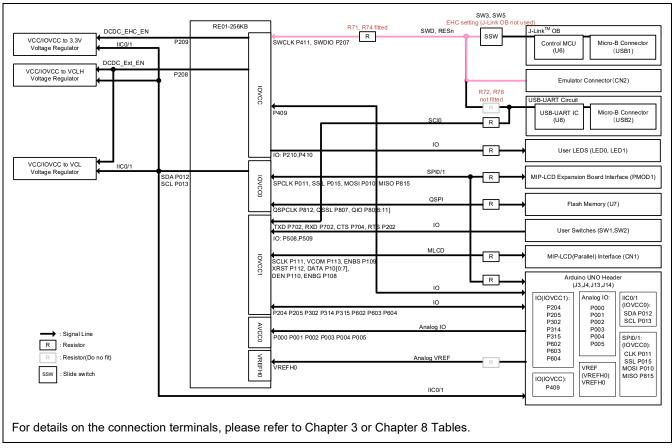


Figure 6-10: Block diagram of Signal line (E2)

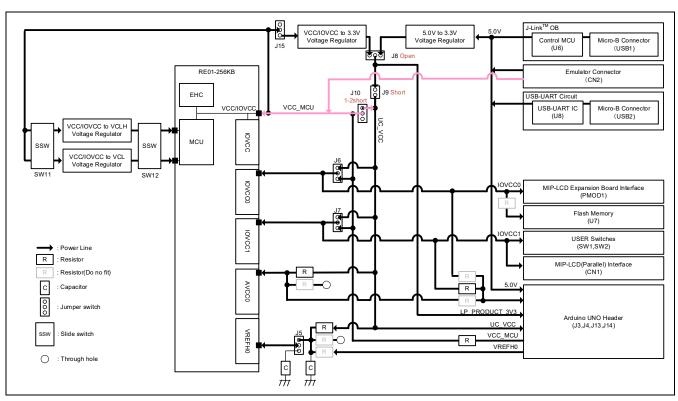
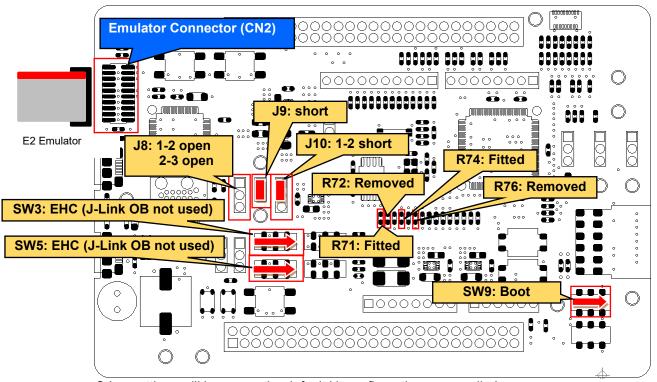


Figure 6-11: Block diagram of Power line (E2)

6.3.2 Debugger Connections

The connection between the main board, emulator, and host PC is the same as in Figure 6-8.


6.4 Flash Programmer - Renesas Flash Programmer-

This main board supports Renesas Flash Programmer (RFP) for writing programs to RE01's internal flash memory. Writing can be performed by using E2 emulator and an USB cable.

6.4.1 When using E2 Emulator

A program can be written from host PC to RE01's internal flash memory via E2 emulator. To use RFP, switch and resistor settings must be set. Component layout and detailed settings are shown in **Figure 6-12** and **Table 6-5**. This function is not supported in the default configuration, as supplied.

Figure 6-13 and **Figure 6-14** show the connection relationship between the power supply and signals in this setting change.

Other settings will be as per the default kit configuration, as supplied.

Figure 6-12: Component Layout and Settings (RFP with E2)

Table 6-5: Configuration Details (RFP with E2)

Component	Setting	
SW3, SW5	2-3, 6-7	EHC (J-Link OB not used)
SW9	2-3	Boot
J8	1-2, 2-3	open
J9	-	short*1
J10	1-2	short*1
R71, R74	Fitted*1	
R72, R76	Removed*1	

^{*1:} The settings are supported in default configuration, as supplied.

Evaluation Kit RE01 256KB 6.Debug

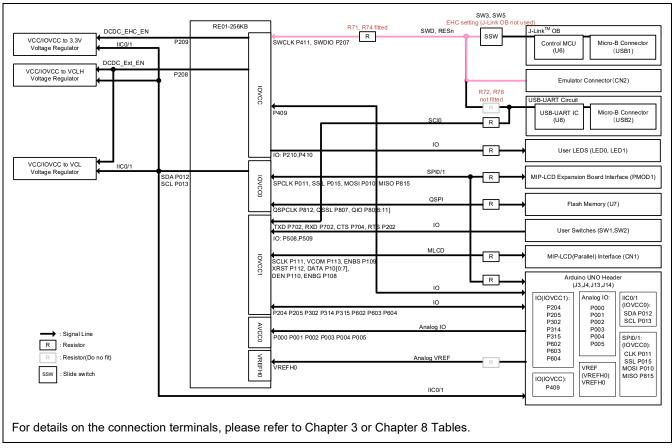


Figure 6-13: Block diagram of Signal line (RFP with E2)

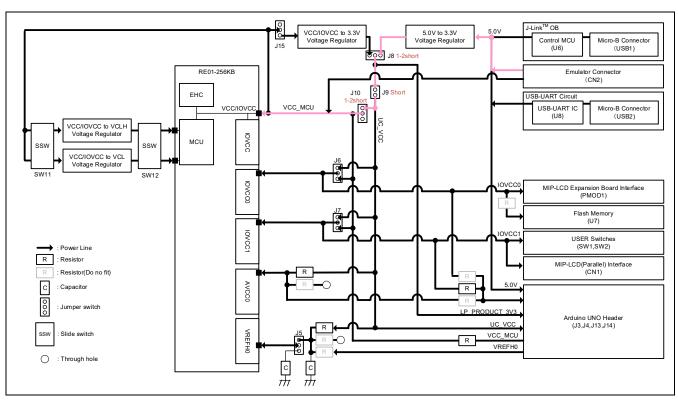
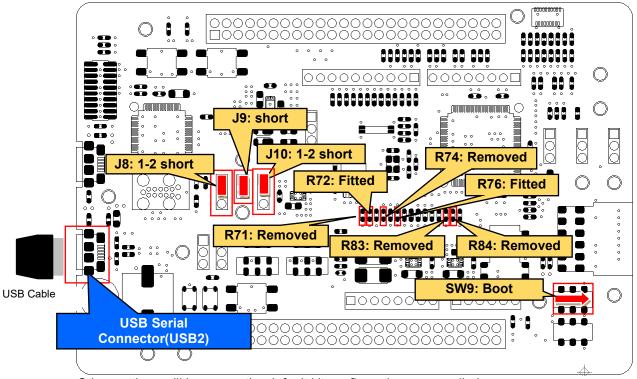



Figure 6-14: Block diagram of Power line (RFP with E2)

6.4.2 When using USB Cable (USB Serial)

A program can be written from host PC to RE01's internal flash memory by using an USB cable. To use RFP, specific switch and resistor settings must be set. Component layout and detailed settings are shown in **Figure 6-15** and **Table 6-6**. This function is not supported in the default configuration, as supplied.

Figure 6-16 and **Figure 6-17** show the connection relationship between the power supply and signals in this setting change.

Other settings will be as per the default kit configuration, as supplied.

Figure 6-15: Component Layout and Settings (RFP with USB-Serial)

Table 6-6: Configuration Details (RFP with USB-Serial)

Component	Setting	
SW9	2-3	Boot
J8	1-2	short*1
J9	-	short*1
J10	1-2	short*1
R71, R74	Removed	
R72, R76	Fitted	
R83, R84	Removed	

^{*1:} The settings are supported in default configuration, as supplied.

