RENESAS

DATASHEET

TW2837

4-Channel Video and Audio Controller for Security Applications

FN7742 Rev. 1.00 August 28, 2012

The TW2837 has four high quality NTSC/PAL video decoders, dual color display controllers and dual video encoders. The TW2837 contains four built-in analog anti-aliasing filters, four 10-bit Analog-to-Digital converters, and proprietary digital gain/clamp controller, high quality Y/C separator to reduce crossnoise and high performance free scaler. Four built-in motion, blind and night detectors can increase security system feature.

The TW2837 has flexible video

display/record/playback controller including basic display and MUX functions. The TW2837 also has excellent graphic overlay function, which displays bitmap for OSD, single box, 2D array box, and mouse pointer. The built-in channel ID CODEC allows auto decoding and displaying during playback and the additional scaler on the playback supports multicropping function of the same field or frame image. The TW2837 contains two video encoders with three 10-bit Digital-to-Analog converters to provide 2 composite or S-video. The TW2837 also includes audio CODEC that has four audio Analog-to-Digital converters and one Digital-to-Analog converter. A built-in audio controller can generate digital outputs for recording/mixing and accepts digital input for playback. The TW2837 can be extended up to 8/16 channel video controller using chip-to-chip cascade connection.

Features

FOUR VIDEO DECODERS

- \bullet Accepts all NTSC(M/N/4.43) / PAL(B/D/G/H/I/K/L/M/N/60) standards with auto detection
- Integrated four video analog anti-aliasing filters and 10-bit CMOS ADCs
- High performance adaptive 4H comb filters for all NTSC/PAL standards
- IF compensation filter for improvement of color demodulation
- Color Transient Improvement (CTI)
- Automatic white peak control
- Programmable hue, saturation, contrast, brightness and sharpness
- Proprietary fast video locking system for non-realtime application
- High performance horizontal and vertical scaler for each path including playback input
- Four built-in motion detectors with 16X12 cells and blind and night detectors
- Additional digital input for playback with ITU-R BT.656 standard
- Auto cropping / strobe for playback input with Channel ID decoder
- Supports four channel full D1 record mode

DUAL VIDEO CONTROLLERS

- Supports full triplex function with 4 Ch live, 4 Ch playback display and 4 Ch record output
- Analog/Digital channel ID CODEC for record and playback applications
- Supports adaptive median filter for Record
- Supports pseudo 8 channel and/or dual page mode Horizontal/Vertical mirroring for each channel
- Last image captured when video-loss detected
- Auto sequence switch with 128 queues and/or manual switch by interrupt for record path
- Channel skip in auto sequence switch for record path when video-loss detected
- Image enhancement for zoomed or still image in display path
- High performance 2X zoom to horizontal and vertical direction for display path
- Extendable up to 8/16 channel video controller using cascade connection
- Quad MUX switch with 32 queues and/or manual control by interrupt for record path
- 256 color bitmap OSD overlay with 720x480 in NTSC / 720x588 resolution in PAL
- Four programmable single boxes and four 2D arrayed boxes overlay
- Mouse pointer overlay

DUAL VIDEO ENCODERS

- Dual path digital outputs with ITU-R BT.656 standard
- Dual path analog outputs with all analog NTSC/PAL standards
- Programmable bandwidth of luminance and chrominance signal for each path
- Three 10-bit video CMOS DACs

AUDIO CODEC

- Integrated four audio ADCs and one audio DAC
- Provides multi-channel audio mixed analog output

- Supports a standard I²S interface for record output and playback input
- PCM 8/16-bit and u-Law/A-Law 8-bit for audio word length
- Programmable audio sample rate that covers popular frequencies of 8/16/32/44.1/48kHz

Changes from TW2835

TW2837 is very similar to its previous version chip TW2835. The changes are as follows.

- Provides higher quality video picture with a complete re-design of front-end video decoders
- Provides a new audio decoder with better audio quality and also an extra audio PLL for accurate 8kHz/16kHz sampling rate
- An enhanced OSD with 256 color look up table
- Provides OSD Block Move / Block Fill / Bitmap Burst Write function to enhance the OSD buffer write performance. With these functions, MCU is relieved from filling the OSD buffer pixel by pixel, therefore achieving much faster OSD buffer update rate
- Maintains backward compatibility to TW2835 on the OSD features. All previous OSD control registers are still available. To use the new feature, however, the SAVE/RECALL feature is limited to 3 frames / 6 fields rather than 4 frames / 8 fields as was in TW2835

Applications

- Analog QUAD/MUX System
- 4/8/16 Channel DVR System
- Car Rear Vision System
- Hair Shop System
- Dental Care System

Table of Contents

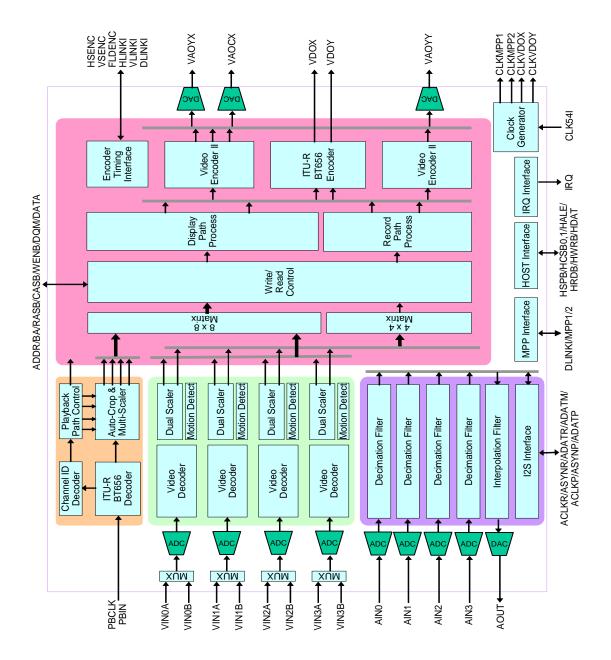
Order Information5
Block Dlagram
Pin Description7
Analog Interface Pins7
Digital Video Interface Pins8
Multi-purpose Pins9
Digital Audio Interface Pins9
Memory Interface Pins10
System Control Pins11
Power / Ground Pins12
Pin Diagram13
208 QFP Pin Diagram (Top -> Bottom View)13
256 LBGA Pin Diagram (Top->Bottom View)14
Functional Description15
Video Input15
Analog Video Inputs16
Video Input Formats16
Analog Video Frontend17
Video Decimation Filter18
Automatic Gain Control and Clamping18
Sync Processing18
Y/C Separation19
Color Decoding20
Chrominance Processing21
Luminance Processing21
Digital Video Input23
Digital Video Input Format23
Channel ID Decoder24
Cropping and Scaling Function25
Cropping Function for Live25
Scaling Function for Live26
Cropping and Scaling Function for Playback
Motion Detection31
Mask and Detection Region Selection32
Sensitivity Control
Level Sensitivity33
Spatial Sensitivity33
Temporal Sensitivity33
Velocity Control
Blind Detection
Night Detection

Video Control
Channel Input Selection
Channel Operation Mode
Live Mode 39
Strobe Mode 40
Switch Mode 42
Channel Attribute46
Background Control 46
Boundary Control 46
Blank Control 46
Freeze Control 46
Last Image Captured 47
Horizontal / Vertical Mirroring
Field to Frame Conversion47
Display Path Control47
Save and Recall Function 47
Image Enhancement 48
Zoom Function 48
Picture Size and Popup Control
Full Triplex Function 49
Playback Path Control50
Normal Record Mode51
Frame Record Mode52
DVR Normal Record Mode54
DVR Frame Record Mode 55
Record Path Control 56
Normal Record Mode57
Frame Record Mode58
DVR Normal Record Mode 59
DVR Frame Record Mode 60
Noise Reduction61
Channel ID Encoder61
Channel ID Information 62
Analog Type Channel ID in VBI
Digital Type Channel ID in VBI
Digital Type Channel ID in Channel Boundary
Chip-to-Chip Cascade Operation67
Channel Priority Control
120 CIF/Sec Record Mode70
240 CIF/Sec Record Mode 71
480 CIF/Sec Record Mode 72

Infinite Cascade Mode for Display Path73
OSD (On Screen Display) Control74
2 Dimensional Arrayed Box75
Bitmap Overlay76
Single Box81
Mouse Pointer82
Video Output83
Timing Interface and Control83
Analog Video Output85
Output Standard Selection85
Luminance Filter85
Chrominance Filter86
Digital-to-Analog Converter86
Digital Video Output88
Single Output Mode88
Dual Output Mode90
Realtime Record Mode90
Audio Codec91
Audio Decimation Filter Response92
Audio Clock Master/Slave mode92
Multi-Chip Operation93
Serial Audio Interface97
Playback Input97

Record Output98
Mix Output
Audio Clock Generation99
Host Interface 100
Serial Interface101
Parallel Interface103
Interrupt Interface 104
MPP Pin Interface105
Control Register106
Register Map106
Recommended Value 114
For Video Decoder114
For Video Controller117
For Motion Detector119
Register Description120
Parametric Information
DC Electrical Parameters
AC Electrical Parameters221
Application Schematic
Package Dimension
208 QFP229
256 LBGA
Revision History

Ordering Information


PART NUMBER	PART MARKING	PACKAGE (Pb-free)
TW2837-BB1-GR (Note 1)	TW2837 DABB1-GR	256 Ld PBGA (17mm x 17mm)
TW2837-PB1-GE (Note 2)	TW2837 DAPB1-GE	208 Ld PQFP (28mm x 28mm)

NOTE:

- These Intersil Pb-free BGA packaged products employ special Pb-free material sets; molding compounds/die attach materials and SnAg -e2 solder ball terminals, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free BGA packaged products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

TW2837

Pin Descriptions

Analog Interface Pins

NAME	NUM	IBER	ТҮРЕ	DESCRIPTION
	QFP	LBGA		DESCRIPTION
VINOA	166	B12	Α	Composite video input A of channel 0.
VINOB	167	C12	Α	Composite video input B of channel 0.
VIN1A	170	B11	Α	Composite video input A of channel 1.
VIN1B	171	C11	Α	Composite video input B of channel 1.
VIN2A	176	B10	Α	Composite video input A of channel 2.
VIN2B	177	C10	Α	Composite video input B of channel 2.
VIN3A	180	B9	Α	Composite video input A of channel 3.
VIN3B	181	C9	Α	Composite video input B of channel 3.
VAOYX	184	C8	Α	Analog video output.
VAOCX	186	D8	Α	Analog video output.
VAOYY	189	C7	Α	Analog video output.
NC	191	D7	Α	No connection.
AINO	197	B6	Α	Audio input of channel 0.
AIN1	198	C6	Α	Audio input of channel 1.
AIN2	199	B5	Α	Audio input of channel 2.
AIN3	200	C5	Α	Audio input of channel 3.
AOUT	194	D5	Α	Audio mixing output.

Digital Video Interface Pins

NAME	NUM	IBER	ТҮРЕ	DESCRIPTION
NAME	QFP	LBGA		DESCRIPTION
VDOX [7:0]	8,9, 10,11, 13,14, 15,16	C1,C2, D2,D3, E1,E2, E3,E4	0	Digital video data output for display path. Or link signal for multi-chip connection.
VDOY [7:0]	33,34, 36,37, 38,39, 40,42	J4,K2, K3,L1, L2,L3, L4,M1	0	Digital video data output for record path.
CLKVDOX	17	F1	0	Clock output for VDOUTX.
CLKVDOY	32	J3	0	Clock output for VDOUTY
HSENC	21	F4	0	Encoder horizontal sync.
VSENC	20	F3	ο	Encoder vertical sync. Or link signal for multi-chip connection.
FLDENC	19	F2	0	Encoder field flag.
PBDIN[7:0]	43,44, 45,46, 48,49, 50,51	M2,M3, M4,N2, N3,P1, P2,R1	I	Video data of playback input.
PBCLK	54	R2	I	Clock of playback input.

Multi-purpose Pins

NAME	NUM	IBER	ТҮРЕ	DESCRIPTION
NAME	QFP	LBGA		DESCRIPTION
HLINKI	138	F14	I/0	Link signal for multi-chip connection.
VLINKI	140	F13	I	Link signal for multi-chip connection.
DLINKI[7:0]	149,148, 147,146, 144,143, 142,141	C15,C16, D14,D15, E13,E14, E15,E16	I/0	Link signal for multi-chip connection. Or decoder's bypassed data output. Or decoder's timing signal output. Or general purpose input/output.
MPP1[7:0]	204,205, 206,207, 2,3, 4,5	A4,B4, C4,A3, B3,C3, A2,B2	I/0	Decoder's bypassed data output. Or decoder's timing signal output. Or general purpose input/output.
MPP2[7:0]	152,153, 154,155, 158,159, 160,161	B16,B15, A15,A14, B14,A13, B13,C13	I/0	Decoder's bypassed data output. Or decoder's timing signal output. Or general purpose input/output.
CLKMPP1	7	B1	0	Clock output for MPP1 data.
CLKMPP2	150	C14	0	Clock output for MPP2 data.

Digital Audio Interface Pins

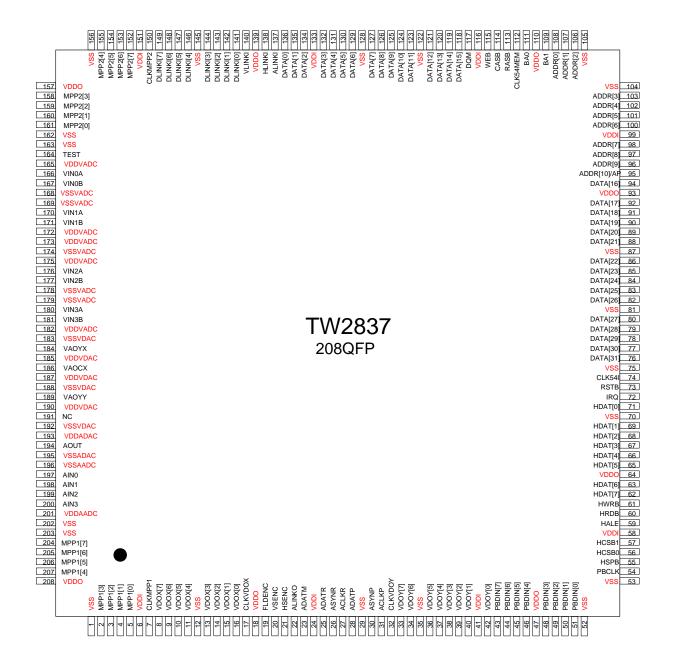
NAME	NUM	IBER	TYPE	DESCRIPTION
NAME	QFP	LBGA		DESCRIPTION
ACLKR	27	H3	0	Audio serial clock output of record.
ASYNR	26	H2	0	Audio serial sync output of record.
ADATR	25	H1	0	Audio serial data output of record.
ADATM	23	G3	0	Audio serial data output of mixing.
ACLKP	31	J2	I/0	Audio serial clock input/output of playback.
ASYNP	30	J1	I/0	Audio serial sync input/output of playback.
ADATP	28	H4	I	Audio serial data input of playback.
ALINKI	137	F15	I	Link signal for multi-chip connection.
ALINKO	22	G2	0	Link signal for multi-chip connection.

Memory Interface Pins

NAME	NUM	IBER	TYPE	DESCRIPTION
	QFP	LBGA		DESCRIPTION
	76,77,	R8,P8,		
	78,79,	N8,T9,		
	80,82,	R9,P9,		
	83,84,	N9,R10,		
	85,86,	P10,T11,		
	88,89,	R11,P11,		
	90,91,	N11,T12,		
DATA[31:0]	92,94,	R12,P12,	I/O	SDRAM data bus.
	118,119, 120,121,	L15,L14, L13,K15,		
	120,121, 123,124,	K14,J16,		
	125,124, 125,126,	J15,J14,		
	127,129,	J13,H16,		
	130,131,	H15,H14,		
	132,134,	H13,G15,		
	135,136	G14,F16		
	95,96,	N12,R13,		
	97,98,	P13,T14,		SDRAM address bus. ADDR[10] is AP.
ADDR[10:0]	100,101,	R14,P14,	ο	
ADDR[10.0]	102,103,	T15,R15,	0	
	106,107,	R16,P16,		
	108	P15		
BA1	109	N15	0	SDRAM bank1 selection.
BAO	111	N14	0	SDRAM bank0 selection.
RASB	113	M15	0	SDRAM row address selection.
CASB	114	M14	0	SDRAM column address selection.
WEB	115	M13	0	SDRAM write enable.
DQM	117	L16	0	SDRAM write mask.
CLK54MEM	112	M16	0	SDRAM clock.

System Control Pins

NAME	NUM	IBER	ТҮРЕ	DESCRIPTION
NAME	QFP	LBGA	ITPE	DESCRIPTION
TEST	164	D12	I	Only for the test purpose. Must be connected to VSSO.
RSTB	73	P7	I	System reset. Active low.
IRQ	72	R7	0	Interrupt request signal.
HDAT[7:0]	62,63, 65,66, 67,68, 69,71	T5,R5, P5,N5, T6,R6, P6,N6	I/0	Data bus for parallel interface. HDAT[7] is serial data for serial interface. HDAT[6:1] is slave address[6:1] for serial interface.
HWRB	61	P4	I	Write enable for parallel interface. VSSO for serial interface.
HRDB	60	R4	I	Read enable for parallel interface. VSSO for serial interface.
HALE	59	P3	I	Address line enable for parallel interface. Serial clock for serial interface.
HCSB1	57	R3	I	Chip select 1 for parallel interface. VSSO for serial interface.
HCSB0	56	тз	I	Chip select 0 for parallel interface. Slave address[0] for serial interface.
HSPB	55	T2	I	Select serial/parallel host interface.
CLK54I	74	Т8	I	54MHz system clock.


Power / Ground Pins

NAME	NUMBER		TYPE	DESCRIPTION
	QFP	LBGA		DESCRIPTION
VDDO	18,47, 64,93, 110,139, 157,208	A1,A16, K1,K16, T1,T7, T10,T16	Ρ	Digital power for output driver 3.3V.
VDDI	6,24, 41,58, 99,116, 133,151,	D1,D16, G1,G16, N1,N16, T4,T13	Ρ	Digital power for internal logic 1.8V.
VDDVADC	165,172, 173,175, 182	A8,A9, A10,A11, A12	Ρ	Analog power for Video ADC 1.8V.
VSSVADC	168,169, 174,178, 179	D10,D11, D13, E11, E12	G	Analog ground for Video ADC 1.8V.
VDDVDAC	185,187, 190	A7,B7, B8	Р	Analog power for Video DAC 1.8V.
VSSVDAC	183,188, 192	D9,E7, E8,E9, E10	G	Analog ground for Video DAC 1.8V.
VDDAADC	201	A6	Р	Analog power for Audio ADC 1.8V.
VSSAADC	196	D6,E6	G	Analog ground for Audio ADC 1.8V.
VDDADAC	193	A5	Р	Analog power for Audio DAC 1.8V.
VSSADAC	195	D4,E5	G	Analog ground for Audio DAC 1.8V.
VSS	1,12, 29,35, 52,53, 70,75, 81,87, 104,105, 122,128, 145,156, 162,163, 202,203	F5~F12, G4~G13, H5~H12, J5~J12, K4~K13, L5~L12, M5~M12, N4,N7, N10,N13	G	Ground.

Pin Configuration

208 QFP Pin Diagram (Top -> Bottom View)

256 LBGA Pin Diagram (Top->Bottom View)

	A	в	С	D	Е	F	G	н	J	к	L	М	Ν	Р	R	Т	
16	VDDO	MPP2 [7]	DLINKI [6]	VDDI	DLINKI [0]	DATA [0]	VDDI	DATA [6]	DATA [10]	VDDO	DQM	CLK 54MEN	VDDI	ADDR [1]	ADDR [2]	VDDO	16
15	MPP2 [5]	MPP2 [6]	DLINKI [7]	DLINKI [4]	DLINKI [1]	ALINKI	DATA [2]	DATA [5]	DATA [9]	DATA [12]	DATA [15]	RASB	BA1	ADDR [0]	ADDR [3]	ADDR [4]	15
14	MPP2 [4]	MPP2 [3]	CLK MPP2	DLINKI [5]	DLINKI [2]	HLINKI	DATA [1]	DATA [4]	DATA [8]	DATA [11]	DATA [14]	CASB	BA0	ADDR [5]	ADDR [6]	ADDR [7]	14
13	MPP2 [2]	MPP2 [1]	MPP2 [0]	VSSV ADC	DLINKI [3]	VLINKI	VSS	DATA [3]	DATA [7]	VSS	DATA [13]	WEB	VSS	ADDR [8]	ADDR [9]	VDDI	13
12	VDD VADC	VIN0A	VIN0B	TEST	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	ADDR [10]/AP	DATA [16]	DATA [17]	DATA [18]	12
11	VDD VADC	VIN1A	VIN1B	VSSV ADC	VSSV ADC	VSSV ADC	VSS	VSS	VSS	VSS	VSS	VSS	DATA [19]	DATA [20]	DATA [21]	DATA [22]	11
10	VDD VADC	VIN2A	VIN2B	VSSV ADC	VSSV DAC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	DATA [23]	DATA [24]	VDDO	10
9	VDD VADC	VIN3A	VIN3B	VSSV DAC	VSSV DAC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	DATA [25]	DATA [26]	DATA [27]	DATA [28]	9
8	VDD VADC	VDD VDAC	VAOYX	VAOCX	VSSV DAC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	DATA [29]	DATA [30]	DATA [31]	CLK54I	8
7	VDD VDAC	VDD VDAC	VAOYY	NC	VSSV DAC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	RSTB	IRQ	VDDO	7
6	VDD AADC	AIN0	AIN1	VSSA ADC	VSSA ADC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	HDAT [0]	HDAT [1]	HDAT [2]	HDAT [3]	6
5	VDD ADAC	AIN2	AIN3	AOUT	VSSA DAC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	HDAT [4]	HDAT [5]	HDAT [6]	HDAT [7]	5
4	MPP1 [7]	MPP1 [6]	MPP1 [5]	VSSA DAC	VDOX [0]	HS ENC	VSS	ADATP	VDOY [7]	VSS	VDOY [1]	PBDIN [5]	VSS	HWRB	HRDB	VDDI	4
3	MPP1 [4]	MPP1 [3]	MPP1 [2]	VDOX [4]	VDOX [1]	VS ENC	ADATN	ACLKR	CLK VDOY	VDOY [5]	VDOY [2]	PBDIN [6]	PBDIN [3]	HALE	HCSB1	HCSB0	3
2	MPP1 [1]	MPP1 [0]	VDOX [6]	VDOX [5]	VDOX [2]	FLD ENC	ALINKC	ASYNF	ACLKP	VDOY [6]	VDOY [3]	PBDIN [7]	PBDIN [4]	PBDIN [1]	PB CLK	HSPB	2
1	VDDO	CLK MPP1	VDOX [7]	VDDI	VDOX [3]	CLK VDOX	VDDI	ADATR	ASYNF	VDDO	VDOY [4]	VDOY [0]	VDDI	PBDIN [2]	PBDIN [0]	VDDO	1
L	Α	В	С	D	Е	F	G	н	J	к	L	М	N	Р	R	т	

Functional Description

Video Input

The TW2837 has 5 input interfaces that consist of 1 digital video input and 4 analog composite video inputs. Four analog video inputs are converted to digital video stream through 10 bits ADC and luminance/chrominance processor in built-in four video decoders. One digital input for playback application are decoded by internal ITU-R BT656 decoder and then fed to video control part and channel ID decoder. Each built-in video decoder has its own motion detector and dual scaler. Four additional scalers are also embedded for playback display application. The structure of video input is shown in the following Figure 1.

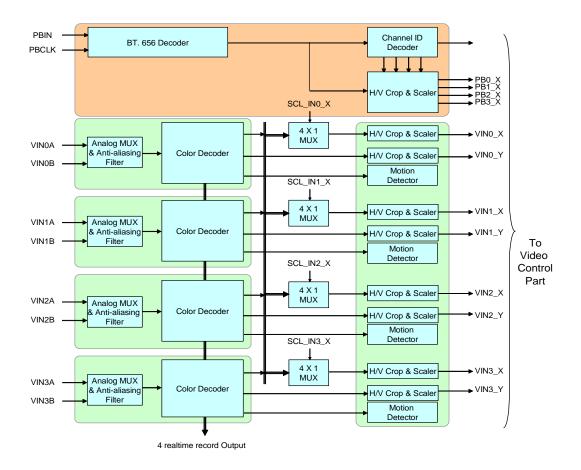


FIGURE 1 THE STRUCTURE OF VIDEO INPUT

For the special 4ch real-time record application, the TW2837 supports 4 realtime video decoder outputs through the multi-purpose output pins (MPP1[7:0] and MPP2[7:0]).

ANALOG VIDEO INPUTS

Video Input Formats

The TW2837 has build-in automatic standard discrimination circuitry. The circuit uses burst-phase, burst-frequency and frame rate to identify NTSC, PAL or SECAM color signals. The standards that can be identified are NTSC (M), NTSC (4.43), PAL (B, D, G, H, I), PAL (M), PAL (N), PAL (60) and SECAM (M). Each standard can be included or excluded in the standard recognition process by software control. The exceptions are the base standard NTSC and PAL, which are always enabled. The identified standard is indicated by the Standard Selection (SDT) register. Automatic standard detection can be overridden by software controlled standard selection.

TW2837 supports all common video formats as shown in Table 1.

FORMAT	LINES	FIELDS	FSC	COUNTRY
NTSC-M	525	60	3.579545 MHz	U.S., many others
NTSC-Japan (1)	525	60	3.579545 MHz	Japan
PAL-B, G, N	625	50	4.433619 MHz	Many
PAL-D	625	50	4.433619 MHz	China
PAL-H	625	50	4.433619 MHz	Belgium
PAL-I	625	50	4.433619 MHz	Great Britain, others
PAL-M	525	60	3.575612 MHz	Brazil
PAL-CN	625	50	3.582056 MHz	Argentina
SECAM	625	50	4.406MHz 4.250MHz	France, Eastern Europe, Middle East, Russia
PAL-60	525	60	4.433619 MHz	China
NTSC (4.43)	525	60	4.433619 MHz	Transcoding

TABLE 1 VIDEO INPUT FORMATS SUPPORTED BY THE TW2837

NOTE:

3. NTSC-Japan has 0 IRE setup.

Analog Video Frontend

The TW2837 contains four 10-bit ADC (Analog to Digital Converters) to digitize the analog video inputs. The ADC can be put into power-down mode by the V_ADC_PWDN register. The TW2837 also contains an anti-aliasing filter to prevent out-of-band frequency in analog video input signal. So there is no need of external components in analog input pin except ac coupling capacitor and termination resistor. The following Figure 2 shows the frequency response of the anti-aliasing filter.

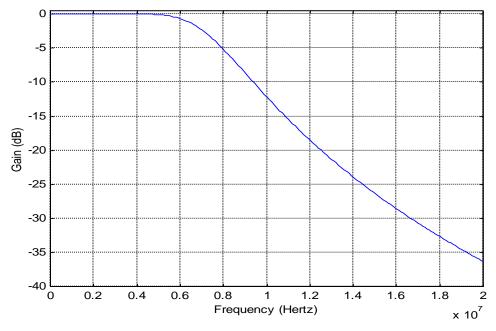
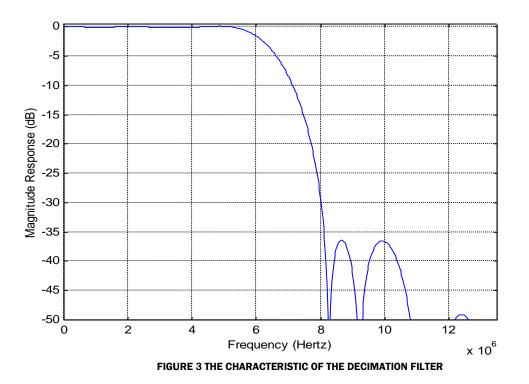



FIGURE 2 THE FREQUENCY RESPONSE OF ANTI-ALIASING FILTER

Video Decimation Filter

The digitized composite video data are over-sampled to simplify the design of analog filter. The decimation filter is required to achieve optimum performance and prevent high frequency components from being aliased back into the video image when down-sampled. Figure 3 shows the characteristic of the decimation filter.

Automatic Gain Control and Clamping

All four analog channels have built-in clamping circuit that restores the signal DC level. The Y channel restores the back porch of the digitized video to a level of 60. This operation is automatic through internal feedback loop. The Automatic Gain Control (AGC) of the Y channel adjusts input gain so that the sync tip is at a desired level. Programmable white peak protection logic is included to prevent saturation in the case of abnormal signal proportion between sync and white peak level.

Sync Processing

The sync processor of TW2837 detects horizontal synchronization and vertical synchronization signals in the composite video or in the Y signal of an S-video or component signal. The processor contains a digital phase-locked-loop and decision logic to achieve reliable sync detection in stable signal as well as in unstable signals such as those from VCR fast forward or backward.

The vertical sync separator detects the vertical synchronization pattern in the input video signals. In addition, the actual sync determination is controlled by a detection window to provide more reliable synchronization. An option is available to provide faster responses for certain applications. The field status is determined at vertical synchronization time. The field logic can also be controlled to toggle automatically while tracking the input

Y/C Separation

The color-decoding block contains the luma/chroma separation for the composite video signal and multi-standard color demodulation. For NTSC and PAL standard signals, the luma/chroma separation can be done either by comb filter or notch/band-pass filter combination. For SECAM standard signals, adaptive notch/band-pass filter is used. The default selection for NTSC/PAL is comb filter.

In the case of comb filter, the TW2837 separates luma (Y) and chroma (C) of a NTSC/PAL composite video signal using a proprietary 4H adaptive comb filter. The filter uses a four-line buffer. Adaptive logic combines the upper-comb and the lower-comb results based on the signal changes among the previous, current and next lines. This technique leads to excellent Y/C separation with small cross luma and cross color at both horizontal and vertical edges

Due to the line buffer used in the comb filter, there are always two lines processing delay at the output except for the component input mode which has only one line delay.

If notch/band-pass filter is selected, the characteristics of the filters are shown in the filter curve section.

The Figure 4 show the frequency response of notch filter for each system NTSC and PAL. The Figure 5 shows the frequency response of Chroma Band Pass Filter Curves.

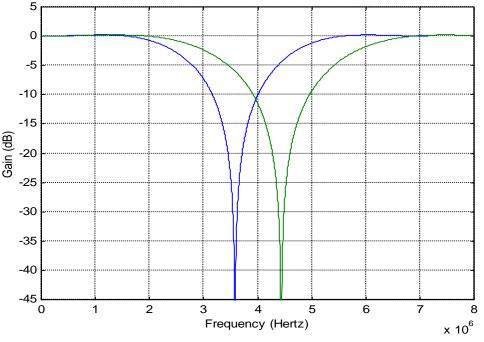


FIGURE 4 THE CHARACTERISTICS OF LUMINANCE NOTCH FILTER FOR PAL

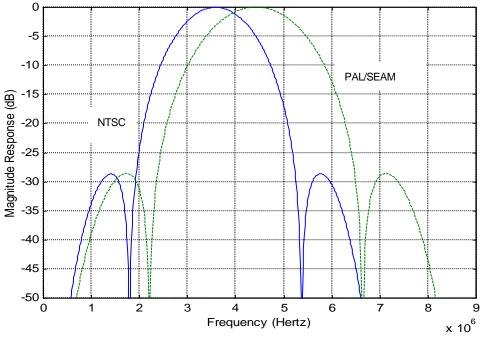


FIGURE 5 CHROMA BAND PASS FILTER CURVES

Color Decoding

Chrominance Demodulation

The color demodulation for NTSC and PAL standard is done by first quadrature mixing the chroma signal to the base band. A low-pass filter is then used to remove carrier signal and yield chroma components. The low-pass filter characteristic can be selected for optimized transient color performance. For the PAL system, the PAL ID or the burst phase switching is identified to aid the PAL color demodulation.

For SECAM, the color information is FM modulated onto different carrier. The demodulation process therefore consists of FM demodulator and de-emphasis filter. During the FM demodulation, the chroma carrier frequency is identified and used to control the SECAM color demodulation.

The sub-carrier signal for use in the color demodulator is generated by direct digital synthesis PLL that locks onto the input sub-carrier reference (color burst). This arrangement allows any sub-standard of NTSC and PAL to be demodulated easily with single crystal frequency.

Figure 5 and Figure 6 show the frequency response of Chrominance Band Pass and Low-Pass Filter Curves.

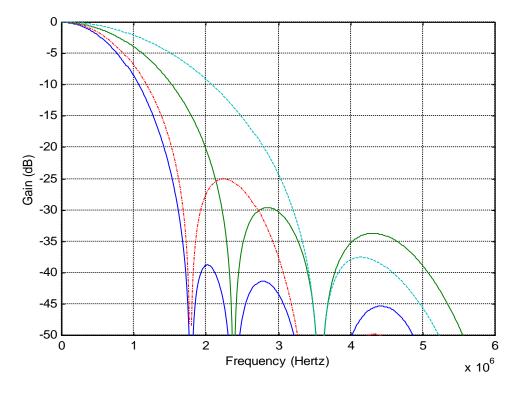


FIGURE 6 CHROMINANCE LOW-PASS FILTER CURVES

ACC (Automatic Color gain control)

The Automatic Chroma Gain Control (ACC) compensates for reduced amplitudes caused by high-frequency loss in video signal. In the NTSC/PAL standard, the color reference signal is the burst on the back porch. It is measured to control the chroma output gain. The range of ACC control is –6db to +24db.

Chrominance Processing

Chrominance Gain, Offset and Hue Adjustment

When decoding NTSC signals, TW2837 can adjust the hue of the chroma signal. The hue is defined as a phase shift of the subcarrier with respect to the burst. This phase shift of NTSC decoding can be programmed through a control register. For the PAL standard, the PAL delay line is provided to compensate any hue error; therefore, there is no hue adjustment available. The color saturation can be adjusted by changing the gain of Cb and Cr signals for all NTSC, PAL and SECAM formats. The Cb and Cr gain can be adjusted independently for flexibility.

CTI (Color Transient Improvement)

The TW2837 provides the Color Transient Improvement function to further enhance the image quality. The CTI enhance the color edge transient without any overshoot or under-shoot.

Luminance Processing

The TW2837 adjusts brightness by adding a programmable value (in register BRIGHTNESS) to the Y signal. It adjusts the picture contrast by changing the gain (in register CONTRAST) of the Y signal.

The TW2837 also provide programmable peaking function to further enhance the video sharpness. The peaking control has built-in coring function to prevent enhancement of noise.

The Figure 7 shows the characteristics of the peaking filter for four different gain modes and different center frequencies.

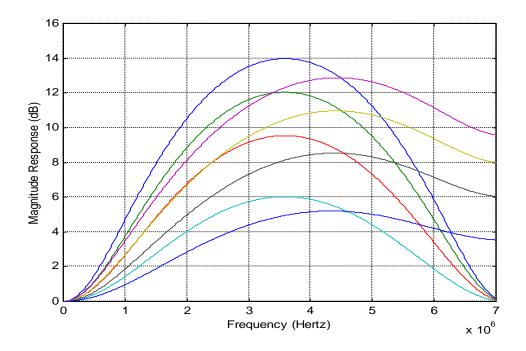
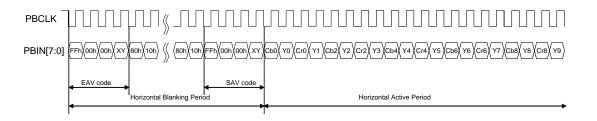


FIGURE 7 THE CHARACTERISTIC OF LUMINANCE PEAKING FILTER



DIGITAL VIDEO INPUT

The TW2837 supports digital video input with 8bit ITU-R BT.656 standard for playback. This digital input is decoded in built-in ITU-R BT 656 decoder and fed to the scaler block in order to display the scaled video data. The TW2837 supports error correction mode for decoding ITU-R BT.656. The decoded video data are also transferred to channel ID decoder part for auto cropping and strobe function.

Digital Video Input Format

The timing of digital video input is illustrated in Figure 8.

FIGURE 8 TIMING DIAGRAM OF ITU-R BT.656 FORMAT FOR DIGITAL VIDEO INPUT

The SAV and EAV sequences are shown in Table 2.

	CONDITIC	N	656	FVH VA	LUE	SAV/EAV CODE SEQUENCE				
FIELD	VERTICAL	HORIZONTAL	F	v	Н	FIRST	SECOND	THIRD	FOURTH	
	Blank	EAV	1	1	1	OxFF			0xF1	
EVEN	DIdlik	SAV			0				OxEC	
EVEN	Active	EAV	1	0	1				0xDA	
	Active	SAV			0		0x00	0x00	0xC7	
ODD	Blank	EAV	0	1	1		0,00	0,00	0xB6	
000	DIAIIK	SAV	U	-	0				OxAB	
ODD	Active	EAV	0	0	1				0x9D	
	Active	SAV	0		0				0x80	

TABLE 2 ITU-R BT.656 SAV AND EAV CODE SEQUENCE

Channel ID Decoder

The TW2837 provides channel ID decoding function for playback input. The TW2837 supports three kinds of channel ID such as User channel ID, Detection channel ID, and auto channel ID. The User channel ID is used for customized information like system information and date. The Detection channel ID is used for detected information of current live input such as motion, video loss, blind and night detection information. The auto channel ID is employed for automatic identification of picture configuration which includes the channel number, analog switch, event, region enable and field/frame mode information. The TW2837 also supports both analog and digital type channel ID during VBI period. The digital channel ID has priority over analog channel ID. The analog type channel ID decoding is enabled via the VBI_ENA (1x86) register and the digital type channel ID decoding is operated via VBI_CODE_EN (1x86) register. Additionally to detect properly the analog channel ID against noise such as VCR source, the channel ID LPF can be enabled via the VBI_FLT_EN (1x86) register. The decoded channel ID information is used for auto cropping / strobe function and can also be read through the host interface. The detailed auto cropping / strobe function for playback input will be described at "Cropping Function for Playback" section (page 30) and "Playback Path Control" section (page 50).

For channel ID detection mode, the TW2837 supports both automatic channel ID detection mode and manual channel ID detection mode. For an automatic channel ID detection mode, the playback input should include a run-in clock. But for a manual channel ID detection mode, the playback input can include a run-in clock or not via VBI_RIC_ON (1x86) register. In a manual detection mode, the TW2837 has several related register such as the VBI_PIXEL_HOS (1x87) to define horizontal start offset, the VBI_FLD_OS (1x88) to define line offset between odd and even field, the VBI_PIXEL_HW (1x88) to define pulse width for 1 bit data, the VBI_LINE_SIZE (1x89) to define channel ID line size and the VBI_LINE_OS (1x89) to define line offset for channel ID. The VBI_MID_VAL (1x8A) register is used to define the threshold level between high and low. Even in automatic channel ID detection mode, the line size and bit width can be discriminated by reading the VBI_LINE_SIZE and VBI_PIXEL_HW register. The **Error! Reference source ot found.** shows the relationship between channel ID and register setting.

This channel ID information can be read through the CHID_TYPE or CHID_VALID (1x8B), AUTO_CHID 0/1/2/3 (1x8C~ 1x8F), DET_CHID 0/1/2/3/4/5/6/7 (1x98~1x9F), and USER_CHID 0/1/2/3/4/5/6/7 (1x90~1x97) registers. The CHID_TYPE register discriminates between the Auto channel ID (CHID_TYPE = "1") and User channel ID (CHID_TYPE = "0"). The CHID_VALID register indicates whether the detected channel ID type is valid or not. The AUTO_CHID, DET_CHID and USER_CHID registers are used to check the decoded channel ID data when the VBI_RD_CTL (1x86) register value is "1".

Basically the channel ID is located in VBI period and auto strobe and cropping is executed after channel ID decoding. But for some case, the channel ID can be placed in vertical active period instead of VBI period. For this mode, the TW2837 also supports the channel ID decoding function within vertical active period via the VAV_CHK (1x88) register and manual cropping function via the MAN_PBCROP (0xC0) register with proper VDELAY value.

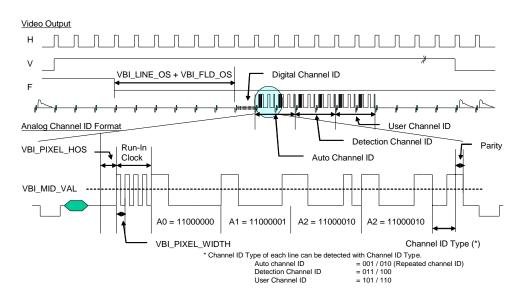


FIGURE 9 THE RELATED REGISTER FOR MANUAL CHANNEL ID DETECTION

CROPPING AND SCALING FUNCTION

The TW2837 provides two methods to reduce the amount of video pixel data, scaling and cropping. The scaling function provides video image at lower resolution while the cropping function supplies only a portion of the video image. The TW2837 also supports an auto cropping function for playback input with channel ID decoding. The TW2837 has a free scaler for a variable image size in display path, but has a limitation of image size in record path such as Full / QUAD / CIF format.