Evaluation Kit RE01 256KB 6.Debug

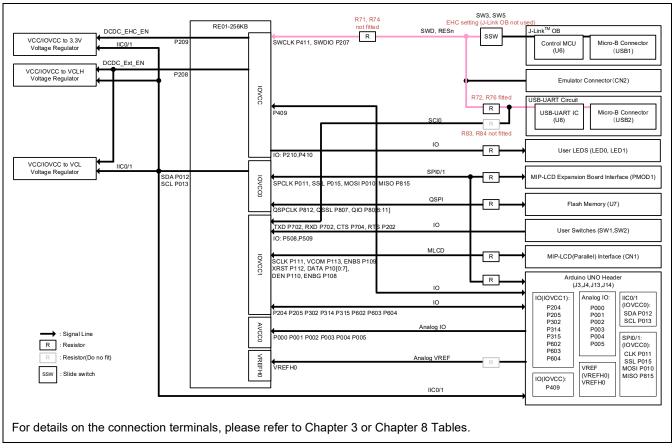


Figure 6-16: Block diagram of Signal line (RFP with USB-Serial)

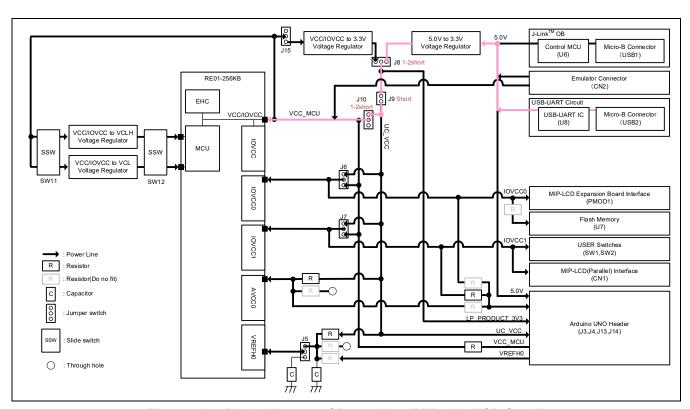


Figure 6-17: Block diagram of Power line (RFP with USB-Serial)

6.4.3 Debugger Connections

Figure 6-18 shows the connection between the main board, emulator, and host PC. When using flash programmer, do not connect emulators for purposes other than flash programming.

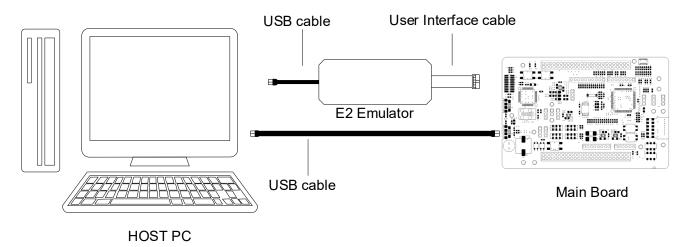


Figure 6-18: Debugger Connection Diagram (RFP)

6.4.4 How to Use

6.4.4.1 When using E2 Emulator

Follow the procedures below to supply power from E2 emulator.

- 1. Set the switches and resistors on the main board as shown in **Table 6-5**.
- 2. Connect the emulator connector (CN2) to host PC via E2 emulator.
- 3. Start RFP on host PC.
- 4. On RFP, choose File->New Project. Insert new project name, and choose 3.3V under Power Supply in Tool Details.
- 5. Click the "Connect" button on the RFP.
- 6. When the connection is established, "Operation Completed" will be displayed on the screen.
- 7. Select the program to write.
- 8. Click the "Start" button on the RFP.
- 9. After writing is completed, "Operation Completed" will be displayed on the RFP.

6.4.4.2 When using USB Cable (USB Serial)

Follow the procedures below to supply power from a USB cable (USB Serial).

- 1. Set the switches and resistors as shown in **Table 6-6**.
- 2. Connect the USB serial connector (USB2) to host PC via USB cable.
- 3. Start RFP on host PC.
- 4. On RFP, choose File->New Project.
 Insert new project name, and choose "USB Serial Port" in Tool Details.
- 5. Click the "Connect" button on the RFP.
- 6. When the connection is established, "Operation Completed" will be displayed on the screen.
- 7. Select the program to write.
- 8. Click the "Start" button on the RFP.
- 9. After writing is completed, "Operation Completed" will be displayed on the RFP.

6.5 Flash Programmer -SEGGER J-Flash Lite-

This main board supports SEGGER J-Flash Lite for writing programs to RE01's internal flash memory. Writing can be performed by using either the J-Link™ OB or J-Link™ emulator.

6.5.1 Connection and Settings

When using J-Link[™] OB, please refer to **section 6.1.1**. When use J-Link[™] emulator, please refer to **section 6.2.1**.

6.5.2 How to use

Follow the procedures below

- 1. Set the switches and resistors on the main board according to the previous section.
- 2. Connect to the host PC with a USB cable. (When using the J-LinkTM emulator, connect via the emulator)
- 3. Start J-Flash Lite on the host PC.
- 4. Select the Device you are using on the J-Flash Lite.
- 5. Make sure that Interface is selected as SWD, and press the "OK" button.
- 6. Select the file you want to write from the Data File.
- 7. Press the "Program Device" button.
- 8. When the writing is completed, "Downloading.... Done" will be displayed at the end of the log.

6.6 Emulator connection in EHC mode

When the RE01 is connected to an emulator, the internal debugging circuitry runs which increases the power consumption of the RE01 . Therefore, when debugging in EHC mode, it is necessary to keep supplying enough power to run the device.

The following shows how to debug in EHC mode using a voltage source.

Note 1: This procedure assumes that a program to transition to the steady operation period in Chapter 13 EHC of the UM (the RE01 Group User's Manual: Hardware) has been constructed. Please write the program to transition to the steady operation in advance.

Note 2: The power supply from the emulator should be disabled.

6.6.1 Connection and Settings

After setting the board to EHC mode, connect the voltage source and the emulator as shown in **Figure 6-19**. For setting the EHC mode, refer to **Section 5.2 EHC Operation**.

Figure 6-19 shows the case where the on-board super capacitor (BT2) is used as the secondary battery. If an external secondary battery or super capacitor is used (BT1), connect a voltage source to J12 1pin.

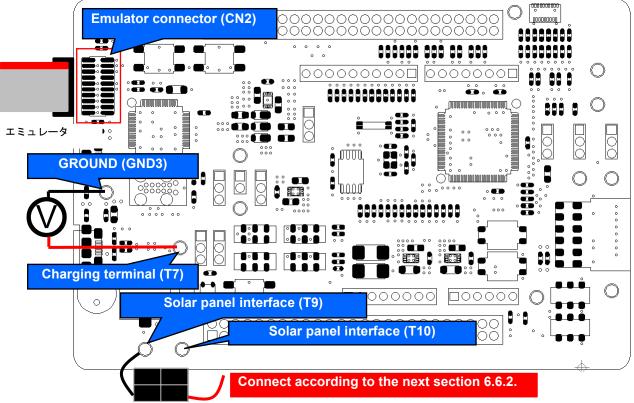


Figure 6-19: Connection for connecting an emulator in EHC mode

Evaluation Kit RE01 256KB 6.Debug

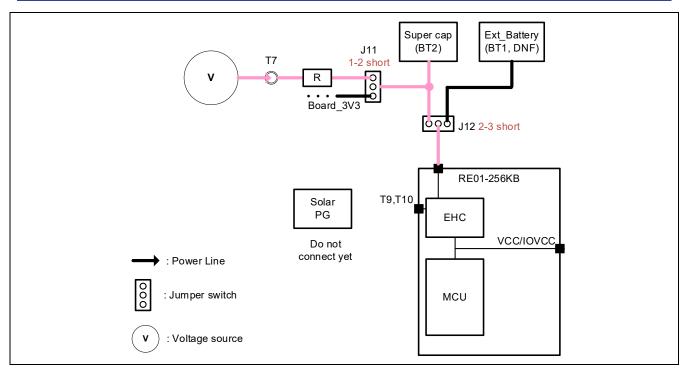


Figure 6-20: Schematic diagram of the connection

6.6.2 Debugging Procedure

Follow the steps below to debug.

- 1. Supply power from VSC_VCC (T10) to start RE01.
- 2. In order to transition from the secondary battery charging period to the steady operation period, apply a voltage higher than the software threshold voltage. (There is no problem if the voltage is applied before starting RE01.)
- 3. Operate the IDE to debug.

If the QUICKMODE bit of RE01 is changed from 1 to 0 after the transition to the steady state, the EHC circuit will be initialized and the power of RE01 will be turned off. If you wish to debug again, please follow the above procedure again.

7. Current Measurement Circuit

This main board allows the user to measure the current consumption of the RE01. **Figure 7-1** shows the current flow that can be measured with the default settings. Sample code is also available on Renesas website, entitled "RE01 256KB Group Low Power Mode Transition Example" (R01AN5337).

7.1 Current measurement when using the on-board regulator 3.3V

This section shows how to measure the current consumption in normal startup mode at 3.3V using the regulator mounted on the board. The current flow to be measured is shown in **Figure 7-1**.

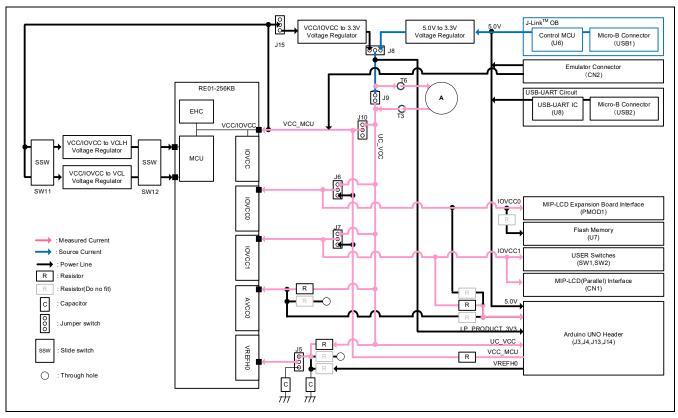
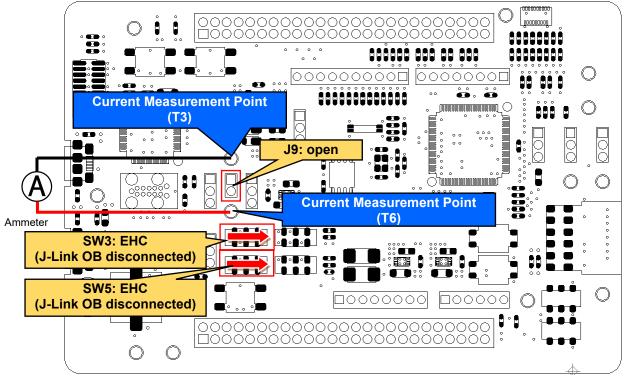



Figure 7-1: Current flow when using on-board regulator 3.3V

7.1.1 Settings for current measurement

Switch settings are required to measure the current. Details are shown in Figure 7-2 and Table 7-1.

Other settings will be as per the default kit configuration, as supplied.

Figure 7-2: Component Layout and Setting (Current Measurement, using on-board regulator 3.3V)

Table 7-1: Configuration Details (Current Measurement, using on-board regulator 3.3V)

Component	Setting	
J9	-	open
SW3, SW5	2-3, 6-7	EHC (J-Link OB not used)

7.1.2 How to Use

Follow the steps shown below. Program must be downloaded into the internal flash memory of RE01 in advance.

- 1. Open J9.
- 2. Connect an ammeter to current measurement points (T3 and T6).
- 3. Supply the board by using stand-alone power supply.

7.2 Current measurement when not using on-board 3.3V regulator

In this section, the method to measure the current during normal startup without using the on-board regulator is described. The current flow to be measured is shown in **Figure 7-3**.

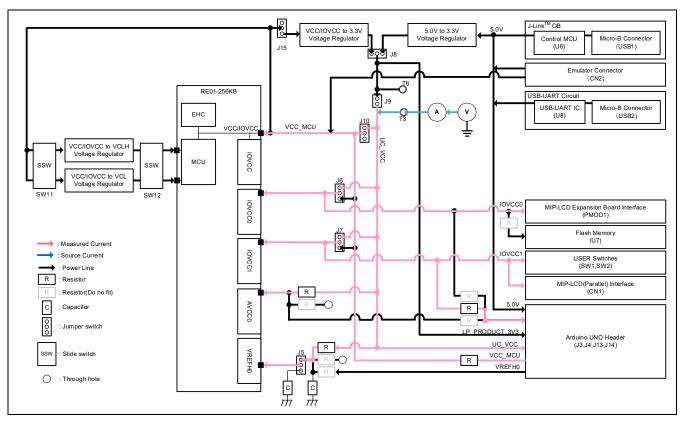
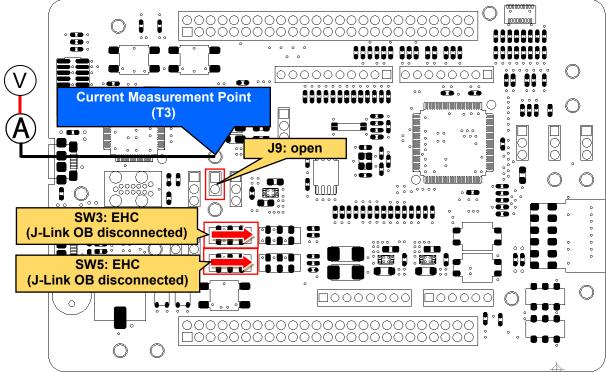



Figure 7-3: Current flow when on-board regulator 3.3V is not used

7.2.1 Settings for current measurement

Set up the board as shown in **Figure 7-4**, and connect the voltage source and the ammeter. If you want to supply voltage to the Arduino UNO interface, please supply voltage from T6 or J8 pin 2 separately.

Other settings will be as per the default kit configuration, as supplied.

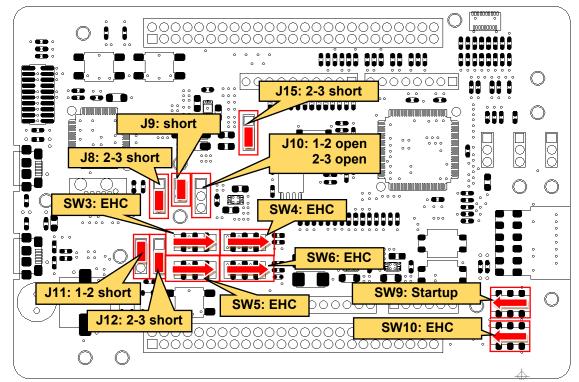
Figure 7-4: Component Layout and Settings (Current Measurement, on-board regulator 3.3V not used)

Table 7-2: Configuration Details (Current Measurement, on-board regulator 3.3V not used)

Component	Setting	
J9	-	open
SW3, SW5	2-3, 6-7	EHC (J-Link OB not used)

7.2.2 How to use

Follow the steps shown below. Program must be downloaded into the internal flash memory of RE01 in advance.


- 1. Open J9.
- 2. Connect an ammeter to current measurement points (T3 and T6).
- 3. Supply the board by using stand-alone power supply.

7.3 Current measurement during EHC operation

This board can measure the current of the entire system even in EHC mode. This section describes how to measure the current in EHC mode.

7.3.1 Settings for current measurement

Configure the board according to **Figure 7-5**, and connect the voltage source and ammeter according to **Figure 7-6**.

Other settings will be as per the default kit configuration, as supplied.

Figure 7-5: Component Layout and Settings (Current Measurement, EHC mode)

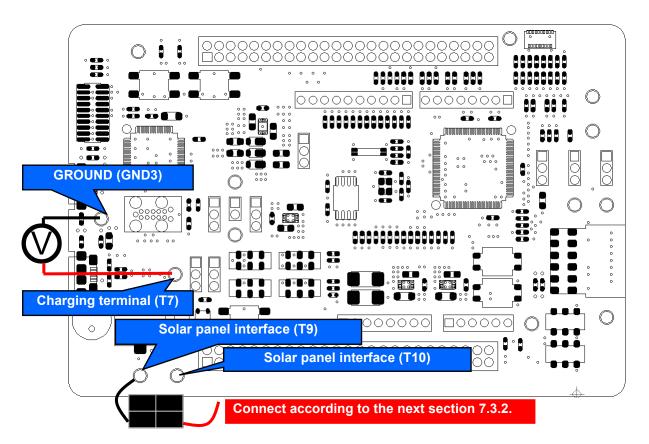


Figure 7-6: Connection for current measurement in EHC mode

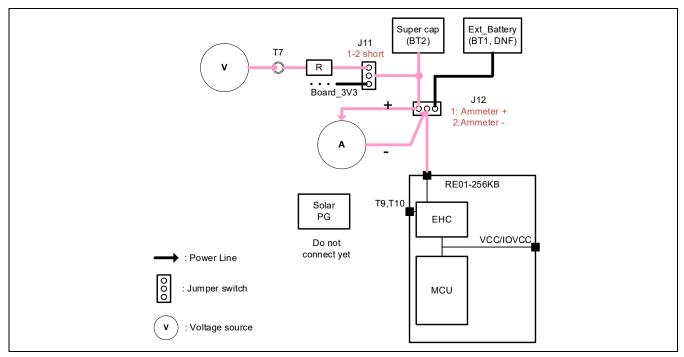


Figure 7-7: Block diagram of the connection current measurement in EHC mode (when using the super capacitor mounted on the board)

7.3.2 How to use

After setting up and connecting the voltage source and ammeter according to the previous section, measure the current according to the following procedure.