Cropping Function for Live

The cropping function allows only subsection of a video image to be output. The active video region is determined by the HDELAY, HACTIVE, VDELAY and VACTIVE (0x02 ~ 0x06, 0x12 ~ 0x16, 0x22 ~ 0x26, 0x32 ~ 0x36) register. The first active line is defined by the VDELAY register and the first active pixel is defined by the HDELAY register. The VACTIVE register can be programmed to define the number of active lines in a video field, and the HACTIVE register can be programmed to define the number of active pixels in a video line. This function is used to implement for panning and tilt.

The horizontal delay register HDELAY determines the number of pixel delays between the horizontal reference and the leading edge of the active region. The horizontal active register HACTIVE determines the number of active pixels to be processed. Note that these values are referenced to the pixel number before scaling. Therefore, even if the scaling ratio is changed, the active video region used for scaling remains unchanged as set by the HDEALY and HACTIVE register. In order for the cropping to work properly, the following equation should be satisfied.

HDELAY + HACTIVE < Total number of pixels per line

Where the total number of pixels per line is 858 for NTSC and 864 for PAL

To process full size region, the HDELAY should be set to 32 and HACTIVE set to 720 for both NTSC and PAL system.

The vertical delay register (VDELAY) determines the number of line delays from the vertical reference to the start of the active video lines. The vertical active register (VACTIVE) determines the number of lines to be processed. These values are referenced to the incoming scan lines before the vertical scaling. In order for the vertical cropping to work properly, the following equation should be satisfied.

VDELAY + VACTIVE < Total number of lines per field

Where the total number of lines per field is 262 for NTSC and 312 for PAL

To process full size region, the VDELAY should be set to 6 and VACTIVE set to 240 for NTSC and the VDELAY should be also set to 5 and VACTIVE set to 288 for PAL.

Scaling Function for Live

The TW2837 includes a high quality free horizontal and vertical down scaler for display path. But the TW2837 cannot use a free scaler function in record path because channel size definition for record path has a limitation such as Full / QUAD / CIF (Please refer to "Record Path Control" section, page 56).

The video images can be downscaled in both horizontal and vertical direction to an arbitrary size. The luminance horizontal scaler includes an anti-aliasing filter to reduce image artifacts in the resized image via the HSFLT (0x80/90/A0/B0, 0x85/95/A5/B5 and 0x8A/9A/AA/BA) register and a 32 poly-phase filter to accurately interpolate the value of a pixel. This results in more aesthetically pleasing video as well as higher compression ratio in bandwidth-limited application.

The following Figure 10 shows the frequency response of anti-aliasing filter for horizontal scaling.

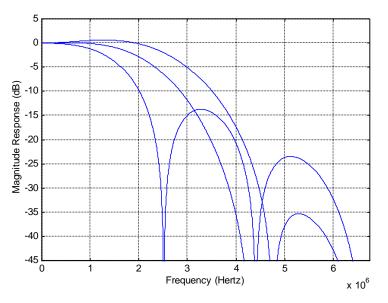


FIGURE 10 THE FREQUENCY RESPONSE OF ANTI-ALIASING FILTER FOR HORIZONTAL SCALING

Similarly, the vertical scaler also contains an anti-aliasing filter controlled via the VSFLT (0x80/90/A0/B0, 0x85/95/A5/B5 and 0x8A/9A/AA/BA) register and 16 poly-phase filters for down scaling. The filter characteristics are shown in the Figure 11.

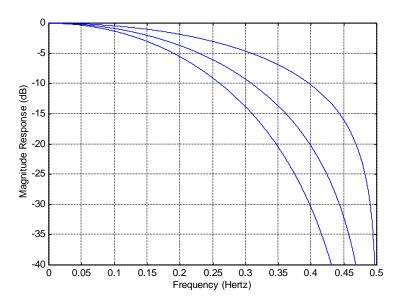


FIGURE 11 THE CHARACTERISTICS OF ANTI-ALIASING FILTER FOR VERTICAL SCALING

Down scaling is achieved by programming the scaling register HSCALE and VSCALE (0x81 ~ 0x84, 0x91 ~ 0x94, 0xA1 ~ 0xA4, 0xB1 ~ 0xB4) register. When no scaled video image, the TW2837 will output the number of pixels as specified by the HACTIVE and VACTIVE (0x02 ~ 0x06, 0x12 ~ 0x16, 0x22 ~ 0x26, 0x32 ~ 0x36) register. If the number of output pixels required is smaller than the number specified by the HACTIVE/VACTIVE register, the 16bit HSCALE/VSCALE register is used to reduce the output pixels to the desired number.

The following equation is used to determine the horizontal scaling ratio to be written into the 16bit HSCALE register.

HSCALE = $[N_{pixel_desired} / HACTIVE] * (2^16 - 1)$

Where N_{pixel_desired} is the desired number of active pixels per line

For example, to scale picture from full size (HACTIVE = 720) to CIF (360 pixels), the HSCALE value can be found as:

$$HSCALE = [360/720] * (2^{16} - 1) = 0x7FFF$$

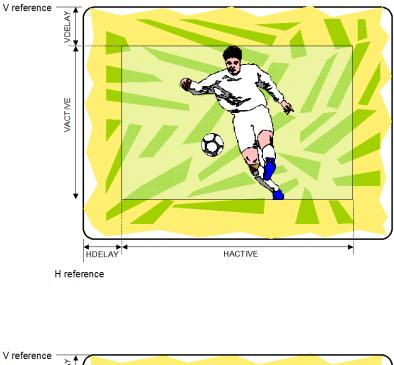
The following equation is used to determine the vertical scaling ratio to be written into the 16bit VSCALE register.

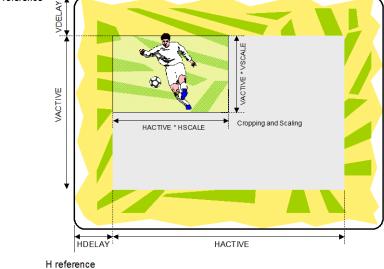
VSCALE = $[N_{line_desired} / VACTIVE] * (2^16 - 1)$

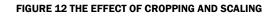
Where $N_{\text{line_desired}}$ is the desired number of active lines per field

For example, to scale picture from full size (VACTIVE = 240 lines for NTSC and 288 lines for PAL) to CIF (120 lines for NTSC and 144 lines for PAL), the VSCALE value can be found as:

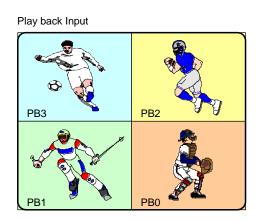
VSCALE = $[120 / 240] * (2^16 - 1) = 0x7FFF$ for NTSC

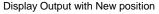

VSCALE = [144 / 288] * (2^16 - 1) = 0x7FFF for PAL

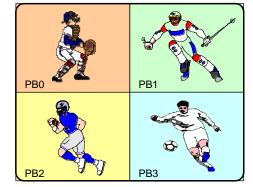

The scaling ratios of popular case are listed in Table 3.


SCALING RATIO	FORMAT	OUTPUT RESOLUTION	HSCALE	VSCALE
1	NTSC	720x480	OxFFFF	OxFFFF
±	PAL	720x576	OxFFFF	OxFFFF
1 /0 (CIE)	NTSC	360x240	0x7FFF	0x7FFF
1/2 (CIF)	PAL	360x288	0x7FFF	0x7FFF
1 (4 (OCIE)	NTSC	180x120	0x3FFF	0x3FFF
1/4 (QCIF)	PAL	180x144	0x3FFF	0x3FFF

The effect of scaling and cropping is shown in Figure 12.

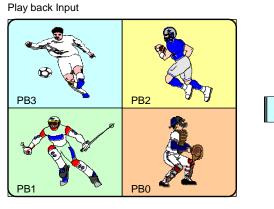





Cropping and Scaling Function for Playback

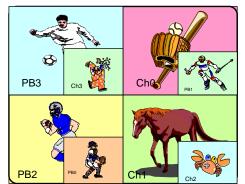
The TW2837 supports an auto cropping function with channel ID decoding for playback input. Each channel with the multiplexed playback input can be mapped into the desired position with the auto cropping function.

If the PB_AUTO_EN (1x16) = "0", the TW2837 is set to a manual cropping mode so that user can control cropping with VDELAY_PB and HDELAY_PB ($0x8B \sim 0x8F$, $0x9B \sim 9F$, $0xAB \sim AF$ and $0xBB \sim BF$) register. If the PB_AUTO_EN = "1", the TW2837 is set into an auto cropping mode. In this mode, the desired channel can be chosen by PB_CH_NUM register (1x16, 1x1E, 1x26, 1x2E) and it will be cropped automatically to horizontal and vertical direction in playback input. The TW2837 has several related registers for this mode such as PB_CROP_MD, PB_ACT_MD and MAN_PBCROP (0xC0). The PB_CROP_MD defines the record mode of the playback input such as normal record mode or DVR record mode (Please refer to "Record Path Control" section, page 56). The PB_ACT_MD defines an active pixel size of horizontal direction such as 720 / 704 / 640 pixels. The MAN_PBCROP controls the horizontal and vertical starting offset in the auto cropping mode with HDELAY_PB and VDELAY_PB registers. It is useful in case that the encoded channel ID is located at vertical active area in ITU-R BT.656 data stream.



CH0 : PB_CH_NUM0 = 0, (cropping H/V) CH1 : PB_CH_NUM1 = 1, (cropping V) CH2 : PB_CH_NUM2 = 2, (cropping H) CH3 : PB_CH_NUM3 = 3, (No cropping)

FIGURE 13 THE EFFECT OF AUTO CROPPING FUNCTION


The TW2837 includes four additional free down scaler for playback path so that the video image from playback input can be downscaled to an arbitrary size in both horizontal and vertical direction. Therefore, using this cropping and scaling function, the TW2837 supports free size and positioning function for both live and playback input in display path. The following Figure 14 shows the effect of scaling and cropping operation in playback.

PB0 : PB_CH_NUM0 = 0, (cropping H/V + Scaling) PB2 : PB_CH_NUM2 = 2, (cropping H)

Display Scaling Output with New position

PB1 : PB_CH_NUM1 = 1, (cropping V + Scaling) PB3 : PB_CH_NUM3 = 3, (No cropping)

FIGURE 14 THE EFFECT OF SCALING FUNCTION IN PLAYBACK

Motion Detection

The TW2837 supports motion detector individually for 4 analog video inputs. The built-in motion detection algorithm uses the difference of luminance level between current and reference field. The TW2837 also supports blind and night input detection for 4 analog video inputs.

To detect motion properly according to situation, the TW2837 provides several sensitivity and velocity control parameters for each motion detector. The TW2837 supports manual strobe function to update motion detection so that it is more appropriate for user-defined motion sensitivity control.

When motion, blind and night input are detected in any video inputs, the TW2837 provides the interrupt request to host via the IRQ pin. The host processor can take the information of motion, blind or night detection by accessing the IRQENA_MD (1x79), IRQENA_BD (1x7A) and the IRQENA_ND (1x7B) register. This status information is updated in the vertical blank period of each input.

The TW2837 also provides the motion, blind and night detection result through the DLINKI and MPP0/1 pin with the control of MPP_MD (1xB0) and MPP_SET (1xB1, 1xB3 and 1xB5) register. The TW2837 supports an overlay function to display the motion detection result in the picture with 2D arrayed box.

MASK AND DETECTION REGION SELECTION

The motion detection algorithm utilizes the full screen video data and detects individual motion of 16x12 cells. This full screen for motion detection consists of 704 pixels and 240 lines for NTSC and 288 lines for PAL. Starting pixel in horizontal direction can be shifted from 0 to 15 pixels using the MD_ALIGN (2x82, 2xA2, 2xC2, and 2xE2) register.

Each cell can be masked via the MD_MASK (2x86 ~ 2x9D, 2xA6 ~ 2xBD, 2xC6 ~ 2xDD, 2xE6 ~ 2xFD) register as illustrated in Figure 15. If the mask bit in specific cell is programmed to high, the related cell is ignored for motion detection.

	704 Pixels (44 Pixels/Cell)															
(je	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0	MASK0
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
Lines/Cell)	MD_ MASK1 [0]	MD_ MASK1 [1]	MD_ MASK1 [2]	MD_ MASK1 [3]	[4] MD_ MASK1 [4]	MD_ MASK1 [5]	MD_ MASK1 [6]	MD_ MASK1	MD_ MASK1 [8]	MD_ MASK1 [9]	MD_ MASK1 [10]	MD_ MASK1 [11]	MD_ MASK1 [12]	MD_ MASK1 [13]	MD_ MASK1 [14]	MD_ MASK1 [15]
(24	MD_ MASK2 [0]	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	[7] MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2	MD_ MASK2
50Hz	MD_	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MASK3	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	[0]	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3	MASK3
Lines for	MD_	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MASK4	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	[0]	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4	MASK4
288 Li	MD_ MASK5	[1] MD_ MASK5	[2] MD_ MASK5	[3] MD_ MASK5	[4] MD_ MASK5	[5] MD_ MASK5	[6] MD_ MASK5	[7] MD_ MASK5	[8] MD_ MASK5	[9] MD_ MASK5	[10] MD_ MASK5	[11] MD_ MASK5	[12] MD_ MASK5	[13] MD_ MASK5	[14] MD_ MASK5	[15] MD_ MASK5
Lines/Cell),	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6	MASK6
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7	MASK7
60Hz (20	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8	MASK8
for	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9	MASK9
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10	MASK10
240	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_	MD_
	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11	MASK11
_	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]

FIGURE 15 MOTION MASK AND DETECTION CELL

The MD_MASK register has different function for reading and writing mode. For writing mode, setting "1" to MD_MASK register inhibits the specific cell from detecting motion. For reading mode, the MD_MASK register has three kinds of information depending on the MASK_MODE (2x82, 2xA2, 2xC2, and 2xE2) register. For MASK_MODE = "0", the state of MD_MASK register means the result of VIN_A motion detection that "1" indicates detecting motion and "0" denotes no motion detection in the cell. For MASK_MODE = "1", the state of MD_MASK register means the result of VIN_B motion detection. For MASK_MODE = "2 or 3", the state of MD_MASK register means masking information of cell.

SENSITIVITY CONTROL

The motion detector has 4 sensitivity parameters to control threshold of motion detection such as the level sensitivity via the MD_LVSENS (2x83, 2xA3, 2xC3, and 2xE3) register, the spatial sensitivity via the MD_SPSENS (2x85, 2xA5, 2xC5, 2xE5) and MD_CELSENS (2x83, 2xA3, 2xC3, and 2xE3) register, and the temporal sensitivity parameter via the MD_TMPSENS (2x85, 2xA5, 2xC5, and 2xE5) register.

Level Sensitivity

In built-in motion detection algorithm, the motion is detected when luminance level difference between current and reference field is greater than MD_LVSENS value. Motion detector is more sensitive for the smaller MD_LVSENS value and less sensitive for the larger. When the MD_LVSENS is too small, the motion detector may be weak in noise.

Spatial Sensitivity

The TW2837 uses 192 (16x12) detection cells in full screen for motion detection. Each detection cell is composed of 44 pixels and 20 lines for NTSC and 24 lines for PAL. Motion detection from only luminance level difference between two fields is very weak in spatial random noise. To remove the fake motion detection from the random noise, the TW2837 supports a spatial filter via the MD_SPSENS register which defines the number of detected cell to decide motion detection in full size image. The large MD_SPSENS value increases the immunity of spatial random noise.

Each detection cell has 4 sub-cells also. Actually motion detection of each cell comes from comparison of sub-cells in it. The MD_CELSENS defines the number of detected sub-cell to decide motion detection in cell. That is, the large MD_CELSENS value increases the immunity of spatial random noise in detection cell.

Temporal Sensitivity

Similarly, temporal filter is used to remove the fake motion detection from the temporal random noise. The MD_TMPSENS regulates the number of taps in the temporal filter to control the temporal sensitivity so that the large MD_TMPSENS value increases the immunity of temporal random noise.

VELOCITY CONTROL

The motion has various velocities. That is, in a fast motion an object appears and disappears rapidly between the adjacent fields while in a slow motion it is to the contrary. As the built-in motion detection algorithm uses the only luminance level difference between two adjacent fields, a slow motion is inferior in detection rate to a fast motion. To compensate this weakness, MD_SPEED (2x84, 2xA4, 2xC4, and 2xE4) parameter is used which is controllable up to 64 fields. MD_SPEED parameter adjusts the field interval in which the luminance level is compared. Thus, for detection of a fast motion a small value is needed and for a slow motion a large value is required. The parameter MD_SPEED value should be greater than MD_TMPSENS value.

Additionally, the TW2837 has 2 more parameters to control the selection of reference field. The MD_FLD (2x82, 2xA2, 2xC2, and 2xE2) register is a field selection parameter such as odd, even, any field or frame.

The MD_REFFLD (2x80, 2xA0, 2xC0, and 2xE0) register is provided to control the updating period of reference field. For MD_REFFLD = "0", the interval from current field to reference field is always same as the MD_SPEED. It means that the reference filed is always updated every field. The Figure 16 shows the relationship between current and reference field for motion detection when the MD_REFFLD is "0".

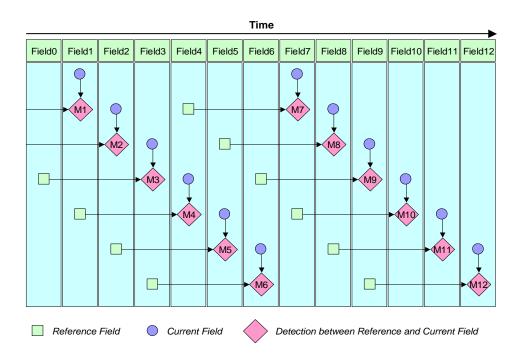
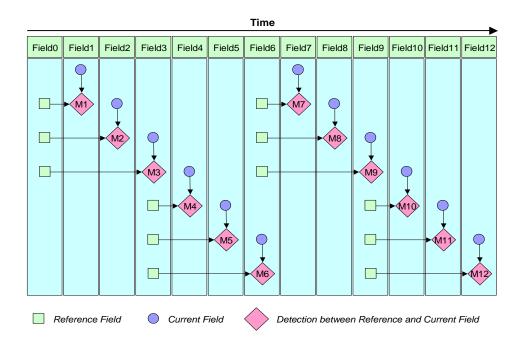



FIGURE 16 THE RELATIONSHIP BETWEEN CURRENT AND REFERENCE FIELD WHEN MD_REFFLD = "0"

The TW2837 can update the reference field only at the period of MD_SPEED when the MD_REFFLD is high. For this case, the TW2837 can detect a motion with sense of a various velocity. The Figure 17 shows the relationship between current and reference field for motion detection when the MD_REFFLD = "1".

The TW2837 also supports the manual detection timing control of the reference field/frame via the MD_STRB_EN and MD_STRB (2x84, 2xA4, 2xC4, and 2xE4) register. For MD_STRB_EN = "0", the reference field/frame is automatically updated and reserved on every reference field/frame. For MD_STRB_EN = "1", the reference field/frame is updated and reserved only when MD_STRB = "1". In this mode, the interval between current and reference field/frame depends on user's strobe timing. This mode is very useful for a specific purpose like non-periodical velocity control and very slow motion detection.

The TW2837 also provides dual detection mode for non-realtime application such as pseudo-8ch application via MD_DUAL_EN (2x83, 2xA3, 2xC3, and 2xE3) register. For MD_DUAL_EN = 1, the TW2837 can detect dual motion independently for VIN_A and B Input which is defined by the ANA_SW (0x0D, 0x1D, 0x2D, and 0x3D) register. In this case, the MD_SPEED is limited to 31. This motion information can be read via the IRQENA_MD (1x79) register by the host interface.

BLIND DETECTION

The TW2837 supports blind detection individually for 4 analog video inputs and makes an interrupt of blind detection to host. If video level in wide area of field is almost equal to average video level of field due to camera shaded by something, this input is defined as blind input.

The TW2837 has two sensitivity parameters to detect blind input such as the level sensitivity via the BD_LVSENS (2x80, 2xA0, 2xC0, and 2xE0) register and spatial sensitivity via the BD_CELSENS (2x80, 2xA0, 2xC0, and 2xE0) register.

The TW2837 uses total 768 (32x24) cells in full screen for blind detection. The BD_LVSENS parameter controls the threshold of level between cell and field average. The BD_CELSENS parameter defines the number of cells to detect blind. For BD_CELSENS = "0", the number of cell whose level is same as average of field should be over than 60% to detect blind, 70% for BD_CELSENS = "1", 80% for BD_CELSENS = "2", and 90% for BD_CELSENS = "3". That is, the large value of BD_LVSENS and BD_CELSENS makes blind detector less sensitive.

The TW2837 also supports dual detection mode for non-realtime application such as pseudo-8ch application via the MD_DUAL_EN (2x83, 2xA3, 2xC3, and 2xE3) register. The host can read blind detection information for both VIN_A and VIN_B input via the IRQENA_BD (1x7A) register.

NIGHT DETECTION

The TW2837 supports night detection individually for 4 analog video inputs and makes an interrupt of night detection to host. If an average of field video level is very low, this input is defined as night input. Likewise, the opposite is defined as day input.

The TW2837 has two sensitivity parameters to detect night input such as the level sensitivity via the ND_LVSENS (2x81, 2xA1, 2xC1, and 2xE1) register and the temporal sensitivity via the ND_TMPSENS (2x81, 2xA1, 2xC1, and 2xE1) register. The ND_LVSENS parameter controls threshold level of day and night. The ND_TMPSENS parameter regulates the number of taps in the temporal low pass filter to control the temporal sensitivity. The large value of ND_LVSENS and ND_TMPSENS makes night detector less sensitive.

The TW2837 also supports dual detection mode for non-realtime application such as pseudo-8ch application via the MD_DUAL_EN (2x83, 2xA3, 2xC3, and 2xE3) register. The host can read night detection information for both VIN_A and VIN_B input via the IRQENA_ND (1x7B) register.

Video Control

The TW2837 has dual video controllers for display and record path. The TW2837 requires only external 64M SDRAM @ 32bit interface for proper operation. The TW2837 supports 8 channel display mode for display path and 4 channel for record path. The block diagram of video controller is shown in the following Figure 18.

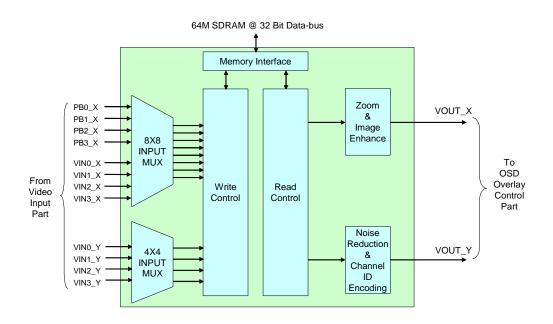


FIGURE 18 BLOCK DIAGRAM OF VIDEO CONTROLLER

The TW2837 supports channel blanking, boundary on/off, blink, horizontal/vertical mirroring, and freeze function for each channel. The TW2837 can capture last 4 images automatically for each channel when video loss is detected.

The TW2837 has three operating modes such as live, strobe and switch mode. Each channel can be operated in its individual operating mode. That is, the TW2837 can be operated in multi-operating mode if each channel has different operating mode. Live mode is used to display real time video as QUAD or full live display, strobe mode is used to display non-realtime video with strobe signal from host and switch mode is used to display time-multiplexed video from several channels. For switch mode, the TW2837 supports two different types such as switch live and switch still mode.

The TW2837 also provides four record picture modes such as normal record mode and frame record mode and DVR normal record mode and DVR frame record mode. For record path, channel size and position have a limitation to half or full size in the horizontal and vertical direction.

For display path, the TW2837 can save and recall video through external extended SDRAM and support image enhancement function for non-realtime video such as freezing or playback video and provide high performance 2X zoom function. For record path, the TW2837 supports a noise reduction filter to reduce the compression data size and channel ID encoding that contains all current picture configurations.

The TW2837 also provides chip-to-chip cascade connection for 8 or 16 channel application.

CHANNEL INPUT SELECTION

The channel for display path can select 1 input from 8 video inputs including 4 live video inputs and 4 playback inputs, but the channel for record path can choose 1 input from 4 live video inputs. The live video inputs can be selected via the DEC_PATH (0x80, 0x90, 0xA0, 0xB0 for display path, 1x60, 1x63, 1x66, 1x69 for record path) register and the playback inputs can be chosen via the PB_PATH_EN (1x10/13, 1x18/1B, 1x20/23, 1x28/2B) register. The Figure 19 shows the internal channel input selection.

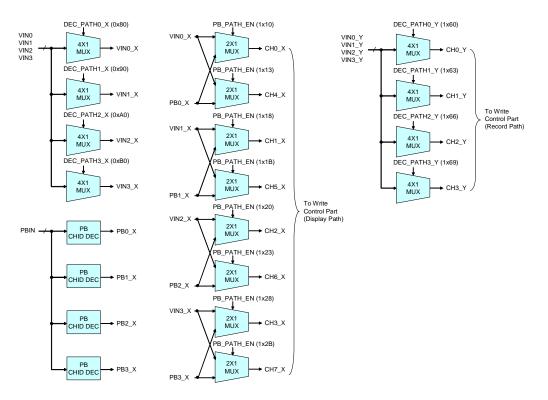


FIGURE 19 CHANNEL INPUT SELECTION

CHANNEL OPERATION MODE

Each channel can be working with three kinds of operating mode such as live, strobe and switch mode via the FUNC_MODE (1x10, 1x13, 1x18, 1x1B, 1x20, 1x23, 1x28, and 1x2B for display path, 1x60, 1x63, 1x66, and 1x69 for record path) register. The operation mode can be selected individually for each channel so that multi-operating mode can be implemented.

Live Mode

If FUNC_MODE is "0", channel is operated in live mode. For the live mode, the video display is updated with real time. This mode is used to display a live video such as QUAD, PIP, and POP.

When changing the picture configuration such as input path, popup priority, PIP, POP, and etc, the TW2837 supports anti-rolling sequence by monitoring channel update with the STRB_REQ register (1x04 for display path, 1x54 for record path) after changing to strobe operation mode (FUNC_MODE = "1"). The following Figure 20 shows the sequence to change picture configuration.

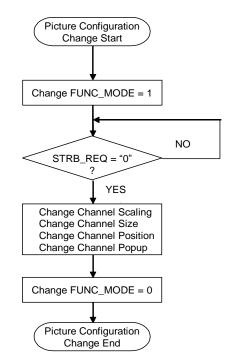


FIGURE 20 THE SEQUENCE TO CHANGE PICTURE CONFIGURATION

The status of STRB_REQ register can also be read through MPP1/2 pin with control of the MPP_MD and MPPSET (1xB0, 1xB1, 1xB3, and 1xB5) register.

Strobe Mode

If FUNC_MODE is "1", channel is operated in strobe mode. For strobe mode, video display is updated whenever the TW2837 receives strobe command from host like CPU or Micom. If host doesn't send a strobe command to the TW2837 anymore, the channel maintains the last strobe image until getting a new strobe command. This mode is useful to display non-realtime video input such as playback video with multiplexed signal input and to implement pseudo 8 channel application or dual page mode or panorama channel display. Specially, the TW2837 supports easy interface for pseudo 8channel application that will be covered in display path control section. The TW2837 also supports auto strobe function for auto playback display that will be covered later in auto strobe function section.

Strobe operation is performed independently for each channel via the STRB_REQ (1x04, 1x54) register. But the STRB_REQ register has a different mode for reading and writing. Writing "1" into STRB_REQ in each channel makes the TW2837 updated by each incoming video. The updating status after strobe command can be known by reading the STRB_REQ register. If reading value is "1", updating is not completed after getting the strobe command. In that case, this channel cannot accept a new strobe command or a disabling strobe command from host. To send a new strobe command, host should wait until STRB_REQ state is "0". For freeze or non-strobe channel, the TW2837 can ignore the strobe command even though host sends it. In this case, the STRB_REQ register is cleared to "0" automatically without any updating video. The status of STRB_REQ register can also be read through MPP1/2 pin with control of the MPPSET (1xB3) register.

When updating video with a strobe command, the TW2837 supports field or frame updating mode via the STRB_FLD (1x01, 1x54) register. Odd field of input video can be updated and displayed for STRB_FLD = "0", even field for "1". For "2" of STRB_FLD register, the TW2837 doesn't care for even or odd field, and updates video by next any field. If the STRB_FLD register is "3", the strobe command updates video by frame. The following Figure 21 shows the example of strobe sequence for various STRB_FLD value.

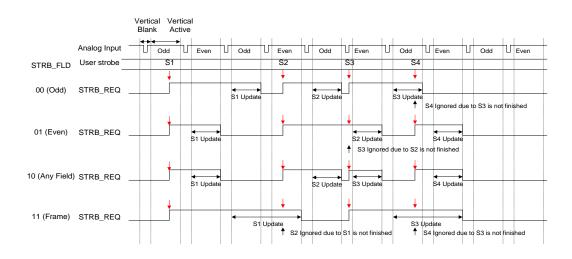


FIGURE 21 THE EXAMPLE OF STROBE SEQUENCE FOR VARIOUS STRB_FLD SETTING

The timing of strobe operation is related only with input video timing and strobe operation can be performed independently for each channel. So each channel is updated with different timing. The TW2837 provides a special feature as dual page mode using the DUAL_PAGE (1x01, 1x54) register. Although each channel is updated with different time, all channels can be displayed simultaneously in dual page mode. This means that the TW2837 waits until all channels are updated and then displays all channels with updated video at the same time. When dual page mode is enabled, host should send a strobe command for all channels and host should wait until all channels complete their strobe operations to send a new strobe command. The Figure 22 shows the example of 4 channel strobe sequences for dual page.

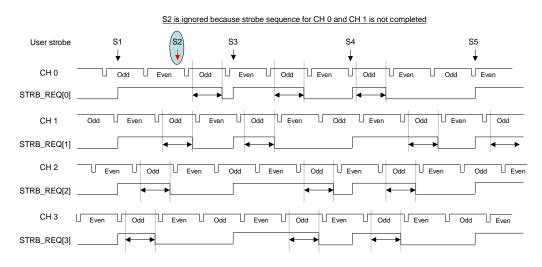


FIGURE 22 THE EXAMPLE OF 4 CHANNEL STROBE SEQUENCES FOR DUAL PAGE MODE

Switch Mode

If FUNC_MODE is "2", channel is operated in switch mode. The TW2837 supports 2 different switching types such as still switching and live switching mode via the MUX_MODE (1x06, 1x56) register. For still switching mode, the TW2837 maintains the switched channel video as still image until next switching request, but for live switching mode the TW2837 updates every field of switched channel until next switching request. The live switching mode is used for channel sequencer without any timing loss or disturbing. In switch mode, there is a constraint that the picture size of all switched channel should be same even though their size can be varied. The TW2837 can switch the channel by fields or frames that can be programmed up to 1 field or 1 frame rate. But if the channel is on freeze state, skip mode or disabled, the TW2837 ignores the request for switch mode.

Switch Trigger Mode

To operate the switching function properly, the channel switching should be requested with triggering that has three kinds of mode such as internal triggering from internal field counter, external triggering from external host or pin and interrupted triggering like alarm. The triggering mode can be selected by the TRIG_MODE (1x56) register. The TW2837 supports all triggering mode in record path, but provides only interrupt triggering mode in display path.

The TW2837 contains 128 depth internal queues that have channel sequence information with internal or external triggering. Actual queue size can be defined by the QUE_SIZE (1x57) register. The channel switching sequence in the internal queue is changed by setting "1" to QUE_WR (1x5A) register after defining the queue address with the QUE_ADDR (1x5A) register and the channel switching information with the MUX_WR_CH (1x59) register. The QUE_WR register will be cleared automatically after updating queue. The channel sequence information can be read via the CHID_MUX_OUT (1x0A for display path, 1x5E for record path) register. The following Figure 23 shows the structure of switching operation.

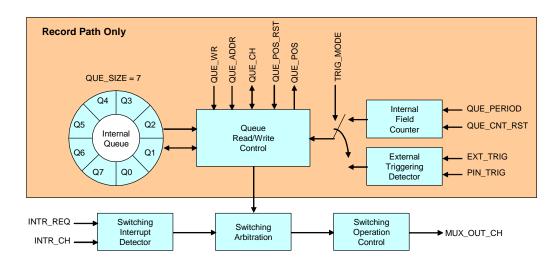


FIGURE 23 THE STRUCTURE OF SWITCHING OPERATION WHEN QUE_SIZE = 7

For internal triggering mode, the switching period can be specified in the QUE_PERIOD (1x58) register that has 1 ~ 1024 field range. The internal field counter can be reset at anytime using the QUE_CNT_RST (1x5B) register and restarted automatically after reset. To reset an internal queue position, set "1" to QUE_POS_RST (1x5B) register and then the queue position will be restarted after reset. Both QUE_CNT_RST and QUE_POS_RST register can be cleared

automatically after set to "1". The following Figure 24 shows an illustration of QUE_POS_RST and QUE_CNT_RST. The next queue position can be read via the QUE_ADDR (1x5A) register.

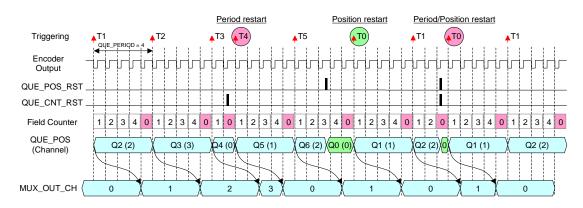
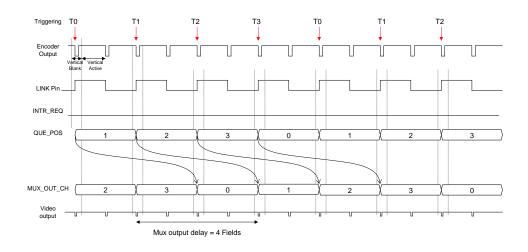


FIGURE 24 THE ILLUSTRATION OF QUE_POS_RST AND QUE_CNT_RST

For external triggering mode, the request of channel switching comes from the EXT_TRIG (1x59) register or TRIGGER pin that is controlled by the PIN_TRIG_MD (1x56) register. Like internal triggering mode, writing "1" to the QUE_POS_RST register can reset the queue position in external triggering mode.

For interrupt triggering, host can request the channel switching at anytime via the INTR_REQ (1x07, 1x59) register. The switching channel is defined by the INTR_CH (1x07 for display path) or MUX_WR_CH (1x59 for record path) registers. Because the interrupted trigger has a priority over internal or external triggering in record path, the channel defined by the MUX_WR_CH can be inserted into the programmed channel sequence immediately.


Switching Sequence

The TW2837 also provides various switching types as odd field, even field or frame switching via the MUX_FLD (1x06, 1x56) register. For MUX_FLD = "0", it is working as field switching mode with only odd field, but with only even field for MUX_FLD = "1". For MUX_FLD = "2" or "3", it is working as frame switching with both odd and even field.

Actually the channel switching is executed just before vertical sync of video output in field switching mode or before vertical sync of only odd field in frame switching mode. So all register for switching should be set before that time. Otherwise, the control values will be applied to the next field or frame. Likewise, the switching channel information is updated just before vertical sync of video output in field switching or before vertical sync of only odd field in frame switching switching or before vertical sync of only odd field in frame switching mode.

Basically the switching sequence takes 4 field duration to display the switching channel from any triggering (field or frame). The host can read the current switching channel information through the MUX_OUT_CH (1x08, 1x6E) register. The TW2837 also supports external pin output for this channel information with DLINKI and MPP1/2 pin via the MPP_MD and MPP_SET (1xB0, 1xB1, 1xB3, and 1xB5) register. The switching channel information can also be discriminated by the channel ID in the video stream. The following Figure 25 shows the illustration of channel switching with internal triggering.

The following Figure 26 shows the illustration of channel switching with the combination of internal triggering and interrupted triggering mode.

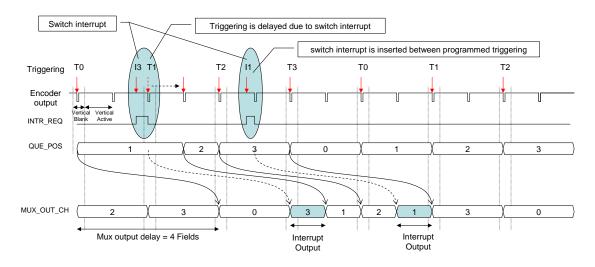


FIGURE 26 THE INTERRUPTED SWITCHING SEQUENCE WHEN QUE_SIZE = 3, QUE_PERIOD = 1

The TW2837 supports the skip function of the switching queue for switch mode in record path. In single chip application, the auto skip function of the switching queue can be supported if the MUX_SKIP_EN (1x5B) register is "1" and the NOVID_MODE is "1" or "3". But in the chip-to-chip cascaded application, the skip function should be forced with the MUX_SKIP_CH (1x5C, 1x5D) register because the switching queue for whole channels is located in the lowest slaver device but cannot get the no-video information from the other chips. The QUAD MUX function in chip-to-chip cascade application will be covered in the "Chip-to-Chip Cascade Operation (page 67)".

CHANNEL ATTRIBUTE

The TW2837 provides various channel attributes such as channel enabling, popup enabling, boundary selection, blank enabling, freeze, horizontal/vertical mirroring for both display and record path. As special feature, the TW2837 supports the last image capture function, save and recall function, image enhancement and playback input selection for display path. For last image capture mode, channel can be blanked or boundary can be blinked automatically on video loss state.

Background Control

Summation of all active channel regions can be called as active region and the rest region except active region is defined as background region. The TW2837 supports background overlay and the overlay color is controlled via the BGDCOL (1x0F, 1x5F) register.

Boundary Control

The TW2837 can overlay channel boundary on each channel region using the BOUND (1x11, 1x14, 1x19, 1x1C, 1x21, 1x24, 1x29, and 1x2C for display path, 1x61, 1x64, 1x67, and 1x6A for record path) register and it can be blinked via the BLINK (1x11, 1x14, 1x19, 1x1C, 1x21, 1x24, 1x29, and 1x2C for display path, 1x61, 1x64, 1x67, and 1x6A for record path) register when BOUND is high. The boundary color of channel can be selected through the BNDCOL (1x0F, 1x5F) register. The blink period can be also controlled through the TBLINK (1x01, 1x52) register.

Blank Control

Each channel can be blanked with specified color using the BLANK (1x11, 1x14, 1x19, 1x1C, 1x21, 1x24, 1x29, and 1x2C for display path, 1x61, 1x64, 1x67, and 1x6A for record path) register and the blank color can be specified via the BLKCOL (1x0F, 1x3F) register.

Freeze Control

Each channel can capture last 4 field images whenever freeze function is enabled and display 1 field image out of the captured 4 field images using the FRZ_FLD (1x0F, 1x5F) register. The freeze function can be enabled or disabled independently for each channel via the FREEZE (1x11, 1x14, 1x19, 1x1C, 1x21, 1x24, 1x29, and 1x2C for display path, 1x61, 1x64, 1x67, and 1x6A for record path) register. The TW2837 also supports frame freeze function via the FRZ_FRAME (1x01, 1x52) register, and 1 frame image out of the captured 2 frame images using the FRZ_FLD (1x0F, 1x5F) register.

Last Image Captured

When video loss has occurred or gone, the TW2837 provides 4 kinds of indication such as bypass of incoming video, channel blank, capture of last image, and capture of last image with blinking channel boundary depending on the NOVID_MODE (1x05, 1x55) register. This function is working automatically on video loss. The capturing last image is same as freeze function described above. User can select 1 field image out of captured 4 filed images via the FRZ_FLD (1x0F, 1x5F) register which is shared with freeze function. The TW2837 has frame freeze function via the FRZ_FRAME (1x01, 1x52) register, and 1 frame image out of the captured 2 frame images using the FRZ_FLD (1x0F, 1x5F) register.

Horizontal / Vertical Mirroring

The TW2837 supports image-mirroring function for horizontal and/or vertical direction. The horizontal mirroring is achieved via the H_MIRROR (1x11, 1x14, 1x19, 1x1C, 1x21, 1x24, 1x29, and 1x2C for display path, 1x61, 1x64, 1x67, and 1x6A for record path) register and the vertical mirroring is attained via the V_MIRROR (1x11, 1x14, 1x19, 1x10, 1x21, 1x24, 1x29, and 1x2C for display path, 1x61, 1x64, 1x67, and 1x6A for record path) register. It is useful for a reflection image in the horizontal and vertical direction from dome camera or car-rear vision system.

Field to Frame Conversion

If the displayed channel size is half size of the video input in vertical direction, the video input can be separated into two (odd/even) fields according to the line numbers such as odd line for odd field and even line for even field. With this conversion, the vertical resolution of the video input can be enhanced compared with simple half vertical scaling, but the field rate is reduced to half. This mode can be enabled via the FIELD_OP (1x12, 1x15, 1x1A, 1x1D, 1x22, 1x25, 1x2A, and 1x2D for display path, 1x62, 1x65, 1x68 and 1x6B for record path) register.

DISPLAY PATH CONTROL

The TW2837 can save images in external memory and recall them to display. This function can be working in display path. The TW2837 also supports the special filter to enhance image quality in display path for non-real-time video display such as frozen image, recalled image from saved images or playback input with multiplexed video source. The TW2837 provides high performance 2X zoom function in the vertical and horizontal direction.