- Apply a voltage to VBAT from a voltage power source that is higher than the threshold voltage for transition to steady state.
- Supply power from VSC_VCC and allow the system to transition to steady state.

 Turn off the supply of VSC_VCC so that the system can operate only with power from VBAT. 3.
- Measure the current consumption of the entire system with the connected ammeter.

When using an external rechargeable battery or super capacitor with BT1, connect the voltage source to J12 pin 3 and the ammeter to J12 pin 2 (-) and pin 3 (+).

8. User Circuitry

8.1 Reset Circuit

This main board has built-in power-on reset circuit and a reset circuit that is triggered by a switch press. When power is supplied, RE01 is reset by the built-in power-on reset circuit. Pressing RES switch also resets RE01.

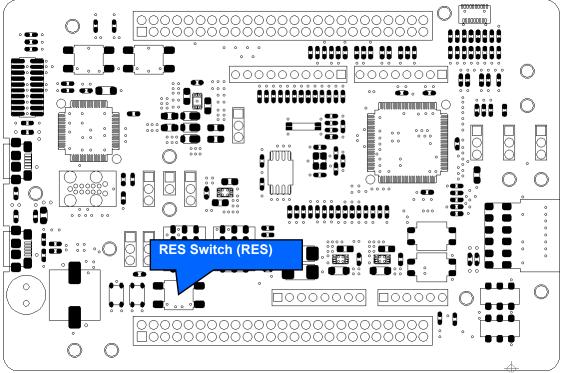


Figure 8-1: Component Layout (Reset Circuit)

8.2 Clock Circuit

The main board has clock circuit to supply clock to RE01. For details on the RE01 clock, refer to RE01 Group User's Manual Hardware. For details on the main board clock circuit, refer to the main board circuit diagram. **Figure 8-2** and **Table 8-1** shows the component layout and details.

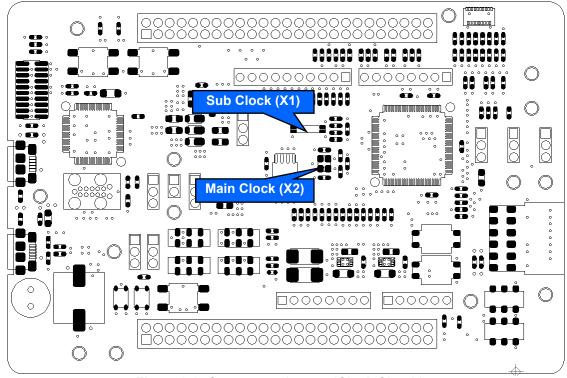


Figure 8-2: Component Layout (Clock Circuit)

Table 8-1: Crystal

Crystal	Function	Default Setting	Frequency	Device Package	
X1	Sub Clock	Fitted	32.768kHz	Encapsulated, SMT	
X2	Main Clock	Fitted	32MHz	Encapsulated, SMT	

8.3 Switches

This main board has a total of 13 switches. **Figure 8-3** and **Table 8-2** show the layout and function of each switch.

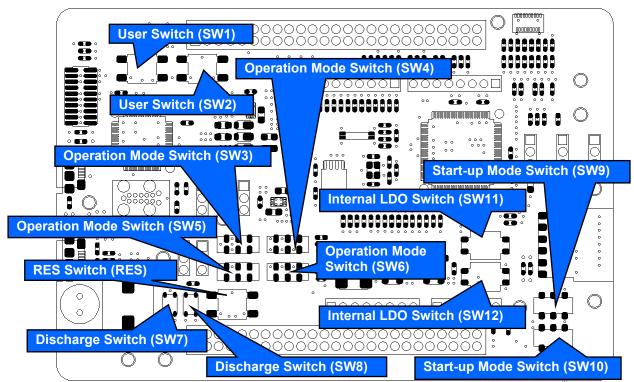


Figure 8-3: Component Layout (Switches)

Table 8-2: Switches

Switch	Function	REC	RE01		
Switch	Function	Port	Pin		
RES	Resets the main board.	RES#	23		
SW1	Connects to KRM01_B for user controls.	P509	74		
SW2	Connects to IRQ4_C for user controls.	P508	75		
	Selects normal mode or EHC mode.	P411 (SWCLK)	16		
SW3,5	Selects to use/not to use J-Link [™] OB.	P207 (SWDIO)	22		
		RES#	23		
		VCC_SU	27		
SW4,6	Selects normal mode or EHC mode.	VBAT_EHC	28		
		VSC_VCC	29		
SW7	Discharge C36 capacitor.	VCC/IOVCC	14		
SW8	Discharge VCC_SU storage capacitor (C25, C29, C30).	VCC_SU	27		
SW9	Sologte PE01 start up mode	MD	24		
SW10	Selects RE01 start-up mode.	EHMD	19		
SW11		NC	NC		
SW12	Selects internal LDO or external DC/DC.	VCLH	8		
GVVIZ		VCL	15		

8.4 LED

There are 4 LEDs in this main board. **Figure 8-4** shows the component layout of the LEDs. **Table 8-3** shows the details of the LEDs.

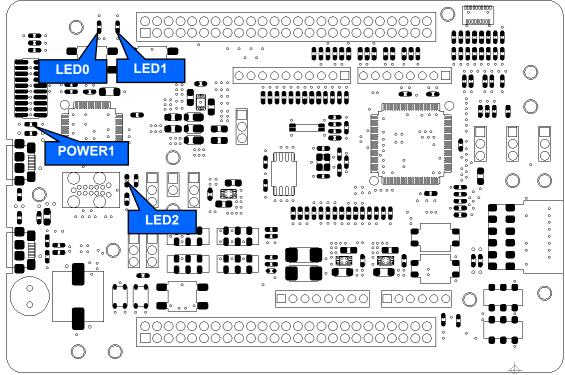


Figure 8-4: Component Layout (LED)

Table 8-3: LED

LED	Color	Function	RE01		
LED	Color	Function	Port	Pin	
POWER1	Green	Board_5V power line indicator	NC	NC	
LED0	Orange	User LED	P210 (IOVCC)	32	
LED1	Red	User LED	P410 (IOVCC)	17	
LED2	Green	J-Link [™] OB Indicator	NC	NC	

8.5 Pmod™ Interface

This main board has the connector for PmodTM interface. **Table 8-4** shows compatible connection boards and **Figure 8-5** shows the pin assignment.