The TW2837 supports any kind of picture configuration for display path with arbitrary picture size, position and popup control. The TW2837 also provides 8 channel display function for full triplex application (Display + Record + Playback) and the pseudo 8ch display function for non-realtime application.

Save and Recall Function

The save/recall function can work independently for each channel and the number of the saved images depends on the picture size and field type. The TW2837 can save image from live channel only. I.e., an image cannot be saved in frozen channel. If a channel is working on strobe operating mode, this channel can be saved with new strobe command. For switch operating mode, the channel can be saved only on switching time because this channel can be updated at this moment.

To save image, several parameters should be controlled that are the SAVE_FLD, SAVE_HID, SAVE_ADDR (1x02) and SAVE_REQ (1x03) registers. The SAVE_FLD determines field or frame type for image to be saved. Even though the channel to be saved is hidden by upper layer picture, it can be saved using the SAVE_HID register that makes no effect on current display. The saving function is requested by writing "1" to the SAVE_REQ register and this register

will be cleared when saving is done. Before it is cleared, the TW2837 cannot accept new saving request. The SAVE_ADDR register defines address where an image will be saved. The SAVE_ADDR can be set to be within 4 ~ 9, where the memory space is allocated for save/recall functions.

To recall the saved video image, several parameters are required such as RECALL_FLD (1x02), RECALL_EN (1x11, 1x14, 1x19, 1x1C, 1x21, 1x24, 1x29, 1x2C) and RECALL_ADDR (1x12, 1x15, 1x1A, 1x1D, 1x22, 1x25, 1x2A, 1x2D) registers. If the RECALL_EN is "1", the TW2837 recalls the saved image that is located at the RECALL_ADDR in external memory and displays it just like incoming video. The RECALL_FLD register determines 1 field or 1 frame mode to display.

The following Figure 27 illustrates the relationship between external SDRAM size and SAVE_ADDR / RECALL_ADDR.

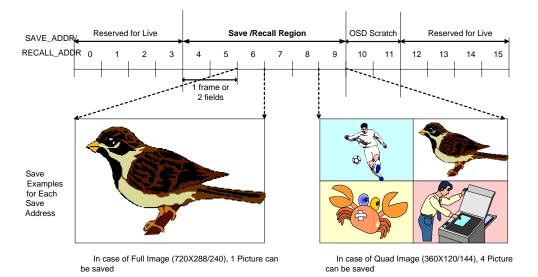


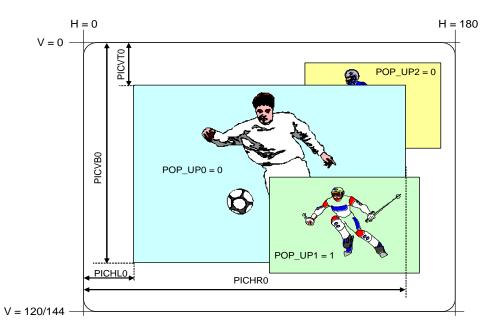
FIGURE 27 THE RELATIONSHIP BETWEEN SDRAM SIZE AND IMAGE SIZE

Image Enhancement

In non-realtime video such as frozen image, recalled image from saved images and playback input with multiplexed video source, the line flicker noise can be found in image because it displays same field image for both odd and even field. The embedded filter in the TW2837 can remove effectively this line flicker noise and be enabled via the ENHANCE (1x11, 1x14, 1x19, 1x1C, 1x21, 1x24, 1x29, 1x2C) register for each channel. This filter coefficient can be controlled via the FR_EVEN_OS and FR_ODD_OS (1x0B) register. The TW2837 also supports an automatic image enhancement mode via the AUTO_ENHANCE (1x05) register that is checking the channel operation mode such as recalling the saved or frozen image and then enabling the enhancement filter.

Zoom Function

The TW2837 supports high performance 2X zoom function in the vertical and horizontal direction for display path. The zoom function can be working in any operation mode such as live, strobe and switch mode. Conventional system also has zoom function, but it has a very poor quality due to line flicker noise even though interpolation filter is adapted. The TW2837 provides high quality zoom characteristics using a high performance interpolation filter and image enhancement technique. When zoom is executed, the image enhancement is operated automatically and the zoom filter coefficient can be controlled via the ZM_EVEN_OS and ZM_ODD_OS (1x0B) register.


The zoomed region will be defined with the ZOOMH (1xOD) and ZOOMV (1xOE) registers and can be displayed via the ZMBNDCOL, ZMBNDEN, ZMAREAEN, ZMAREA (1xOC) register. The zoom operation is enabled via the ZMENA (1xOC) register.

The TW2837 also supports only horizontal direction zoom via the H_ZM_MD (1x0C) register. This mode is useful to display full size from playback input with CIF format (360x240 @ NTSC, 360x288 @ PAL). In this mode, ZOOMV register is useless because vertical direction has no meaning in this mode.

Picture Size and Popup Control

Each channel region can be defined using its own PICHL (1x30, 1x34, 1x38, 1x3C, 1x40, 1x44, 1x48, and 1x4C), PICHR (1x31, 1x35, 1x39, 1x3D, 1x41, 1x45, 1x49, and 1x4D), PICVT (1x32, 1x36, 1x3A, 1x3E, 1x42, 1x46, 1x4A, and 1x4E), and PICVB (1x33, 1x37, 1x3B, 1x3F, 1x43, 1x47, 1x4B, and 1x4F) register. If more than 2 channels have same region, there will be a conflict of what to display for that area. Generally the TW2837 defines that the channel 0 has priority over channel 7. So if a conflict happens between more than 2 channels, the channel 0 will be displayed first as top layer and then channel 1 and 2 and 3 are hidden beneath.

The TW2837 also provides a channel pop-up attribute via the POP_UP (1x10, 1x13, 1x18, 1x1B, 1x20, 1x23, 1x28, and 1x2B) register to give priority for another display. If a channel has pop-up attribute, it will be displayed as top layer. This feature is used to configure PIP (Picture-In-Picture) or POP (Picture-Out-Picture). The following Figure 28 shows the channel definition and priority for display path.

FIGURE 28 THE CHANNEL POSITION AND PRIORITY IN DISPLAY PATH

Full Triplex Function

The TW2837 provides a full triplex function that implies to support four channel live, four channel playback display and four channel record output. The playback input is selected via the PB_PATH_EN (1x10, 1x13, 1x18, 1x1B, 1x20, 1x23, 1x28, and 1x2B) register for display path and the selected channel is updated automatically from the channel ID decoder via the PB_CH_NUM (1x16, 1x1E, 1x26, and 1x2E) register. The auto-cropping and auto-strobe mode is

very useful to display the playback input with multiplexed or dual page video format. (A detailed description for playback path is referred to "Playback Path Control" Chapter, page 50)

The TW2837 also supports pseudo 8 channel display mode with any picture configuration for non-realtime application. The TW2837 has a respective strobe request bit of each channel (STRB_REQ, 1x03 register) so that the channel is updated easily by host after the analog switch is changed. The following Figure 29 shows an illustration of pseudo 8-channel system.

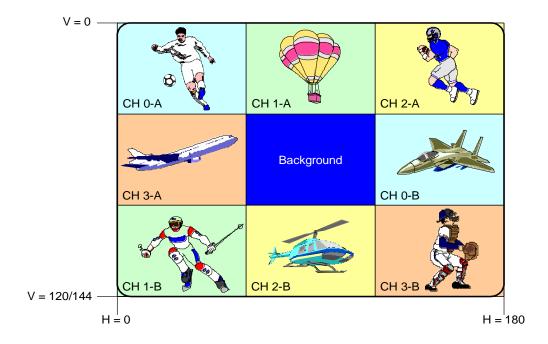


FIGURE 29 PSEUDO 8 CHANNEL DISPLAY OPERATION

PLAYBACK PATH CONTROL

The TW2837 supports the playback function for variable record mode input such as normal record mode, frame record mode, DVR normal record mode, and DVR frame record mode. The TW2837 also provides auto cropping and auto strobe function for playback input through auto channel ID decoding. The auto strobe function implies that the selected channel is updated automatically from the playback input of the time-multiplexed full D1, CIF or Quad record format.

If the channel operation mode is live mode (FUNC_MODE = "0"), the playback input can be bypassed in display path, but the auto cropping function from the channel ID decoder is available to separate each channel from the multichannel format such as QUAD (Auto cropping function is described in "Cropping Function for Playback" section, page 30). The displayed channel can be selected via the PB_CH_NUM (1x16, 1x1E, 1x26, and 1x2E) register.

If the channel operation mode is strobe mode (FUNC_MODE = "1"), the auto strobe function is used to update the channel automatically for the playback input of the time-multiplexed full D1, CIF or Quad record format through channel ID decoder. The auto strobe function is enabled by the PB_AUTO_EN (1x16) and PB_CH_NUM (1x16, 1x1E,

1x26, and 1x2E) register and can also be used for pseudo 8 channel display of playback input with the dual page mode or pseudo 8 channel MUX mode.

The TW2837 supports event strobe mode with event information in auto channel ID. It makes the channel updated whenever event information in auto channel ID is detected. The event strobe mode can be enabled via the EVENT_PB (1x16, 1x1E, 1x26, and 1x2E) register.

The TW2837 provides an anti-rolling function for the case of changing the picture configuration in playback application through the PB_STOP (1x16, 1x1E, 1x26, and 1x2E) register. If the PB_STOP is set to high in strobe operation mode (FUNC_MODE = "1"), the channel is not updated until the PB_STOP is set to low after picture configuration is changed.

To remove the image shaking from the playback input of frame switching mode, the TW2837 also supports frame to field conversion in auto strobe mode via the FLD_CONV (1x16, 1x1E, 1x26, and 1x2E) register. It makes the channel updated with only 1 field even though the playback input is made up of frame.

Normal Record Mode

The TW2837 provides various playback functions for normal record mode input. For playback input of live mode, the FUNC_MODE should be set to "0" and then it can be bypassed and displayed in live mode. For playback input of multiplexed record format, the FUNC_MODE should be set into "1" and then the auto strobe function is used for automatic display of the selected channel. . The following Figure 30 shows the examples of playback function for normal record mode using bypass, auto cropping, scaling, repositioning, and popup control.

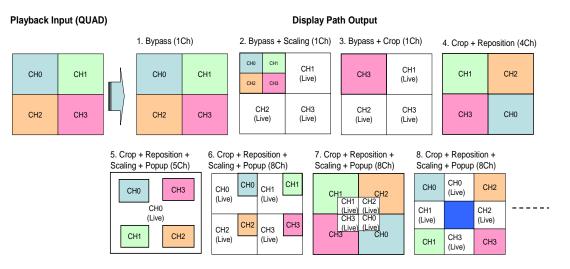


FIGURE 30 THE EXAMPLES OF THE PLAYBACK FUNCTION FOR NORMAL RECORD MODE

The following Figure 31shows the various display examples for various playback input format using auto strobe function.

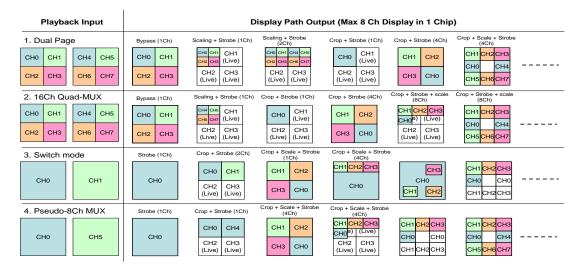


FIGURE 31 THE EXAMPLE OF AUTO STROBE FUNCTION FOR NORMAL RECORD MODE

Frame Record Mode

The TW2837 supports the playback function for frame record mode input. The playback input of frame record mode is formed with 1 frame so that the vertical lines of each playback channel have twice as many as the normal record mode. So if the displayed channel size is half size of the playback input in vertical direction, the playback input can be separated into two (odd/even) fields according to the line numbers such as odd line for odd field and even line for even field. With this conversion, the vertical resolution of the playback input can be enhanced compared with simple half vertical scaling of the playback input. This mode can be enabled via the FIELD_OP (1x12, 1x15, 1x1A, 1x1D, 1x22, 1x25, 1x2A, and 1x2D) register.

The following Figure 32 shows the various display examples with auto cropping, auto strobe, and scaling function for playback input using frame record mode.

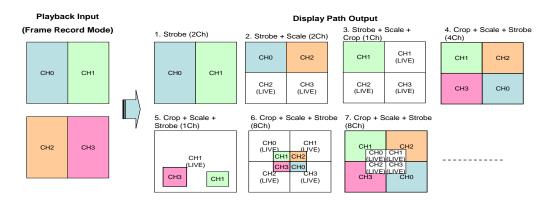


FIGURE 32 THE EXAMPLES OF THE PLAYBACK FUNCTION FOR FRAME RECORD MODE

The following Figure 33 shows the illustration of this conversion from frame record mode to normal display mode in playback application.

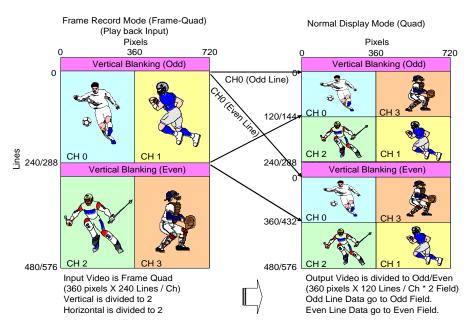


FIGURE 33 THE CONVERSION FROM FRAME RECORD MODE TO NORMAL DISPLAY MODE

The TW2837 also supports only horizontal zoom mode via the H_ZM_MD (1x0C) register. This mode is useful to display the playback input of frame record mode to full size image. The following Figure 34 shows the illustration of this conversion in playback application.

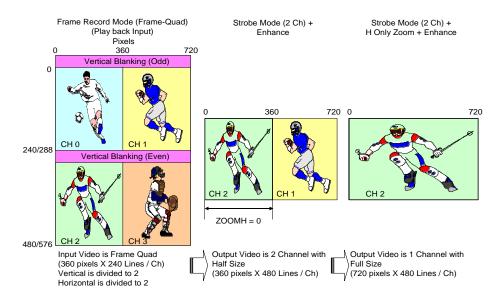


FIGURE 34 THE CONVERSION FROM FRAME RECORD MODE TO FULL IMAGE

DVR Normal Record Mode

If the playback input is the DVR normal record mode, it cannot be displayed directly because it is special mode not for display but for record to compression part. The TW2837 supports the conversion from this DVR normal record mode to normal display mode via the DVR_IN (1x12, 1x15, 1x1A, 1x1D, 1x22, 1x25, 1x2A, and 1x2D) register. For auto cropping function of the playback with this mode, the PB_CROP_MD (0xC0) register should be set into "1" to crop the 1/4 vertical picture size (Please refer to "Cropping and Scaling Function for Playback" section in Page 30).

The following Figure 35 shows the illustration of conversion from DVR normal record mode to normal display mode in playback application.

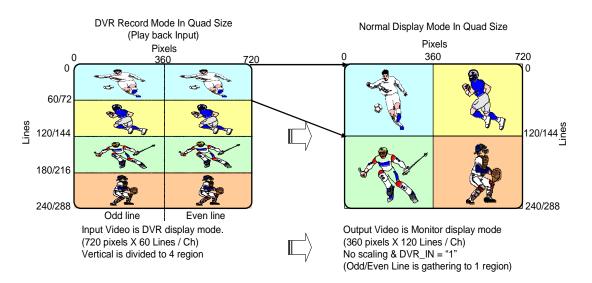


FIGURE 35 THE CONVERSION FROM DVR NORMAL RECORD MODE TO NORMAL DISPLAY MODE

The TW2837 supports all channel attributes in this mode except the scaling function for vertical direction. So the picture size in this mode will be fixed to Quad (360x120).

DVR Frame Record Mode

The TW2837 also provides the conversion from DVR frame record mode to normal display mode using combination of frame record mode and DVR normal record mode via the DVR_IN and FIELD_OP (1x12, 1x15, 1x1A, 1x1D, 1x22, 1x25, 1x2A, and 1x2D) register. The following Figure 36 shows the illustration of conversion from DVR frame record mode to normal display mode in playback application.

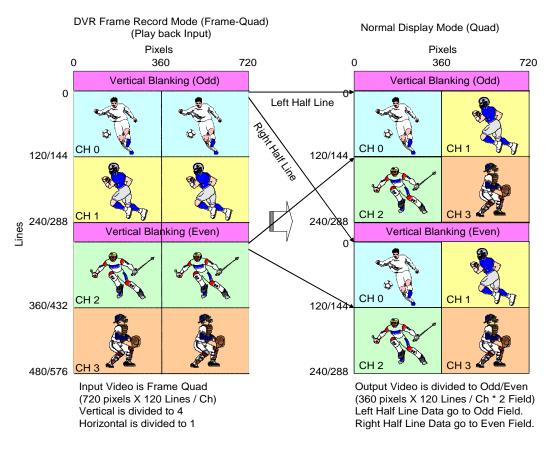


FIGURE 36 THE CONVERSION FROM DVR FRAME RECORD MODE TO NORMAL DISPLAY MODE

Like DVR normal record mode, all channel attributes can be supported, but the scaling function cannot be supported in this mode. So the channel size will be fixed to Quad size. To implement PIP or POP application with smaller size than Quad, only odd line data is used with channel size definition, scaling and enhancement function.

Like frame record mode, the only horizontal zoom mode is useful to display the playback input of DVR frame record mode to full size image via the DVR_IN and H_ZM_MD (1x0C) register. The following Figure 37 shows the illustration of this conversion from DVR frame record mode to normal display mode for full image in playback application.

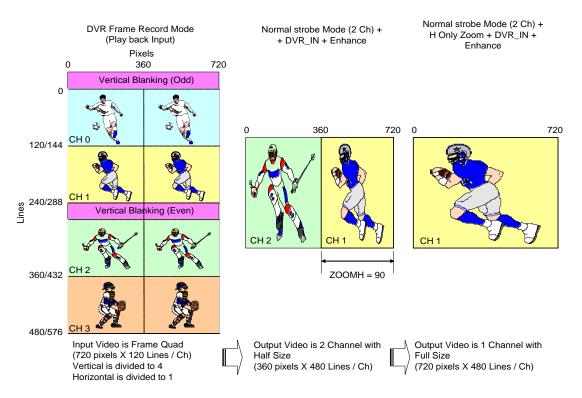


FIGURE 37 THE CONVERSION FROM DVR FRAME RECORD MODE TO NORMAL DISPLAY MODE FOR FULL IMAGE

Record Path Control

The TW2837 supports 4 record modes such as normal record mode, frame record mode, DVR record mode and DVR frame record mode. The DVR record mode and DVR frame record mode generate continuous video stream for each channel and transfer it to compression part (M-JPEG or MPEG) so that they are very useful for DVR application. The frame record mode can be used to record each channel with full vertical resolution. Especially the TW2837 includes a noise reduction filter in record path so that it can reduce spot noise and then provide less compression file size.

The record mode is selected via the DIS_MODE and FRAME_OP (1x51) register. If the FRAME_OP is "0", the DIS_MODE = "0" stands for normal record mode and the DIS_MODE = "1" represents DVR record mode. If the FRAME_OP is "1", the DIS_MODE = "0" stands for frame record mode and the DIS_MODE = "1" represents DVR frame record mode.

The TW2837 supports high performance free scaler vertically and horizontally in display path, but has the size and position limitation such as Full / Quad / CIF in record path. The TW2837 also provides four channel real-time record mode with full D1 format using DLINKI and MPP1/2 pin.

Normal Record Mode

Each channel position and size can be defined using its own PIC_SIZE (1x6C), and PIC_POS (1x6D) register. The channel size is defined via the PIC_SIZE register such as "0" for horizontal and vertical half size (QUAD), "1" for horizontal full size and vertical half size, "2" for horizontal half size and vertical full size, and "3" for horizontal and vertical full size. The channel position is defined via the PIC_POS register such as "0" for no horizontal and vertical offset, "1" for only horizontal half offset, "2" for only vertical half offset, and "3" for horizontal and vertical offset, "1" for only horizontal half offset, "2" for only vertical half offset, and "3" for horizontal and vertical half offset. The channel size and location should be defined within the full picture size. (i.e. PIC_SIZE = "3" & PIC_POS = "2" is not allowed)

The horizontal full size of picture is controlled via the SIZE_MODE (1x51) register such as "0" for 720 pixels, "1" for 702 pixels, and "2" for 640 pixels. Likewise, the vertical full size is selected by the SYS5060 (1x00) register such as "0" for 240 lines and "1" for 288 lines.

If more than 2 channels have same region, there will be a conflict of what to display for that area. Generally the TW2837 defines that the channel 0 has priority over channel 3. So if a conflict happens between more than 2 channels, the channel 0 will be displayed first as top layer and then the channel 1, 2 and 3 are hidden beneath. The TW2837 also provides a channel pop-up attribute via the POP_UP (1x60, 1x63, 1x66, and 1x69) register to give priority for another display. If a channel has pop-up attribute, it will be displayed as top layer. The following Figure 38 shows the example of the channel position and size control in normal record mode.

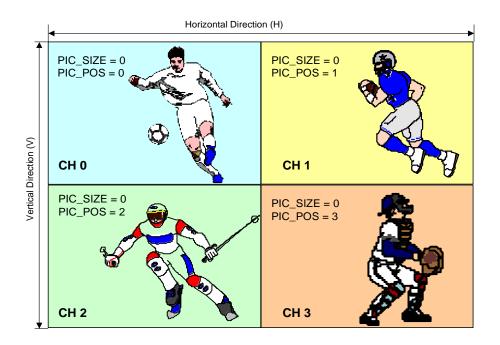


FIGURE 38 THE CHANNEL POSITION AND SIZE CONTROL IN NORMAL RECORD MODE

Frame Record Mode

The frame record mode is similar to normal record mode except that the definition of picture size is extended to frame area and only one field data can be output in 1 frame. The odd or even field selection is controlled via the FRAME_FLD (1x51) register. Like normal record mode, each channel position and size are defined using its own PIC_SIZE (1x6C), and PIC_POS (1x6D) register. The channel size is defined via the PIC_SIZE register such as "0" for horizontal half size and vertical full size, "1" for horizontal and vertical full size, but "2" or "3" is not allowed. That is, the channel size for vertical direction supports only one field size. The channel position is defined via the PIC_POS register such as "0" for no horizontal and vertical offset, "1" for only horizontal half offset, "2" for only vertical 1 field offset, and "3" for horizontal half picture offset and vertical 1 field offset. The channel size and location should be defined within the full picture size. In frame record mode, the TW2837 also supports the full operation mode such as live, strobe or switch operation and provides a pop-up attribute via the POP_UP register. The Figure 39 shows the example of the channel position and size control in frame record mode.

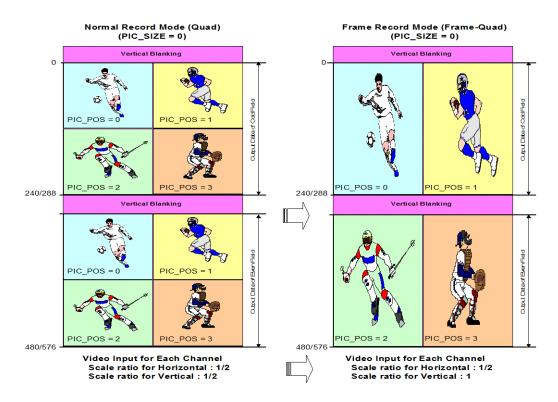


FIGURE 39 THE CHANNEL POSITION AND SIZE CONTROL IN FRAME RECORD MODE

DVR Normal Record Mode

The DVR normal record mode outputs the continuous video stream for compression part (M-JPEG or MPEG) in DVR application. Like normal record mode, each channel position and size can be defined using its own PIC_SIZE (1x6C), and PIC_POS (1x6D) register.

The channel size is defined via the PIC_SIZE register such as "0" for horizontal and vertical half size (QUAD), "1" for horizontal full size and vertical half size, "2" for horizontal half size and vertical full size, and "3" for horizontal and vertical full size. The channel position is defined via the PIC_POS register such as "0" for no vertical offset, "1" for vertical 1/4 picture offset, "2" for vertical 1/2 picture offset and "3" for vertical 3/4 picture offset. The channel size and location should be defined within the full picture size. In DVR normal record mode, the TW2837 also supports the full operation mode such as live, strobe or switch operation and provides a pop-up attribute via the POP_UP register. But the channel boundary is not supported in DVR normal record mode. The following Figure 40 shows the example of the channel position and size control in DVR normal record mode.

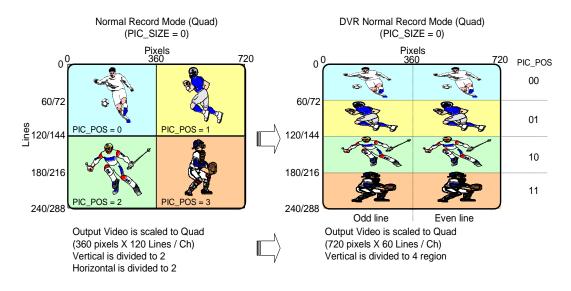


FIGURE 40 THE CHANNEL POSITION AND SIZE CONTROL FOR DVR NORMAL RECORD MODE

DVR Frame Record Mode

The DVR frame record mode is the combination of frame record mode and DVR normal record mode. The odd or even field selection is controlled via the FRAME_FLD (1x51) register like frame record mode. The TW2837 also supports the full operation mode such as live, strobe or switch operation, but the channel boundary is not supported in DVR frame record mode.

Like frame record mode, each channel position and size can be defined using its own PIC_SIZE (1x6C), and PIC_POS (1x6D) register. The channel size is defined via the PIC_SIZE register such as "0" for horizontal half size and vertical full size, "1" for horizontal and vertical full size, but "2" or "3" is not allowed. The channel position is defined via the PIC_POS register such as "0" for no horizontal and vertical offset, "1" for vertical half offset, "2" for vertical 1 field offset, and "3" for vertical 1 and half field offset. The channel size and location should be defined within the full picture size. The following Figure 41 shows the example of DVR frame record mode.

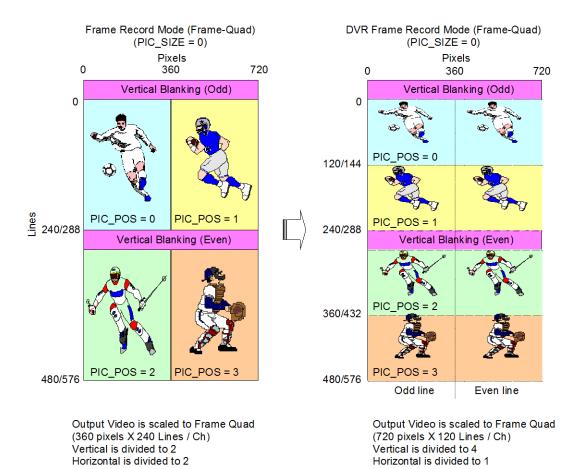


FIGURE 41 THE CHANNEL POSITION AND SIZE CONTROL FOR DVR FRAME RECORD MODE

Noise Reduction

The TW2837 includes a noise reduction filter in record path and the characteristic can be controlled via the TM_WIN_MD (1x52), MEDIAN_MD, TM_SLOP, and TM_THR (1x50) register. But this noise reduction filter is only available for normal record mode.

The TM_WIN_MD register defines window type to reduce spot noise as "0" for 3X3 matrix, "1" for cross matrix, "2" for multiplier matrix, and "3" for vertical bar matrix. The MEDIAN_MD defines the noise reduction filter mode as "0" for adaptive threshold median filter mode, "1" for normal median filter mode. For adaptive threshold median filter mode, the TW2837 has cross-correlation detector for noise detection. If cross-correlation value is over than TM_THR of noise threshold level, the noise reduction filter will be operated according to the graph defined by the TM_SLOP register.

The following Figure 42 shows the slope control for adaptive threshold median filter mode.

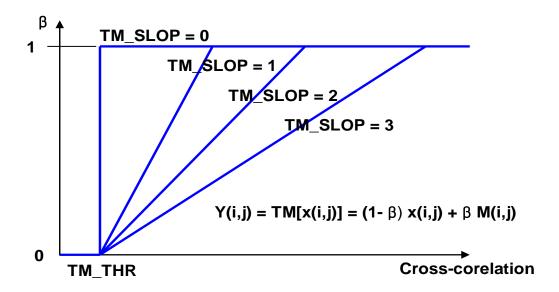


FIGURE 42 THE SLOPE CONTROL FOR ADAPTIVE THRESHOLD MEDIAN FILTER MODE

The TW2837 supports the noise reduction filter for each channel via the NR_EN (1x60, 1x63, 1x66, and 1x69) register. The TW2837 also supports auto noise reduction filter mode via the AUTO_NR_EN (1x55) register that is enabled when night is detected. Additionally the TW2837 has programmable black level of luminance component in record path to reduce the black spot noise via the LIM_656_Y (0xC1, and 0xC2) register.

CHANNEL ID ENCODER

The TW2837 supports the channel ID encoding to detect the picture information in video stream for record path. The TW2837 has three kinds of channel ID such as User channel ID, Detection channel ID and Auto channel ID. The User channel ID is used for customized information such as system information and date. The Detection channel ID is used for detected information of current live input such as motion, video loss, blind and night detection. The Auto channel ID is employed for automatic identification of picture configuration such as video input path number with cascaded stage, analog switch, event, region enable, and field/frame mode information. The TW2837 also supports both analog and digital type channel ID during VBI period.

Channel ID Information

The channel ID can be composed of 8 byte User channel ID, 8 byte Detection channel ID and 4 byte Auto channel ID. The User channel ID is defined by user and may be used for system information, date and so on. The Detection channel ID is used for the detected information such as video loss state, motion, blind and night detection. The Auto channel ID is used to identify the current picture configuration. Basically the Auto channel ID has 4 byte data that contains 4 region channel information in one picture such as QUAD split image. That is, each region has 1 byte channel information. The Auto channel ID format is described in the following **Error! Reference source not found.**.

BIT	NAME	FUNCTION	
7	REG_EN	Region Enable Information	
6	EVENT	New Event Information	
5	FLDMODE	Sequence Unit (0 : Frame, 1 : Field)	
4	ANAPATH	Analog switch information	
[3:2]	CASCADE	Cascaded Stage Information	
[1:0]	VIN_PATH	Video Input Path Number (depending on DEC_PATH_Y)	

TABLE 4 THE AUTO CHANNEL ID INFORMATION

The REG_EN is used to indicate whether the corresponding 1/4 region is active or blank. The EVENT is used to denote the updating information of each channel in live, strobe or switch operation. Especially the EVENT information is very useful for switch operation or non-realtime application such as pseudo 8ch or dual page mode because each channel can be updated whenever EVENT is detected. The FLDMODE is used to denote the sequence unit such as frame or field. The ANAPATH is used to identify the analog switch information in the channel input path. The ANAPATH information is required for non-realtime application such as pseudo 8ch, dual page or pseudo 8channel MUX application using analog switch. The CASCADE is used to indicate the cascaded stage of channel in chip-to-chip cascaded application. The VIN_PATH information is used to indicate the video input path of channel.

Four bytes of Auto channel ID can be distinguished by its order. The first byte of Auto channel ID defines the left top region channel. Likewise the second byte defines the right top, the third byte defines the left bottom and the fourth byte defines the right bottom region channel in one picture. The following

Figure 43 shows the example of Auto channel ID for various recording of	output formats.
rigure 40 shows the example of Auto channel ib for various recording o	alput ionnats.

Normal (QUAD Frame)			Frame (Odd Field)		DVR Frame (Odd Field)				
	-	Auto Channel ID			Auto Channel ID			Auto Channel ID	
CH0	CH1	A0 = "1100_0000			A0 = "1110_0001	CH1	CH1	A0 = "1110_0001	
		A1 = "1100_0001	CH1	CH2	A1 = "1110_0010			A1 = "1110_0001	
CH2	СНЗ	A2 = "1100_0010			A2 = "1110_0001	CH2	CH2	A2 = "1110_0010	
0112	0110	A3 = "1100_0011			A3 = "1110_0010	0112	0112	A3 = "1110_0010	
Normal (Fu									
Normai (FL	ili Frame)		Frame (Even Field)		Auto Channel ID	DVR Frame	DVR Frame (Even Field) Auto Channel ID		
		Auto Channel ID		СНЗ					
		A0 = "1100_0000			A0 = "1110_0000	CH0	CH0	A0 = "1110_0000	
C	CH0	A1 = "1100_0000	CH0		A1 = "1110_0011			A1 = "1110_0000	
		A2 = "1100_0000			A2 = "1110_0000			A2 = "1110_0011	
		A3 = "1100_0000			A3 = "1110_0011	CH3	CH3	A3 = "1110_0011	
					J				
DVR Norm	al		Full Field (Ch 3)			Full Field (Ch 0)			
CH0	CH0	Auto Channel ID			Auto Channel ID			Auto Channel ID	
					A0 = "1110_0011			A0 = "1110_0000	
CH1	CH1	A0 = "1100_0000		1 3	A1 = "1110_0011	CH	-0-	A1 = "1110_0000	
CH2	CH2	A1 = "1100_0001 A2 = "1100_0010	CI	10	A2 = "1110_0011	CI		A2 = "1110_0000	
CH3	CH3	A3 = "1100_0011			A3 = "1110_0011			A3 = "1110_0000	

FIGURE 43 THE EXAMPLE OF AUTO CHANNEL ID FOR VARIOUS RECORD OUTPUT FORMATS

The Detection channel ID consists of 2 bytes because each channel requires 4 bits for video loss, motion, blind and night detection information. The detailed Detection channel ID format is described in the following **Error! Reference ource not found.**

BIT	NAME	FUNCTION
3	NOVID	Video loss Information (0 : Video is Enabled, 1 : Video loss)
2	MD_DET	Motion Information (0 : No Motion, 1 : Motion)
1	BLIND_DET	Blind Information (0 : No Blind, 1 : Blind)
0	NIGHT_DET	Night Information (0 : Day, 1 : Night)

In analog channel ID type, 4 byte information can be inserted in one line so that only the half line is required for 1 chip detection channel ID, but two lines are always reserved for detection channel ID in case of cascaded application. For cascaded application, max 8 bytes are needed for detection channel ID information. The order of those channel ID depends on the cascaded stage via the LINK_NUM (1x00) register. That is, the master chip information (LINK_NUM =

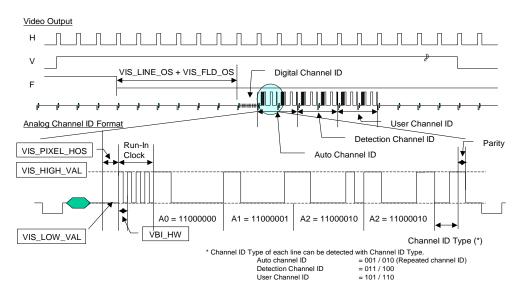
"0") is output at first order and the last slave chip information (LINK_NUM = "3") at last. The TW2837 also supports non-realtime detection channel ID format via the VIS_DM_MD (1x83) register. The non-realtime detection channel ID requires 4 bytes for 8 channel information. So one line is used for it and the order is that VIN_A information (ANA_SW = "0") is output at first and VIN_B information at last.

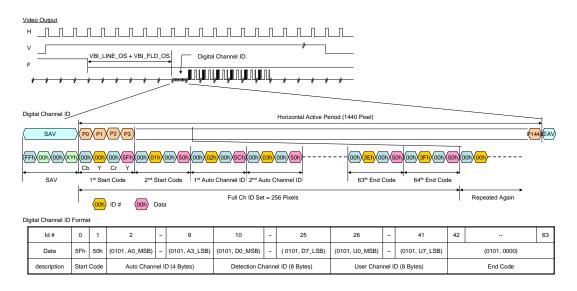
Analog Type Channel ID in VBI

The TW2837 supports the analog type channel ID during VBI period. The analog channel ID can include an Auto channel ID, Detection channel ID and User channel ID. Each channel ID can be enabled via the VIS_AUTO_EN, AUTO_RPT_EN, VIS_DET_EN, VIS_USER_EN (1x80) registers. The Auto channel ID requires one line basically, but can need one more line for repetition. Both Detection channel ID and User channel ID and User channel ID and User channel ID and User channel ID require two lines so that total six lines are used for analog type channel ID.

The vertical starting position of analog channel ID is controlled by the VIS_LINE_OS (1x83) register with 1 line unit and the horizontal starting position is defined via VIS_PIXEL_HOS (1x81) register with 2 pixel unit. The pixel width of each bit is controlled by the VIS_PIXEL_WIDTH (1x82) register and the magnitude of each bit is defined by the VIS_HIGH_VAL/VIS_LOW_VAL (1x84/1x85) register.

The analog channel ID consists of run-in clock, channel ID data, type and parity bit. The run-in clock insertion is enabled via the VIS_RIC_EN (1x80) register. The channel ID data can include 4 byte information and the channel ID type contains 3 bits that "0" is meant for Auto channel ID, "1" for repeated channel ID, "2" for Detection channel ID of master and first slave stage chip, "3" for Detection channel ID of second and third slave chip, "4" for User channel ID of VIS_MAN0~3, and "5" for User channel ID of VIS_MAN4~8. The parity is 1 bit width and used for even parity. The analog channel ID is located right after digital channel ID line. The following Figure 44 shows the illustration of analog channel ID.




FIGURE 44 ILLUSTRATION OF ANALOG CHANNEL ID

Digital Type Channel ID in VBI

The TW2837 also provides the digital type channel ID during VBI period. It's useful for DSP application because the channel ID can be inserted in just 1 line with special format. The digital channel ID is located before analog channel ID line. The digital channel ID can be enabled via the VIS_CODE_EN (1x80) register.

The digital channel ID is inserted in Y data in ITU-R BT.656 stream and composed of ID # and channel information. The ID # indicates the index of digital type channel ID including the Start code, Auto/Detection/User channel ID and End code. The ID # has $0 \sim 63$ index and each channel information of 1 byte is divided into 2 bytes of 4 LSB that takes "50h" offset against ID # for discrimination. The Start code is located in ID# $0 \sim 1$ and the Auto channel ID is situated in ID# $2 \sim 9$. The Detection channel ID is located in ID # $10 \sim 25$ and the User channel ID is situated in ID # $26 \sim 41$. The End code occupies the others. The digital channel ID is repeated more than 5 times during horizontal active period. The following Figure 45 shows the illustration of the digital channel ID.

FIGURE 45 THE ILLUSTRATION OF THE DIGITAL CHANNEL ID IN VBI PERIOD

Digital Type Channel ID in Channel Boundary

The TW2837 also supports the extra type of digital channel ID in horizontal boundary of each channel. This information can be used for very easy memory management of each channel in DSP solution because this digital channel ID information includes not only the channel information but also line number of picture. The Auto channel ID format is described in the following Table 6.

Bit	Name	Function	
[15:7]	LINENUM	ctive Line number	
6	FIELD	Field Polarity Information	
5	REG_EN	Region Enable Information	
4	ANAPATH	Analog switch information	
[3:2]	CASCADE	Cascade Stage Information	
[1:0]	VIN_PATH	Video Input Path Number (depending on DEC_PATH_Y)	

TABLE 6 THE DIGITAL CHANNEL ID INFORMATION IN ACTIVE AREA

This digital channel ID is enabled in the horizontal active area by setting "1" to the CH_START (1x55) register. The following Figure 46 shows the digital channel ID in channel boundary.

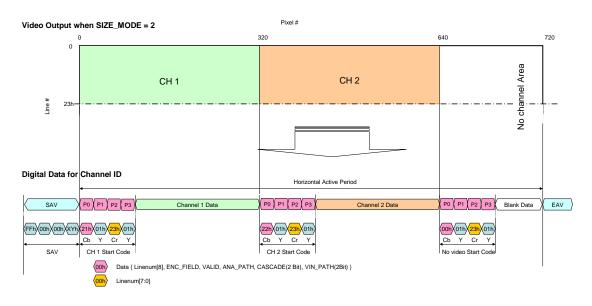


FIGURE 46 THE DIGITAL CHANNEL ID FORMAT IN CHANNEL BOUNDARY

CHIP-TO-CHIP CASCADE OPERATION

The TW2837 supports chip-to-chip cascade connection up to 4 chips for 16-channel application and also provides the independent operation for display and record path. That is, the display path can be operated with cascade connection even though the record path is working in normal operation. Likewise, the cascade connection of record path is limited within 4 chips while the infinite cascade connection of display path can be supported for more than 16-channel application.

In cascade operation, the TW2837 transfers all information of slaver chips to master chip including video data, zoom factors, switching information and 2D box except overlay information such as single box, mouse pointer and bitmap

information. Therefore, the master chip should be controlled for overlay and the lowest slaver chip should be controlled for the others such as video data, zoom control and switching queue.

Channel Priority Control

When 2 channels are overlapped in chip-to-chip cascade operation for display path, there is a priority with the following order such as popup attributed channel of master device, popup attributed channel of slaver device, non-popup attributed channel of master device and non-popup attributed channel of slaver device. Using this popup attribute, the TW2837 can implement the channel overlay such as PIP, POP, and full D1 format channel switching in chip-to-chip cascade connection.