Table 8-4: Compatible Connection Boards

Compatible Boards	Reference Chapter
MIP-LCD Expansion Board	7.5.1
RL78/G1D BLE Module Expansion Board	7.5.2
(RTKYRLG1D0B00000BJ)	
Digilent Pmod™ Compatible Connector	7.5.3

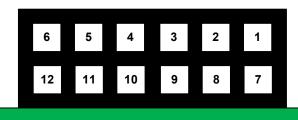
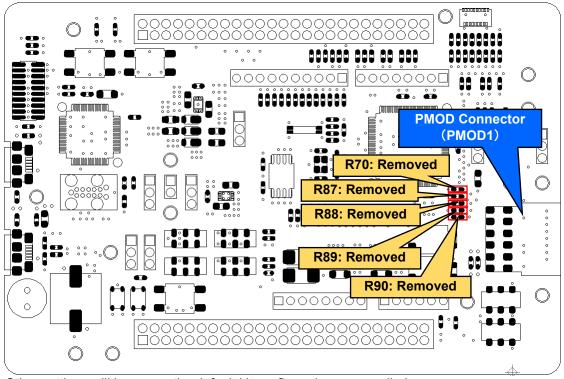


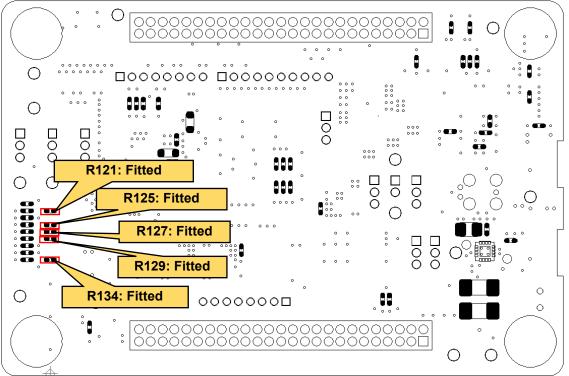
Figure 8-5: Pin Assignment

8.5.1 MIP-LCD Expansion Board


This main board has a connector for MIP-LCD expansion board interface. Connect the included MIP-LCD expansion board to the PMOD connector.

Connection with the MIP-LCD (TN0181ANVNANN-AN00 made by Kyocera^{*1}) that is mounted on MIP-LCD expansion board are done via RE01 built-in serial peripheral interface (SPI). **Figure 8-6** and **Figure 8-7** shows the component layout, while **Table 8-6** shows the details of PMOD connector.

This function is supported in default configuration, as supplied. To return to this setting from other settings, set the resistors as shown in **Figure 8-6**, **Figure 8-7**, and **Table 8-5**.


Sample code related to this expansion board is available on the Renesas website entitled "R_GDT Driver Sample Code (Using CMSIS Driver Package)" (R01AN4755).

*1: Please contact Kyocera.

Other settings will be as per the default kit configuration, as supplied.

Figure 8-6: Component Layout and Settings (MIP-LCD Expansion Board (Top))

Other settings will be as per the default kit configuration, as supplied.

Figure 8-7: Component Layout and Settings (MIP-LCD Expansion Board (Bottom))

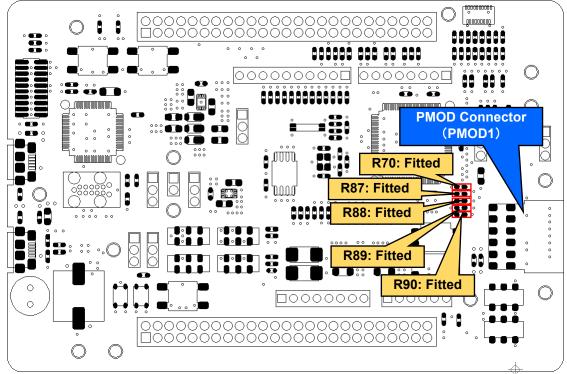
Table 8-5: Configuration Details (MIP-LCD Expansion Board)

Component	Setting
R70, R87-R90	Removed
R121, R125, R127, R129, R134	Fitted

The settings in the table above are supported in default configuration, as supplied.

Table 8-6: PMOD Connector (MIP-LCD Expansion Board)

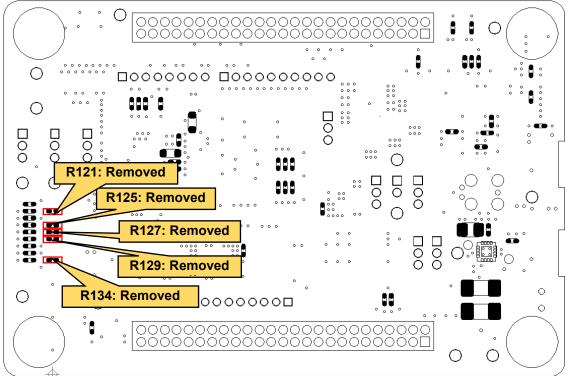
PMOD Connector (PMOD1)							
Din Signal Name	RE01		Pin	Signal Name	RE01		
Pin	Signal Name	ne Port Pin Signal Name	Port	Pin			
1	PMOD_SSLA1_B_P015	P015	92	7	PMOD_INT_AGTWOA1_B_ P814	P814	99
2	PMOD_MOSIA_B_P010	P010	97	8	PMOD_RESET_RXD4_C	P813	100
3	PMOD_MISOA_B_CTS4_C	P815	98	9	PMOD_IO0_P014	P014	93
4	PMOD_RSPCKA_B_P011	P011	96	10	PMOD_IO1	P806	7
5	GROUND	-	-	11	GROUND	-	-
6	IOVCC0	-	-	12	IOVCC0	-	-


8.5.2 RL78/G1D BLE Module Expansion Board

This main board has a connector for the RL78/G1D BLE Module Expansion Board (BLE Evaluation Board). Connect the Renesas BLE Evaluation Board (sold separately) to the PMOD connector.

Connection with the RL78/G1D module that is mounted on BLE evaluation board are done via RE01 built-in serial communication interface (SCI). **Figure 8-8** and **Figure 8-9** show the component layout, while **Table 8-8** shows the details of PMOD connector.

This function is not supported in default configuration, as supplied. Set the resistors as shown in **Figure 8-8**, **Figure 8-9**, and **Table 8-7**.


Sample code related to this expansion board is available on the Renesas website entitled "Bluetooth® Low Energy Protocol Stack Evaluation Kit RE01 256KB Host Sample" (R01AN5472).

Other settings will be as per the default kit configuration, as supplied.

Figure 8-8: Component Layout and Settings (RL78/G1D BLE Module Expansion Board (Top))

RENESAS

Other settings will be as per the default kit configuration, as supplied.

Figure 8-9: Component Layout and Settings (RL78/G1D BLE Module Expansion Board (Bottom))

 Table 8-7: Configuration Details (RL78/G1D BLE Module Expansion Board)

Component	Setting	Setting				
R70, R87-R90	Fitted					
R121, R125, R127, R129, R134	Removed					

Table 8-8: PMOD Connector (RL78/G1D BLE Module Expansion Board)

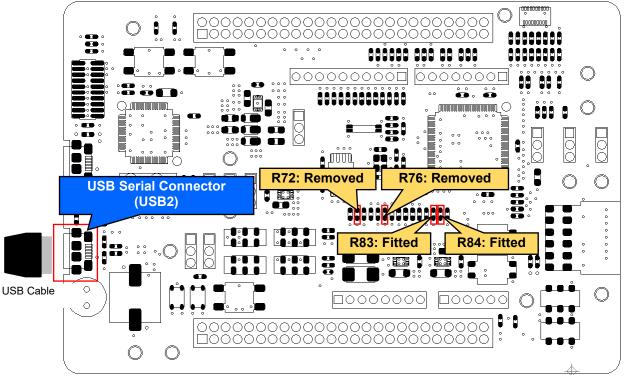
	PMOD Connector (PMOD1)										
Pin	in Signal Name	RE01		Pin	Signal Name	RE01					
PIII	Signal Name	Port	Pin	FIII	Signal Name	Port	Pin				
1	PMOD_MISOA_B_CTS4_C	P815	98	7	PMOD_INT_AGTWOA1_B_ P814	P814	99				
2	PMOD_TXD4_C	P812	1	8	PMOD_MOSIA_B_P010	P010	97				
3	PMOD_RESET_RXD4_C	P813	100	9	PMOD_IO0_P014	P014	93				
4	PMOD_RSPCKA_B_P011	P011	96	10	PMOD_SSLA1_B_P015	P015	92				
5	GROUND	-	-	11	GROUND	-	-				
6	IOVCC0	-	-	12	IOVCC0	-	ı				

8.5.3 Pmod™

This main board has a connector for Digilent Pmod™ interface. Connect a commercially available Digilent Pmod™ module (or other compatible module) to PMOD connector. Connection with the Digilent Pmod™ module is done via RE01 built-in SPI interface (RSPI).

Figure 8-6 and **Figure 8-7** shows component layout, while **Table 8-6** shows details of PMOD connector. This function is not supported in default configuration, as supplied. To return to this setting from other settings, set the resistors as shown in **Figure 8-6**, **Figure 8-7**, and **Table 8-5**.

Not that Digilent Pmod™ pinouts are different from normal pinouts. Refer to the Digilent Pmod™ interface specifications for more details.


8.6 USB Serial Conversion

This main board has USB serial conversion circuit, which can be used as a virtual COM port by connecting to the host PC. Connect host PC to USB serial conversion connector (USB2) by using the included USB cable. Connection with the host PC is done via RE01 built-in serial communication interface (SCI).

The component layout and details of USB serial connection are shown in Figure 8-10 and Table 8-10.

This function is not supported in default configuration, as supplied. To return to this setting from other settings, set the resistors as shown in **Figure 8-10** and **Table 8-9**.

The related sample code is available on Renesas Website, entitled "USART Asynchronous Communication Sample Code (Using CMSIS Driver Package)" (R01AN4699).

Other settings will be as per the default kit configuration, as supplied.

Figure 8-10: Component Layout and Settings (USB Serial Conversion)

Table 8-9: Configuration Details (USB Serial Conversion)

Component	Setting
R72, R76	Removed
R83, R84	Fitted

The settings in the table above are supported in default configuration, as supplied.

Table 8-10: USB Serial

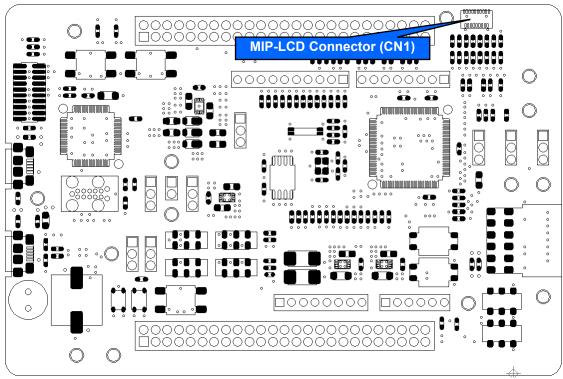
Signal Name	Function	RE01		
	Function	Port	Pin	
USB_SCI_TXD	SCI0 Transmit Signal	P703	40	
USB_SCI_RXD	SCI0 Receive Signal	P702	41	
USB_SCI_CTS	Input signal for controlling the start of transmission and reception	P704	39	
USB_SCI_RTS	Output signal for controlling the start of transmission and reception	P202	38	

Prepare the driver provided by FTDI chip before using this function. The necessary driver is listed below.

• VIRTUAL CON PORT(VCP) Drivers

Please download the driver installer from the following URL.

http://www.ftdichip.com/Products/ICs/FT230X.html


8.7 MLCD (Memory In Pixel Liquid Crystal Display) Interface

This main board has FPC connector (CN1), which can be connected to MIP-LCD (Kyocera TN0104ANVAANN-GN00*1). Connection to MIP-LCD is done through RE01 built-in MIP LCD Controller (MLCD).

Component layout is shown in **Figure 8-11**, while MIP-LCD connection details is shown in **Table 8-11**. This function is supported in default configuration, as supplied.

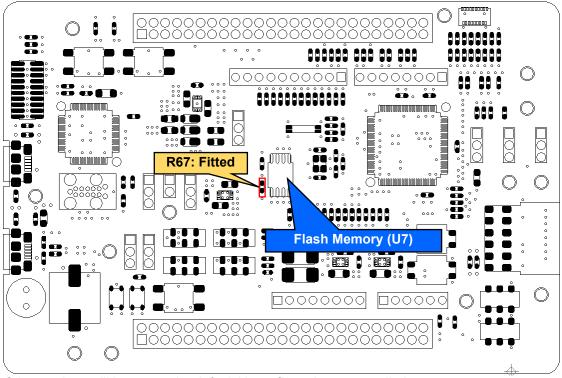
Related sample code is available in Renesas Website, entitled "MLCD Transfer Sample Code (Using CMSIS Driver Package)" (R01AN4883).

*1: Please contact Kyocera.

Other settings will be as per the default kit configuration, as supplied.

Figure 8-11: Component Layout and Setting (MLCD)

Table 8-11: MIP-LCD Connector


•	MIP-LCD Connector (CN1)									
Pin	Dim Cianal Name	RE	RE01		Signal Name	RE01				
PIII	Signal Name	Port	Pin	Pin	Signal Name	Port	Pin			
1	MLCD_VCOM	P113	56	11	MLCD_SI2	P105	66			
2	IOVCC1	-	-	12	MLCD_SI1	P106	65			
3	GROUND	-	-	13	MLCD_SI0	P107	64			
4	MLCD_ENBS	P109	60	14	MLCD_DEN	P110	59			
5	MLCD_XRST	P112	57	15	MLCD_SCLK	P111	58			
6	MLCD_SI7	P100	71	16	MLCD_ENBG	P108	61			
7	MLCD_SI6	P101	70	17	GROUND	-	-			
8	MLCD_SI5	P102	69	18	IOVCC1	-	-			
9	MLCD_SI4	P103	68	19	MLCD_VCOM	P113	56			
10	MLCD_SI3	P104	67	-	-	-	-			

8.8 Flash Memory

This main board has a 64Mb flash memory made by Macronix (MX25R6435FM2IL0). Connection to the flash memory is done through RE01 built-in quad serial peripheral interface (QSPI).

Component layout is shown in **Figure 8-12**, while the details of flash memory connection is shown in **Table 8-13**.

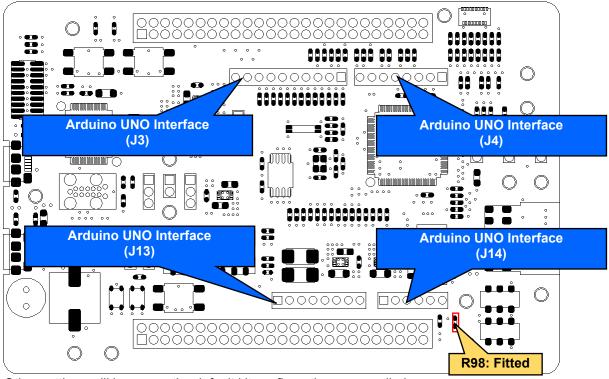
This function is not supported in default configuration, as supplied. set the resistors as shown in **Figure 8-12** and **Table 8-12**.

Other settings will be as per the default kit configuration, as supplied.

Figure 8-12: Component Layout and Setting (Flash Memory)

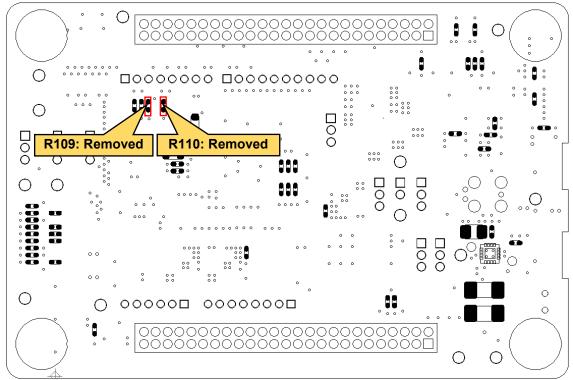
Table 8-12: Configuration Details (Flash Memory)

Component	Setting
R67	Fitted


Table 8-13: Flash Memory

	Flash Memory (U7)									
Dia Cianal Name	RE01		Pin	Signal Name	RE01					
Pin	Signal Name	Port	Pin	PIII	Signal Name	Port	Pin			
1	QSPI_QSSL_A	P807	6	5	QSPI_QIO0_A	P811	2			
2	QSPI_QIO1_A	P810	3	6	QSPI_QSPCLK_A	P812	1			
3	QSPI_QIO2_A	P809	4	7	QSPI_QIO3_A	P808	5			
4	GROUND	-	-	8	IOVCC0	-	-			

8.9 Arduino UNO Interface


This main board has Arduino UNO interface and can be connected to various shields. Component layout and configuration details are shown in **Figure 8-13**, **Figure 8-14**, and **Table 8-14**. Details of Arduino UNO connections are shown in **Table 8-15**, **Table 8-16**, **Table 8-17**, and **Table 8-18**.

Voltage can be supplied to J13-1 pin from IOVCC0/IOVCC1/AVCC0. Select the power supply voltage by shorting any of R110, R98, or R109. To supply from IOVCC0, short only R110. To supply from IOVCC1, short only R98. To supply from AVCC0, short only R109. **Figure 8-13** and **Figure 8-14** shows the board's default resistor setting (supply from IOVCC1).