For QUAD multiplexing record output in chip-to-chip cascade application, the popup priority of the channel is controlled via the QUAD_MUX queue. The QUAD_MUX operation is enabled via the POS_CTL_EN (1x70) register and the operation mode should be set into strobe operation (FUNC_MODE = "1"). If the POS_CTL_EN is "0", the channel position is defined via the PIC_POS (1x6D) register and the priority from top to bottom layer is controlled by the popup attribute like the display path. If the POS_CTL_EN is "1", the channel position and priority is controlled by the pre-defined queue or interrupt.

The TW2837 supports the interrupt triggering via the POS_INTR (1x70), POS_CH (1x73, 1x74) register and also provides the internal or external triggering mode for the QUAD_MUX operation. The triggering mode is selected via the POS_TRIG_MODE (1x70) register such as "0" for external trigger mode and "1" for internal trigger mode.

The QUAD_MUX queue size can be defined by the POS_QUE_SIZE (1x71) register. To change the channel popup sequence in internal queue, the POS_QUE_WR (1x75) register should be set to "1" after defining the queue address with the POS_QUE_ADDR (1x75) register and the channel number with the POS_CH (1x73, 1x74) register. The POS_QUE_WR register will be cleared automatically after updating queue. The QUAD_MUX queue is shared with the normal switching queue so that the maximum queue size for QUAD_MUX is 32 (=128/4) depth.

The QUAD_MUX switching period can be defined via the POS_QUE_PERIOD (1x72) register that has $1 \sim 1024$ period range in the internal triggering mode. The switching period unit is controlled via the POS_FLD_MD (1x71) register as field or frame. If switching period unit is frame, switching will occur at the beginning of odd field. The internal field counter can be reset at anytime using the POS_CNT_RST (1x75) register that will be cleared automatically after set to "1". To reset an internal queue position, the POS_QUE_RST (1x75) register should be set to "1" and will be cleared automatically after set to "1". The structure of QUAD_MUX switching operation is shown in the following Figure 47.

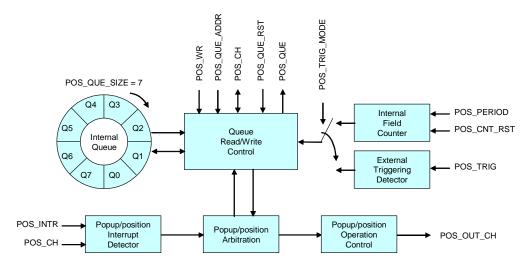


FIGURE 47 THE STRUCTURE OF QUAD_MUX SWITCHING OPERATION WHEN POS_SIZE = 7

For QUAD_MUX switching operation by field unit, the TW2837 supports an auto strobe mode for channel to be updated automatically with specific field data. The STRB_FLD (1x01, 1x54) register is used to select specific field data in strobe mode and the STRB_AUTO (1x07, 1x57) register is used to update it automatically.

The QUAD_MUX operation has several limitations. The first is that the channel region should not be overlapped with other channel region via the PIC_SIZE and PIC_POS register. The second is that the channel position and popup property in live or strobe operation mode can be controlled by the popup/position control. But the channel position and priority in switch operation mode is determined by the QUAD_MUX queue. The third is that the POS_CH register in QUAD_MUX queue should be set as the following sequence that is the left top, right top, left bottom and right bottom position in the picture. The POS_CH register includes the cascade stage and channel number information.

120 CIF/Sec Record Mode

For chip-to-chip cascade connection, the DLINKI, VLINKI and HLINKI pin in master chip should be connected to VDOUTX, VSENC and HLINKI pin in slaver chips. So the VDOUTX, VSENC and HSENC output pin is only available in master device when cascaded.

The TW2837 has several registers for cascade operation such as the LINK_EN, LINK_NUM, LINK_LAST (1x00) and SYNC_DEL (1x7E) register. For lowest slaver chip, both LINK_LAST_X and LINK_LAST_Y should be set to "1". To receive the cascade data from slaver chip, either LINK_EN_X or LINK_EN_Y should be set to "1". To transfer the cascade data properly among the chips, the LINK_NUM and SYNC_DEL should be set properly in accordance with its order. The information of switching channel can be taken from master chip via the channel ID in video stream output or by reading the MUX_OUT_CH (1x08, 1x6E) register. The information of switching channel can also be taken from the lowest slaver chip via the MPP1/2 pins. The following Figure 48 illustrates the cascade connection for 120 CIF/Sec record mode.

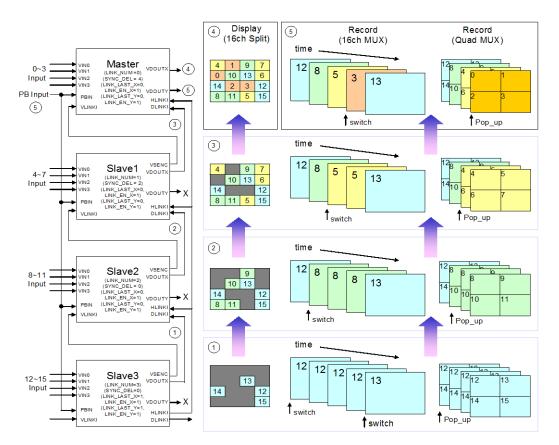


FIGURE 48 THE CASCADE CONNECTION FOR 120 CIF/SEC RECORD MODE

240 CIF/Sec Record Mode

The TW2837 supports 240 CIF/Sec record mode in chip-to-chip cascade connection. In this case, the display path is composed of 4 chip cascade stage, but the record path consists of 2 chip cascade stage. That is, two lowest slaver chips for record path should be set with the LINK_LAST_Y = "1" and the switching channel information can be taken from two master chips for record path via the channel ID in video stream or by reading the MUX_OUT_CH (1x6E) register. The following Figure 49 illustrates the cascade connection for 240 CIF/Sec record mode.

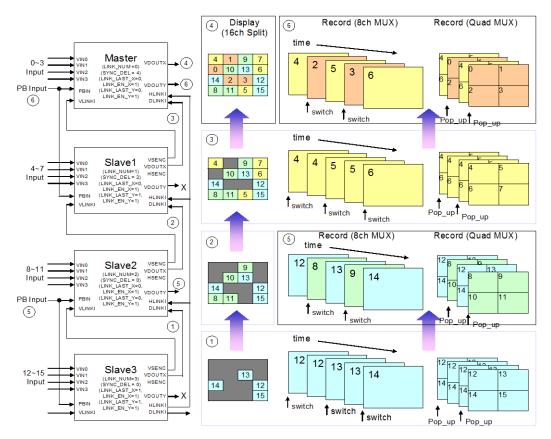


FIGURE 49 THE CASCADE CONNECTION FOR 240 CIF/SEC RECORD MODE

480 CIF/Sec Record Mode

The TW2837 also supports 480 CIF/Sec record mode in chip-to-chip cascade connection. In this case, the display path is composed of 4 chip cascade stage, but the record path has no cascade connection. Even though the record path has no cascade connection, the LINK_NUM should be set properly in accordance with its cascade order for correct channel number in channel ID and the LINK_EN_Y should be set to "0" or the LINK_LAST_Y should be set to "1". The TW2837 transfers the slaver chip information to master chip such as zoom control and 2D box only for display path and the switching channel information for record path can be taken from each chip via the channel ID in video stream or by reading the MUX_OUT_CH (1x6E) register. The following Figure 50 illustrates the cascade connection for 480 CIF/Sec record mode.

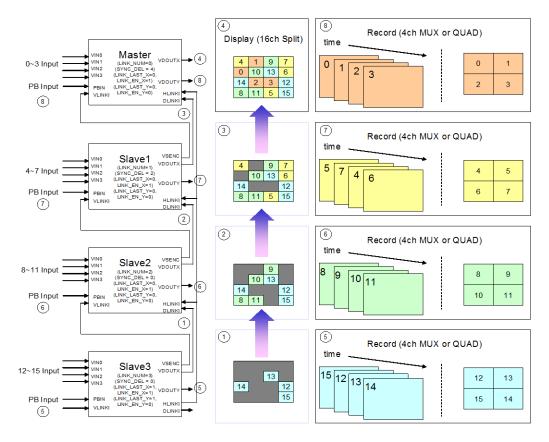


FIGURE 50 THE CASCADE CONNECTION FOR 480 CIF/SEC RECORD MODE

Infinite Cascade Mode for Display Path

In normal cascade connection, the master chip has LINK_NUM = "0" and the lowest slaver chip has LINK_NUM = "3". The master chip can output both display and record path, but the slaver device can output only record path. To implement more than 16 channel application, the TW2837 also provides the infinity cascade connection for display path. That is, the video data and popup information can be transferred to next cascade chip even though the master chip is set with LINK_NUM = "0" and the slaver chip with LINK_NUM = "3" for display path. This mode can be enabled via the T_CASCADE_EN (1x7F) register.

The following **Error! Reference source not found.** illustrates the multiple cascade connection for display path. In this xample, the display path in the last master chip can output 32 channel video and the record path can implement "480 CIF/sec" with lower 4 chips and "120 CIF/sec" with upper 4 chips.

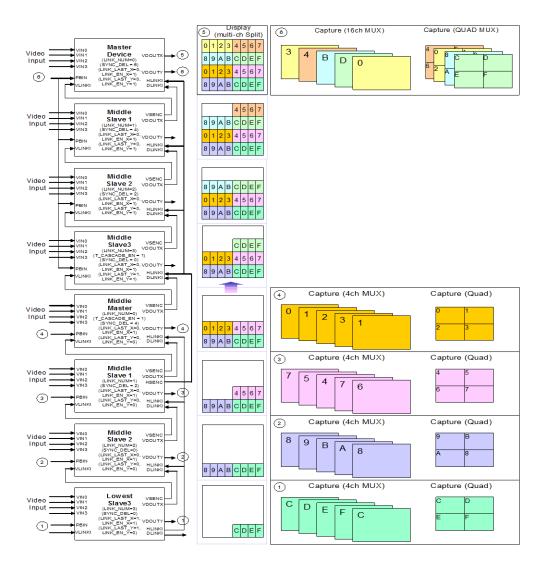
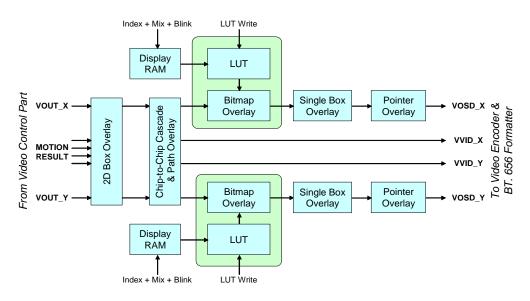



FIGURE 51 INFINITE CASCADE MODE FOR DISPLAY PATH

OSD (ON SCREEN DISPLAY) CONTROL

The TW2837 provides various overlay layers such as 2D box layer, bitmap layer, single box layer and mouse pointer layer that can be overlaid on display and record path independently. The following Figure 52 shows the overlay block diagram.

FIGURE 52 OVERLAY BLOCK DIAGRAM

The bitmap data can be downloaded from host to a scratch area at the initialization stage, and then block fill / block move automatically to the 2 fields for display path and 2 fields for record path. The TW2837 supports four single and 2D arrayed boxes that are programmable for size, position and color.

Dual analog video outputs and dual digital video outputs can enable or disable a bitmap, single box and mouse pointer overlay respectively. The overlay priority of OSD is shown in Figure 53. The various OSD overlay function is very useful to build GUI interface.

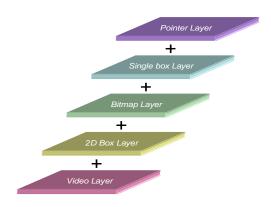


FIGURE 53 THE OVERLAY PRIORITY OF OSD LAYER

2 Dimensional Arrayed Box

The TW2837 supports four 2D arrayed boxes that have programmable cell size up to 16x16. The 2D arrayed box can be used to make table menu or display motion detection information via the 2DBOX_MODE (2x60, 2x68, 2x70, 2x78) register. The 2D arrayed box is displayed on each path by the 2DBOX_EN (2x60, 2x68, 2x70, and 2x78) register.

For each 2D arrayed box, the number of row and column cells is defined via the 2DBOX_HNUM and 2DBOX_VNUM (2x66, 2x6E, 2x76, and 2x7E) registers. The horizontal and vertical location of left top is controlled by the 2DBOX_HL (2x62, 2x6A, 2x72, and 2x7A) register and the 2DBOX_VT (2x64, 2x6C, 2x74, and 2x7C) registers. The horizontal and vertical size of each cell is defined by the 2DBOX_VW (2x65, 2x6D, 2x75, and 2x7D) registers and the 2DBOX_HW (2x63, 2x6B, 2x73, and 2x7B) registers. So the whole size of 2D arrayed box is same as the sum of cells in row and column.

The boundary of 2D arrayed box is enabled by the 2DBOX_BNDEN (2x61, 2x69, 2x71, and 2x79) register and its color is controlled via the MDBND_COL (2x5F) register which selects one of 4 colors such as 0% black, 25% gray, 50% gray and 75% white.

Especially the TW2837 provides the function to indicate cursor cell inside 2D arrayed box. The cursor cell is enabled by the 2DBOX_CUREN (2x60, 2x68, 2x70, and 2x78) register and the displayed location is defined by the 2DBOX_CURHP and 2DBOX_CURVP (2x67, 2x6F, 2x77, and 2x7F) registers. Its color is a reverse color of cell boundary. It is useful function to control motion mask region.

The plane of 2D arrayed box is separated into mask plane and detection plane. The mask plane represents the cell defined by MD_MASK (2x86 ~ 2x9D, 2xA6 ~ 2xBD, 2xC6 ~ 2xDD, 2xE6 ~ 2xFD) register. The detection plane represents the motion detected cell excluding the mask cells among whole cells. The mask plane of 2D arrayed box is enabled by the 2DBOX_MSKEN (2x61, 2x69, 2x71, 2x79) register and the detection plane is enabled by the 2DBOX_DETEN (2x61, 2x69, 2x71, 2x79) register. The color of mask plane is controlled by the MDAREA_COL (2x5B ~ 2x5E) register and the color of detection plane is defined by the DETAREA_COL (2x5B ~ 2x5E) register which selects one out of 12 fixed colors or 4 user defined colors using the CLUT (2x13 ~ 2x1E) register. The mask plane of 2D arrayed box shows the mask information according to the MD_MASK registers automatically and the additional narrow boundary of each cell is provided to display motion detection via the 2DBOX_DETEN register and its color is a reverse cell boundary color. The plane can be mixed with video data by the 2DBOX_MIX (2x60, 2x68, 2x70, 2x78) register and the alpha blending level is controlled as 25%, 50%, and 75% via the ALPHA_2DBOX (2x1F) register. Even in the horizontal / vertical mirroring mode, the video data and motion detection result can be matched via the 2DBOX_HINV and 2DBOX_VINV (2x61, 2x69, 2x71, 2x79) registers.

The TW2837 has 4 2D arrayed boxes so that 4 video channels can have its own 2D arrayed box for motion display mode. To overlay mask information and motion result on video data properly, the scaling ratio of video should be matched with 2D arrayed box size.

The following Figure 54 shows the 2D arrayed box of table mode and motion display mode.

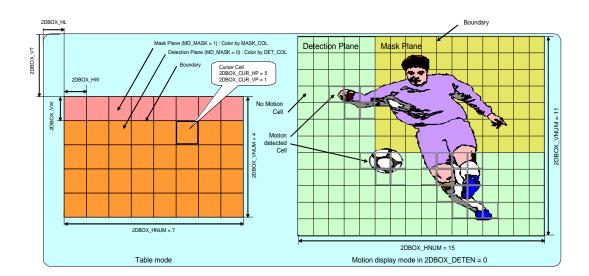


FIGURE 54 THE 2D ARRAYED BOX IN TABLE MODE AND MOTION DISPLAY MODE

In case those several 2D arrayed boxes have same region, there will be a conflict of what to display for that region. Generally the TW2837 defines that 2D arrayed box 0 has priority over other 2D arrayed box. So if a conflict happens between more than 2 2D arrayed boxes, 2D arrayed box 0 will be displayed first as top layer and 2D arrayed box 1, box 2, and box 3 are hidden beneath that are not supported for pop-up attribute like channel attribute.

Bitmap Overlay

The TW2837 has bitmap overlay function for display and record path independently. Each bitmap overlay function block consists of display RAM, lookup table (LUT) and overlay control block. The TW2837 has the respective display RAM for display and record path and supports full bitmap overlay with 720 x 576/480 dot resolution for both paths. Each TW2837 bitmap pixel is specified with an 8-bit data for display path, and 4-bit data for record path. The 8-bit pixel data can be interpreted in two different ways. It can be treated as 1-bit of mixing control, 1-bit of blinking control, and 6-bit of color map. With this mapping, it is backward compatible with TW2835. The 8-bit pixel data can also be interpreted as index to a 256-color lookup table. Instead of defining the mixing/blinking control in the 8-bit data, all 8-bit are used to index a 256-color lookup table, therefore supports up to 256 colors. The record path OSD of TW2837 uses 4-bit data per pixel. Within the 4-bit, 1 bit is for mixing control, 1 bit for blinking control, and 2 bits for color selection from a 4 entries lookup table. This record OSD is exactly the same as TW2835.

The mixing/blinking control is then defined within the 256 color tables. Each entry of the color table therefore defines the 3 color (Y, Cb, Cr) and 2-bit attributes (mixing, blinking). The mix attribute makes character mixed with video data and blink attribute gets character to be blinked with the period defined by the TBLINK_OSD (2x1F) register. The index attribute selects the displayed color out of 256/64 colors in display path and 4 colors in record path. If the index is 0xFFh for display path and 0xFh for record path, the dot is disabled and cannot be displayed on the picture. The lookup table (LUT) converts the index into the real displayed color (Y/Cb/Cr). The relationship between the

OSD_BUF_DATA and the displayed location is shown in the following

OSD_BUF_DATA for display path in 256 color mode

INDEX (8 bit)	INDEX (8 bit)	INDEX (8 bit)	INDEX (8 bit)
OSD_BUF_DATA[31:24]	OSD_BUF_DATA[23:16]	OSD_BUF_DATA[15:8]	OSD_BUF_DATA[7:0]
Dot 0	Dot 1	Dot 2	Dot 3
Dot 0 displayed most left location			Dot 3 displayed most right locat
Dot display Off = 0xFFh			

OSD_BUF_DATA for display path in 64 color mode Compatible with TW2835

міх	BLIN	INDEX (6 bit)	MIX BLINK INDEX (6 bit)				BLINK	INDEX (6 bit)	міх	MIX BLINK INDEX (6 bit)				
		OSD_BUF_DATA[31:24] OSD_BUF_DATA[23:10						OSD_BUF_DATA[15:8]	OSD_BUF_DATA[7:0]					
		Dot 0	Dot 1					Dot 2			Dot 3			

OSD_BUF_DATA for record path

OSD_BUF_DATA(31:28) OSD_BUF_DATA(27:24) OSD_BUF_DATA(23:20) OSD_BUF_DATA(19:16) OSD_BUF_DATA(16:12) OSD_BUF_DATA(11:8) OSD_BUF_DATA(7:4) OSD_BUF_DATA(3:0) Dot 0 Dot 1 Dot 2 Dot 3 Dot 4 Dot 5 Dot 6 Dot 7	MIX BLINK INDEX (2 bit)	MIX BLINK INDEX (2 bit						
Dat 0 Dat 1 Dat 2 Dat 3 Dat 4 Dat 5 Dat 6 Dat 7	OSD_BUF_DATA[31:28]	OSD_BUF_DATA[27:24]	OSD_BUF_DATA[23:20]	OSD_BUF_DATA[19:16]	OSD_BUF_DATA[15:12]	OSD_BUF_DATA[11:8]	OSD_BUF_DATA[7:4]	OSD_BUF_DATA[3:0]
Dot 0 Dot 1 Dot 2 Dot 3 Dot 4 Dot 5 Dot 6 Dot 7								
	Dot 0	Dot 1	Dot 2	Dot 3	Dot 4	Dot 5	Dot 6	Dot 7

Dot 0 displayed most left location Dot 7 displayed most right location
Dot display Off = 0xFh

Figure 55

OSD_BUF_DATA for display path in 256 color mode

INDEX (8 bit)	INDEX (8 bit)	INDEX (8 bit)	INDEX (8 bit)			
OSD_BUF_DATA[31:24]	OSD_BUF_DATA[23:16]	OSD_BUF_DATA[15:8]	OSD_BUF_DATA[7:0]			
Dot 0	Dot 1	Dot 2	Dot 3			

Dot 0 displayed most left location ------ Dot 3 displayed most right location Dot display Off = 0xFFh

OSD_BUF_DATA for display path in 64 color mode Compatible with TW2835

MIX	BLI	INDEX (6 bit)	MIX	BLINK	INDEX (6 bit)	MIX	BLINK	INDEX (6 bit)	MIX	MIX BLINK INDEX (6 bit)			
		OSD_BUF_DATA[31:24]	OSD_BUF_DATA[23:16]		OSD_BUF_DATA[23:16]			OSD_BUF_DATA[15:8]	OSD_BUF_DATA[7:0]				
_													
		Dot 0			Dot 1	Dot 2				Dot 3			

Dot 0 displayed most left location ------ Dot 3 displayed most right location Dot display Off = 0xFFh

OSD_BUF_DATA for record path

MIX	BLINK	INDEX (2 bit	міх	BLINK	INDEX (2 bit)	MIX	BLIN	INDEX (2 bit)	MIX	BLINK	INDEX (2 bit)	MIX	BLINK	INDEX (2 bit)	MIX	BLINK	INDEX (2 bit)	MIX	BLINK	INDEX (2 bit)	MIX	BLINK	INDEX (2 bit)
0	SD_BUF	_DATA[31:28]	05	SD_BUF	_DATA[27:24]	DATA[27:24] OSD_BUF_DATA[23:20] OSD_BUF_DATA[19:16]					OSD_BUF_DATA[15:12]			OSD_BUF_DATA[11:8]			OSD_BUF_DATA[7:4]			OSD_BUF_DATA[3:0		F_DATA[3:0]	
	D	-+ 0		D	-+ 4		Duto			Dura			Dot 4			Dot 5			Dot 6			D	ot 7
Dot 0 Dot 1 Dot 2 Dot 3									D	01 4		D	015		D				517				

Dot 0 displayed most left location Dot 7 displayed most right location

Dot display Off = 0xFh

FIGURE 55 THE DATA

FORMAT FOR 256/64 COLORS IN DISPLAY PATH, AND 4 COLORS IN RECORD PATH

The Error! Reference source not found. shows the structure of the display RAM in display and record path.

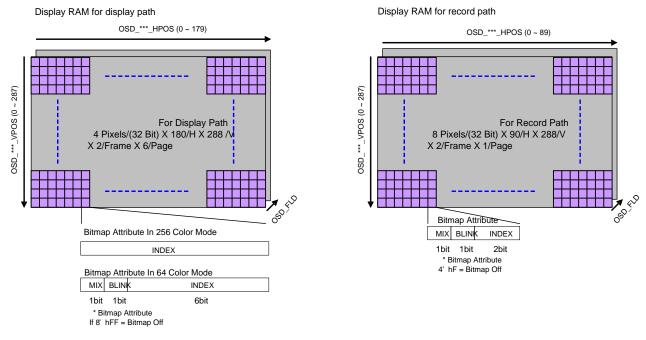
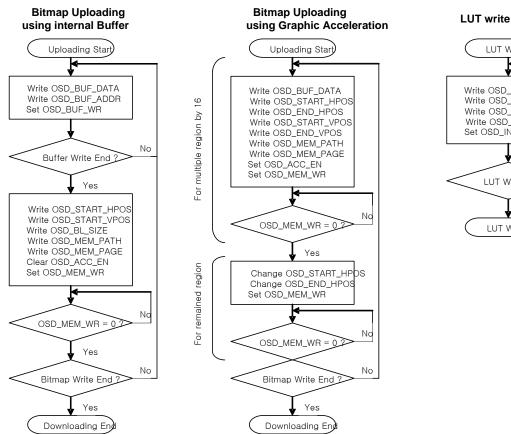


FIGURE 56 THE STRUCTURE OF THE DISPLAY RAM


TW2835 Compatible Mode

In the TW2835 compatible mode, TW2837 is backward compatible with the existing TW2835 firmware code to do the OSD programming. It supports two methods for uploading the display RAM using internal buffer and using graphic acceleration via the OSD_ACC_EN (2x0A) register. The internal buffer usage in normal method is to download a bit map data by 4 ~ 64 dot for display path and 8 ~ 128 dot for record path through the OSD_BUF_DATA (2x00, 2x01, 2x02, 2x03), OSD_BUF_ADDR (2x04) and OSD_BUF_WR (2x04) register. The horizontal starting position for downloading bitmap in display RAM is defined by the OSD_START_HPOS (2x05) register with 4 dot units for display path and 8 dot units for record path. The vertical starting position for downloading bitmap is defined by the OSD_START_VPOS (2x07, 2x09) register with 1 line unit. The MSB of the OSD_START_VPOS selects the field of downloading as "0" is for odd field and "1" is for even field. The writing data size of internal buffer is defined by the OSD_BL_SIZE (2x09) register and the writing path of internal buffer is selected by the OSD_MEM_PATH (2x0A) register ("0" for display path and "1" for record path). The download processing is started by the OSD_MEM_WR (2x0A) register that will be cleared automatically when downloading is finished.

The graphic acceleration is useful for single write, box / line drawing and clearing bitmap data because it will automatically fill in specific display RAM area via the OSD_BUF_DATA. For the graphic acceleration, the OSD_START_HPOS, OSD_START_VPOS, OSD_MEM_PATH and OSD_MEM_WR registers except the OSD_BL_SIZE register are shared with internal buffer. Additionally the horizontal and vertical ending positions are defined by the OSD_END_HPOS (2x06) and OSD_END_VPOS (2x08, 2x09) register. For proper graphic acceleration, the graphic acceleration region may be separated into multiple regions like 16 x A + B. That is, the "A" region can be divided by 16 unit (1 unit is 4 dot for display path, 8 dot for record path) and the remained region can be less than 16 units. So if the region can not be divided by 16 units, the graphic acceleration should be performed twice independently. The graphic acceleration is started by the OSD_MEM_WR (2x0A) register that will be cleared automatically when graphic acceleration is finished.

Figure 57 shows the flowchart for downloading data to display RAM and lookup table.

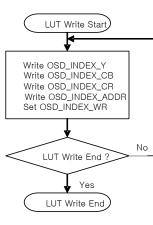


FIGURE 57 THE FLOWCHART FOR UPLOADING DATA TO DISPLAY/RECORD OSD BUFFER IN TW2835 COMPATIBLE MODE

The field of bitmap is selected by the OSD_FLD (2xOF) register for display and record path. For OSD_FLD = "1" or "2", only one field data is displayed for both fields, but for OSD_FLD = "3", frame data is displayed so that the bitmap resolution can be enhanced 2 times in vertical direction. For display path, the TW2837 can read the bitmap data from the extended page of display RAM via the OSD_RD_PAGE (2xOF) register. It's useful to change bitmap data from predownloaded bitmap page.

The blink period is controlled via the TBLINK_OSD (2x1F) register as "0" for 0.25 sec, "1" for 0.5 sec, "2" for 1 sec, and "3" for 2 sec period. The alpha blending level is also controlled via ALPHA_OSD (2x1F) register as 25%, 50%, and 75%.

The TW2835 compatible mode supports dual color LUT (Look-Up Table) with Y/Cb/Cr color space for display and record path via the OSD_INDEX_Y (2x0B), OSD_INDEX_CB (2x0C) and OSD_INDEX_CR (2x0D) register. The OSD_INDEX_ADDR (2x0E) register controls the writing position of LUT as "0 ~ 63" is for LUT of display path and "64 ~ 67" for record path. The update processing of color LUT is started by the OSD_INDEX_WR (2x0E) register that will be cleared automatically when downloading is finished.

The TW2837 also provides bitmap overlay function between display and record path via the OSD_OVL_MD (2x38) register as "0" for no overlay, "1" for low priority overlay, "2" for high priority overlay, and "3" for only the other path overlay. The following Figure 58 shows the bitmap overlay function between display and record path.

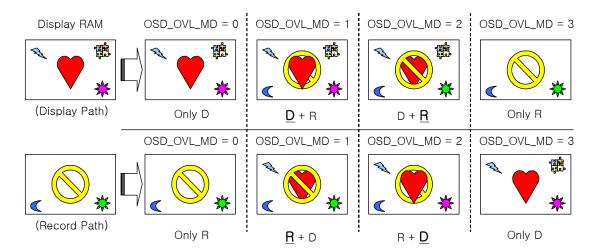


FIGURE 58 THE BITMAP OVERLAY FUNCTION BETWEEN DISPLAY AND RECORD PATH

TW2837 Enhanced Mode

In the TW2837 enhanced mode, MCU bitmap data uploading is improved, and the OSD data buffer is updated much faster. TW2837 provides an additional buffer called OSD scratch buffer. The scratch buffer size is 1024 x 432 pixels (1 byte per pixel). Due to the limitation of the memory capacity, this scratch buffer is not as big as a single frame. After initializing the TW2837, the MCU can download all the bitmaps (template, logo, etc) into the scratch buffer for later use. Instead of using 4-byte unit indirect write, TW2837 allows the MCU to specify a rectangular destination area in either of the display/record/scratch buffers, and then continuously write all the pixel data into a register until the whole region is filled. The destination rectangular regions are specified by registers OSD_DSTLOC (2x4F[2]), OSD_START_HPOS (2x05, 2x4E), OSD_START_VPOS (2x07, 2x09), OSD_END_HPOS (2x06, 2x4E), and OSD_END_VPOS (2x08, 2x09). The MCU issues the start of indirect write command to OSD_OPMODE (2x41[1:0]) and OSD_OPSTART register (2x4F[0]) to start the Bitmap write, and then continuously writing data into the OSD_BUF_DATA[31:24] (2x00) for the whole region. This function is called "Bitmap Write" operation.

Once the bitmaps are written into the scratch buffer, the MCU can issue "Block Fill", or "Block Move" operation whenever the display/record OSD buffers update is needed. The "Block Fill" function fills a rectangular region in the destination OSD buffer with a single color. This is useful to clean up the previously used OSD buffer area, or to write a background color. The destination rectangular region is specified similarly as "Bitmap Write". First, specify the command in OSD_OPMODE register (2x41[1:0]), specify the rectangular region through registers OSD_START_HPOS (2x05, 2x4E), OSD_START_VPOS (2x07, 2x09), OSD_END_HPOS (2x06, 2x4E), OSD_END_VPOS (2x08, 2x09), OSD_DSTLOC (2x4F[2]), specified the single pixel data through OSD_FILL_COLOR (2x43), and then issue a command to start in OSD_OPSTART (2x4F[0]). The destination buffer will be filled with the color specified with a mere single command.

The MCU can also issue a "Block Move" command to move a rectangular area of pixels from the scratch buffer into the display/record OSD buffers. This is performed by specifying the command OSD_OPMODE (2x41[1:0]) to 2'b11, the destination area OSD_START_HPOS, OSD_START_VPOS, OSD_DSTLOC (2x05, 2x06, 2x07, 2x08, 2x09, 2x4E, 2x4F[2]), the source area OSD_START_HSRC (2x4C, 2x4E), OSD_START_VSRC (2x4D, 2x4E), OSD_SRCLOC (2x4F[1]), and then issue the start command in OSD_OPSTART (2x4F[0]). With this, the bitmap in the scratch buffer is move to

the destination automatically. The MCU can perform many of these "Block Fill" and "Block Move" command to update the pixel data in OSD buffer without actually downloading each pixel. This enhances the OSD buffer update rate a lot.

To maintain the backward compatibility in TW2835 mode, we have a separate OSD look-up table for 256 color for display and 4 color for record path. The following figure shows the programming flow chart to use Bitmap write/block fill/block move and Lookup table programming.

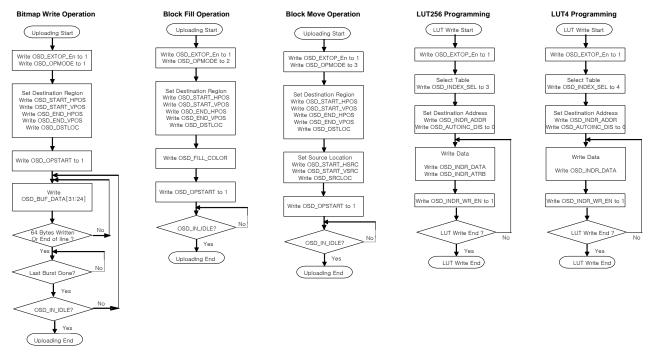


FIGURE 59 THE FLOWCHART FOR UPLOADING DATA TO DISPLAY/RECORD OSD BUFFER IN TW2837 ENHANCED MODE

Single Box

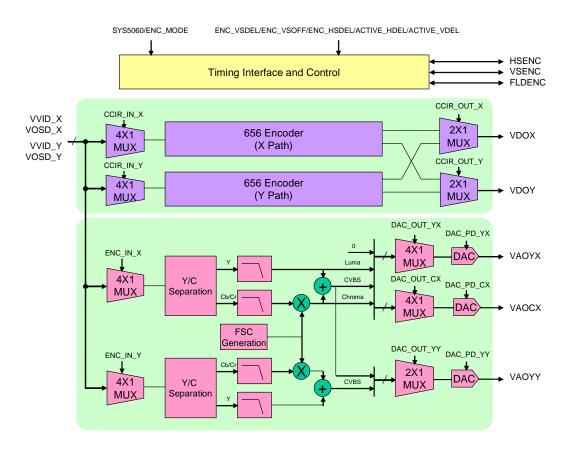
The TW2837 provides 4 single boxes that can be used for picture masking or box cursor. Each single box has programmable location and size parameters with the BOX_HL (2x22, 2x28, 2x2E, 2x34), BOX_HW (2x23, 2x29, 2x2F, 2x35), BOX_VT (2x24, 2x2A, 2x30, 2x36) and BOX_VW (2x25, 2x2B, 2x31, 2x37) registers. The BOX_HL is the horizontal location of box with 2 pixel unit and the BOX_HW is the horizontal size of box with 2 pixel unit. The BOX_VT is the vertical location of box with 1 line unit and the BOX_VW is the vertical size of box with 1 line unit.

The BOX_PLNEN (2x20, 2x26, 2x2C, 2x32) register enables each plane color and its color is defined by the BOX_PLNCOL (2x21, 2x27, 2x2D, 2x33) register, which selects one out of 12 fixed colors or 4 user defined colors using the CLUT (2x13 ~ 2x1E) register. Each box plane can be mixed with video data via the BOX_PLNMIX (2x20, 2x26, 2x2C, 2x32) register and the alpha blending level is controlled via the ALPHA_BOX (2x1F) register.

The color of box boundary is enabled via the BOX_BNDEN (2x20, 2x26, 2x2C, 2x32) register and its color is defined by the BOX_BNDCOL (2x20, 2x26, 2x2C, 2x32) registers.

In case that several boxes have same region, there will be a conflict of what to display for that region. Generally the TW2837 defines that box 0 has priority over box 3. So if a conflict happens between more than 2 boxes, box 0 will be displayed first as top layer and box 1 to box 3 are hidden beneath that are not supported for pop-up attribute unlike channel display.

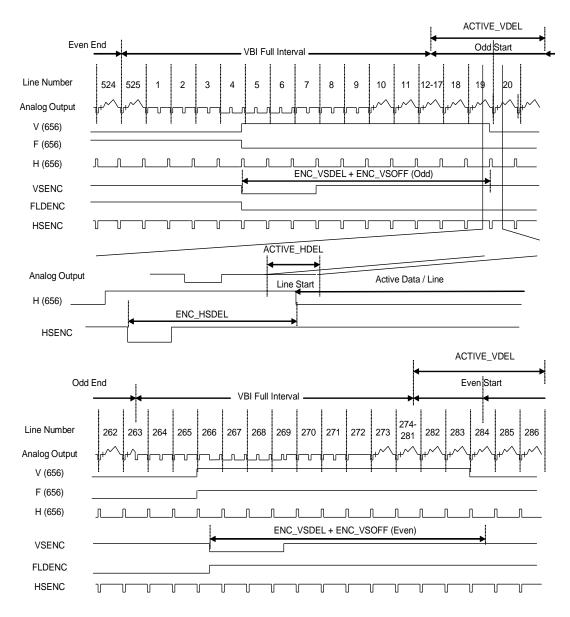
Mouse Pointer


The TW2837 supports the mouse pointer that has attributes such as pointer enabling, pointer location, blink and sublayer enabling. The mouse pointer can be overlaid on both display and record path independently.

The mouse pointer is located in the full screen according to the CUR_HP (2x11) register with 2 pixel step and CUR_VP (2x12) register with 1 line step. Two kinds of mouse pointer are provided through the CUR_TYPE (2x10) register. The CUR_SUB (2x10) register determines a pointer inside area to be filled with 100% white or to be transparent and the CUR_BLINK (2x10) register controls a blink function of mouse. Actually the CUR_ON (2x10) register enables or disables the mouse pointer for display and record path independently.

Video Output

The TW2837 supports dual digital video outputs with ITU-R BT.656 format and 2 analog video outputs with built-in video encoder at the same time. Dual video controllers generate 4 kinds of video data such as the display path video data with/without OSD and the record path video data with/without the OSD. The CCIR_IN (1xA0) register selects one of 4 video data for the digital video output and ENC_IN (1xA0) register selects one of 4 video data for the analog video output as shown in Figure 60.


FIGURE 60 VIDEO OUTPUT SELECTION

The TW2837 supports all NTSC and PAL standards for analog output, which can be composite video, or S-video video for both display and record path. All outputs can be operated as master mode to generate timing signal internally or slave mode to be synchronized with external timing.

TIMING INTERFACE AND CONTROL

The TW2837 can be operated in master or slave mode via the ENC_MODE (1xA4) register. In master mode, the TW2837 can generate all of timing signals internally while the TW2837 receives all of timing signals from external device in slaver mode. The polarity of horizontal, vertical sync and field flag can be controlled by the ENC_HSPOL, ENC_VSPOL and ENC_FLDPOL (1xA4) registers respectively for both master and slave mode. In slave mode, the TW2837 can detect field polarity from vertical sync and horizontal sync via the ENC_FLD (1xA4) register or can detect vertical sync from the field flag via the ENC_VS (1xA4) register. The detailed timing diagram is illustrated in the following Figure 61.

The TW2837 provides or receives the timing signal through the HSENC, VSENC and FLDENC pins. To adjust the timing of those pins from video output, the TW2837 has the ENC_HSDEL (1xA6), ENC_VSDEL and ENC_VSOFF (1xA5) registers which control only the related signal timing regardless of analog and digital video output. Likewise, by controlling the ACTIVE_VDEL (1xA7) and ACTIVE_HDEL (1xA8) registers, only active video period can be shifted on horizontal and vertical direction independently. The shift of active video period produces the cropped video image because the timing signal is not changed even though active period is moved. So this feature is restricted to adjust video location in monitor for example.

To control the analog video timing differently from digital video output, the ACTIVE_MD (1xA8) register can be used. For ACTIVE_MD = "1", both analog and digital output timing can be controlled together, but for ACTIVE_MD = "0", the active delay of only analog video output can be controlled independently.

In cascade application, these timing related register should be controlled with same value for all cascade chips and be operated as only master mode because HSENC and VSENC pin is dedicated to cascade purpose. (Please refer to "Chip-to-Chip Cascade Operation" section on page 67)

ANALOG VIDEO OUTPUT

The TW2837 supports analog video output using built-in video encoder, which generates composite or S-video with three 10 bit DAC for display and record path. The incoming digital video are adjusted for gain and offset according to NTSC or PAL standard. Both the luminance and chrominance are band-limited and interpolated to 27MHz sampling rate for digital to analog conversion. The NTSC output can be selected to include a 7.5 IRE pedestal. The TW2837 also provides internal test color bar generation.

Output Standard Selection

The TW2837 supports various video standard outputs via the SYS5060 (1x00) and ENC_FSC, ENC_PHALT, ENC_PED (1xA9) registers as described in the following Table 7.

		SPECIFICATION	1		REGI	STER	
FORMAT	LINE/FV (HZ)	FH (KHZ)	FSC (MHZ)	SYS5060	ENC_ FSC	ENC_PHALT	ENC_PED
NTSC-M	525/59.94	15.734	3.579545	0	0	0	1
NTSC-J	525/59.94	15.754	3.579545	0	0	0	0
NTSC-4.43	525/59.94	15.734	4.43361875	0	1	0	1
NTSC-N	625/50	15.625	3.579545	1	0	0	0
PAL-BDGHI	625/50	15.625	4.43361875	1	1	1	0
PAL-N	025/50	15.025	4.43301075	Ŧ	T	Ŧ	1
PAL-M	525/59.94	15.734	3.57561149	0	2	1	0
PAL-NC	625/50	15.625	3.58205625	1	3	1	0
PAL-60	525/59.94 15.734		4.43361875	0	1	1	0

If the ENC_ALTRST (1xA9) register is set to "1", phase alternation can be reset every 8 field so that phase alternation keeps same phase every 8 field.

Luminance Filter

The bandwidth of luminance signal can be selected via the YBW (1xAA) register as shown in the following Figure 62.

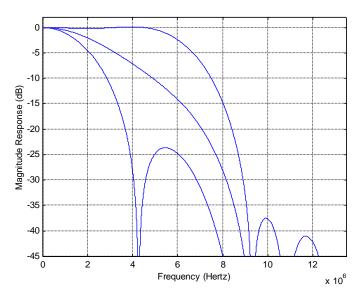


FIGURE 62 CHARACTERISTICS OF LUMINANCE FILTER

Chrominance Filter

The bandwidth of chrominance signal can be selected via the CBW (1xAA) register as shown in the following Figure 63.

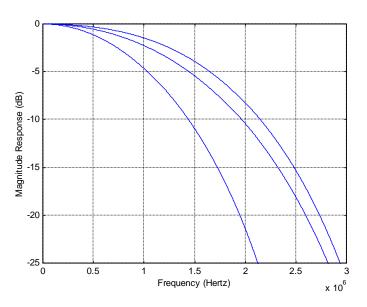


FIGURE 63 CHARACTERISTICS OF CHROMINANCE FILTER

Digital-to-Analog Converter

The digital video data from video encoder is converted to analog video signal by DAC (Digital to Analog Converter). The analog video signal format can be selected for each DAC independently via the DAC_OUT (1xA1, 1xA2) register like the following **Error! Reference source not found.** Each DAC can be disabled independently to save power by the AC_PD (1xA1, 1xA2) register. The video output gain can also be controlled via the VOGAIN (0x41, 0x42) register.

	Path		Dis	play		Record
	Format	No Output	CVBS	Luma	Chroma	CVBS
	VAOYX	0	0	0	0	Х
Ouptput	VAOCX	0	0	0	0	Х
	VAOYY	0	0	х	х	0

TABLE 8 THE AVAILABLE OUTPUT COMBINATION OF DAC

A simple reconstruction filter is required externally to reject noise as shown in the Figure 64.

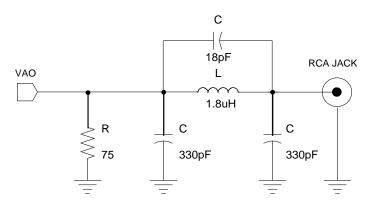


FIGURE 64 EXAMPLE OF RECONSTRUCTION FILTER

DIGITAL VIDEO OUTPUT

The digital output data of ITU-R BT.656 format is synchronized with CLKVDOX/Y pin which is 27MHz for single output or 54MHz for dual output. Each digital data of display and record path can be output through VDOX and VDOY pin respectively on single output mode. For the dual output mode, both display and record path output can come out through only one VDOX or VDOY pin. The active video level of the ITU-R BT.656 can be limited to 1 ~ 254 via the CCIR_LMT (1xA4) register. In case that channel ID is located in active video period, the CCIR_LMT should be set to low for proper digital channel ID operation.

The following Table 9 shows the ITU-R BT.656 SAV and EAV code sequence.

	Li	ne		Condition			FVH			SAV/EAV Co	de Sequence	
	From	То	Field	Vertical	Horizontal	F	v	Н	First	Second	Third	Fourth
	523	3	EVEN	Blank	EAV	1	1	1			-	0xF1
	(1 *1)	3	EVEN	ыапк	SAV	1	1	0				OxEC
	4	19	ODD	Blank	EAV	0	1	1	OxFF			0xB6
	4	19	000	Dialik	SAV		-	0				0xAB
nes)	20	259	ODD	Active	EAV	0	0	1				0x9D
60Hz (525Lines)	20	(263*1)	000	Active	SAV	Ŭ	Ŭ	0		0x00	0x00	0x80
Iz (5:	260	265	ODD	Blank	EAV	0	1	1		0,00	0,00	0xB6
60H	(264*1)	200	000	Dialtr	SAV	Ŭ	-	0				0xAB
	266	282	EVEN	Blank	EAV	1	1	1				0xF1
	200	202		Dianix	SAV	-	-	0				OxEC
	283	522	EVEN	Active	EAV	1	0	1				0xDA
		(525*1)	LVLIN	Active	SAV	-	0	0				0xC7
	1	22	ODD	Blank	EAV	0	1	1				0xB6
	-		000	Dianix	SAV		0	0	-			OxAB
	23	310	ODD	Active	EAV	0		1				0x9D
	20	010	000		SAV	Ŭ	•	0				0x80
nes)	311	312	ODD	Blank	EAV	0	1	1				0xB6
25Li		012	000	Diam	SAV	Ŭ	-	0	OxFF	0x00	0x00	0xAB
50Hz (625Lines)	313	335	EVEN	Blank	EAV	1	1	1	UXI I	U.C.C	exec	0xF1
501	010			Diam	SAV	_	-	0				OxEC
	336	623	EVEN	Active	EAV	1	0	1				0xDA
		020	EVEN		SAV		,	0				0xC7
	624	625	EVEN	Blank	EAV	1	1	1				0xF1
	024	020		Diatin		-	-	0				OxEC

NOTE:

1. The number of () is ITU-R BT. 656 standard. The TW2837 also supports this standard by CCIR_STD register (1xA8 Bit[6]).

The TW2837 also supports ITU-R BT.601 interface through the VDOX and VDOY pin.

Single Output Mode

For the single output mode, each digital output data in display and record path can be output at 27MHz ITU-R BT 656 interface through VDOX and VDOY pin that are synchronized with CLKVDOX and CLKVDOY. The output data is selected

by the CCIR_OUT (1xA3) register which selects the display path data for "0" and record path data for "1". The timing diagram of single output mode for ITU-R BT.656 interface is shown in the following Figure 65.

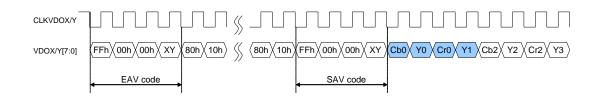


FIGURE 65 TIMING DIAGRAM OF SINGLE OUTPUT MODE FOR 656 INTERFACE

The TW2837 also supports 13.5MHz ITU-R BT 601 interface through VDOX and VDOY pin via the CCIR_601 (1xA3) register. The output data is selected via the CCIR_OUT register which chooses the display path data for "0" and record path data for "1". The timing diagram of single output mode for ITU-R BT 601 interface is shown in the following Figure 66.

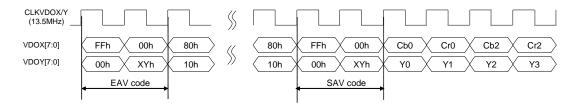


FIGURE 66 TIMING DIAGRAM OF SINGLE OUTPUT MODE FOR 601 INTERFACE

The video output is synchronized with CLKVDOX and CLKVDOY pins whose phase and frequency can be controlled by the ENC_CLK_FR_X, ENC_CLK_FR_Y, ENC_CLK_PH_X and ENC_CLK_PH_Y (1xAD) registers.

Dual Output Mode

The TW2837 also supports dual output mode that is time-multiplexed with display and record path data at 54MHz clock rate. The sequence is related with the CCIR_OUT (1xA3) register that the display path data precedes the record path for CCIR_OUT = "2" and the record path data precedes the display path for CCIR_OUT = "3". This mode is useful to reduce number of pins for interface with other devices. The timing diagram of dual output mode for ITU-R BT 656 interface is illustrated in the Figure 67.

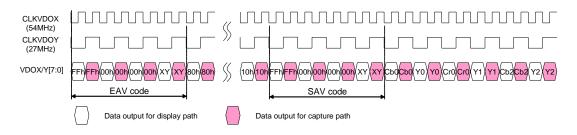
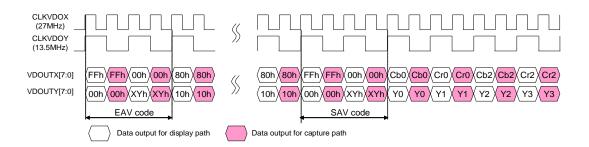
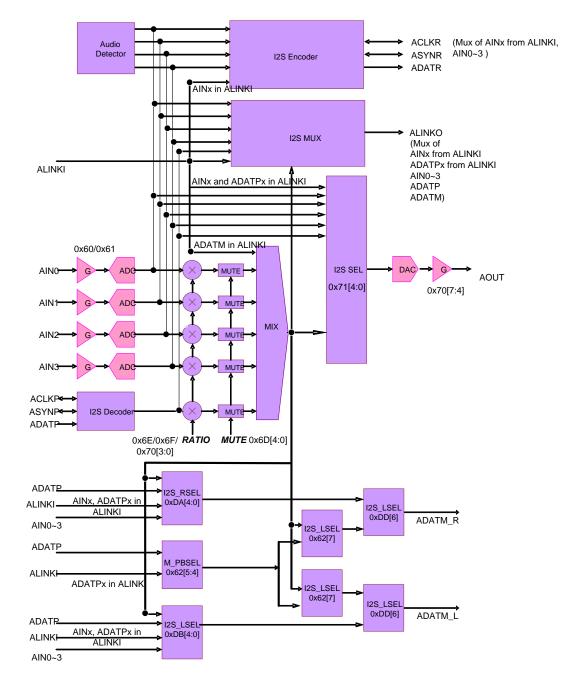



FIGURE 67 TIMING DIAGRAM OF DUAL OUTPUT MODE FOR 656 INTERFACE

The TW2837 also supports dual output mode with 13.5MHz ITU-R BT 601 interface that is timing multiplexed to 27MHz through VDOX and VDOY pin via the CCIR_601 (1xA3) register. The sequence is determined by the CCIR_OUT register like 54MHz ITU-R BT.656 interface. The timing diagram of single output mode for ITU-R BT 601 interface is shown in the following Figure 68.

The video output is synchronized with CLKVDOX and CLKVDOY pins whose polarity and frequency can be controlled by the ENC_CLK_FR_X, ENC_CLK_FR_Y, ENC_CLK_PH_X and ENC_CLK_PH_Y registers.

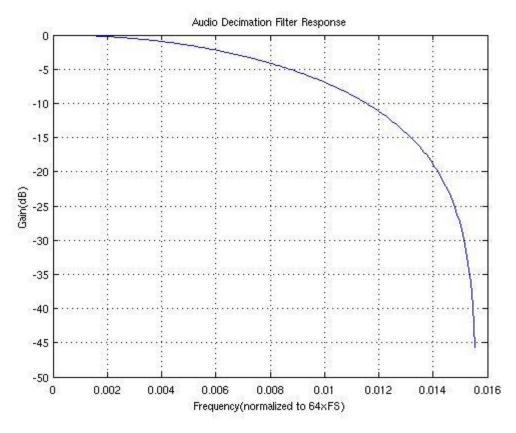

REALTIME RECORD MODE

The TW2837 supports four channel real-time record outputs with full D1 format through the DLINKI and MPP1/2 pins. Four channel real-time record outputs are independent of display and record path mode. The TW2837 also supports H/V/F signals for each channel through the DLINKI and MPP1/2 pins. The output modes of DLINKI and MPP1/2 pins are controlled via the MPP_MD (1xB0) and MPP_SET (1xB1, 1xB3, and 1xB5) registers.

Audio Codec

The audio codec in the TW2837 is composed of 4 audio Analog-to-Digital converters, 1 Digital-to-Analog converter, audio mixer, digital serial audio interface and audio detector shown as the Figure 68. The TW2837 can accept 4 analog audio signals and 1 digital serial audio data and produce 1 mixing analog audio signal and 2 digital serial audio data audio data.

FIGURE 69 BLOCK DIAGRAM OF AUDIO CODEC


The level of analog audio input signal AINO ~ AIN3 can be adjusted respectively by internal programmable gain amplifiers that are defined via the AIGAIN0, AIGAIN1, AIGAIN2 and AIGAIN3 registers and then sampled by each

Analog-to-Digital converters. The digital serial audio input data through the ACLKP, ASYNP and ADATP pin are used for playback function. To record audio data, the TW2837 provides the digital serial audio output via the ACLKR, ASYNR and ADATR pin.

The TW2837 can mix all of audio inputs including analog audio signal and digital audio data according to the predefined mixing ratio for each audio via the MIX_RATIOO ~ MIX_RATIO3 and MIX_RATIOP registers. This mixing audio output can be provided through the analog and digital interfaces. The embedded audio Digital-to-Analog converter supports the analog mixing audio output whose level can be controlled by programmable gain amplifier via the AOGAIN register. The ADATM pin supports the digital mixing audio output and its digital serial audio timings are provided through the ACLKR and ASYNR pins that are shared with the digital serial audio record timing pins.

AUDIO DECIMATION FILTER RESPONSE

(*) 0.016 line = 0.016x64xFs

AUDIO CLOCK MASTER/SLAVE MODE

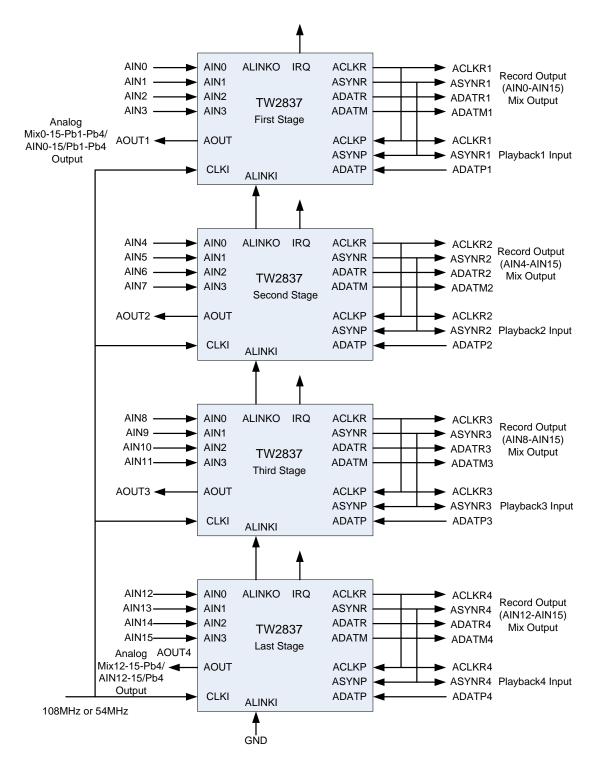
The TW2837 has two types of Audio Clock modes. If ACLKRMASTER register is set to 1, fs audio sample date is processed from 256xfs audio clock internal ACKG (Audio Clock Generator) generates. In this master mode, ACLKR/ASYNR pins are output mode. ASYNROEN register for ASYNR pin should be set to 0 (output enable mode). If ACLKRMASTER register is set to 0, fs audio sample rate is processed from 256xfs audio clock on ACLKR pin input.

256xfs audio clock should be connected to ACLKR pin from external master clock source in this slave mode. ASYNR pin can be input or output by external Audio clock master in slave mode. ASYNR signal should change per fs audio sample rate in both master and slave mode.

MULTI-CHIP OPERATION

TW2837 can output 16 channel audio data on ACLKR/ASYNR/ADATR output simultaneously. Therefore, up to 4 chips should be connected on most Multi-Chip application cases. ALINKI pin is audio cascade serial input. ALINKO pin is audio cascade serial output.

Each stage chip can accept 4 analog audio signals so that four cascaded chips through the ADATP and IRQ pin will be 16-channel audio controller. The first stage chip provides 16ch digital serial audio data for record. Even though the first stage chip has only 1 digital serial audio data pin ADATR for record, the TW2837 can generate 16 channel data simultaneously using multi-channel method. Also, each stage chip can support 4 channel record outputs that are corresponding with analog audio inputs. This first stage chip can also output 16 channel mixing audio data by the digital serial audio data and analog audio signal. The last stage chip accepts the digital serial audio data for playback. The digital playback data can be converted to analog signal by Digital-to-Analog Converter in the last stage chip.


In Multi-Chip Audio operation mode, one same Oscillator clock source (108MHz or 54MHz) need to be connected to all CLKI pins.

Several Master/Slave mode configurations are available. The Figure 69/70/71 show the typical case of 16 channel audio connection using 4 chips.

If All Clock Sync is required in system, one same RSTB reset# signal needs to be connected to all RSTB pins. If ALINK cascade mode, in this All Clock Sync system, all ACLKR pins and all ACLKP pins should be connected. Also, all ASYNR pins and all ASYNP pins should be connected. If IRQ cascade mode, in this All Clock Sync system, all ACLKR pins and last stage ACLKP pin should be connected. Also, all ASYNR pins and last stage ASYNP pin should be connected.

In each of the following figure 70 to 72, Mix0-15-Pb1-Pb4 means Mix output of AIN0-15 and Playback1-4. AIN0-15 means one selected Audio output in AIN0-15. Pb1-Pb4 means one selected Audio output in Playback1-4. Mix0-15-Pb4 means Mix output of AIN0-15 and Playback4. Mix12-15-Pb4 means Mix output of AIN12-15 and Playback4. AIN12-15 means one selected Audio output in AIN12-15.

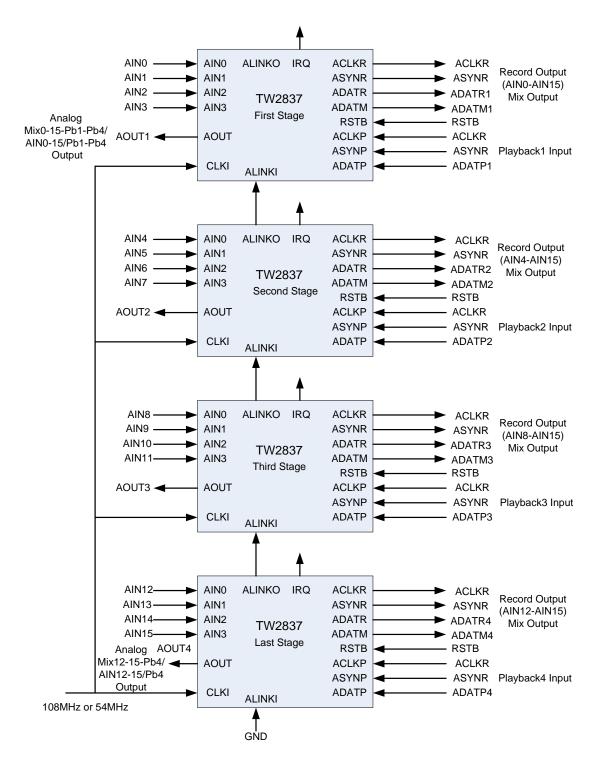
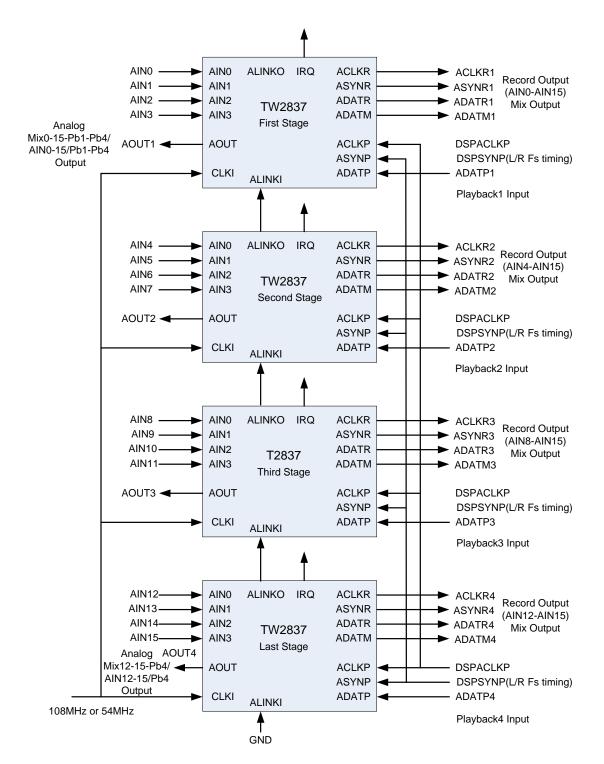
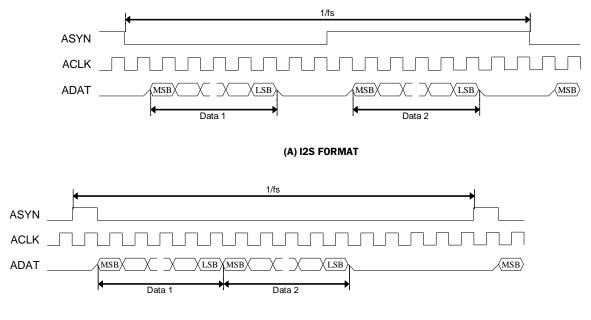


FIGURE 70 CONNECTION FOR MASTER MULTI-CHIP OPERATION ON ALINK CASCADE MODE

ACLKRMASTER=1; ASYNROEN=0; FIRSTCNUM=3; PB_MASTER=0



ACLKRMASTER=1; ASYNROEN=0; FIRSTCNUM=3; PB_MASTER=0


FIGURE 72 CONNECTION FOR PLAYBACK SLAVE LOCK MULTI-CHIP OPERATION ON ALINK CASCADE MODE

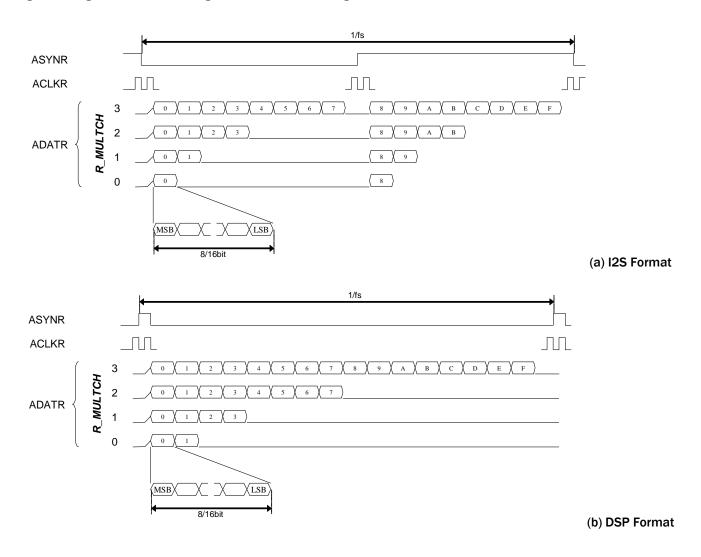
ACLKRMASTER=1; ASYNROEN=0; FIRSTCNUM=3; PB_MASTER=0

SERIAL AUDIO INTERFACE

There are 3 kinds of digital serial audio interfaces in the TW2837, the first is a recording output, the second is a mixing output and the third is a playback input. These 3 digital serial audio interfaces follow a standard I2S or DSP interface as shown in the Figure 73.

(B) DSP FORMAT

FIGURE 73 TIMING CHART OF SERIAL AUDIO INTERFACE


Playback Input

The serial interface using the ACLKP, ASYNP and ADATP pins accepts the digital serial audio data for the playback purpose. The ACLKP and ASYNP pins can be operated as master or slave mode. For master mode, these pins work as output pin and generate the standard audio clock and synchronizing signal. For slave mode, these pins are input mode and accept the standard audio clock and synchronizing signal. The ADATP pin is always input mode regardless of operating mode. One of audio data in left or right channel should be selected for playback audio by the PB_LRSEL.

Record Output

To record audio data, the TW2837 provides the digital serial audio data through the ACLKR, ASYNR and ADATR pins. Sampling frequency comes from 256xfs audio system clock setting. Even though the standard I2S and DSP format can have only 2 audio data on left and right channel, the TW2837 can provide an extended I2S and DSP format which can have 16 channel audio data through ADATR pin. The R_MULTCH defines the number of audio data to be recorded by the ADATR pin. ASYNR signal is always fs frequency rate. One ASYNR period is always equal to 256 ACLKR clock length. The Figure 74 shows the digital serial audio data organization for multi-channel audio.

FIGURE 74 TIMING CHART OF MULTI-CHANNEL AUDIO RECORD

The following table shows the sequence of audio data to be recorded for each mode of the R_MULTCH register. The sequences of 0 ~ F do not mean actual audio channel number but represent sequence only. The actual audio channel should be assigned to sequence 0 ~ F by athe R_SEQ_0 ~ R_SEQ_F register. When the ADATM pin is used for record via the R_ADATM register, the audio sequence of ADATM is showed also in the Table.

TABLE 10 SEQUENCE OF MULTI-CHANNEL AUDIO RECORD

(A) I2S FORMAT

R_MULTCH	Pin	Left Channel									Right Channel						
0	ADATR	0								8							
0	ADATM	F								7							
1	ADATR	0	1							8	9						
-	ADATM	F	Е							7	6						
2	ADATR	0	1	2	3					8	9	Α	В				
2	ADATM	F	Е	D	С					7	6	5	4				
3	ADATR	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
3	ADATM	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

(B) DSP FORMAT

R_MULTCH	Pin		Left/Right Channel														
0	ADATR	0	1														
0	ADATM	F	Ε														
1	ADATR	0	1	2	3												
-	ADATM	F	Ε	D	С												
2	ADATR	0	1	2	3	4	5	6	7								
2	ADATM	F	Ε	D	С	B	Α	9	8								
3	ADATR	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
3	ADATM	F	E	D	C	В	Α	9	8	7	6	5	4	3	2	1	0

Mix Output

The digital serial audio data on the ADATM pin has 2 different audio data which are mixing audio and playback audio. The mixing digital serial audio data is the same as analog mixing output. The sampling frequency, bit width and number of audio for the ADATM pin are same as the ADATR pin because the ACLKR and ASYNR pins are shared with the ADATR and ADATM pins.

AUDIO CLOCK GENERATION

TW2837 has built-in field locked audio clock generator for use in video capture applications. The circuitry will generate the same predefined number of audio sample clocks per field to ensure synchronous playback of video and audio after digital recording or compression. The audio clock is digitally synthesized from the crystal clock input with reference to the incoming video, so it is not of high quality. For demanding application, an external analog PLL is recommended. The master audio clock frequency is programmable through ACKN and ACKI register based following two equations.

ACKN = round (F audio / F field), it gives the Audio master Clock Per Field.

ACKI = round (F audio / F 27MHz * 2^23), it gives the Audio master Clock Nominal Increment.

The following table provides setting example of some common used audio frequency assuming Video Decoder system clock frequency of 27MHz.

AMCLK(MHz)	FIELD[Hz]	ACKN [dec]	ACKN [hex]	ACKI [dec]	ACKI [hex]
256 x 48 KHz					I
12.288	50	245760	3-C0-00	3817749	3A-41-15
12.288	59.94	205005	3-20-CD	3817749	3A-41-15
256 x 44.1KHz					
11.2896	50	225792	3-72-00	3507556	35-85-65
11.2896	59.94	188348	2-DF-BC	3507556	35-85-65
256 x 32 KHz					
8.192	50	163840	2-80-00	2545166	26-D6-0E
8.192	59.94	136670	2-15-DE	2545166	26-D6-0E
256 x 16 KHz					
4.096	50	81920	1-40-00	1272583	13-6B-07
4.096	59.94	68335	1-0A-EF	1272583	13-6B-07
256 x 8 KHz			l		1
2.048	50	40960	A0-00	636291	9-B5-83
2.048	59.94	34168	85-78	636291	9-B5-83

TABLE 11 AUDIO FREQUENCY WITH VIDEO DECODER FREQUENCY OF 27 MHZ

If ACLKRMASTER register bit is set to 1, this AMCLK(256xfs) is used as audio system clock inside TW2837 chip.

If Slave Playback-in lock mode is required, ACKN=00100hex and PBREFEN=1 needs to be set up. The number of AMCLK clock per one ASYNP input cycle is locked(fixed) to 256 in this mode. Frequency equation is "AMCLK(Freq) = 256 x ASYNP(Freq)".

Host Interface

The TW2837 provides serial and parallel interfaces that can be selected by HSPB pin. When HSPB is low, the parallel interface is selected, the serial interface for high. Some of the interface pins serve a dual purpose depending on the working mode. The pins HALE and HDAT [7] in parallel mode become SCLK and SDAT pins in serial mode and the pins HDAT [6:1] and HCSBO in parallel mode become slave address in serial mode respectively. Each interface protocol is shown in the following figures.

The TW2837 has total of 3 pages for registers (each page contains 256 registers) so that the page index [1:0] is used for selecting page of registers. Page 0 is assigned for video decoder, Page 1 is for video controller / encoder and Page 2 is for OSD / motion detector / Box / Mouse pointer. Unlike TW2835, which uses the HCSB0/HCSB1 to select the target page, TW2837 uses registers 0xFF/1xFF/2xFF as page index. In order to access a register in a particular page, simply set address FF with the target page number, the following register access will be directed to the new page. With this, TW2837 does not need two chip select signals HCSB0/HCSB1. They are kept here for backward pin compatibility with TW2835. In TW2837, asserting any of the HCSB0/HCSB1 will select the chip for register access.

PIN NAME	SERIAL MODE	PARALLEL MODE
HSPB	HIGH	LOW
HALE	SCLK	AEN
HRDB	Not Used (VSSO)	RENB
HWRB	Not Used (VSSO)	WENB
HCSB0	Slave Address[0]	CSB0
HCSB1	Not Used (VSSO)	CSB1
HDAT[0]	Not Used (VSSO)	PDATA[0]
HDAT[1]	Slave Address[1]	PDATA[1]
HDAT[2]	Slave Address[2]	PDATA[2]
HDAT[3]	Slave Address[3]	PDATA[3]
HDAT[4]	Slave Address[4]	PDATA[4]
HDAT[5]	Slave Address[5]	PDATA[5]
HDAT[6]	Slave Address[6]	PDATA[6]
HDAT[7]	SDAT	PDATA[7]

TABLE 12 PIN ASSIGNMENTS FOR SERIAL AND PARALLEL INTERFACE

Serial Interface

HDAT [6:1] and HCSBO pins define slave address in serial mode. Therefore, any slave address can be assigned for full flexibility. The Figure 75 shows an illustration of serial interface for the case of slave address (Read: "0x85", Write: 0x84").

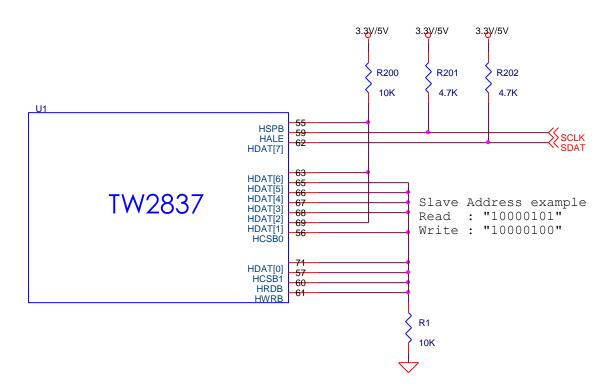
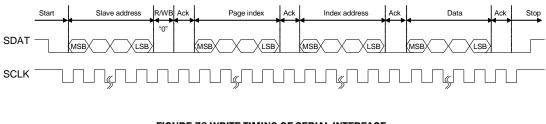



FIGURE 75 THE SERIAL INTERFACE FOR THE CASE OF SLAVE ADDRESS. (READ: "0X85", WRITE: "0X84")

The detailed timing diagram is illustrated in the Figure 76 and Figure 77.

The TW2837 also supports automatic index increment so that it can read or write continuous multi-bytes without restart. Therefore, the host can read or write multiple bytes in sequential order without writing additional slave address, page index and index address. The data transfer rate on the bus is up to 400K bits/s.

FIGURE 76 WRITE TIMING OF SERIAL INTERFACE

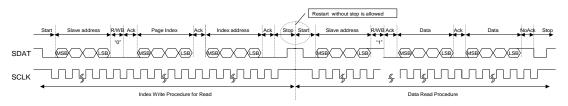


FIGURE 77 READ TIMING OF SERIAL INTERFACE

Parallel Interface

The TW2837 also supports automatic index increment for parallel interface. The writing and reading timing is shown in the Figure 78 and Figure 79 respectively. The detail timing parameters are in **Error! Reference source not found.**.

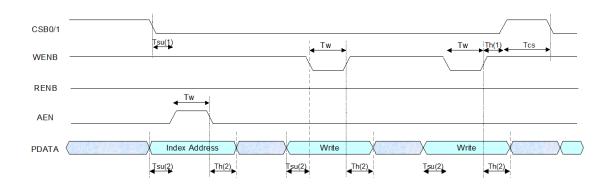


FIGURE 78 WRITE TIMING OF PARALLEL INTERFACE WITH AUTO INDEX INCREMENT MODE

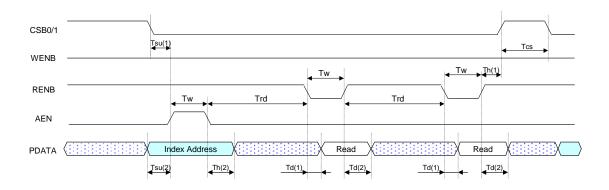
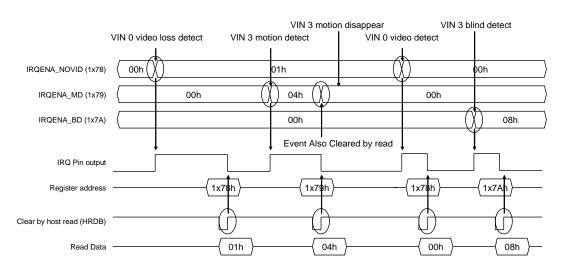


FIGURE 79 READ TIMING OF PARALLEL INTERFACE WITH AUTO INDEX INCREMENT MODE



PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
CSB setup until AEN active	Tsu(1)	10			ns
PDATA setup until AEN,WENB active	Tsu(2)	10			ns
AEN, WENB, RENB active pulse width	Tw	40			ns
CSB hold after WENB, RENB inactive	Th(1)	60			ns
PDATA hold after AEN,WENB inactive	Th(2)	20			ns
PDATA delay after RENB active	Td(1)			12	ns
PDATA delay after RENB inactive	Td(2)	60			ns
CSB inactive pulse width	Tcs	60			ns
RENB active delay after AEN inactive RENB active delay after RENB inactive	Trd	60			ns

TABLE 13 TIMING PARAMETERS OF PARALLEL INTERFACE

Interrupt Interface

The TW2837 provides the interrupt request function via an IRQ pin. Any video loss, motion, blind, and night detection will make IRQ pin high or low whose polarity can be controlled via the IRQ_POL (1x76) register. The host can distinguish what event makes interrupt request to IRQ pin by reading the status of IRQENA_NOVID (1x78), IRQENA_MD (1x79), IRQENA_BD (1x7A) and IRQENA_ND (1x7B) registers that have different function for reading and writing. For writing mode, setting "1" to those registers enables to detect the related event. For reading mode, the state of those registers has two kinds of information depending on the IRQENA_RD (1x76) register. For IRQENA_RD = "1", the state of those registers indicates the written value on the writing mode. For IRQENA_RD = "0", the state of those registers denotes the related event status. The interrupt request will be cleared automatically by reading those registers when the IRQENA_RD is "0". The following Figure 80 is show an illustration of the interrupt sequence.

FIGURE 80 THE ILLUSTRATION OF INTERRUPT SEQUENCE

The TW2837 also provides the status of video loss, motion, blind and night detection for individual channel through the MPP0/1 pins with the control of the MPP_MD and MPPSET (1xB0, 1xB1, 1xB3, 1xB5) register.

MPP Pin Interface

The TW2837 provides the multi-purpose pin through the DLINKI and MPP1/2 pin that is controlled via the MPP_MD, MPP_SET, MPP_DATA ($1xB0 \sim 1xB5$) register. But, DLINK pin is also used for cascaded interconnection in cascaded application. The following Table 14 shows the detailed mode with the control of the related register.

MPP_MD	MPP_SET	I/O	MPP_DATA	Remark
	0	In	Input Data from Pin	Default
	1		Strobe_det_c	
	2		CHID_MUX[3:0]	Capture path
	3		CHID_MUX[7:4]	
0	4		Mux_out_det[15:12]	
0	5 - 7	Out	-	Reserved
	8		Strobe_det_d	Display Path
	9 - 13		-	Reserved
	14		{1'b0, H, V, F}	BT. 656 Sync
	15		{hsync, vsync, field, link}	Analog Encoder Sync
1	0	Out	Write Data to Pin	GPP I/O Mode
-	1	In	Input Data from Pin	
	0		Decoder H Sync	
	1		Decoder V Sync	Bit[3:0] : VIN3 ~ VINO
	2		Decoder Field Sync	
	3		Decoder Ch 0/1 [7:4]	MSB for Ch 0/1
	4		Decoder Ch 0/1 [3:0]	LSB for Ch 0/1
	5		Decoder Ch 2/3 [7:4]	MSB for Ch 2/3
	6		Decoder Ch 2/3 [3:0]	LSB for Ch 2/3
2	7	Out	-	Reserved
2	8	Out	Novid_det_m	
	9		Md_det_m	For VINA
	10		Bd_det_m	$(ANA_SW = 0)$
	11		Nd_det_m	
	12		Novid_det_s	
	13		Md_det_s	For VINB
	14		Bd_det_s	(ANA_SW = 1)
	15		Nd_det_s	

TABLE 14 MPP PIN INTERFACE MODE

The TW2837 also supports four channel real-time record output using MPP1 and MPP2 pin. The video output is synchronized with CLKMPP1 and CLKMPP2 pins whose polarity and frequency can be controlled via the DEC_CLK_FR_X, DEC_CLK_FR_Y, DEC_CLK_PH_X and DEC_CLK_PH_Y registers.