Other settings will be as per the default kit configuration, as supplied.

Figure 8-13: Component Layout and Setting (Arduino UNO Interface (Top))

Other settings will be as per the default kit configuration, as supplied.

Figure 8-14: Component Layout and Settings (Arduino UNO Interface (Bottom))

Table 8-14: Configuration Details (Arduino UNO Interface)

Component	Setting
R98	Fitted
R109, R110	Removed

The settings in the table above are supported in default configuration, as supplied.

Table 8-15: Arduino UNO Interface (1)

	Arduino UNO Interface (J3)									
Diamet Name	RE01	RE01		Signal Name	RE01					
Pin	Signal Name	Port	Pin	Pin	Signal Name	Port	Pin			
1	ARDUINO_IO8	P409 (IOVCC)	18	6	ARDUINO_RSPCKA_B	P011 (IOVCC0)	96			
2	ARDUINO_IO9_GTIOC2A_B	P302 (IOVCC1)	48	7	GROUND	-	-			
3	ARDUINO_SSLA1_B	P015 (IOVCC0)	92	8	ARDUINO_VREF	-	-			
4	ARDUINO_MOSIA_B	P010 (IOVCC0)	97	9	ARDUINO_SDA0*	P012 (IOVCC0)	95			
5	ARDUINO_MISOA_B	P815 (IOVCC0)	98	10	ARDUINO_SCL0*	P013 (IOVCC0)	94			

^{*:} The default kit configuration uses a transfer rate of 50kbps or less. To increase the transfer rate, change the resistor values (R21, R22).

Table 8-16: Arduino UNO Interface (2)

	Arduino UNO Interface (J4)										
Dia	Signal Name	RE01	RE01		Signal Name	RE01					
Pin	Signal Name	Port	Pin	Pin	Signal Name	Port	Pin				
1	ARDUINO_IO0_RXD5_B	P314 (IOVCC1)	45	5	ARDUINO_IO4	P602 (IOVCC1)	53				
2	ARDUINO_IO1_TXD5_B	P315 (IOVCC1)	44	6	ARDUINO_IO5_ GTIOC5A_B	P603 (IOVCC1)	52				
3	ARDUINO_IO2_IRQ7_B	P204 (IOVCC1)	36	7	ARDUINO_IO6_ GTIOC5B_B	P604 (IOVCC1)	51				
4	ARDUINO_IO3_IRQ8_C	P205 (IOVCC1)	35	8	ARDUINO_IO7	P300 (IOVCC1)	50				

Table 8-17: Arduino UNO Interface (3)

	Arduino UNO Interface (J13)										
Din	Pin Signal Name RE01 Pin Pin	RE01	RE01		Signal Nama	RE01					
Pili		PIII	n Signal Name	Port	Pin						
1	IOVCC0*/IOVCC1/AVCC0*	-	-	5	Board_5V	-	-				
2	LP_3V3	-	-	6	GROUND	-	-				
3	RESn	RES# (IOVCC)	23	7	GROUND	-	-				
4	LP_3V3	-	-	8	VCC_MCU	-	-				

^{*:} Not connected by default. Please change the resistor based on your application.

Table 8-18: Arduino UNO Interface (4)

	Arduino UNO Interface (J14)									
Pin Signal Name	RE01		Dire	Cianal Nama	RE01					
	Signal Name	Port	Pin	Pin	Signal Name	Port	Pin			
1	ARDUINO_AN000	P000 (AVCC0)	89	4	ARDUINO_AN003	P003 (AVCC0)	86			
2	ARDUINO_AN001	P001 (AVCC0)	88	5	ARDUINO_AN004	P004 (AVCC0)	85			
3	ARDUINO_AN002	P002 (AVCC0)	87	6	ARDUINO_AN005	P005 (AVCC0)	82			

8.10 External DC/DC Circuit

Normally, the internal power supply of RE01 uses a built-in regulator (LDO). However, RE01 can enable an even lower power consumption by supplying power to the internal power supply from an external DC/DC converter instead of the internal LDO. **Figure 8-15** shows an overview of operation when using a built-in regulator, and **Figure 8-16** shows an overview of operation when using an external DC / DC converter. For external DC / DC, Renesas ISL9123 is mounted on the board and can be evaluated immediately.

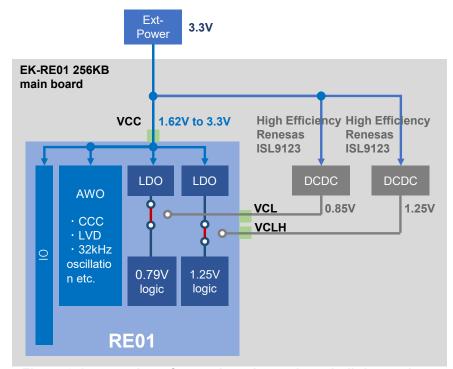


Figure 8-15: overview of operation when using a built-in regulator

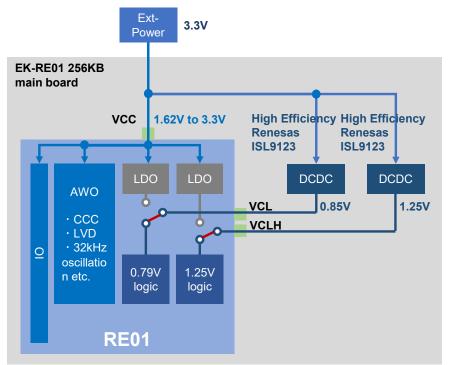


Figure 8-16: overview of operation when using an external DC/DC converter

Component layout is shown in **Figure 8-17**, while details are shown in **Figure 8-17** and **Table 8-19**. For details on the usage and benefits of external DC / DC, refer to the application note " RE01 256KB Group How to reduce power consumption by using the external DC/DC converter " (R01AN5424).

The I²C bus interface is used to change the voltage of external DC/DC. The default kit configuration uses a transfer rate of 50kbps or less. To increase the transfer rate, change the resistor values (R21, R22).

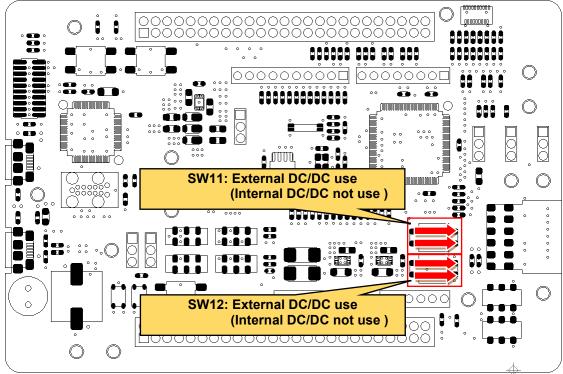


Figure 8-17: Component Layout and Settings (External DC/DC Circuit)

Table 8-19: Configuration Details (External DC/DC Circuit)

Component	Setting	
SW11, SW12	1-4, 2-3	External DC/DC use (Internal DC/DC not use)

9. Headers

9.1 RE01 Headers

This main board has RE01 headers, which can be used to observe general I/O port. **Table 9-1** and **Table 9-2** shows the connections of RE01 header J1. **Table 9-3** and **Table 9-4** shows the connections of RE01 header J2.