Control Register

REGISTER MAP

For Video Decoder

NNO. VINA.		Add	ress		-								
0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 <th< th=""><th>VINO</th><th>VIN1</th><th>VIN2</th><th>VIN3</th><th>BIT7</th><th>BIT6</th><th>BIT5</th><th>BIT4</th><th>BIT3</th><th>BIT2</th><th>BIT1</th><th>BITO</th></th<>	VINO	VIN1	VIN2	VIN3	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO	
Chool Cold Cold Cold Cold Cold Cold Cold C		-								NOVIDEO *		DET50 *	
Cod3 Cod3 <thcod3< th=""> Cod3 Cod3 <thc< td=""><td></td><td></td><td></td><td></td><td>VCR*</td><td>WKAIR*</td><td>WKAIR1*</td><td></td><td></td><td></td><td>VSHP</td><td></td></thc<></thcod3<>					VCR*	WKAIR*	WKAIR1*				VSHP		
Gold Oct4 Oct4 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
CodS CodS <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Code OLG OLG <tholg< th=""> <tholg< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tholg<></tholg<>													
Ch08 O.028 O.038 SCUPVE VSF CT SHARPNESS C006 O.13 O.24 O.33 BRT CONT C006 O.13 O.248 O.33 SAT_U CONT C006 O.12 O.226 O.33 STU SAT_U CONT C007 O.226 O.326 O.326 O.326 CONT SAT_U CONT C006 O.10 O.227 O.326 D.326 CONT CONT CONT CONT C006 O.10 O.227 O.326 DETSTUP STANOW KF* CONT	0x06	0x16		0x36	0	0	VACTIVE_XY[8]	VDELAY_XY[8]	HACTIVE	_XY [9:8]	HDELAY	_XY [9:8]	
Choig Ords Ords <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>UE</td><td></td><td></td><td></td></t<>							-		UE				
BYDA 0:2A 0:2A 0:2A 0:2A 0:3A SAT_U CAGE 0:3C 0:3C SAT_U SAT_U SAT_U CSR0 SAT_U CAR0					SCURVE	VSF	C			SHAR	PNESS		
DOB 0.48 0.28 DOB SAT_U DOG DAZD DAZD DAZD DAZD SAT_U SAT_U DOG DAZD DAZD DAZD DAZD DAZD CTTME* CTTME													
DXC DXC <thdxc< th=""> <thdxc< th=""> <thdxc< th=""></thdxc<></thdxc<></thdxc<>													
CODE COLE CODE COLE COLE <th< td=""><td>0x0C</td><td>0x1C</td><td>0x2C</td><td>0x3C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	0x0C	0x1C	0x2C	0x3C									
DOF DOJE DOJE DOJE PALDEN PALDEN NTSCAMEN PALDEN			-		.	PF*		KF*		MCVSN*		CTYPE2*	
Dido Dido <thdido< th=""> Dido Dido <thd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdido<>													
044 MPPCU_QEE VOGAINYX 0 VOGAINYX 043 0 1 0 0 0 VOGAINYX 0442 0 1 0 0 0 1 0 1 0444 1 0 1 0 1 0 1 0 1 0445 1 1 VSMODE FLPPoL HSPOL VSPOL 0 0 1 0446 AGCENA	0x0F			0x3F									
0.42 0 0 0 0 0 VOGANYY 0.43 0 1 0 0 0 1 0 1 0.44 1 0 1 0 0 0 0 1 0.45 1 1 VSMOL PRDPOL HSPOL VSPOL 0 0 0.46 AGCEN1 AGCEN1 AGCGANIT/70] AGCGANIT/70] AGCGANIT/70] AGCGANIT/70] AGCGANIT/70] AGCGANIT/70] AGCGANIT/70] VARD VSPOL VSPOL VSPOL VARD VSPOL VSPOL VSPOL VSPOL VARD VARD AGCGANIT/70] VARD VAR							-	U		0	-	0	
0.43 0 1 0 0 1 0 1 0 1 0.44 1 0 1 0 0 0 0 0 1 0.45 1 1 1 VSMODE FLDPOL HSPOL VSPOL 0 0 0 0.46 AGCEN4 AGCAN12170] AGCGAN13[70] AGCGAN13[70] AGCGAN13[70] 0.48 0 HEF VREF 0 0 0 VADC_PD						0		0					
0x46 1 1 1 YMODE FLDPOL HSPOL 0.90 0 0 0x47 AGCEN4 AGCEN3 AGCEN2 AGCANN4[8] AGCGANN3[8] AGCGANN2[7] 0x48 AGCGANS[7:0] AGCGANS[7:0] AGCGANS[7:0] AGCGANS[7:0] AGCGANS[7:0] 0x48 O IREF VREF O O VADC_PD2					0		0		0	1		1	
0x46 AGCEN4 AGCEN3 AGCEN12 AGCGAIN4[8] AGCGAIN3[8] AGCGAIN3[70] 0x48 0 IFEF VFE 0 0 VADC_PD3 VADC_PD2 VADC_PD3 VADC_PD2 VADC_PD3 VADC_PD2 VADC_PD3 VADC_PD3 VADC_PD2 VA													
0:47 0:48 AccGANN[7:0] 0:1 1											-	-	
0x48 AGCGANS[7:0] 0x44 AGCGANS[7:0] 0x44 AGCGANS[7:0] 0x48 0 IREF VEF 0x46 0 0 ADC_PD VADC_PD3 VADC_PD2 VADC_PD2 0x40 0 0 0 0 VADC_PD3 VADC_PD2 VADC_PD2 VADC_PD2 VADC_PD2 VADC_PD3 VADC_PD2 VADC_PD2 VADC_PD2 VADC_PD3 VADC_PD3 <t< td=""><td></td><td></td><td></td><td></td><td>AGCEN4</td><td>AGCEN3</td><td>AGCEN2</td><td></td><td></td><td>AGCGAIN3[8]</td><td>AGCGAIN2[8]</td><td>AGCGAIN1[8]</td></t<>					AGCEN4	AGCEN3	AGCEN2			AGCGAIN3[8]	AGCGAIN2[8]	AGCGAIN1[8]	
0x49 AGCGANN[7:0] 0x4A AGCGANN[7:0] 0x4B 0 IREF VREF 0 0 0 VADC_PD2 <													
OxAB OxAE O REF VREF O O O VFLEN YSV OxAE 0 0 REF VREF 0 0 0 VADC_PD3 VADC_PD2 VADC_PD2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
0x4C 0 0 ADAC_PD AADC_PD VADC_PD3 VADC_PD2													
0x40 0 0 0 0 0 1 1 1 0x4E 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 </td <td></td> <td>Ox</td> <td>4B</td> <td></td> <td>0</td> <td>IREF</td> <td>VREF</td> <td></td> <td></td> <td>0</td> <td>YFLEN</td> <td>YSV</td>		Ox	4B		0	IREF	VREF			0	YFLEN	YSV	
Ox4E O O O O O I O I O I						-					_	VADC_PD1	
0x4F FRM YNR CLMD PSP 0x50 HFLT2 HFLT3 HFLT3 HFLT3 0x52 CTEST YCLEN 0 AFLTEN GTEST VLPF CKLY CKLY 0x53 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-							
0x50 HFLT2 HFLT4 HFLT3 0x51 HFLT4 HFLT3 HFLT3 0x52 CTEST YCLEN 0 AFLTEN GTEST VLPF CKLY CKLY CKLY 0x53 0					-	-	-	-					
0x51 HFLT4 HFLT3 0x52 CTEST YCLEN 0 AFLTEN GTEST VLPF CKLY CKLY 0x53 0 <td></td> <td></td> <td></td> <td></td> <td>FF</td> <td></td> <td></td> <td>NR</td> <td>CL</td> <td></td> <td></td> <td>5P</td>					FF			NR	CL			5P	
0x52 CTEST YCLEN 0 AFLTEN GTEST VLPF CKLY CKLQ 0x53 0													
0x54 0 0 0 1 1 0 1 0x55 FLD* VAV* VAV* VAV* VAV* 0x56 ANA_CH4 ANA_CH3 ANA_CH2 ANA_CH1 0x57 SHCOR ANA_SW4 ANA_SW3 ANA_SW2 ANA_SW2 0x58 PBW DEM PALSW SET7 COMB HSDLY 0x59 GMEN CHY HSDLY CIF OX58 OX58 OCIPEND CIF 0x58 CLPEND CLPEND CLMPL CLPST OX57 CMMAIN FC27 0x50 CMPLD CLMPL SYNCT CLMPL OX57 SYNCT FC27 0x55 SYNCTD AIGAIN1 SYNCT AIGAIN2 AIGAIN2 FC27 0x61 AIGAIN3 AIGAIN3 AIGAIN2 AIGAIN2 FR3CUMM FC27 0x62 M_RLSWAP RM_SYNC RM_PBSEL O R_ADATM R_MULTCH 0x64 R_SEQ_1					CTEST			AFLTEN	GTEST			CKLC	
0x55 FLD* VAV* 0x56 ANA_CH4 ANA_CH3 ANA_CH2 ANA_CH1 0x57 SHOR ANA_SW4 ANA_SW3 ANA_SW2 ANA_CH2 0x58 PBW DEM PALSW SET7 COMB HCOMP YCOMB PDLY 0x58 GMEN CKHY HSDLY HSDLY COMB PDLY 0x58 CLPEND CCR VCR CIPST COMB FC27 0x50 NMGAIN WPGAIN FC27 FC27 FC27 FC27 0x51 CLMPLD CLMPL CLMPL FC27 FC27 FC27 0x62 M_RLSWAP RM_SYNC RM_PBSEL O R_ADATM R_MULTCH 0x63 AAUTO_MUTE PBREFEN VRSTSEL FIRSTONUM FRSTONUM 0x64 R_SEQ_1 R_SEQ_2 R_SEQ_2 FRSTONUM R_SEQ_2 FRSTONUM 0x66 R_SEQ_5 R_SEQ_2 R_SEQ_2 FRSTONUM R_SEQ_2 FRSEQ_2		Ox	53		0	0	0	0	0	0	0	0	
0x56 ANA_CH4 ANA_CH3 ANA_CH2 ANA_CH1 0x57 SHCOR ANA_SW4 ANA_SW3 ANA_SW2 ANA_SW 0x58 PBW DEM PALSW SET7 COMB HODMP YCOMB PDLY 0x59 GMEN CKHY SET7 COMB HODMP YCOMB PDLY 0x58 CTCOR CCOR VCOR CIF 0x58 CLPEND CLPENT STCOR CLPST 0x56 CLMPLD SYNCT SYNCT SYNCT 0x56 CLMPLD SYNCT AIGAIN1 AIGAIN2 0x57 SYNCTD AIGAIN3 AIGAIN2 AIGAIN2 0x60 AIGAIN3 AIGAIN2 AIGAIN2 0x61 AIGAIN3 AIGAIN2 AIGAIN2 0x62 M_RLSWAP RM_SEQ_1 R_SEQ_0 R_SEQ_0 0x63 AAUTO_MUTE PBREFEN VRSTSEL FIRSTCNUM 0x66 R_SEQ_1 R_SEQ_2 R_SEQ_2 SEQ_1					0	-	-	0	1		-	1	
0x57 SHCOR ANA_SW4 ANA_SW3 ANA_SW2 ANA								0110				0114	
0x58 PBW DEM PALSW SET7 COMB HCOMP YCOMB PDLY 0x59 GMEN CKHY HSDLY HSDLY HSDLY ISDLY					ANA			_CH3					
0x59 GMEN CKHY HSDLY 0x5A CTCOR CCOR VCOR CIF 0x5B CLPEND CLPST CLPST 0x5C NMGAIN WPGAIN FC27 0x5D PEAKWT CLMPL 0x5F SYNCTD CLMPL 0x61 AIGAIN1 AIGAIN0 0x62 M_RLSWAP RM_SYNC 0x63 AAUTO_MUTE PBREFEN 0x66 R_SEQ_1 R_SEQ_0 0x66 R_SEQ_7 R_SEQ_2 0x66 R_SEQ_7 R_SEQ_4 0x68 R_SEQ_9 R_SEQ_6 0x68 R_SEQ_1 R_SEQ_6 0x66 R_SEQ_7 R_SEQ_8 0x66 R_SEQ_9 R_SEQ_8 0x68 R_SEQ_9 R_SEQ_6 0x68 R_SEQ_1 R_SEQ_6 0x68 R_SEQ_1 R_SEQ_6 0x66 R_SEQ_7 R_SEQ_6 0x68 R_SEQ_7 R_SEQ_6 0x68 <					PBW			SET7				PDLY	
Ox5B CLPEND CLPST Ox5C NMGAIN PEAKWT Ox5D PEAKWT FC27 Ox5E CLMPLD CLMPL Ox5F SYNCTD AIGAIN1 AIGAIN0 Ox60 AIGAIN3 AIGAIN0 AIGAIN2 Ox62 M_RLSWAP RM_SYNC RM_PBSEL O R_ADATM R_MULTCH Ox63 AAUTO_MUTE PBREFEN VRSTSEL FIRSTCNUM FIRSTCNUM Ox66 R_SEQ_1 R_SEQ_2 R_SEQ_2 Ox66 R_SEQ_2 Ox66 R_SEQ_2 Ox66 R_SEQ_2 Ox66 R_SEQ_5 R_SEQ_4 OX67 R_SEQ_6 OX68 R_SEQ_6 OX68 R_SEQ_6 OX66 R_SEQ_6 OX66 R_SEQ_6 OX66 R_SEQ_6 OX66 R_SEQ_6 CLPST CLPST OX66 ADACEN R_SEQ_6 R_SEQ_6 CLPST OX66 R_SEQ_6 CLPST CLPST CLPST CLPST CLPST CLPST CLPST CLPST CLPST CLPST <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Ox5C NMGAIN WPGAIN FC27 Ox5D PEAKWT FC27 Ox5E CLMPLD CLMPL Ox5F SYNCTD CLMPL Ox60 AIGAIN1 SYNCT Ox61 AIGAIN3 AIGAIN0 Ox62 M_RLSWAP RM_SYNC RM_PBSEL O R_ADATM R_MUTCH Ox63 AAUTO_MUTE PBREFEN VRSTSEL O R_ADATM R_MUTCH Ox64 R_SEQ_1 R_SEQ_0 R_SEQ_2 Explored and and and and and and and and and an								OR	VC		C	IF	
Ox5D PEAKWT 0x5E CLMPLD CLMPL 0x5F SYNCTD SYNCT 0x60 AIGAIN1 AIGAIN0 0x61 AIGAIN3 AIGAIN2 0x62 M_RLSWAP RM_SYNC RM_PBSEL 0 R_ADATM R_MULTCH 0x63 AAUTO_MUTE PBREFEN VRSTSEL 0 R_ADATM R_MULTCH 0x64 R_SEQ_1 R_SEQ_0 FIRSTCNUM FIRSTCNUM 0x65 R_SEQ_3 R_SEQ_2 SEQ_4 SEQ_4 0x66 R_SEQ_5 R_SEQ_4 SEQ_4 SEQ_4 0x66 R_SEQ_9 R_SEQ_6 SEQ_4 SEQ_4 0x68 R_SEQ_9 R_SEQ_A SEQ_A SEQ_A 0x68 R_SEQ_D R_SEQ_A SEQ_C SEQ_A 0x66 R_SEQ_F R_SEQ_E SEQ_E SEQ_E 0x68 R_SEQ_F R_SEQ_E SEQ_E SEQ_E SEQ_E 0x66 ADACEN ADACEN PB_MASTER <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>PST</td><td></td></td<>		-				-					PST		
0x5E CLMPLD CLMPL 0x5F SYNCTD SYNCT 0x60 AIGAIN1 AIGAIN0 0x61 AIGAIN3 AIGAIN2 0x62 M_RLSWAP RM_SYNC RM_PBSEL 0 R_ADATM R_MULTCH 0x63 AAUT0_MUTE PBREFEN VRSTSEL 0 R_SEQ_0 FIRSTCNUM 0x64 R_SEQ_1 R_SEQ_2 R_SEQ_2 0 R_SEQ_2 0 0x66 R_SEQ_5 R_SEQ_4 0 R_SEQ_6 0 0 0 0x66 R_SEQ_5 R_SEQ_6 R_SEQ_6 0						NM	GAIN		1010T	WPGAIN		FC27	
0x5F SYNCTD SYNCT 0x60 AlGAIN1 AlGAIN0 0x61 AlGAIN3 AlGAIN2 0x62 M_RLSWAP RM_SYNC RM_PBSEL 0 R_ADATM R_MULTCH 0x63 AAUTO_MUTE PBREFEN VRSTSEL FIRSTCNUM R_MULTCH 0x64 R_SEQ_1 R_SEQ_0 R_SEQ_0 R_SEQ_0 0x65 R_SEQ_3 R_SEQ_2 R_SEQ_4 0x66 R_SEQ_5 R_SEQ_4 R_SEQ_6 0x66 R_SEQ_7 R_SEQ_6 R_SEQ_6 0x68 R_SEQ_9 R_SEQ_8 R_SEQ_8 0x69 R_SEQ_B R_SEQ_A R_SEQ_A 0x68 R_SEQ_F R_SEQ_C R_SEQ_C 0x68 R_SEQ_D R_SEQ_A R_SEQ_C 0x68 R_SEQ_F R_SEQ_C R_SEQ_C 0x68 R_SEQ_F R_SEQ_E R_SEQ_C 0x60 ADACEN PB_MASTER PB_LRSEL PB_SYNC R_SEQ_E 0x6C ADACEN AADCEN PB_MASTER PB_LRSEL PB_SYNC ACLKRMA ACLKRMA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PEA</td> <td></td> <td></td> <td></td> <td></td>								PEA					
Ox60 AlGAIN1 AlGAIN0 0x61 AlGAIN3 AlGAIN2 0x62 M_RLSWAP RM_SYNC RM_PBSEL 0 R_ADATM R_MULTCH 0x63 AAUT0_MUTE PBREFEN VRSTSEL 0 R_ADATM R_MULTCH 0x64 R_SEQ_1 VRSTSEL 0 R_SEQ_0 0x65 0x65 R_SEQ_3 R_SEQ_2 0x66 R_SEQ_5 R_SEQ_4 0x68 R_SEQ_7 R_SEQ_6 0x68 R_SEQ_9 R_SEQ_8 0x69 R_SEQ_B R_SEQ_8 0x68 R_SEQ_D R_SEQ_6 0x68 R_SEQ_F R_SEQ_6 0x68 R_SEQ_F R_SEQ_E 0x66 R_SEQ_F R_SEQ_E 0x68 R_SEQ_F R_SEQ_E 0x68 R_SEQ_F R_SEQ_E 0x68 R_SEQ_F R_SEQ_E 0x60 ADACEN PB_MASTER 0x60 LAWMD MIX_DERATIO 0x6E MIX_RATIO1 MIX_RATIO0 0x6F MIX_RATIO3 MIX_RATIO2	<u> </u>								-				
0x62M_RLSWAPRM_SYNCRM_PBSEL0R_ADATMR_MULTCH0x63AAUTO_MUTEPBREFENVRSTSELFIRSTCNUM0x64R_SEQ_1R_SEQ_00x65R_SEQ_3R_SEQ_20x66R_SEQ_5R_SEQ_40x67R_SEQ_7R_SEQ_60x68R_SEQ_9R_SEQ_80x69R_SEQ_BR_SEQ_A0x6AR_SEQ_FR_SEQ_C0x6BR_SEQ_FR_SEQ_C0x6CADACENPB_MASTERPB_LRSEL0x6DLAWMDMIX_DERATIOMIX_MUTE0x6EMIX_RATIO3MIX_RATIO2					0	AIG	AIN1		001	AIG	AINO		
Ox63 AAUTO_MUTE PBREFEN VRSTSEL FIRSTCNUM 0x64 R_SEQ_1 R_SEQ_0 0x65 R_SEQ_3 R_SEQ_2 0x66 R_SEQ_5 R_SEQ_4 0x67 R_SEQ_7 R_SEQ_6 0x68 R_SEQ_9 R_SEQ_8 0x69 R_SEQ_D R_SEQ_A 0x68 R_SEQ_F R_SEQ_A 0x68 R_SEQ_F R_SEQ_C 0x60 LAWMD MIX_DERATIO 0x66 MIX_RATIO3 MIX_RATIO2		Ox	61			AIG	AIN3			AIG	AIN2		
0x64 R_SEQ_1 R_SEQ_0 0x65 R_SEQ_3 R_SEQ_2 0x66 R_SEQ_5 R_SEQ_4 0x67 R_SEQ_7 R_SEQ_6 0x68 R_SEQ_9 R_SEQ_8 0x69 R_SEQ_F R_SEQ_C 0x68 R_SEQ_D R_SEQ_A 0x68 R_SEQ_F R_SEQ_C 0x68 R_SEQ_F R_SEQ_C 0x68 R_SEQ_F R_SEQ_C 0x68 R_SEQ_F R_SEQ_C 0x60 LAWMD MIX_DERATIO MIX_MUTE 0x66 MIX_RATIO3 MIX_RATIO2									0			JLTCH	
0x65 R_SEQ_3 R_SEQ_2 0x66 R_SEQ_5 R_SEQ_4 0x67 R_SEQ_7 R_SEQ_6 0x68 R_SEQ_9 R_SEQ_8 0x69 R_SEQ_D R_SEQ_C 0x68 R_SEQ_D R_SEQ_C 0x68 R_SEQ_F R_SEQ_C 0x68 R_SEQ_F R_SEQ_E 0x66 ADACEN ABACEN PB_MASTER PB_LRSEL PB_SYNC RM_SBIT ASYNROEN ACLKRMA 0x60 LAWMD MIX_DERATIO MIX_MUTE MIX_RATIO0 0x6F MIX_RATIO3 MIX_RATIO2 MIX_RATIO2					AAUTO_MUTE			TSEL					
0x66 R_SEQ_5 R_SEQ_4 0x67 R_SEQ_7 R_SEQ_6 0x68 R_SEQ_9 R_SEQ_8 0x69 R_SEQ_D R_SEQ_C 0x68 R_SEQ_D R_SEQ_C 0x68 R_SEQ_F R_SEQ_E 0x68 R_SEQ_F R_SEQ_E 0x60 ADACEN PB_MASTER PB_LRSEL PB_SYNC RM_SBIT ASYNROEN ACLKRMA 0x60 LAWMD MIX_DERATIO MIX_MUTE MIX_RATIO0 MIX_RATIO0 MIX_RATIO2	<u> </u>												
0x67 R_SEQ_7 R_SEQ_6 0x68 R_SEQ_9 R_SEQ_8 0x69 R_SEQ_B R_SEQ_A 0x6A R_SEQ_D R_SEQ_C 0x6B R_SEQ_F R_SEQ_E 0x6C ADACEN AADCEN PB_MASTER 0x6D LAWMD MIX_DERATIO MIX_MUTE 0x6E MIX_RATIO1 MIX_RATIO2	<u> </u>												
0x68 R_SEQ_9 R_SEQ_8 0x69 R_SEQ_B R_SEQ_A 0x6A R_SEQ_D R_SEQ_C 0x6B R_SEQ_F R_SEQ_C 0x6C ADACEN AADCEN PB_LRSEL PB_SYNC RM_SBIT ASYNROEN ACLKRMA 0x6D LAWMD MIX_DERATIO MIX_MUTE MIX_RATIO0 0x6F MIX_RATIO3 MIX_RATIO2 MIX_RATIO2	<u> </u>												
0x69 R_SEQ_B R_SEQ_A 0x6A R_SEQ_D R_SEQ_C 0x6B R_SEQ_F R_SEQ_E 0x6C ADACEN ABACEN PB_MASTER 0x6D LAWMD MIX_DERATIO MIX_MUTE 0x6E MIX_RATIO1 MIX_RATIO2 MIX_RATIO2							-						
Ox6B R_SEQ_F R_SEQ_E Ox6C ADACEN AADCEN PB_MASTER PB_LRSEL PB_SYNC RM_8BIT ASYNROEN ACLKRMA Ox6D LAWMD MIX_DERATIO MIX_MUTE MIX_RATIO0 Ox6E MIX_RATIO1 MIX_RATIO2 MIX_RATIO2					R_SEQ_B R_SEQ_A								
0x6C ADACEN PB_MASTER PB_LRSEL PB_SYNC RM_8BIT ASYNROEN ACLKRMA 0x6D LAWMD MIX_DERATIO MIX_MUTE MIX_RATIOO MIX_RATIOO MIX_RATIOO MIX_RATIO2					R_SEQ_D R_SEQ_C								
Ox6D LAWMD MIX_DERATIO MIX_MUTE Ox6E MIX_RATIO1 MIX_RATIO0 Ox6F MIX_RATIO3 MIX_RATIO2					404000							401//01/1075-	
Ox6E MIX_RATIO1 MIX_RATIO0 0x6F MIX_RATIO3 MIX_RATIO2	<u> </u>							PB_LRSEL	PB_SYNC		ASYNROEN	ACLKRMASTER	
0x6F MIX_RATIO3 MIX_RATIO2					LAV			l			RATIOO		
									İ				
0x71 V_ADC_CKPOL A_ADC_CKPOL A_DAC_CKPOL MIX_OUTSEL		0x	71		V_ADC_CKPOL	A_ADC_CKPOL	A_DAC_CKPOL		·	MIX_OUTSEL			

For Video Decoder

VINO	Add VIN1	iress VIN2	VIN3	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO	
		72		AAMPMD		ADET_FILT		ADET_TH3[4]	ADET_TH2[4]	ADET_TH1[4]	ADET_TH0[4]	
		(73) (74)				TH1[3:0] TH3[3:0]			ADET_1 ADET_1	[H0[3:0]		
		75			ADEI_	1115[5.0]	ACK	I[7:0]	ADLI_I	112[3.0]		
		76					ACKI	[15:8]				
		(77 (79		0	0		ACK	ACKI[2	21:16]			
-		(78 (79						N[7:0] [[15:8]				
	-	7A		0	0	0	0	0	0	ACKN	17:16]	
		(7B		0	0		•	-	DIV			
		7C 7D		0 APZ	0	APG		LR 0	DIV ACPL	SRPH	LRPH	
-		7E		AI 2		VDLOSS_TH1		0		SS_THO	LINEIT	
		(7F	-		VDLOSS_TH3 VDLOSS_TH2							
0x80 0x81	0x90 0x91	0xA0 0xA1	0xB0 0xB1	DEC_P	ATH_X	0	0	_X [15:8]	LT_X	HSF	LT_X	
0x81 0x82	0x91 0x92	0xA1 0xA2	0xB1 0xB2				VSCALE					
0x83	0x93	0xA3	0xB3				HSCALE	_X [15:8]				
0x84	0x94	0xA4	0xB4		0		HSCALE		T 00		T 00	
0x85 0x86	0x95 0x96	0xA5 0xA6	0xB5 0xB6	0	0	0	0 VSCALE_	VSFL PB (15:8)	.1_РВ	HSFL	.T_PB	
0x87	0x97	0xA0	0xB0				VSCALE_	_PB [7:0]				
0x88	0x98	0xA8	0xB8					PB [15:8]				
0x89 0x8A	0x99 0x9A	0xA9 0xAA	OxB9 OxBA	0 / 1	/2/3	VSCALE_Y	HSCALE_ HSCALE_Y	_PB [7:0]	LT_Y		LT_Y	
0x8A 0x8B	0x9A 0x9B	OXAA	0xBA 0xBB	0/1/	2/3	TOUALE_I	HISCALE_T HDELAY			n		
0x8C	0x9C	OxAC	OxBC				HACTIVE	_PB[7:0]				
0x8D	0x9D	OxAD	0xBD					_PB[7:0] _PB[7:0]				
0x8E 0x8F	0x9E 0x9F	0xAE 0xAF	0xBE 0xBF	0	0	VACTIVE_PB[8]	VACTIVE VDELAY_PB[8]	L_PB[7:0] HACTIVE	PB(9:8)	HDFLAY	_PB[9:8]	
CAO!		(CO	U/DI	0	PB_FLDPOL	0	0	MAN_PBCROP				
		(C1		LIM_656_PB	LIM_656_X		LIM_656_Y1	•		LIM_656_Y0		
		(C2 (C3		0	LIM_656_DEC	EN_PB	LIM_656_Y3	BGNDCOL	AUTOBGNDPB	LIM_656_Y2 AUTOBGNDY	AUTOBGNDX	
		(C4				DEN_Y		BGINDCOL		DEN_X	AUTOBGINDA	
	-	C5				DLY_Y			PAL_I	DLY_X		
		(C6		0	0	0	0			DLY_PB		
		(C7 (C8		0	0	0	0	0	0 FLD_OFST_PB	0 FLD_OFST_Y	0 FLD_0FST_X	
		(C9		0	0	1	1	1 1		0	0	
		CA		0	OUT_CHID	0	0	1	1	1	1	
		D0 D1		AADC30	DFS[9:8]	AADC20	DFS[9:8] AADCOO	AADC1	PFS[9:8]	AADCO	OFS[9:8]	
		D1					AADCO					
		D3					AADC20	OFS[7:0]				
		D4					AADC30					
		:D7 :D8		0		ADCISEL	AUDAD	AUDAD	Cn[9:8]*	ADJAAD	Cn[9:8]*	
		D8 D9						Cn[7:0]*				
	0x	(DA		0	0	0		· ·	I2SO_RSEL			
		DB DC		0	0	0	0	0	I2SO_LSEL		0	
				1	ADATM_	1	0	0	1	0	0	
		DF		0	12SOEN 0	ACLKR128	ACLKR64	AFS384	0	0	0	
		E0		MRATIOMD	0	ACLAR128	0	AFS384 0	0	0	0	
	0)	(E1		0		A2NUM		0		A1NUM		
		E2		0		A4NUM		0		A3NUM		
		(E3 (E4		0 I2S8MODE	0 MASCKMD	ACLKRPOL PBINSWAP	ACLKPPOL ASYNRDLY	AFAUTO ASYNPDLY	ADATPDLY	AFMD INI A	WMD	
0xE5				AIMANU	0	0	0	0	0	0	1	
0xE9				CKLM	_	YDLY		0	0	0	0	
OxEA OxEB				0	0 MIS	0 SCNT	0	VDEC4RST	VDEC3RST	VDEC2RST WIN	VDEC1RST	
		EC			14115	30/11	PCL	AMP	нэ	AA 11 A		
	0>	ED		VL	скі	VLC	CKO	VMODE	DETV	AFLD	VINT	
		(EE		~~~~	BSHT				VSHT			
		(EF (FO		CKIL	MAX	HTL		CKIL	_MIN V	TL		
		(FU		HPLC	EVCNT	PALC	SDET	0	BYPASS	0	0	
	0>	(F2			M	-	СТ	-	м	-	BW	
1	0>	(F3		NKILL	PKILL	SKILL	CBAL	FCS	LCS	CCS	BST	

For Video Decoder

Address VINO VIN1 VIN2 VIN3	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO		
0xF4	0	0	MONITOR							
0xF5				HR	EF*					
0xF6	0	0	0	0	1	0	0	0		
0xF7	0	0	0	0	1	0	0	0		
0xF8	0	0	0	0	1	0	0	0		
0xF9	0	0	0	0	1	0	0	0		
OxFA	ID.	X1				PSEN1/WKTH1				
OxFB	ID	X2			NSEN2/SSEN2/	PSEN2/WKTH2				
OxFC	ID	X3			NSEN3/SSEN3/	PSEN3/WKTH3				
0xFD	ID	X4	NSEN4/SSEN4/PSEN4/WKTH4							
OxFE	0	0	1	1	0		REV_ID			

NOTE:

- 1. "*" stand for read only register
- 2. VIN0 ~ VIN3 stand for video input 0 ~ video input

For Video Controller (Display path)

Address	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO		
CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7	BIT /	ыю	ыю	DI14	ыз	DIIZ	ЫТ	BIIU		
1x00	SYS_5060	OVERLAY	LINK_LAST_X	LINK_LAST_Y	LINK_EN_X	LINK_EN_Y	LINK	NUM		
1x01	0	0	0	TBLINK	FRZ_FRAME	DUAL_PAGE	STRE	3_FLD		
1x02	RECALL_FLD SAVE_FLD SAVE_HID SAVE_ADDR									
1x03		SAVE_REQ								
1x04				STRB	_REQ					
1x05	NOVID	MODE	0	0	0	AUTO_ENHACE	INVALIE	D_MODE		
1x06	MUX_MODE	0	MUX	FLD	0	0	0	0		
1x07	STRB_AUTO	0	0		INTR					
1x08		MUX_OL	JT_CH0*			MUX_OU	IT_CH1*			
1x09	MUX_OUT_CH2* MUX_OUT_CH3*									
1x0A	CHID_MUX_OUT*									
1x0B	ZM_EV	EN_OS	ZM_OI	DD_0S	FR_EV	EN_OS	FR_OI	DD_0S		
1x0C	ZMENA	H_ZM_MD	ZMBN	DCOL	ZMBNDEN	EN ZMAREAEN ZMAREA				
1x0D	ZOOMH									
1x0E	ZOOMV									
1x0F	FRZ_	FLD	BND	COL	BGD	COL	BLK	COL		
1x10 1x18 1x20 1x28 1x13 1x1B 1x23 1x2B	CH_EN	POP_UP	FUNC_	MODE	ANA_PATH_SEL	PB_PATH_EN	Rese	erved		
1x11 1x19 1x21 1x29 1x14 1x1C 1x24 1x2C	RECALL_CH	FRZ_CH	H_MIRROR	V_MIRROR	ENHANCE	BLANK	BOUND	BLINK		
1x12 1x1A 1x22 1x2A 1x15 1x1D 1x25 1x2D	0	0	FIELD_OP	DVR_IN		RECALL	_ADDR			
1x16 1x1E 1x26 1x2E 1x16 1x1E 1x26 1x2E	PB_AUTO_EN	FLD_CONV	PB_STOP	EVENT_PB		PB_CH	I_NUM			
1x17 1x1F 1x27 1x2F 1x17 1x1F 1x27 1x2F	0	0	0	0	0	0	0	0		
1x30 1x34 1x38 1x3C 1x40 1x44 1x48 1x4C				PIC	HL					
1x31 1x35 1x39 1x3D 1x41 1x45 1x49 1x4D	PICHR									
1x32 1x36 1x3A 1x3E 1x42 1x46 1x4A 1x4E	PICVT									
1x33 1x37 1x3B 1x3F 1x43 1x47 1x4B 1x4F				PIC	VB					

NOTE:

- 1. "*" stand for read only register
- 2. CH0 ~ CH7 stand for channel 0 ~ channel 7.

For Video Controller (Record path)

Address	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO			
CHO CH1 CH2 CH3	BHT	ы	ыз	BIIT	BIIS	DIZ	BIT	впо			
1x50	MEDIAN_MD	TM_S	SLOP			TM_THR					
1x51	0	FRAME_OP	FRAME_FLD	DIS_MODE	0	0	SIZE_	MODE			
1x52	TBLINK	FRZ_FRAME	TM_W	IN_MD	0	0	0	0			
1x53	0	0	0	0	0	0	0	0			
1x54	0	STRB	3_FLD	DUAL_PAGE		STRB_REQ					
1x55	NOVID	MODE	0	CH_START	0	AUTO_NR_EN	INVALID_MODE				
1x56	MUX_MODE	TRIG_MODE	MUX	_FLD	PIN_TR	NG_MD	PIN_TF	RIG_EN			
1x57	STRB_AUTO				QUE_SIZE						
1x58				QUE_PEF	RIOD[7:0]						
1x59	QUE_PEF	RIOD[9:8]	EXT_TRIG	INTR_REQY		MUX_V	VR_CH				
1x5A	QUE_WR				QUE_ADDR						
1x5B	0	Q_POS_RD_CTL	Q_DATA	_RD_CTL	MUX_SKIP_EN	ACCU_TRIG	QUE_CNT_RST	QUE_POS_RST			
1x5C		MUX_SKIP_CH[15:8]									
1x5D				MUX_SKI	P_CH[7:0]						
1x5E				CHID_MI	UX_OUT*						

For Video Controller (Record path)

Address CH0 CH1 CH2 CH3	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
1x5F	ED7	_FLD	BND	DCOL	BG	DCOL	BIM	COL
1x60 1x63 1x66 1x69	CH_EN	POP_UP		MODE	NR_EN_DM	NR_EN		PATH_Y
1x61 1x64 1x67 1x6A	0	FRZ_CH	H_MIRROR	V_MIRROR	0	BLANK	BOUND	BLINK
1x62 1x65 1x68 1x6B	0	0	FIELD_OP	0	0	0	0	0
1x6C		SIZE3		SIZE2		SIZE1		SIZE0
1x6D		P0S3		P0S2		POS1		POS0
1x6E		MUX_OL	JT_CH0*		-	MUX_OL	T_CH1*	
1x6F		MUX_OL	JT_CH2*			MUX_OL	IT_CH3*	
1x70		POS_TRIG_MODE		POS_INTR	0	POS_RD_CTL	POS_DAT	A_RD_CTL
1x71	POS_PEF	riod[9:8]	POS_FLD_MD			POS_SIZE		
1x72				POS_QUE	_PER[7:0]			
1x73			_CH0			POS_		
1x74			_CH2	1		POS_	_СНЗ	
1x75 1x76	POS_QUE_WR IRQENA_RD	POS_CNT_RST	POS_QUE_RST	0	0	POS_QUE_ADDR		
1x76 1x77	IRQENA_RD	0	0	-	-	0	IRQ_POL	IRQ_RPT
1x77 1x78			NOVID_S	IKQ_P	ERIOD	IDOENA	NOVID_M	
1x79			_MOVID_S			IRQENA_		
1x79 1x7A			A_BD_S				_MD_M	
1x7B			A_ND_S			IRQENA		
1x7C			VID PB*		0	0	0	0
1x7D	0	0	0	0	0	0	0	0
1x7E	0	-	SYNC_DEL			MCL		-
1x7F	MEM_INIT	0	T_CASCADE_EN	0	0	0	0	0
1x80	VIS_ENA	VIS_AUTO_EN	AUTO_RPT_EN	VIS_DET_EN	VIS_USER_EN	VIS_CODE_EN	VIS_RIC_EN	0
1x81		•	•	VIS_PIX	EL_HOS		•	•
1x82		LD_0S	0			VIS_PIXEL_WIDTH		
1x83	0	VIS_DM_MD	0			VIS_LINE_OS		
1x84				VIS_HIC				
1x85				VIS_LO				
1x86	AUTO_VBI_DET	0	VBI_ENA	VBI_CODE_EN		VBI_FLT_EN	CHID_RD_TYPE	VBI_RD_CTL
1x87 1x88	VPL F	LD_OS	VAV_CHK	VBI_PIX	EL_HOS	VBI_PIXEL_WIDTH		
1x89	VDI_FI	VBI_SIZE	VAV_CHK			VBI_LINE_OS		
1x89 1x8A		VDI_SIZE			VALUE	VBI_LINE_03		
1x8B			DET CHIE	D_TYPE*/{3'b0, aut		iser valid}		
1x8C			DEI_ONE	AUTO_(Joon_Panaj		
1x8D				AUTO				
1x8E				AUTO_				
1x8F				AUTO_0	CHID3*			
1x90				USER_				
1x91				USER_				
1x92					CHID2			
1x93				USER_				
1x94					CHID4			
1x95					CHID5			
1x96					CHID6			
1x97 1x98				USER_				
1x98 1x99				DET_C DET_C				
TY33				DET_C				
1xQA				DET_C				
1x9A 1x9B								
1x9B				DFT C	HID4*			
1x9B 1x9C				DET_C				
1x9B				DET_C DET_C DET_C DET_C	HID5*			

NOTE:

1. "*" stand for read only register

2. CH0 ~ CH3 stand for channel 0 ~ channel 3

For Video Output

Address	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
1xA0	ENC	IN_X	ENC	_IN_Y	CCIR	_IN_X	CCIR	_IN_Y
1xA1	DAC_PD_CX	0	DAC_C	DUT_YX	DAC_PD_YX	0	DAC_C	OUT_CX
1xA2	0		DAC_OUT_YY		DAC_PD_YY	0	0	0
1xA3	CCIR_601_X	0	CCIR	OUT_X	CCIR601_Y	0	CCIR_	OUT_Y
1xA4	ENC_MODE	CCIR_LMT	ENC_VS	ENC_FLD	CCIR_FLDPOL	ENC_HSPOL	ENC_VSPOL	ENC_FLDPOL
1xA5	ENC_	/SOFF			ENC_	VSDEL		
1xA6				ENC_HS	DEL[7:0]			
1xA7	ENC_HS	DEL[9:8]	TST_FSC_FREE			ACTIVE_VDEL		
1xA8	ACTIVE_MD	CCIR_STD			ACTIVE	_HDEL		
1xA9	ENC	FSC	0	0	1	ENC_PHALT	ENC_ALTRST	ENC_PED
1xAA	ENC_C	BW_X	ENC_1	BW_X	ENC_0	BW_Y	ENC_1	BW_Y
1xAB	0	HOUT*	VOUT*	FOUT*	ENC_BAR_X	ENC_CKILL_X	ENC_BAR_Y	ENC_CKILL_Y
1xAC	ENC_CL	K_FR_X	ENC_CL	K_PH_X		ENC_CL	K_CTL_X	
1xAD	ENC_CL	K_FR_Y	ENC_CL	K_PH_Y		ENC_CL	K_CTL_Y	
1xAE	DEC_CL	K_FR_X	DEC CL	K_PH_X		DEC_CL	K CTL X	
1xAF	DEC CL			K PH Y		DEC CL		
1xB0	0	0	MPP	MD2	MPP	MD1	MPP	MD0
1xB1		MPP0_S	ET_MSB			MPP0_S	SET_LSB	
1xB2		MPP0 D	ATA_MSB			MPP0 D	ATA_LSB	
1xB3		MPP1_S	ET MSB			MPP1_S	SET_LSB	
1xB4			ATA_MSB			MPP1 D		
1xB5			ET MSB			MPP2_S		
1xB6		MPP2 D	ATA_MSB			 MPP2_D		
1xB7	MEM_INIT_DET*	0	0	0	0	0	0	0
1xB8					0			
1xB9	0	0	0	0	0	0	0	0
1xBA	0	0	0	0	0	0	0	0
1xBB	0	0	0	0	0	0	0	0
1xBC	0	0	0	0	0	0	0	0
1xBD)	(0	(0		<u> </u>
1xBE	()		0	(0		<u> </u>
1xBF)		0		0		0

NOTE:

1. "*" stand for read only register

For Character and Mouse Overlay

Address	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO		
2x00				OSD_BUF_I	DATA[31:24]					
2x01				OSD_BUF_I	DATA[23:16]					
2x02				OSD_BUF_	DATA[15:8]					
2x03				OSD_BUF	_DATA[7:0]					
2x04	OSD_BUF_WR	OSD_BUF_RD_MD	0	0		OSD_BU	IF_ADDR			
2x05					RT_HPOS					
2x06					ID_HPOS					
2x07					T_VPOS[7:0]					
2x08				OSD_END	_VPOS[7:0]					
2x09			L_SIZE			T_VPOS[9:8]	-	_VPOS[9:8]		
0x0A	OSD_MEM_WR	OSD_ACC_EN	OSD_MEM_PATH		OSD_WR_PAGE		0	OSD_INDEX_RD_MD		
Ox0B					NDEX_Y					
0x0C					IDEX_CB					
2x0D				050_11	DEX_CR					
2x0E 2x0F	OSD_INDEX_WR				OSD_INDEX_ADDR		000			
2x0F 2x10	CUR_ON_X	CUR_ON_Y	OSD_RD_PAGE CUR_TYPE	CUR_SUB	CUR_BLINK	FLD_X	CUR_HP [0]	_FLD_Y CUR_VP [0]		
2x10 2x11	CUR_UN_X	CUR_UN_T	COR_TIPE			0				
2x11 2x12					<u></u> R_VP					
2x12 2x13										
2x13	CLUTO_Y CLUTO_CB CLUTO_CR									
2x15	CLUT0_CR CLUT1_Y									
2x16		CLUTO_CB CLUTO_CR CLUT1_Y CLUT1_CB								
2x17		CLUTO_CR CLUT1_Y CLUT1_CB								
2x18		CLUT1_Y								
2x19					T2 Y					
2x1A					2_CB					
2x1B				CLUI	2_CR					
2x1C				CLU	T3_Y					
2x1D				CLUT	13_CB					
2x1E				CLUT	'3_CR					
2x1F	TBLIN		ALPHA	A_OSD	ALPHA	_2DBOX	ALPH	IA_BOX		
2x40	OSD_NEWTABLE	0	0	0		OSD_INDEX_SEL	-	OSD_EXTOP_EN		
2x41	OSD_IN_IDLE	OSD_WRSTALL	0	0	0	0	_	OPMODE		
2x42	1	1	0	0	1	0	1	0		
2x43					L_COLOR		-	1 4		
2x44	0	0	0	0	0	0	0	1		
2x45	0	0	0	0	0	0	0	0		
2x46	0	0	0	0		USD_AUTOINC_DIS	USD_INDR_RD_EN	I OSD_INDR_WR_EN		
2x47 2x48					DR_ADDR 2_DATA[7:0]					
2x48 2x49					_DATA[7:0] _DATA[15:8]					
2x49 2x4A					DATA[15:8] DATA[23:16]					
2x4A 2x4B	0	0	0		0 0	0		DR_ATRB		
2x4B 2x4C	0	0	0			0	030_1	EN_AIND		
2x4C 2x4D	OSD_START_HSRC[7:0] OSD_START_VSRC[7:0]									
2x4D 2x4E	OSD_START	HP05[9:8]	OSD_END_			T_VSRC[9:8]	OSD STAF	T_HSRC[9:8]		
/X4F			300_LND_				3300_31AI			

For Single Box

	Ado	dress		BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	віто
BO	B1	B2	B3	DII /	BIIO	ыю	DI14	BIIS	DIIZ	DIT	ыю
2x20	2x26	2x2C	2x32	BOX_B	NDCOL	BOX_PLNMIX_Y	BOX_BNDEN_Y	BOXPLNEN_Y	BOX_PLNMIX_X	BOX_BNDEN_X	BOXPLNEN_X
2x21	2x27	2x2D	2x33		BOX_P	PLNCOL		BOX_HL[0]	BOX_HW[0]	BOX_VT[0]	BOX_VW[0]
2x22	2x28	2x2E	2x34				BOX_H	IL[8:1]			
2x23	2x29	2x2F	2x35				BOX_H	W[8:1]			
2x24	2x2A	2x30	2x36				BOX_V	/T[8:1]			
2x25	2x2B	2x31	2x37	BOX_VW[8:1]							
	2	x38		0 0 0 0 0 0VL_MD_X 0VL_MD_Y					MD_Y		

NOTE:

1. B0 ~ B3 stand for single box 0 to 3.

For 2D Arrayed Box Overlay

Address 2DB0 2DB1 2DB2 2DB3	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
2x5B		MASKAR	EA0_COL			DETARE	A0_COL	

For 2D Arrayed Box Overlay

2DB0		ress 2DB2	2DB3	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO		
	2x	5C			MASKAR	EA1_COL	-		DETARE	A1_COL	-		
	2x	5D				EA2_COL				A2_COL			
	2x	5E			MASKAR	EA3_COL			DETARE	A3_COL			
	2x	5F		MDBND	03_COL	MDBN	D2_COL	MDBND	01_COL	MDBND0_COL			
2x60	2x68	2x70	2x78	2DBOX_EN_X	2DBOX_EN_Y	2DBOX_MODE	2DBOX_CUREN	2DBOX_MIX		2DBOX_IN_SEL			
2x61	2x69	2x71	2x79	2DBOX_HINV	2DBOX_VINV	MASKAREA_EN	DETAREA_EN	2DBOX_BND_EN	0	2DBOX_HL[0]	2DBOX_VT[0]		
2x62	2x6A	2x72	2x7A				2DBOX	_HL[8:1]					
2x63	2x6B	2x73	2x7B				2DB0	X_HW					
2x64	2x6C	2x74	2x7C				2DBOX	_VT[8:1]					
2x65	2x6D	2x75	2x7D				2DB0	X_VW					
2x66	2x6E	2x76	2x7E		2DB0X	HNUM			2DB0X	_VNUM			
2x67	2x6F	2x77	2x7F		2DBOX	CURHP			2DBOX	2DBOX_CURVP			

NOTE:

1. 2DB0 ~ 2DB3 stand for 2D arrayed box 0 to 3

For Motion Detector

	Add	ress		BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
VINO	VIN1	VIN2	VIN3	BIT	BIIO	BIID	B114	впз	BIIZ	впт	впо
2x80	2xA0	2xC0	2xE0	MD_DIS	MD_REFFLD	BD_CE	LSENS	İ -	BD_L\	/SENS	
2x81	2xA1	2xC1	2xE1		ND_L\	/SENS			ND_TM	PSENS	
2x82	2xA2	2xC2	2xE2	MD_MAS		MD_	FLD		MD_4	ALIGN	
2x83	2xA3	2xC3	2xE3	MD_CE		MD_DUAL_EN			MD_LVSENS		
2x84	2xA4	2xC4	2xE4	MD_STRB_EN	MD_STRB			MD_SI			
2x85	2xA5	2xC5	2xE5		MD_TN	IPSENS			MD_SI	PSENS	
2x86	2xA6	2xC6	2xE6								
2x88	2xA8	2xC8	2xE8								
2x8A	2xAA	2xCA	2xEA								
2x8C	2xAC	2xCC	2xEC								
2x8E	2xAE	2xCE	2xEE								
2x90		2xD0	2xF0			MD_MASK[15:8]					
2x92	2xB2	2xD2	2xF2								
2x94	2xB4	2xD4	2xF4								
2x96	2xB6	2xD6	2xF6								
2x98	2xB8	2xD8	2xF8								
2x9A			2xFA								
2x9C	2xBC	2xDC	2xFC								
2x87	2xA7	2xC7	2xE7								
2x89	2xA9	2xC9	2xE9								
2x8B	2xAB	2xCB	2xEB								
2x8D 2x8F	2xAD 2xAF	2xCD 2xCF	2xED 2xEF								
2x8F 2x91	2xAF 2xB1	2xCF 2xD1	2xEF 2xF1								
2x91 2x93	2xB1 2xB3	2xD1 2xD3	2xF1 2xF3				MD_M/	ASK[7:0]			
2x95	-	2xD3 2xD5	2xF5								
2x95 2x97	2xB5 2xB7	2xD5 2xD7	2xF5 2xF7								
2x97	2xB7	2xD7	2xF7 2xF9								
2x9B	2xBB	2xDB	2xFB								
2x9D		2xDD	2xFD								
2x9E	2xBE		2xFE	DET_NOVID_S*	DET_MD_S*	DET_BD_S*	DET_ND_S*	DET_NOVID_M*	DET_MD_M*	DET_BD_M*	DET_ND_M*
NOT	_							1			

NOTE:

- 1. "*" stand for read only register
- 2. VINO ~ VIN3 stand for video input 0 ~ video input 3

RECOMMENDED VALUE

For Video Decoder

	Add	ress			NT	SC			Р	AL	
VINO	VIN1	VIN2	VIN3	1 CH	4 CH	9 CH	16 CH	1 CH	4 CH	9 CH	16 CH
0x02	0x12	0x22	0x32	OF				0A			
0x03	0x13	0x23	0x33	D0				D0			
0x04	0x14	0x24	0x34	06				05			
0x05	0x15	0x25	0x35	F0				20			
0x06	0x16	0x26	0x36	08				28			
0x07	0x17	0x27	0x37	00				00			
0x08	0x18	0x28	0x38	11				11			
0x09	0x19	0x29	0x39	64				64			
0x0A	0x1A	0x2A	0x3A	00				00			
0x0B	0x1B	0x2B	0x3B	80				80			
0x0C	0x1C	0x2C	0x3C	80				80			
0x0E	0x1E	0x2E	0x3E	07				07			
0x0F	0x1F	0x2F	0x3F	7F				7F			
		40		00				00			
		41		77				77			
		42		07				07			
		43		45				45			
		44		AO				A0			
		45		D0				D0			
		46		00				00			
		47		FO				FO			
		48		FO				FO			
		49		FO				FO			
		4A		FO				FO			
		4B		02				02			
		4C		00				00			
		4D		OF				OF			
		4E		05				05			
		4F		05				05			
		50		00				00			
		51		00				00			
		52		10				10			
		53		00				00			
		54 55		00				00			
		56 57		00 30				00 30			
		57 58		CC				CC			
		58 59		00				00			
		59 5A		44				44			
		58 58		50				50			
		5C		43				43			
		50 5D		+3 D8				43 D8			
		5E		BC				BC			
		5F		B8				B8			
		60		88				88			
		61 61		88				88			
		62		00				00			
		63		00				00			
L							1		1	1	1

VIN0 VIN2 VIN3 1.CH 4 CH 9 CH 16 CH 1.00 A 10 </th <th></th> <th>Add</th> <th>ress</th> <th></th> <th></th> <th>NT</th> <th>SC</th> <th></th> <th></th> <th>P</th> <th>AL</th> <th></th>		Add	ress			NT	SC			P	AL	
0.66 54 22 22 232 232 34 355 356 357 356 357 <th>VINO</th> <th></th> <th></th> <th>VIN3</th> <th>1 CH</th> <th></th> <th>-</th> <th>16 CH</th> <th>1 CH</th> <th></th> <th>-</th> <th>16 CH</th>	VINO			VIN3	1 CH		-	16 CH	1 CH		-	16 CH
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ox	64	÷	10	Ē			10			
0.67 76 // 76 // 76 // // 0.68 98 98 98 98 1 98 1 0.69 BA 0 BA 0 C 1 0 0.66 C1 0 0 0 1 0 1 0.66 00 0 00 00 1 1 1 0.66 00 0 00 00 1 1 1 0.67 00 0 00 00 1 1 1 0.77 40 1 40 1 <td< td=""><td></td><td>Ox</td><td>65</td><td></td><td>32</td><td></td><td></td><td></td><td>32</td><td></td><td></td><td></td></td<>		Ox	65		32				32			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ox	66		54				54			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ox	67		76				76			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ox	68		98				98			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0x64 0x65 0x66 0x67 0x68 0x69 0x64 0x67 0x68 0x69 0x68 0x68 0x68 0x69 0x68 0x68 0x68 0x68 0x68 0x69 0x61 0x62 0x64 0x61 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x77 0x78 0x79 0x70 0x71 0x78 0x77 0x78 0x70 0x71 0x72 0x78 0x70 0x71 0x72 0x78 0x79			BA				BA			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0x64 0x65 0x66 0x67 0x68 0x69 0x68 0x61 0x62 0x64 0x61 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x77 0x78 0x77 0x78 0x77 0x78 0x77 0x78 0x70 0x71 0x72 0x78 0x79 0x71 0x72 0x74 0x75 0x78			DC				DC			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0x65 0x67 0x68 0x69 0x68 0x68 0x68 0x68 0x68 0x68 0x67 0x68 0x68 0x67 0x68 0x67 0x68 0x67 0x67 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x77 0x78 0x77 0x78 0x77 0x78 0x77 0x78 0x77 0x78 0x70 0x71 0x72 0x78 0x79 0x70 0x71 0x72 0x72 0x72 0x78 0x79							FE			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					00							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					00				00			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									40			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									14			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									AA			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					85				AO			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0x	7F	1				-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0x80	0x90	0xA0	0xB0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.01	0v01	0×41	0vP1			-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
0X8A $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8A$ $0X8B$ $0X8C$ $0X8C$ $0X8C$ $0X8C$ $0X8D$ $0X8D$ $0X0$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0x8A	0x9A	0xAA	OxBA			-	-			-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0x8B	0x9B	0xAB	OxBB	•					, .		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1	1	1		-	1	
0xC0 0												
0xC1 00 0				•								
0xC2 00 00 00 00 0xC3 07 07 07 07 07 0xC4 00 00 00 00 00 00 0xC5 00 FF 00 <t< td=""><td></td><td>Ox</td><td>C1</td><td></td><td>00</td><td></td><td></td><td></td><td>00</td><td></td><td></td><td></td></t<>		Ox	C1		00				00			
OxC4 O0 O0 O0 O0 OxC5 O0 FF O0 O0 O0 OxC6 FO FO FO FO FO FO									00			
OxC4 O0 O0 O0 O0 OxC5 O0 FF O0 O0 O0 OxC6 FO FO FO FO FO FO		Ox	C3		07				07			
0xC5 00 FF 00 00 00 0xC6 F0					00				00			
0xC6 F0 F0 F0					00					00	00	00
0xC7 FF F		Ox	C6		FO				F0			
		Ox	C7		FF				FF			

	Add	ress			NT	SC			P/	AL	
VINO	VIN1	VIN2	VIN3	1 CH	4 CH	9 CH	16 CH	1 CH	4 CH	9 CH	16 CH
	Ox	C8		00				00			
	0x	C9		3C				3C			
	0x	CA		0F				0F			
	0x	D0		FF				FF			
	0x	D1		EF				EF			
	0x	D2		EF				EF			
	0x	D3		EF				EF			
	0x	D4		EF				EF			
	0x	E9		30				30			
	0x	EA		00				00			
	0x	EB		44				44			
	0x	EC		2A				2A			
	0x	ED		00				00			
	0x	EE		00				00			
	0x	EF		68				68			
	0x	F0		4C				4C			
	0x	F1		14				14			
	Ox	F2		A5				A5			
	0x	F3		EO				E0			
	0x	F4		00				00			
	0x	F6		08				08			
	0x	F7		08				08			
	0x	F8		08				08			
	Ox	F9		08				08			
	0x	FA		00				00			
	0x	FB		00				00			
	Ox	FC		00				00			
	0x	FD		00				00			

For Video Controller

	Addı	'ess			NT	SC			P	AL	
CH0	CH1	CH2	CH3	1 CH	4 CH	9 CH	16 CH	1 CH	4 CH	9 CH	16 CH
	1x(00		8'h00				8'h80			
	1x()1		00				00			
	1x()2		00				00			
	1x()3		00				00			
	1x()4		00				00			
	1x(80				80			
	1x(00				00			
	1x()7		00				00			
	1x()8		00				00			
	1x()9		00				00			
	1x()A		00				00			
	1x(D7				D7			
	1x(00		00				00			
	1x(D		00				00			
	1x(00				00			
	1x(A7				A7			
	1x:			80				80			
	1 x2			81				81			
	1x2	20		82				82			
	1x2	28		83				83			
1x11	1x19	1x21	1x29	02				02			
1x12	1x1A	1x22	1x2A	00				00			
1x13	1x1B	1x23	1x2B	00				00			
1x14	1x1C	1x24	1x2C	00				00			
1x15	1x1D	1x25	1x2D	00				00			
1x16	1x1E	1x26	1x2E	00				00			
1x17	1x1F	1x27	1x2F	00				00			
	1x3	30		00	00	00	00	00	00	00	00
	1x3	31		B4	5A	3C	2D	B4	5A	3C	2D
	1 x3	32		00	00	00	00	00	00	00	00
	1x3	33		78	3C	28	1E	90	48	30	24
	1 x3	34		00	5A	3C	2D	00	5A	3C	2D
	1 x3	35		B4	B4	78	5A	B4	B4	78	5A
	1 x3	36		00	00	00	00	00	00	00	00
	1 x3	37		78	3C	28	1E	90	48	30	24
	1x3	38		00	00	78	5A	00	00	78	5A
	1x3	39		B4	5A	B4	87	B4	5A	B4	87
	1x3	BA		00	3C	00	00	00	48	00	00
	1x3	3B		78	78	28	1E	90	90	30	24
	1x3	BC		00	5A	00	87	00	5A	00	87
	1x3	3D		B4	B4	3C	B4	B4	B4	3C	B4
	1 x3	BE		00	3C	28	00	00	48	30	00
	1x:	3F		78	78	50	1E	90	90	60	24
	1x40 ~	· 1x4F		00				00			
	1 x5	50		00				00			
	1x!	51		00				00			
	1x{	52		00				00			
	1x!	53		00				00			
	1x!	54		00				00			
	1x!	55		80				80			
	1x5	56		00				00		1	

	Addre	SS			NT	SC			Р	AL	
CH0	CH1	CH2	CH3	1 CH	4 CH	9 CH	16 CH	1 CH	4 CH	9 CH	16 CH
	1x5	7	-	00				00			
	1x58	8		00				00			
	1x59	9		00				00			
	1x5/	4		00				00			
	1x5	В		00				00			
	1x50	C		00				00			
	1x5[)		00				00			
	1x5	Ε		00				00			
	1x5	F		A7				A7			
	1x60	C		80		-	-	80		-	-
	1x63	3		81		-	-	81		-	-
	1x60	6		82		-	-	82		-	-
	1x69	9		83		-	-	83		-	-
1x61	1x64	1x67	1x6A	02		-	-	-			
1x62	1x65	1x68	1x6B	00		-	-	-			
	1x60	C		00	FF	-	-	00	FF	-	-
	1x6I)		00	E4	-	-	00	E4	-	-
	1x6	E		00				00			
	1x6	F		00				00			
	1x70	D		00				00			
	1x7:	1		00				00			
	1x72	2		00				00			
	1x73	3		00				00			
	1x74	4		00				00			
	1x7!	5		00				00			
	1x76	6		00				00			
	1x77	7		00				00			
	1x78	8		00				00			
	1x79			00				00			
	1x7/			00				00			
	1x71			00				00			
	1x70			00				00			
	1x7[00				00			
	1x7			88	-			88			
	1x7			84	-			84			
	1x80			FF				FF			
	1x8:			00				00			
	1x82			51				51			
	1x83			07				07			
	1x84			EB		1	1	EB	1	1	1
	1x8			10				10		1	
	1x80			A8			1	A8		1	1
	1x8			00			<u> </u>	00		1	
	1x88			51				51		1	
	1x89			E7			<u> </u>	E7		1	
	1x8/			80			1	80		1	1
	1x8			00				00		1	
	1x80			00				00			
	1x8[00			<u> </u>	00		1	
	1x8			00			<u> </u>	00		1	
	1x8			00				00			
	1x90 ~ 1			00				00			
	1xA(77	<u> </u>			77		+	

	Add	ress			NT	SC			P	AL .	
CH0	CH1	CH2	CH3	1 CH	4 CH	9 CH	16 CH	1 CH	4 CH	9 CH	16 CH
	1x/	A1	-	23				23			
	1x	A2		D0				D0			
	1 x	A3		01				01			
	1 x	A4		CO				CO			
	1x	A5		10				10			
	1xA6							00			
	1 x	A7		0D				0D			
	1 x	A8		20				20			
	1 x	A9		09				4C			
	1 x/	AA		AA				AA			
	1 x/	AB		00				00			
	1xAC		00				00				
	1xAD			00				00			
	1xAE			00				00			
	1 x	AF		00				00			
	1xB0 ~	~ 1xBF		00				00			

NOTE:

- 1. Blanks have the same value of 1 CH.
- 2. All values are Hexa format.

For Motion Detector

	Add	ress		NTSC	PAL
VINO	VIN1	VIN2	VIN3	NISC	FAL
2x80	2xA0	2xC0	2xE0	8'h17	8'h17
2x81	2xA1	2xC1	2xE1	88	88
2x82	2xA2	2xC2	2xE2	08	08
2x83	2xA3	2xC3	2xE3	6A	6A
2x84	2xA4	2xC4	2xE4	07	07
2x85	2xA5	2xC5	2xE5	24	24

NOTE:

1. All values are Hexa format.

Register Descriptions

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxFF								
1xFF	AUTO_INC						PAGE	_SEL
2xFF								

PAGE_SEL The TW2837 has 3 pages of registers – page 0 ~ 2. In order to access a specific page, simply program the PAGE_SEL in either of 0xFF, 1xFF, or 2xFF. The three addresses reflect the same register, and can be programmed in any pages.

AUTO_INC 1 Turn on the address auto-increment feature in parallel host interface mode

0 Turn off the address auto-increment feature

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x00								
1	0x10	VDLOSS*	HLOCK*	SLOCK*	FLD*	VLOCK*	NOVIDEO*	MONO*	DET50*
2	0x20								
3	0x30								

NOTE: * READ ONLY BITS

VDLOSS	 1 = Video not present (sync is not detected in number of consecutive line periods specified by MISSCNT register) 0 = Video detected
HLOCK	 1 = Horizontal sync PLL is locked to the incoming video source 0 = Horizontal sync PLL is not locked
SLOCK	 1 = Sub-carrier PLL is locked to the incoming video source 0 = Sub-carrier PLL is not locked
FLD	0 = Odd field is being decoded 1 = Even field is being decoded
VLOCK	1 = Vertical logic is locked to the incoming video source

	0 = Vertical logic is not locked
NOVIDEO	Reserved for TEST
MONO	1 = No color burst signal detected0 = Color burst signal detected
DET50	0 = 60Hz source detected 1 = 50Hz source detected

The actual vertical scanning frequency depends on the current standard invoked.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x01								
1	0x11	VCR*	WKAIR*	WKAIR1*	VSTD*	NINTL*			
2	0x21	VCR	WINAIN	WNAINT	VSID			VSHP	
3	0x31								

NOTE: * READ ONLY BITS

VCR	VCR signal indicator
WKAIR	Weak signal indicator 2
WKAIR1	Weak signal indicator controlled by WKTH
VSTD	1 = Standard signal 0 = Non-standard signal
NINTL	1 = Non-interlaced signal 0 = interlaced signal
VSHP	 Select Video Vertical peaking level (*) 0 none (default) 7 highest *Note: VSHP must be set to '0' if COMB = 0.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x06										
1	0x16	0	0	VACTIVE_			HACITIVE_XY[9:8]				
2	0x26	U	U	XY[8]	XY[8]	HACHIVE_XY[9:8]		HDELAT	HDELAY_XY[9:8]		
3	0x36										
0	0x02										
1	0x12										
2	0x22		HDELAY_XY[7:0]								
3	0x32										

HDELAY_XY This 10bit register defines the starting location of horizontal active pixel for display / record path. A unit is 1 pixel. The default value is 0x00F for NTSC and 0x00A for PAL.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0	0x06											
1	0x16	0	0	VACTIVE_	VDELAY_		E_XY[9:8]					
2	0x26	0	0	XY[8]	XY[8]	HACITIVI		HDELAT	HDELAY_XY[9:8]			
3	0x36											
0	0x03											
1	0x13		HACTIVE_XY[7:0]									
2	0x23											
3	0x33											

HACTIVE_XYThis 10bit register defines the number of horizontal active pixel for display /
record path. A unit is 1 pixel. The default value is decimal 720.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x06										
1	0x16	0	0	VACTIVE_	VDELAY_		HACITIVE_XY[9:8]		VVI0-91		
2	0x26	0	0	XY[8]	XY[8]	HACITIVE_XY[9:8]		HDELAY_XY[9:8]			
3	0x36										
0	0x04										
1	0x14					XV[7:0]					
2	0x24		VDELAY_XY[7:0]								
3	0x34										

VDELAY_XY This 9bit register defines the starting location of vertical active for display / record path. A unit is 1 line. The default value is decimal 6.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x06										
1	0x16	0	0	VACTIVE_	VDELAY_						
2	0x26	0	0	XY[8]	XY[8]	HACITIVE_XY[9:8]		HDELAT	HDELAY_XY[9:8]		
3	0x36										
0	0x05										
1	0x15				VACTIVE	VVI7.01					
2	0x25		VACTIVE_XY[7:0]								
3	0x35										

VACTIVE_XY

This 9bit register defines the number of vertical active lines for display / record path. A unit is 1 line. The default value is decimal 240 for NTSC and decimal 288 for PAL.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x07								
1	0x17		HUE						
2	0x27								
3	0x37								

HUE These bits control the color hue as 2's complement number. They have value from +36° (7Fh) to -36° (80h) with an increment of 0.28°. The positive value gives greenish tone and negative value gives purplish tone. The default value is 0° (00h). This is effective only on NTSC system. 00h is default.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x08								
1	0x18	SCURVE	VSF	C	ті		SUAD	PNESS	
2	0x28	SCORVE	VSF				SHAR	FILOS	
3	0x38								

SCURVE	These bits control the color hue as 2's complement number. They have value from +36° (7Fh) to -36° (80h) with an increment of 0.28°. The positive value gives greenish tone and negative value gives purplish tone. The default value is 0° (00h). This is effective only on NTSC system. Oh is default.						
VSF	This bit is for internal used. Oh is default.						
СТІ	CTI level selection 0 = None 3 = highest. 1h is default.						
SHARPNESS	These bits control the amount of sharpness enhancement on the luminance signals. There are 16 levels of control with 'O' having no effect on the output image. 1 through 15 provides sharpness enhancement with 'F' being the strongest. 1h is default.						

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x09								
1	0x19		CONT						
2	0x29								
3	0x39								

CONT

These bits control the contrast. They have value of 0 to 3.98 (FFh). A value of 1 (`100_0000`) has no effect on the video data. 64h is default.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x0A								
1	0x1A		BRT						
2	0x2A								
3	0x3A								

BRT

These bits control the brightness. They have value of -128 to 127 in 2's complement format. Positive value increases brightness. A value 0 has no effect on the data. 00h is default.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	0x0B									
1	0x1B		CAT II							
2	0x2B		SAT_U							
3	0x3B									

SAT_U These bits control the digital gain adjustment to the U (or Cb) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%. 80h is default.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x0C								
1	0x1C		SAT_V						
2	0x2C								
3	0x3C								

SAT_V These bits control the digital gain adjustment to the V (or Cr) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%. 80h is default.

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x0D								
1	0x1D	SF*	PF*	FF*	KF*	CSBAD*	MCVSN*	CSTRIPE*	CTYPE2*
2	0x2D	JF."	FF	FF	NF "	CSBAD	NICVSIN."	COTRIPE	CITEZ
3	0x3D								

NOTE: * READ ONLY BITS

SF This bit is for internal use

PF This bit is for internal use

FF	This bit is for internal use							
KF CSBAD	This bit is for internal use 1 = Macrovision color stripe detection may be un-reliable							
MCVSN 1 = Macrovision AGC pulse detected								

0 = Not detected

CSTRIPE 1 = Macrovision color stripe protection burst detected

0 = Not detected

CTYPE2 This bit is valid only when color stripe protection is detected, i.e. CSTRIPE=1.

1 = Type 2 color stripe protection

0 = Type 3 color stripe protection

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x0E								
1	0x1E	DETSTUS*	STDNOW*			ATREG	STANDARD		
2	0x2E	DEISIUS		SIDNOW		AIREG		STANDARD	
3	0x3E								

NOTE: * READ ONLY BITS

DETSTUS 0 = Idle 1 = detection in progress

STDNOW	Current standard invoked

0 = NTSC(M)

- 1 = PAL(B,D,G,H,I)
- 2 = SECAM
- 3 = NTSC4.43
- 4 = PAL(M)
- 5 = PAL(CN)
- 6 = PAL 60
- 7 = Not valid

ATREG

1 = Disable the shadow registers

0 = Enable VACTIVE and HDELAY shadow registers value depending on Standard(default)

ATSTART

- 0 = NTSC(M)
- 1 = PAL(B,D,G,H,I)
- 2 = SECAM
- 3 = NTSC4.43
- 4 = PAL(M)
- 5 = PAL(CN)
- 6 = PAL 60
- 7 = Auto detection(default)

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x0F		PAL60EN	PALCNEN	PALMEN		TSC44EN SECAMEN PAL	PALBEN	NTSCEN
1	0x1F	ATSTART							
2	0x2F	AISIARI				NISC44EN		FALDEN	NISCEN
3	0x3F								

Writing 1 to this bit will manually initiate the auto format detection process. This bit is a selfresetting bit. Oh is default. PAL60EN 1 = enable recognition of PAL60 (default) 0 = disable recognition PALCNEN 1 = enable recognition of PAL (CN) (default) 0 = disable recognition PALMEN 1 = enable recognition of PAL (M) (default) 0 = disable recognition NTSC44EN 1 = enable recognition of NTSC 4.43 (default) 0 = disable recognition

- SECAMEN 1 = enable recognition of SECAM (default)
 - 0 = disable recognition
- PALBEN1 = enable recognition of PAL (B,D,G,H,I) (default)

0 = disable recognition

NTSCEN1 = enable recognition of NTSC (M) (default)

0 = disable recognition

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x40	PB_9	SDEL	0	0	0	0	0	0

PB_SDEL Control the start point of active video from ITU-R BT.656 digital playback

input

- 0 No delay (default)
- 1ck delay of 27MHz 1
- 2 2ck delay of 27MHz

	3	3ck delay c	of 27MHz					
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x41	MPPCLK_ OEB		VOGAINCX		0	VOGAINYX		
0x42	0	0	0	0	0		VOGAINYY	

MPPCLK_OEB

Control the tri-state of CLKMPP1/2 output pins

- 0 Outputs are Tri-state (default)
- 1 **Outputs are enabled**

VOGAIN

Control the gain of analog video output for each DAC

- 0 90.625 %
- 1 93.75 %
- 2 96.875 %
- 3 100 %
- 4 103.125 %
- 106.25 % 5
- 6 109.375 %
- 7 112.5 % (default)

I	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
(0x45	1	1	VSMODE	FLDPOL	HSPOL	VSPOL	0	1

VSMODE	Con	trol the VS and field flag timing
	0	VS and field flag is aligned with vertical sync of incoming video (default)
	1	VS and field flag is aligned with HS
FLDPOL	Sele	ect the FLD polarity
	0	Odd field is high
	1	Even field is high (default)
HSPOL	Sele	ct the HS polarity
	0	Low for sync duration (default)
	1	High for sync duration

VSPOL

Select the VS polarity

- 0 Low for sync duration (default)
- **1** High for sync duration

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x46	AGCEN4	EN4 AGCEN3 AGCEN2 AGC		AGCEN1	AGCGAIN4[8] AGCGAIN3[8]		AGCGAIN2[8]	AGCGAIN1[8]			
0x47		AGCGAIN1[7:0]									
0x48				ļ	AGCGAIN2[7:0]						
0x49		AGCGAIN3[7:0]									
0x4A		AGCGAIN4[7:0]									

AGCEN	 Select Video AGC loop function on AIN1 ~ AIN4. AGC loop function enabled (recommended for most application cases) (default). AGC loop function disabled
AGCGAIN	Gain is set by AGCGAIN1~4 These registers control the AGC gain when AGC loop is disabled. Default value is 0F0h.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4B	0	IREF	VREF	0	0	0	YFLEN	YSV

IREF	0 = Internal current reference 1 for Video ADC (default) 1 = Internal current reference increase 30% for Video ADC
VREF	0 = Internal voltage reference for Video ADC (default) 1 = Internal voltage reference shut down for Video ADC
YFLEN	Analog Video CH1/CH2/CH3/CH4 anti-alias filter control 1 = enable (default) 0 = disable
YSV	Analog Video CH1/CH2/CH3/CH4 Reduced power mode 1 = enable 0 = disable (default)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x4C	0	0	ADAC_ PD	AADC_ PD	VADC_PD				
ADAC_PD	Po 0 1	wer down the Normal ope Power dow	eration (defau	lt)					
AADC_PD	Po 0 1	wer down the Normal ope Power dow	eration (defau	lt)					
VADC_PD			tands for CH3 eration (defau						
	1	101		141	101	101	141	101	

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4D	0	0	0	0	NOVII	D_MD	1	1

NOVID_MD

Select the No-video flag generation mode

- 0 Faster
- 1 Fast
- 2 Slow
- 3 Slower (default)

Index	([7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x4I	•	FM	IR	YN	IR	CLI	MD	PS	

- FMR Free run mode control
 - 0 = Auto (default)
 - 2 = default to 60Hz
 - 3 = default to 50Hz

YNR Y HF noise reduction

0 = None (default) 1 = smallest 2 = small 3 = medium

CLMD Clamping mode control.

0 =Sync top 1 =Auto (default) 2 =Pedestal 3 = N/A

PSP Slice level control

0 = low 1 = medium (default) 2 = high

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x50		HFI	LT2		HFLT1				
0x51		HFI	LT4			HFL	.T3		

HFLT

HFLT [3:0] controls the peaking function.

Reserved for test purpose.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x52	CTEST	YCLEN	0	AFLTEN	GTEST	VLPF	CKLY	CKLC

CTEST	Clamping control for debugging use (Test purpose only) (default = 0).

0 = Enabled.(default)

AFLTEN	1 = Analog Audio input Anti-Aliasing Filter enabled
--------	---

0 = Disabled (default)

GTEST	1 = Test (Test purpose only)	
	0 = Normal operation (de	fault)
VLPF	Clamping filter control	(default = 0)

CKLY	Clamping current control 1	(default = 0)

CKLC Clamping current control 2 (default = 0)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x55		FL	D*			VA	V*	

NOTE: * READ ONLY BITS

Sta	Status of the field flag for corresponding channel								
FLI	D[3:0] stands	for VIN3 to VI	NO.						
 Odd field when FLDPOL (0x46) = 1 Even field when FLDPOL (0x46) = 1 									
0	-	inking time							
1	Vertical act	tive time							
[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x56 ANA_CH4 ANA_CH3 ANA_CH2 ANA_CH1									
	FLI 0 1 Sta to 0 1	FLD[3:0] stands 0 Odd field w 1 Even field w Status of the ve to VINO. 0 Vertical bla 1 Vertical act	FLD[3:0] stands for VIN3 to VII0Odd field when FLDPOL (1Even field when FLDPOLStatus of the vertical active vito VINO.0Vertical blanking time1Vertical active time	 FLD[3:0] stands for VIN3 to VIN0. 0 Odd field when FLDPOL (0x46) = 1 1 Even field when FLDPOL (0x46) = 1 Status of the vertical active video signal for to VINO. 0 Vertical blanking time 1 Vertical active time 	 FLD[3:0] stands for VIN3 to VIN0. Odd field when FLDPOL (0x46) = 1 1 Even field when FLDPOL (0x46) = 1 Status of the vertical active video signal for corresponding to VINO. Vertical blanking time 1 Vertical active time 	 FLD[3:0] stands for VIN3 to VIN0. Odd field when FLDPOL (0x46) = 1 1 Even field when FLDPOL (0x46) = 1 Status of the vertical active video signal for corresponding channel . to VINO. Vertical blanking time 1 Vertical active time 	 FLD[3:0] stands for VIN3 to VIN0. Odd field when FLDPOL (0x46) = 1 Even field when FLDPOL (0x46) = 1 Status of the vertical active video signal for corresponding channel . VAV[3:0] stant to VINO. Vertical blanking time Vertical active time 		

ANA_CH4/ANA_CH3/ANA_CH2/ANA_CH1 internal test

internal test purpose only. (default = 0h)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x57		SH	COR		ANA_SW4	ANA_SW3	ANA_SW2	ANA_SW1			
SHCOR	Th	ese bits provid	de coring func	tion for the sh	arpness contro	ol. 3h is defau	lt.				
ANA_SW4	SW4 Control the analog input channel switch in VIN3 input.										
	0	VIN_A chai	nnel is selecte	d (default)							
	1	VIN_B chai	nnel is selecte	d							
ANA_SW3	Co	ntrol the anal	og input chan	nel switch in V	'IN2input.						
	0	VIN_A chai	nnel is selecte	d (default)							
	1	VIN_B chai	nnel is selecte	d							
ANA_SW2	Co	ntrol the anal	og input chan	nel switch in V	'IN1 input.						
	0	VIN_A chai	nnel is selecte	d (default)							
	1	VIN_B chai	nnel is selecte	d							
ANA_SW1	Co	ntrol the anal	og input chan	nel switch in V	'INO input.						
	0	VIN_A chai	nnel is selecte	d (default)							
	1	VIN_B chai	nnel is selecte	d							

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x58	PBW	DEM	PALSW	SET7	COMB	HCOMP	YCOMB	PDLY

PBW	1 = Wide Chroma BPF BW (default)
	0 = Normal Chroma BPF BW
DEM	Reserved.default 1
PALSW	1 = PAL switch sensitivity low
	0 = PAL switch sensitivity normal (default)
SET7	1 = The black level is 7.5 IRE above the blank level.
	0 = The black level is the same as the blank level. (default)
СОМВ	1 = Adaptive comb filter for NTSC and PAL (recommended).
	Not for SECAM (default)
	0 = Notch filter. For SECAM
HCOMP 1 = o	peration mode 1 (recommended) (default)

0 = mode 0

YCOMB 1 = Bypass Comb filter when no burst presence

0 =	No bypass (def	ault)
-----	----------------	-------

PDLY PAL delay line.

1 = disabled.

0 = enabled (default).

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x59	GMEN	СКНҮ				HSDLY		

GMEN Reserved. Oh is default.

CKHY Color killer hysteresis.

- 0 fastest (default)
 - 1 fast
 - 2 medium
 - 3 slow

HSDLY Reserved for test

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x5A	СТС	OR	CC	OR	VC	VCOR CIF			
CTCOR	The	These bits control the coring for CTI. 1h is default.							
CCOR		These bits control the low level coring function for the Cb/Cr output. Oh is default.							
VCOR	The	These bits control the coring function of vertical peaking. 1h is default.							
CIF	The	ese bits contr	ol the IF com	pensation lev	el.				
	0 =	= None (defau	lt) 1 = 1.5dB	2 = 3d	B 3=	6dB			
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x5B		CLP	END	·		CLPST			
CLPEND	These 4 bits set the end time of the clamping pulse. Its value should be larger than the value of CLPST. 5h is default.								
CLPST	These 4 bits set the start time of the clamping. It is referenced to PCLAMP position. Oh is default.								
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	

0x5C	NMGAIN	WPGAIN	FC27
NMGAIN	These bits control the normal AGC loop maxir 4h is default.	num correction value.	
WPGAIN	Peak AGC loop gain control. 1h is default.		
FC27	1:normal ITU-R656 operation This bit must be	e 1. (default)	
	0:Squared Pixel mode for test purpose only.		

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x5D				PEA	KWT			

PEAKWT These bits control the white peak detection threshold. Setting 'FF' can disable this function. D8h is default.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x5E	CLMPLD				CLMPL			

CLMPLD 0 = Clamping level is set by CLMPL.

1 = Clamping level preset at 60d. (default)

CLMPL These bits determine the clamping level of the Y channel. 3Ch is default.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x5F	SYNCTD				SYNCT			

SYNCTD0 = Reference sync amplitude is set by SYNCT.

1 = Reference sync amplitude is preset to 38h. (default)

SYNCTThese bits determine the standard sync pulse amplitude for AGC reference.38h is default.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x60		AIG	AIN1			AIGA	AINO	
0x61		AIG	AIN3			AIGA	AIN2	
AIGAIN	Sela 0 1 2 3 4	ect the ampl 0.25 0.31 0.38 0.44 (defa 0.50	ifier's gain for ult)	each analog a	udio input AIN	10 ~ AIN3.		
	13	0.63 0.75 0.88 1.00 1.25 1.50 1.75 2.00						

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0x62	M_RLSWAP	RM_SYNC	RM_F	R_MU	ILTCH					
M_RLSWAP			-	and playback	audio data c	on the ADATM pi	in.			
		If RM_SYNC=0 : I2S format 0 Mixing audio on position 0 and playback audio on position 8 (default)								
	ů 1									
	lf F	If RM_SYNC=1 : DSP format								
	0	0 Mixing audio on position 0 and playback audio on position 1								
		(default)								

1 Playback audio on position 0 and mixing audio on position **1**

RM_SYNCDefine the digital serial audio data format for record and mixing audio on the ACLKR, ASYNR,
ADATR and ADATM pin.

- 0 I2S format (default)
- 1 DSP format

RM_PBSEL Select the output PlayBackIn data for the ADATM pin.

- 0 First Stage PlayBackIn audio (default)
- 1 Second Stage PlayBackIn audio
- 2 Third Stage PlayBackIn audio
- 3 Last Stage PlayBackIn audio

R_ADATM Select the output mode for the ADATM pin.

- 0 Digital serial data of mixing audio (default)
- 1 Digital serial data of record audio

R_MULTCH Define the number of audio for record on the ADATR pin.

0 2 audios (default)

- 1 4 audios
- 2 8 audios
- 3 16 audios

Numbers of output data are limited as shown on Sequence of Multi-channel Audio Record table. Also, each output position data are selected by $R_SEQ_0/R_SEQ_1/.../R_SEQ_F$ registers.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x63	AAUTO_MUTE	PBREFEN	VRS	TSEL		FIRST	CNUM	

AAUTO_MUTE	reserved for test. Oh is default.
PBREFEN	 Audio ACKG Reference(refin) input select O ACKG has video VRST refin input selected by VRSTSEL register (default) 1 ACKG has audio ASYNP refin input.
VRSTSEL	 Select VRST(V reset) signal on ACKG (Audio Clock Generator) refin input . VINO Video Decoder Path VRST (default) VIN1 Video Decoder Path VRST VIN2 Video Decoder Path VRST VIN3 Video Decoder Path VRST
FIRSTCNUM	 Set up First Stage number on audio cascade mode connection. Set up the value of (Cascade chip number-1). In 4 chips cascade case, this value is 3h for ALINK mode. In single chip application case, this doesn't need to be set up. 0 (default)

Index	[7]	[7] [6] [5] [4] [3] [2] [1]							
0x64		R_S	EQ_1		R_SEQ_0				
0x65		R_S	EQ_3		R_SEQ_2				
0x66		R_S	EQ_5		R_SEQ_4				
0x67		R_S	EQ_7		R_SEQ_6				
0x68		R_S	EQ_9		R_SEQ_8				
0x69		R_S	EQ_B		R_SEQ_A				
0x6A		R_S	EQ_D		R_SEQ_C				
0x6B		R_S	EQ_F			R_SI	EQ_E		

R_SEQ

Define the sequence of record audio on the ADATR pin.

Refer to the Fig16 and Table5 for the detail of the $R_SEQ_0 \sim R_SEQ_F$.

The default value of R_SEQ_0 is "0", R_SEQ_1 is "1", ... and R_SEQ_F is "F".