Table 9-1: RE01 Header J1 Connections (1)

		RE01 He			
Pin	Function (General IO Port/Power) Circuit Net Name	RE01 Pin	Pin	Function (General IO Port/Power) Circuit Net Name	RE01 Pin
	P812		2	P811	
1	J1 P812	 1		J1 P811	2
3	P810	_	4	P809	1.
	J1_P810	3		J1_P809	4
_	P808	_	_	P807	
5	J1_P808	- 5	6	J1_P807	6
7	P806	1_	8	Reserve	NO
7	PMOD_IO1	7		NC	NC NC
9	Reserve	- NC	10	Reserve	- NC
9	NC			NC	
11	GND		12	Reserve	- NC
11	GROUND	_		NC	
13	Reserve	NC NC	14	VCC/IOVCC	14
13	NC	NC		VCC_MCU	14
15	Reserve	NC	16	P411	16
10	NC	NO		J1_P411	
17	P410	17	18	P409	18
17	LED1	17		ARDUINO_IO8	
19	EHMD	19	20	Reserve	- NC
13	EHMD			NC	
21	Reserve	NC	22	P207	
۷.	NC	140		J1_P207	
23	RES#	23	24	MD	24
20	RESn			MD	

Page 84 of 95

Table 9-2: RE01 Header J1(2)

	RE01 Header J1				
Pin	Function (General IO Port/Power) Circuit Net Name	RE01 Pin	Pin	Function (General IO Port/Power) Circuit Net Name	RE01 Pin
25	P200	25	26	GND	-
27	J1_P200 VCC_SU	27	28	GROUND VBAT_EHC	- 28
29	VCC_SU VSC_VCC VSC_VCC	- 29	30	VBAT_EHC GND GROUND	
31	Reserve NC	NC NC	32	P210 LED0	- 32
33	P209 DCDC EHC EN	33	34	P208 DCDC Ext EN	- 34
35	P205 ARDUINO_IO3_IRQ8_C	35	36	P204 ARDUINO_IO2_IRQ7_B	- 36
37	P203 J1 P203	37	38	P202 J1 P202	- 38
39	P704 J1_P704	39	40	P703 J1 P703	40
41	P702 J1 P702	41	42	P701 J1 P701	42
43	P700 J1 P700	43	44	P315 ARDUINO_IO1_TXD5_B	- 44
45	P314 ARDUINO IO0 RXD5 B	45	46	IOVCC1	- 46
47	GND GROUND	-	48	P302 ARDUINO_IO9_GTIOC2A_B	- 48
49	P301 J1_P301	49	50	P300 ARDUINO_IO7	- 50

Table 9-3: RE01 Header J2(1)

RE01 Pin 52 54
_B
_B
54
56
58
60
62
64
66
-
68
70
70
72
12
74
74

Table 9-4: RE01 Header J2(2)

		Table 9-4: RE0 RE01 He		<u> </u>		
Pin	Function (General IO Port/Power) Circuit Net Name	RE01 Pin	Pin	Function (General IO Port/Power) Circuit Net Name	RE01 Pin	
25	P508		26	P501	76	
	SW2	75		J2_P501		
27	P500	77	28	AVCC0	78	
	J2_P500	77		AVCC0		
00	GND			P007	80	
29	GROUND	-	30	J2_P007		
31	P006	81	22	P005	82	
31	J2_P006	81	32	ARDUINO_AN005		
33	GND		34	VREFH0	84	
33	GROUND	-		VREFH0		
35	P004	85	36	P003	86	
35	ARDUINO_AN004			ARDUINO_AN003		
37	P002	0.7	38	P001	88	
31	ARDUINO_AN002	87		ARDUINO_AN001		
39	P000	89	40	GND		
39	ARDUINO_AN000	09		GROUND		
41	IOVCC0	04	42	P015	92	
4 I	IOVCC0	91		J2_P015		
43	P014	00	44	P013	94	
43	PMOD_IO0_P014	93		J2_P013		
45	P012	0.5	46	P011	96	
	J2_P012	95		J2_P011		
47	P010	0.7	40	P815		
47	J2_P010	97 48		J2_P815	98	
10	P814	00	50	P813	100	
49	PMOD_INT_AGTWOA1_B_P814	99		PMOD_RESET_RXD4_C	100	

10. Code Development

10.1 Overview

There are several ways to debug the code for this device:

- Connect Main Board to PC through IAR System[®] development tool I-jet[™] emulator.
- Connect Main Board to PC through Segger development tool J-Link™ OB that is mounted on Main Board.
- Connect Main Board to PC through Segger development tool J-Link™ emulator.
- Connect Main Board to PC through Renesas development tool E2 emulator.

Refer to the manufacturer's website for more details about each emulator.

10.2 Mode Support

This Evaluation Kit supports several operation modes and start-up modes. The settings related to modes change are described in Section 5. Operation/Start-up Mode. Refer to RE01 Group User's Manual: Hardware for detailed information about RE01 start-up mode and registers.

Only change the RE01 operating mode when the Evaluation Kit is in reset or turned off. Otherwise, the RE01 may be damaged.

10.3 Address Space

For the RE01 address space details, refer to the 'Address Space' section of RE01 Group User's Manual: Hardware.

11. Additional Information

Technical Support

For information about the RE01 refer to the RE01 Group User's Manual: Hardware. (R01UH0894)

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organizations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Electronics Corporation.

© 2021 Renesas Electronics Corporation. All rights reserved.

Revision History	RE01Group
	Evaluation Kit RE01 256KB User's Manual

Rev.	Date		Description				
		Page	Summary				
1.00	Jul 07, 2020	_	First Edition issued.				
1.01	Oct 02, 2020	8	Add chapter 1.2 Kit Contents.				
		9	Change table 1-2.				
		19	Add figure 2-8.				
		21	Change figure 4-1.				
		23	Add chapter 4.3.1 All power pins.				
		24-28	Change figure titles.				
			Add the voltage range that can be supplied.				
		36	Change the connector name.				
		47	Add figure 7-1.				
			Change sentence.				
		52	Add power domains to table 8-3.				
		63, 64	Add power domains from table 8-15 to table 8-18.				
1.02	Apr 16, 2021	21	Update the connection relationship on the board in Figure 3-1 to show the				
			connection terminals.				
		24	Correct numbering in the section 4.3.2. Add UC_VCC line to Figure 4-1 Power				
			Supply System Diagram.				
		26	Add SW3 and SW5 to Figure 4-3 Setting.				
		22, 23	Add details of connection terminals in Table 3-1 and 3-2.				
		34	Add Figure 5-3, 5-4 the connection relationship between signal lines and power				
			lines.				
		43 – 50	Add connection diagrams for signal lines and power lines for each setting.				
		57	Add the J-Flash Lite program writing method.				
		58, 59	Add Section 6.6 Emulator connection in EHC mode				
		60 – 65	Add the method of measuring the current when the on-board regulator 3.3V is				
			not used and in EHC mode.				
		82	Add Figure 8-15 and Figure 8-16 External DCDC circuit schematic diagram and revise the text.				

RE01 Group

Evaluation Kit RE01 256KB User's Manual

Publication Date: Rev. 1.02 Apr 16, 2021

Published by: Renesas Electronics Corporation

RE01 Group

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Boards & Kits - Other Processors category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

EVB-MEC1418MECC 20-101-1252 C29XPCIE-RDB CC-ACC-18M433 MAX1464EVKIT RTE510Y470TGB00000R

RTK0EN0001D01001BZ MAXQ622-KIT# YR0K505231S000BE YR0K50571MS000BE YQB-R5F1057A-TB QB-R5F104PJ-TB CC-ACC-ETHMX OV-7604-C7-EVALUATION-BOARD SK-AD02-D62Q1747TB SK-BS01-D62Q1577TB ST7MDT1-EMU2 GROVE BASE KIT FOR RASPBERRY PI CAB M-M(40-17-RAINBOW) CY8CKIT-143A EK-MPC5744P KITAURIXTC234TFTTOBO1 ESP32-C3-DEVKITC-02 ENW89854AXKF ENWF9201AVEF QB-R5F104LE-TB LV18F V6 64-80-PIN TQFP MCU CARD EMPTY LV-24-33 V6 44-PIN TQFP MCU CARD EMPTY LV-24-33 V6 64-PIN TQFP MCU CARD EMPTY LV-24-33 V6 80-PIN TQFP 1 MCU CARD EMPTY 32X32 RGB LED MATRIX PANEL - 6MM PITCH 3.3 - 5 VTRANSLATOR READY FOR XMEGA CASING (WHITE) RELAY4 BOARD ETHERNET CONNECTOR RFID CARD 125KHZ - TAG RFID READER RFM12B-DEMO MAROON 3G CLICK (FOR EUROPE AND AUSTRALIA) MAX232 MAX3232 BOARD ARTY S7-50 THREE-AXIS ACCELEROMETER BOARD TINKERKIT HALL SENSOR TOUCHPANEL TOUCHPANEL CONTROLLER MIKROBOARD FOR AVR WITH ATMEGA128 MIKROBOARD FOR PSOC WITH CY8C27643 MIKROBUS CAPE