- 0 AIN0
- 1 AIN1
- : :
 - :

:

- 14 AIN14
- 15 AIN15

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x6C	ADACEN	AADCEN	PB_ MASTER	PB_LRSEL	PB_SYNC	RM_8BIT	ASYNROEN	ACLKRMASTER
ADACEN		Audio DAC Fu	inction mode					
		0 Audio D	AC function c	lisable (test p	urpose only)			
		1 Audio D	AC function e	enable (defaul	t)			
AADCEN		Audio ADC Fu	unction mode					
AADOLN				lisable (test p	urpose only)			
				enable (defaul	• • • •			
		I AUGIO A		ilable (uelaul	()			
PB_MAST	ER	Define the op	eration mode	e of the ACLKI	P and ASYNP	pin for playba	ack.	
		0 All type	12S/DSP Slav	ve mode (ACL	KP and ASYN	P is input) (de	efault)	
		1 TW283	7 type I2S/DS	SP Master mo	de (ACLKP an	d ASYNP is o	output)	
PB_LRSE		Select the cha	annel for play	(back				
	L			used for play	back input (d	ofault)		
						elault)		
				is used for pla	iyback input.			
PB_SYNC		Define the dia	gital serial au	idio data form	at for playba	ck audio on t	he ACLKP, AS	(NP and ADATP
		pin.						
		0 I2S forn	nat (default)					
		1 DSP for	mat					
RM_8BIT		Define output	t data format	per one word	unit on ADAT	R pin.		

	0 16bit one word unit output (default)
	1 8bit one word unit packed output
ASYNROEN	Define input/output mode on the ASYNR pin.
	1 ASYNR pin is input
	0 ASYNR pin is output (default)
ACLKRMASTER	Define input/output mode on the ACLKR pin and set up audio 256xfs system processing.
	0 ACLKR pin is input. External 256xfs clock should be connected to
	ACLKR pin. This function is single chip Audio slave mode only.
	1 ACLKR pin is output. Internal ACKG generates 256xfs clock.(default)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x6D	LAW	MD	MIX_ DERATIO			MIX_MUTE		

LAWMD	Select u-Law/A-Law/PCM/SB data output format on ADATR and ADATM pin.
	0 PCM output (default)
	1 SB(Signed MSB bit in PCM data is inverted) output
	2 u-Law output
	3 A-Law output
MIX_DERATIO	Disable the mixing ratio value for all audio.
	0 Apply individual mixing ratio value for each audio (default)
	1 Apply nominal value for all audio commonly
MIX_MUTE	Enable the mute function for each audio. It effects only for mixing.
	MIX_MUTE[0] : Audio input AINO.
	MIX_MUTE[1] : Audio input AIN1.
	MIX_MUTE[2] : Audio input AIN2.
	MIX_MUTE[3] : Audio input AIN3.
	MIX_MUTE[4] : Playback audio input.
	It effects only for single chip or the last stage chip
	0 Normal (default)
	1 Muted

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xE0	MRATIOMD	0	0	0	0	0	0	0	
0x6E		MIX_R	ATIO1		MIX_RATIO0				
0x6F		MIX_R	ATIO3		MIX_RATIO2				
0x70		AOG	AIN			MIX_R	ATIOP		

MIX_RATIO

Define the ratio values for audio mixing.

MIX_RATIOO : Audio input AINO.

MIX_RATIO1 : Audio input AIN1.

MIX_RATIO2 : Audio input AIN2.

MIX_RATIO3 : Audio input AIN3.

MIX_RATIOP : Playback audio input.

If MRATIOMD=0(default) :

0 0.25(default) Recommended for most cases.

- 1 0.31
- 2 0.38
- 3 0.44
- 4 0.50
- 5 0.63
- 6 0.75
- 7 0.88
- 8 1.009 1.25
- 9 1.25
- 10 1.50
- 11 1.75
- 12 2.00
- 13 2.25
- 14 2.5015 2.75

If MRATIOMD=1, Mixing ratio is MIX_RATIOn / 64.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x70		AOG	AIN			MIX_R	ATIOP	

AOGAIN

Define the amplifier gain for analog audio output.

0 0.25 1 0.31 2 0.38 3 0.44 4 0.50 5 0.63 6 0.75 7 0.88

- 8 1.00 (default)
 9 1.25
 10 1.50
 11 1.75
 12 2.00
- 13 2.25
- 14 2.50
- 14 2.30 15 2.75

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x71	V_ADC_CKPOL	A_ADC_CKPOL	A_DAC_CKPOL			MIX_OUTSEL		
V_ADC_CK	iPOL Test	purpose only.	0 (default)					

- A_ADC_CKPOL Test purpose only. 0 (default)
- A_DAC_CKPOL Test purpose only. 0 (default)

MIX_OUTSEL Define the final audio output for analog and digital mixing out.

- 0 Select record audio of channel 0
- 1 Select record audio of channel 1
- 2 Select record audio of channel 2
- 3 Select record audio of channel 3
- 4 Select record audio of channel 4
- 5 Select record audio of channel 5
- 6 Select record audio of channel 6
- 7 Select record audio of channel 7
- 8 Select record audio of channel 8
- 9 Select record audio of channel 9
- 10 Select record audio of channel 10
- **11** Select record audio of channel **11**
- 12 Select record audio of channel 12
- **13** Select record audio of channel **13**
- 14 Select record audio of channel 14
- **15** Select record audio of channel **15**
- 16 Select playback audio of the first stage chip
- 17 Select playback audio of the second stage chip
- **18** Select playback audio of the third stage chip
- 19 Select playback audio of the last stage chip
- 20 Select mixed audio (default)

Index	[7]		[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x72	AAMPMD			ADET_FILT		ADET_TH3[4]	ADET_TH2[4]	ADET_TH1[4]	ADET_TH0[4]			
0x73			ADET_T	H1[3:0]		ADET_TH0[3:0]						
0x74			ADET_T	H3[3:0]			ADET_1	[H2[3:0]				
AAMPMD		Defi	ne the a	udio detectio	n method.							
		0	Detect	audio if abso	lute amplit	ude is greater th	an threshold					
		1	Detect	audio if diffe	rential amp	olitude is greater	than threshold.	(default)				
ADET_FILT		Sele	ect the fil	ter for audio	detection.	default 4h.						
		0	Wide L	PF								
		7	Narrow	LPF								
ADET_TH		Defi	ne the th	nreshold value	e for audio	detection. defau	ılt Ah.					
		ADE	т_тно : л	Audio input A	INO.							
		ADE	T_TH1 : /	Audio input A	IN1.							
		ADE	T_TH2 : /	Audio input A	IN2.							
		ADE	T_TH3 : /	Audio input A	IN3.							
		0	Low va	lue								
		•										
		31	High va	lue								
		If fs [;]	=8kHz Ai	udio Clock se	tting mode	·,						
		Reg0xE1=0xC0,Reg0xE2=0xAA,Reg0xE3=0xAA are typical setting value.										
		lf fs=16kHz/32kHz/44.1kHz/48kHz Audio Clock setting mode,										
		Reg	0xE1=0x	E0,Reg0xE2	=0xBB,Reg	0xE3=0xBB are	typical setting v	alue.				

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0x75		ACKI[7:0]									
0x76		ACKI[15:8]									
0x77	0	0			AC	KI[21:16]					

ACKI

These bits control ACKI Clock Increment in ACKG block. 09B583h for fs = 8kHz is default

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0x78	ACKN[7:0]											
0x79		ACKN[15:8]										
0x7A	0	0	0	0	0	0	ACKN[17:16]					

ACKN

These bits control ACKN Clock Number in ACKG block..

08578h for fs = 8kHz is default.

000100h for Playback Slave-in lock mode with PBREFEN=1.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x7B	0	0			SE	DIV		

SDIV

These bits control SDIV Serial Clock Divider in ACKG block. 01h is default

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x7C	0	0	LRDIV					

LRDIV

These bits control LRDIV Left/Right Clock Divider in ACKG block.

20h is default

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x7D	APZ	APG			0	ACPL	SRPH	LRPH

APZ	These bits control Loop in ACKG block. 1 is default
APG	These bits control Loop in ACKG block. 4h is default.
ACPL	 These bits control Loop closed/open in ACKG block. Loop closed Loop open(recommended on typical application case)(default)
SRPH	Reserved (default = 0)
LRPH	Reserved (default = 0)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x7E		VDLOS	S_TH1		VDLOSS_TH0				
0x7F		VDLOS	SS_TH3		VDLOSS_TH2				

VDLOSS_THx These bits adjust the video loss signal presented to the backend modules from the video decoder.

- 0: The backend video loss signal is the same as the video decoder video loss signal
- 1 14: The backend video loss signal is asserted only when the video decoder video loss signal is asserted for more than VDLOSS_THx fields
- 15 The backend video loss signal is never asserted regardless of the video decoder video loss signal

СН	Index	[7]	[7] [6]		[4]	[3]	[2]	[1]	[0]	
0	0x80									
1	0x90		DEC_PATH_X		0	VSE	тх	HSFLT_X		
2	0xA0	DLC_F				VSFLT_X				
3	0xB0									

DEC_PATH_X Select the video input for each channel scaler in display path.

- 0 Video input from internal video decoder on VINO pin
- 1 Video input from internal video decoder on VIN1 pin
- 2 Video input from internal video decoder on VIN2 pin
- 3 Video input from internal video decoder on VIN3 pin

VSFLT_X Select the vertical anti-aliasing filter mode for display path.

- 0 Full bandwidth (default)
- 1 0.25 Line-rate bandwidth
 - 2,3 0.18 Line-rate bandwidth

HSFLT_X Select the horizontal anti-aliasing filter mode for display path.

- 0 Full bandwidth (default)
- 1 2 MHz bandwidth
- 2 1.5 MHz bandwidth
- 3 1 MHz bandwidth

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
	0	0x81		-	-	-		-						
	1	0x91				VSCALE	_X[15:8]							
	2	0xA1				VSCALE	_^[13.8]							
х	3	0xB1												
	0	0x82		VSCALE_X[7:0]										
	1	0x92												
	2	0xA2												
	3	0xB2												
	0	0x86												
	1	0x96				VSCALE	PB[15:8]							
	2	0xA6				VSCALL_								
РВ	3	0xB6												
	0	0x87												
	1	0x97				VSCALE	PB(7:0)							
	2	0xA7		VSCALE_PB[7:0]										
	3	0xB7												

VSCALE

The 16 bit register defines a vertical scaling ratio. The actual vertical scaling ratio is VSCALE/ $(2^{16} - 1)$. The default value is 0xFFFF.

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
	0	0x83													
	1	0x93				HSCALE	V[15.0]								
	2	0xA3				HOUALE	_v[10:0]								
х	3	0xB3													
	0	0x84													
	1	0x94		HSCALE_X[7:0]											
	2	0xA4													
	3	0xB4													
	0	0x88													
	1	0x98				HSCALE_	PR(15-8)								
	2	0xA8				HOUALL_	10[10.0]								
РВ	3	0xB8													
	0	0x89													
	1	0x99				HSCALE	PB[7:0]								
	2	0xA9				13CALL									
	3	0xB9													

HSCALE

The 16 bit register defines a horizontal scaling ratio. The actual horizontal scaling ratio is HSCALE/ $(2^{16} - 1)$. The default value is 0xFFFF.

СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0	0x85				0	VSFLT_PB		HSFLT_PB	
1	0x95	0	0	0					
2	0xA5	0							
3	0xB5								

VSFLT_PB

Select the vertical anti-aliasing filter mode for PB path.

- 0 Full bandwidth (default)
- 1 0.25 Line-rate bandwidth
- 2,3 0.18 Line-rate bandwidth

HSFLT_PB Select the horizontal anti-aliasing filter mode for PB path.

- 0 Full bandwidth (default)
- 1 2 MHz bandwidth
- 2 1.5 MHz bandwidth
- 3 1 MHz bandwidth

СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	0x8A	0 1 2					-	_		
1	0x9A			VSCALE_ HSCALE Y Y	HSCALE_	VSF	LT_Y	HSFLT_Y		
2	0xAA				Y	V31	L1_1			
3	0xBA	3	3							

VSCALE_Y	Enable the half vertical scaling for record path.							
	0	Disable the vertical scaling (default)						
	1	Enable the half vertical scaling						
HSCALE_Y	Enal	ble the half horizontal scaling for record path.						
	0	Disable the horizontal scaling (default)						
	1	Enable the half horizontal scaling						
VSFLT_Y	Sele	ct the vertical anti-aliasing filter mode for record path.						
	0	Full bandwidth (default)						
	1	0.25 Line-rate bandwidth						
	2,3	0.18 Line-rate bandwidth						
HSFLT_Y	Select the horizontal anti-aliasing filter mode for record path.							
	0	Full bandwidth (default)						
	1	2 MHz bandwidth						
	2	1.5 MHz bandwidth						
	3	1 MHz bandwidth						

СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x8F										
1	0x9F	0	0	VACTIVE_	VDELAY_		_PB[9:8]				
2	0xAF	0	0	PB[8]	PB[8]	HACHIVE	_FB[9.0]	HDELAY_PB[9:8]			
3	OxBF										
0	0x8B										
1	0x9B										
2	0xAB		HDELAY_PB[7:0]								
3	0xBB										

HDELAY_PB

This 10bit register defines the starting location of horizontal active pixel for PB path. A unit is 1 pixel. The default value is decimal 0.

СН	Index	[7]	[6]	[1]	[0]						
0	0x8F										
1	0x9F	0	0	VACTIVE_	VDELAY_		_PB[9:8]				
2	OxAF	U	0	PB[8]	PB[8]	HACHIVI	_FD[9.6]	HDELAY_PB[9:8]			
3	OxBF										
0	0x8C										
1	0x9C		HACTIVE_PB[7:0]								
2	OxAC										
3	OxBC										

HACTIVE_PB

This 10bit register defines the number of horizontal active pixel for PB path. A unit is 1 pixel. The default value is decimal 720.

CH	Index	[7]	[6]	[5]	[4]	[6] [5] [4] [3] [2] [1]								
0	0x8F						-							
1	0x9F	0	0	VACTIVE_	VDELAY_		_PB[9:8]	HDELAY_PB[9:8]						
2	0xAF	U	0	PB[8]	PB[8]	HACITIVE	_FB[9.0]							
3	0xBF													
0	0x8D													
1	0x9D		VDELAY_PB[7:0]											
2	0xAD													
3	0xBD													

VDELAY_PB

This 9bit register defines the starting location of vertical active for PB path. A unit is 1 line. The default value is decimal 0.

СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	0x8F										
1	0x9F	0	0	VACTIVE_	VDELAY_		_PB[9:8]	HDELAY_PB[9:8]			
2	0xAF	0	0	PB[8]	PB[8]	HACHIVE	_FB[9.0]				
3	OxBF										
0	0x8E										
1	0x9E		VACTIVE_PB[7:0]								
2	OxAE										
3	OxBE										

VACTIVE_PB This 9bit register defines the number of vertical active lines for PB path.

A unit is 1 line. The default value is decimal 240.

OxCO 0 PB_ 0 0 MAN_ PB_ PB_ACT_MD	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	0xC0	0	PB_ FLDPOL	0	0	MAN_ PBCROP	PB_ CROP_MD	PB_ACT_MD	

PB_FLDPOL	Sele 0	ct the FLD polarity of playback input Even field is high (default)
	1	Odd field is high
	-	
MAN_PB_CROP	Sele	ct manual cropping mode for playback input
	0	Auto cropping mode with fixed cropping position (default)
	1	Manual cropping mode with HDELAY/HACTIVE and
		VDELAY/VACTIVE
PB_CROP_MD	Sele	ct the cropping mode for playback input
	0	Normal record mode or frame record mode (default)
	1	Cropping for DVR record mode or DVR frame record mode input
PB_ACT_MD	Sele is lo	ct the horizontal active size for playback input when MAN_PB_CROP w
	0	720 pixels (default)
	1	704 pixels
	2/3	640 pixels

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xC1	LIM_656_ PB	LIM_656_ X		LIM_656_Y1			LIM_656_Y0		
0xC2	0	LIM_656_ DEC		LIM_656_Y3			LIM_656_Y2		
LMT_656_F	PB Co	ntrol the range	e of output lev	el for PB path/					
	0	Output rang	ges are limite	d to 1 ~ 254 (d	lefault)				
	1	Output rang	ges are limite	d to 16 ~ 235					
LMT_656_X	(Co	ntrol the range	e of output lev	el for display	oath.				
	0	Output rang	ges are limite	d to 1 ~ 254 (d	lefault)				
	1	Output rang	ges are limite	d to 16 ~ 235					
LMT_656_Y	Co Co	ntrol the range	e of output lev	el for record p	ath.				
	0	Output rang	ges are limite	d to 1 ~ 254 (d	lefault)				
	1	Output rang	ges are limite	d to 16 ~ 254					
	2	Output rang	ges are limite	d to 24 ~ 254					
	3	Output rang	ges are limite	d to 32 ~ 254					
	4	Output rang	ges are limite	d to 1 ~ 235					
	5	Output rang	ges are limite	d to 16 ~ 235					
	6	Output rang	ges are limite	d to 24 ~ 235					
	7	Output ran	ges are limite	d to 32 ~ 235					
LMT_656_0	DEC Co	ntrol the range	e of output lev	el for decoder	bypass mode).			
	0	Output ran	ges are limite	d to 1 ~ 254 (d	lefault)				

1 Output ranges are limited to 16 ~ 235

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
0xC3		BGND	EN_PB		BGNDCOL	AUTO BGNDPB	AUTO BGNDY	AUTO BGNDX			
0xC4		BGNI	DEN_Y			BGND	EN_X				
BGNDEN	En	able the back	ground color f	or each chann	el.						
	BG	NDEN[3:0] sta	ands for CH3 t	o CHO.							
	0	Backgroun	d color is disa	bled (default)							
	1	1 Background color is enabled									
BLKCOL	Se	lect the backg	ground color w	hen BGNDEN	= "1".						
	0	Blue color	(default)								
	1	Black color									
AUTO_BGNI	D Se	Select the decoder background mode.									
	0	0 Manual background mode (default)									
	1	Automatic	background n	node when No	-video is deteo	cted.					

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xC5		PAL_	DLY_Y		PAL_DLY_X			
0xC6	0	0	0	0	PAL_DLY_PB			

PAL_DLY

Select the PAL delay line mode.

- 0 Vertical scaling mode is selected in chrominance path (default)
- **1** PAL delay line mode is selected in chrominance path

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xC7	0	0	0	0	0	0	0	0

This control register is reserved for putting the part into test mode. For normal operation, the above value should be reset in this register.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xC8	0	0	0	0	0	FLD_ OFST_PB	FLD_ OFST_Y	FLD_ OFST_X

FLD_OFST

Remove the field offset between ODD and EVEN field.

- 0 Normal operation (default)
- 1 Remove the field offset between ODD and EVEN field

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xC9	0	0	1	1	1	1	0	0

This control register is reserved for testing purpose. For normal operation, the above value should be set.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xCA	0	OUT_CHID	0	0	1	1	1	1

OUT_CHID

Enable the channel ID format in the horizontal blanking period for Decoder

Bypass mode

0 Disable the channel ID format (default)

1 Enable the channel ID format

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xD0	AADC30FS[9:8]		AADC20FS[9:8]		AADC10FS[9:8] AADC00		DFS[9:8]		
0xD1		AADCOOFS[7:0]							
0xD2		AADC10FS[7:0]							
0xD3				AADC20	DFS[7:0]				
0XD4		AADC30FS[7:0]							

Digital ADC input data offset control. Digital ADC input data is adjusted by ADJAADCn = AUDADCn + AADCnOFS

Where AUDADCn is 2's formatted Analog Audio ADC output AADCnOFS is adjusted offset value by 2's format.

All default 10bit data value is 3EFh.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0xD7	0		ADCISEL			Cn[9:8]*	ADJAADCn[9:8]*			
0xD8			AUDADCn[7:0]*							
0xD9		ADJAADCn[7:0]*								

NOTE: * READ ONLY BITS

AUDADCn shows current Analog Audio n ADC Digital Output Value by 2's format. ADJAADCn shows current adjusted Audio ADC Digital input data value by 2's format. These value show the first input data value in front of Digital Audio Decimation Filtering process.

ADCISEL Select AUDADCn,ADJAADCn Audio input number.AUDADCn and ADJAADCn read value shows following selected Audio input data. 0:AIN0 1:AIN1 2:AIN2 3:AIN3

Index			A	DATM I2S Ou	tput Select			
IIIMEA	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxDA	0	0	0	I2SO_RSEL				
OxDB	0	0	0			I2SO_LSEL		
0xDD	1	ADATM_ I2SOEN	1	0	0	0	0	0

ADATM_I2SOEN Defines ADATM pin output 2 word data to make standard I2S output O:Mixing Data or Playback Input data are only output on ADATM pin by M_RLSWAP register.(default) 1:L/R data on ADATM pin is selected by I2SO_RSEL/I2SO_LSEL registers. I2SO_RSEL/ Selects L/R output data on ADATM pin when ADATM_I2SOEN=1 I2SO_LSEL Both I2SO_RSEL and I2SO_LSEL select output data by the following order. 0 Select record audio of channel 1(AINO) 1 Select record audio of channel 2(AIN1) 2 Select record audio of channel 3(AIN2) 3 Select record audio of channel 4(AIN3) 4 Select record audio of channel 5(AIN4) 5 Select record audio of channel 6(AIN5) Select record audio of channel 7(AIN6) 6 7 Select record audio of channel 8(AIN7) 8 Select record audio of channel 9(AIN8) 9 Select record audio of channel 10(AIN9) 10(Ah) Select record audio of channel 11(AIN10) 11(Bh) Select record audio of channel 12(AIN11) 12(Ch) Select record audio of channel 13(AIN12) 13(Dh) Select record audio of channel 14(AIN13) 14(Eh) Select record audio of channel 15(AIN14) 15(Fh) Select record audio of channel 16(AIN15) 16(10h) Select playback audio of the first stage chip(PB1) 17(11h) Select playback audio of the second stage chip(PB2) 18(12h) Select playback audio of the third stage chip(PB3) 19(13h) Select playback audio of the last stage chip(PB4) Select mixed audio. 20(14h) 21(15h) (default)

Index				Audio Fs N	lode Control			
IIIUCA	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xDF	0	0	ACLKR128	ACLKR64	AFS384	0	0	0
ACLKR128	0	: ACLKR outpu : the number o	it is normal (de	efault). < per fs is 128	This function	t) data interfac is effective wit		
ACLKR64	0	CLKR clock ou : ACLKR outpu : the number o	it is normal (de	efault)	d output inter	face		
AFS384	0	pecial Audio fs : Audio fs Sam : Audio fs Sam	pling mode is	normal 256x	. ,			

Index	Audio Input Delay Control									
IIIdex	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0xE1	0		A2NUM				A1NUM			
0xE2	0		A4NUM				A3NUM			
0xE5	AIMANU	0	0 0 0			0	0	1		

AIMANU

Audio input AIN1/AIN2/AIN3/AIN4 delay timing control 0: auto setting (default) 1: manual setting by AnNUM number.

Default: A1NUM=1. A2NUM=2. A3NUM=3. A4NUM=4.

Index				Audio Cloci	< Control			
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xE3	0	0	ACLKRPOL	ACLKPPOL	AFAUTO		AFMD	
ACLKRPOL	0: no	KR input signa ot inverse (def verse		rse				
ACLKPPOL	0: no	KP input signa ot inverse (def verse		rse				
AFAUTO	This 0: A	I[21:0] contro mode is only CKI[21:0] regis CKI control is a	effective when sters set up A	n ACLKRMAST CKI control. (d	ER=1. efault)	alues.		
AFMD	0: 8 1: 10 2: 3: 3: 4	UTO control m kHz setting (de 6kHz setting 2kHz setting 4.1kHz setting 8kHz setting	efault)					

Index				Digital Audio	Input Control				
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xE4	I2S8MODE	MASCKMD	PBINSWAP	ASYNRDLY	ASYNPDLY	ADATPDLY	INLA	WMD	
I2S8MODE	0: L	t I2S Record or /R half length one continuous	separated ou			nat			
MASCKMD	0: H 1: A s r	 Audio Clock Master ACLKR output wave format 0: High period is one 27MHz clock period (default) 1: Almost duty 50-50% clock output on ACLKR pin. If this mode is selected, two times bigger number value need to be set up ACKI registers. If AFAUTO=1,ACKI control is automatically set up even if MASCKMD=1. 							
PBINSWAP		yback ACLKP/ not swapping (c		P input data swapping	MSB-LSB swa	pping			
ASYNRDLY	0: r	/NR input signa to delay (defau tdd one 27MHa	ilt)	in ASYNR sig	nal input				
ASYNPDLY	0: r	/NP input signa to delay (defau tdd one 27MHa	ilt)	in ASYNP sig	nal input				
ADATPDLY		ATP input data Io delay (defau			alay input inte	rface (defaul	t) 1·Δ	dd 1 ACLKP	
clock delav	in ADATP inpu	2	arty 1113 13 101 1		ay mput mte	וומנים. (מכומעו	ι, Ι.Α	uu I AVLNF	
,	-	nis is for left-ju	stified type OT	delay input i	nterface.				
INLAWMD	Sel 0 1 2 3	 SB(Signed MSB bit in PCM data is inverted) input u-Law input 							
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0xE9	CKLM		YDLY		0	0	0	0	

CKLM Color Killer mode.

0 = normal (default) 1 = fast (for special application)

TDLY Luma delay fine adjustment. This 2's complement number provides -4 to +3 unit delay control. 3h is default.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxEA	0	0	0	0	VDEC4RST	VDEC3RST	VDEC2RST	VDEC1RST

- VDEC4RST An 1 written to this bit resets the VIN3 path VideoDecoder portion to its default state but all register content remain unchanged. This bit is self-resetting.
- VDEC3RST An 1 written to this bit resets the VIN2 path VideoDecoder portion to its default state but all register content remain unchanged. This bit is self-resetting.
- VDEC2RST An 1 written to this bit resets the VIN1 path VideoDecoder portion to its default state but all register content remain unchanged. This bit is self-resetting.
- VDEC1RST An 1 written to this bit resets the VINO path VideoDecoder portion to its default state but all register content remain unchanged. This bit is self-resetting.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxEB		MISS	SCNT			HS\	WIN	

MISSCNT These bits set the threshold for horizontal sync miss count threshold. 4h is default.

HSWIN These bits determine the VCR mode detection threshold. 4h is default.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
OxEC				PCL	AMP			

PCLAMP These bits set the clamping position from the PLL sync edge. 2Ah is default.

1002007										
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
OxED	VL	СКІ	VLO	ско	VMODE	DETV	AFLD	VINT		
VLCKI		lock in time. est(default)	3 = slowe	st.						
VLCKO		lock out time est(default)	3 = slowe	st.						
VMODE This	bit controls	the vertical d	etection wind	low.						
		ch mode.			n mode (defa	ult)				
DETV	1 = reco	mmended fo	r special appl	ication only.						
		nal Vsync log								
AFLD	Auto fiel	d generation	control							
	0 = Off (0 = Off (default) 1 = On								
VINT	Vertical	Vertical integration time control.								
	1 = shor	t	0 = norma	al (default)						
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
OxEE		BSHT				VSHT				
BSHT	Burst PL	L center freq	uency control	default = 0	n).					
VSHT	Vsync ou	itput delay co	ontrol in the in	ncrement of h	alf line lengt	h (default = 0	lh)			
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
OxEF	CKIL	LMAX			CKIL	LMIN				
CKILLMAX	These bits control the amount of color killer hysteresis. The hysteresis amount is proportional to the value. 1h is default.									
CKILLMIN		These bits control the color killer threshold. Larger value gives lower killer level. 28h is default								
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		

0xF0	COMBMD		HTL			v	٢L					
COMBMD	0 = adap	0 = adaptive mode (default) 1 = fixed comb										
HTL	Adaptive	Adaptive Comb filter threshold control 1 (default = 4h)										
VTL	Adaptive	Adaptive Comb filter threshold control 2 (default = 4h)										
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0xF1	HPLC	EVCNT	PALC	SDET	0	BYPASS	1	1				
HPLC	Reserve	d for internal	use (default [;]	= 0)								
EVCNT	1 = Even	field counter	r in special m	ode								
	0 = Norn	nal operation	(default)									
PALC	Reserved	Reserved for future use (default = 0)										
SDET	ID detec	tion sensitivit	y. A '1' is rec	ommended. (default = 1)							

$\ensuremath{\mathsf{BYPASSIt}}$ controls the standard detection and should be set to '1' in normal use.

1h is default.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
0xF2	HP	M	PM	CE	BW							
HPM	Horizonta	Horizontal PLL acquisition time										
	3 = Fast	2 = Auto1 (d	efault) 1 = Aı	uto2 0 = Norn	nal							
ACCT	ACC time	ACC time constant										
	0 = No A	0 = No ACC 1 = slow 2 = medium (default) 3 = fast										
SPM	Burst PL	L control										
	0 = Slow	est 1 = Slow	(default) 2 =	Fast 3 = Fast	est							
CBW	Chroma	Chroma low pass filter bandwidth control										
	Refer to filter curves. 1h is default.											

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
0xF3	NKILL	PKILL	SKILL	CBAL	FCS	LCS	CCS	BST					
NKILL		1 = Enable noisy signal color killer function in NTSC mode (default) 0 = Disabled											
PKILL	1 = Enable automatic noisy color killer function in PAL mode (default) 0 = Disabled												
SKILL	1 = Enab 0 = Disal		c noisy color ♭	killer function	in SECAM me	ode (default)							
CBAL		nal output (d ial output mo	,										
FCS		e decoder ou bled (default		termined by (ccs								
LCS	deteo	-	-	value indicat	ed by CCS wh	ien video loss	is						
ccs	high, on 1 = Blue	e of two colo		condition is on the selected		n LCS is set							
BST		ble blue strete bled (default											

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0xF4	0	0			MON	ITOR		
0xF5				HR	EF*			

NOTE: * READ ONLY BITS

These functions are test purpose only.

When Reg0xF5 HREF status registers have following value MONITOR register value changes.

MONITOR Value Reg0xF5 content

00h	VINO Video Decoder Path HREF[9:2] value
10h	VIN1 Video Decoder Path HREF[9:2] value
20h	VIN2 Video Decoder Path HREF[9:2] value
30h	VIN3 Video Decoder Path HREF[9:2] value

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
OxFA	IDX1		FA IDX1 NSEN1/SSEN1/PSEN1/WKTH:				NSEN1/SSEN1/PSEN1/WKTH1						
OxFB	ID	X2		NSEN2/SSEN2/PSEN2/WKTH2									
OxFC	ID	X3		NSEN3/SSEN3/PSEN3/WKTH3									
0xFD	ID	X4		NSEN4/SSEN4/PSEN4/WKTH4									

IDX1 NSEN1/SSEN1/PSEN1/WKTH1 show VIN0 Video Decoder path registers. IDX2 NSEN2/SSEN2/PSEN2/WKTH2 show VIN1 Video Decoder path registers. IDX3 NSEN3/SSEN3/PSEN3/WKTH3 show VIN2 Video Decoder path registers. IDX4 NSEN4/SSEN4/PSEN4/WKTH4 show VIN3 Video Decoder path registers.

- IDXn These two bits indicate which of the four lower 6-bit registers is currently being controlled. The write sequence is a two steps process unless the same register is written. A write of {ID,000000} selects one of the four registers to be written. A subsequent write will actually write into the register. Oh is default.
- IDXn = 0 controls the NTSC color carrier detection sensitivity (NSENn, 1Ah is default.)
- IDXn = 1 controls the SECAM ID detection sensitivity (SSENn, 20h is default.)
- IDXn = 2 controls the PAL ID detection sensitivity (PSENn, 1Ch is default.)
- IDXn = 3 controls the weak signal detection sensitivity (WKTHn, 11h is default.)

	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
I	OxFE			DEV_ID *				REV_ID *	

NOTE: **** ** STAND FOR READ ONLY REGISTER**

DEV_ID The TW2837 product ID code is 00110.

REV_ID The revision number is 010.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
1x00	SYS_5060	OVERLAY	LINK _LAST_X	LINK _LAST_Y	LINK_EN_X	LINK_EN_Y	LINK_	NUM				
SYS_5	060	0 60Hz, 5	andard format 25 line format 25 line format	(default)	roller.							
OVERL	AY	Control the o	verlay betweer	n display and r	ecord path.							
		0 Disable	the overlay (d	efault)								
		1 Enable										
LINK_I	_AST	Define the lo	west slaver chi	ip in chip-to-ch	ip cascade ope	eration.						
		0 Master	or middle slav	er chip (defaul	t)							
		1 The low	est slaver chip	1								
LINK_E	EN	Control the c	hip-to-chip cas	cade operatio	n for display an	d record path.						
		0 Disable	the cascade o	peration (defa	ult)							
		1 Enable	the cascade o	peration								
LINK_	NUM	Define the st	age number of	f chip-to-chip c	ascade connec	ction.						
		0 Master	0 Master chip (default)									
		1 1st slaver chip										
		2 2nd sla	ver chip									
		3 3rd slav	er chip									

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
X	1x01	0	0	0	TBLINK	FRZ_FRAME	DUAL_PAGE	STRB	
							_		
TBLIN	IK	Conti	rol the blink pe	eriod of chan	nel boundary.				
		0	Blink for ever	y 30 fields (d	efault)				
		1	Blink for ever	y 60 fields					
FRZ_	FRAME	Selec	t the field or f	rame mode o	on freeze stat	us.			
		0	Field display	node (defaul	lt)				
		1	Frame display	y mode					
DUAL	_PAGE	Enab	le the dual pa	ge operation.					
		0	Normal strob	e operation f	or each chann	el (default)			
		1	Enable the du	al page oper	ation				
STRB	_FLD	Conti	rol the field m	ode for strob	e operation.				
		0	Capture odd f	ield only (def	ault)				
		1	Capture even	field only					
		2	Capture first f	ield of any fi	eld				
		3	Capture fram	e					

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
х	1x02	RECALL_ FLD	SAVE	_FLD	SAVE_HID		SAVE_	ADDR	

RECALL_FLD	Select the field or frame data on recalling picture.
	0 Recall frame data from SDRAM (default)
	1 Recall field data from SDRAM
SAVE_FLD	Select the field or frame data to save.
	0 Save first odd field data to SDRAM (default)
	1 Save first even field data to SDRAM
	2 Save first any field data to SDRAM
	3 Save first frame (odd and even field) data to SDRAM
SAVE_HID	Control the priority to save picture.
	0 Save picture as shown in screen (default)
	1 Save picture even though hidden under other picture
SAVE_ADDR	Define the save address of SDRAM.
	If the saved image is a frame, this address can be one of 4, 6, or 8. If the saved image is a field,
	the address can be any number from 4 to 9.

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Х	1x03				SAVE	_REQ			

SAVE_REQ Request to save for each channel. SAVE_REQ[7:0] stands for channel 7 to 0

0 None operation (default)

1 Request to start saving picture

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Х	1x04				STRB	_REQ			

STRB_REQ Request strobe operation.

STRB_REQ[7:0] stands for channel 7 to 0

- 0 None operation (default)
- 1 Request to start strobe operation

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
х	1x05	NOVID	_MODE	0	0	0	AUTO_ ENHANCE	INVALID	_MODE

NOVID_MODE

Select the indication method for no-video channel

- 0 Bypass (default)
- 1 Capture last image
- 2 Blanked with blank color
- 3 Capture last image and blink channel boundary

AUTO_ENHANCE Enable auto enhancement mode in field display mode

- 0 Manual enhancement mode in field display mode (default)
- 1 Auto enhancement mode in field display mode

INVALID_MODE Select the indication mode for no channel area In horizontal and vertical active region

- 0 Background layer with background color (default)
- 1 Y = 0, Cb/Cr = 128
- $2 \quad Y/Cb/Cr = 0$
- $3 \quad Y/Cb/Cr = 0$

In horizontal and vertical blanking region

- 0 Y = 16, Cb/Cr = 128 (default)
- **1** Background layer with background color
- 2 Y = 0, Cb = {0, F, V, 0, Cascade, linenum[8:7]}, Cr = {0, linenum[6:0]}
- 3 Y/Cb/Cr = 0

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Х	1x06	MUX_MODE	0	MUX	_FLD	0	0	0	0

MUX_MODE

Define the switch operation mode

0 Switch still mode (default)

Select the field mode on switch still mode

1 Switch live mode

MUX_FLD

0 Odd Field (default)

- 1 Even Field
- 2,3 Capture Frame

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Х	1x07	STRB_AUTO	0	0	INTR_REQX	INTR_CH			

STRB_AUTO	Enable automatic strobe mode when FUNC_MODE = "1"
	0 User strobe mode (default)
	1 Automatic strobe mode
INTR_REQX	Request to start the interrupt switch operation in display path
	0 None operation (default)
	1 Request to start the interrupt switch operation in display path
INTR_CH	Define the channel number for interrupt switch operation
	INTR_CH[3:2] represents the stage of cascaded chips for interrupt switch
	operation
	0 Master chip (default)
	1 1st slaver chip
	2 2nd slaver chip
	3 3rd slaver chip
	INTR_CH[1:0] represents the channel number for interrupt switch operation
	0 Channel 0 (default)
	1 Channel 1
	2 Channel 2

3 Channel 3

Path	Index	[7]	[6]	[5]	[4]	[3] [2] [1] [0]				
x	1x08		MUX_OL	T_CH0 *	-	MUX_OUT_CH1 *				
^	1x09		MUX_OL	IT_CH2 *			MUX_OU	т_снз *		

NOTE: **** ** STAND FOR READ ONLY REGISTER**

MUX_OUT_CHO	Channel information in current field/frame for interrupt switch operation
MUX_OUT_CH1	Channel information in next field/frame for interrupt switch operation
MUX_OUT_CH2	Channel information after 2 fields for interrupt switch operation
MUX_OUT_CH3	Channel information after 3 fields for interrupt switch operation
	MUX_OUT_CH [3:2] represents the stage of cascaded chips for interrupt

switch operation

- 0 Master chip (default)
- 1 1st slaver chip
- 2 2nd slaver chip
- 3 3rd slaver chip

MUX_OUT_CH [1:0] represents the channel number for interrupt switch operation

- 0 Channel 0 (default)
- 1 Channel 1
- 2 Channel 2
- 3 Channel 3

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Х	1x0A		-		CHID_MU	X_OUT *	-	-	

NOTE: "*" STAND FOR READ ONLY REGISTER

CHID_MUX_OUT Channel ID of current field/frame in interrupt switch operation

- CHID_MUX_OUT [7] represents the channel ID latch enabling pulse
 - 0->1 Rising edge for channel ID Update
 - 1->0 Falling edge after 16 clock * 18.5 ns from rising edge

CHID_MUX_OUT [6] represents the updated picture in interrupt switch operation

- 0 No Updated
- 1 Updated by new switching

CHID_MUX_OUT [5] represents the field mode in interrupt switch operation

- 0 Frame Mode
- 1 Field Mode

CHID_MUX_OUT [4] represents the analog switch path

0 Analog switch 0 path

1 Analog switch 1 path

CHID_MUX_OUT [3:2] represents the stage of cascaded chips for interrupt

- switch operation
- 0 Master chip
- 1 1st slaver chip
- 2 2nd slaver chip
- 3 3rd slaver chip

 $\label{eq:chi} \textbf{CHID}_\textbf{MUX}_\textbf{OUT}~[1:0] \text{ represents the channel number for interrupt switch}$

operation

- 0 Channel 0
- 1 Channel 1
- 2 Channel 2
- 3 Channel 3

Path	Index	[7]	[6]	[5] [4]		[3]	[2]	[1] [0]	
х	1x0B	ZM_EVEN_OS		ZM_ODD_OS		FR_EVEN_OS		FR_ODD_OS	

ZM_EVEN_OS	Even field offset coefficient when zoom is enabled
	0 No Offset
	1 + 0.25 Offset
	2 + 0.5 Offset
	3 + 0.75 Offset (default)
ZM_ODD_OS	Odd field offset coefficient when zoom is enabled
	0 No Offset
	1 + 0.25 Offset (default)
	2 + 0.5 Offset
	3 + 0.75 Offset
FR_EVEN_OS	Even field offset coefficient when the enhancement is enabled
	0 No Offset
	1 + 0.25 Offset (default)
	2 + 0.5 Offset
	3 + 0.75 Offset
FR_0DD_0S	Odd field offset coefficient when the enhancement is enabled
	0 No Offset
	1 + 0.25 Offset
	1 + 0.25 Offset

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Х	1x0C	ZMENA	H_ZM_MD		NDCOL	ZMBNDEN	ZMAREAEN		AREA
ZMEN	A	Enat	ble the zoom fu	inction.					
		0	Disable the zo	oom function	(default)				
		1	Enable the zo	om function					
H_ZⅣ	1_MD	Sele	ct the zoom m	ode for only l	norizontal dire	ction			
		0	2x zoom for b	oth horizonta	al and vertical	direction (def	ault)		
		1	2x zoom for h	orizontal dire	ection				
ZMBN	NDCOL		ne the bounda	ry color for zo	omed area				
		0	0% Black (def	fault)					
		1	25% Gray						
		2	75% Gray						
		3	100% White						
ZMBN	NDEN	Enat	ole the bounda	ry for zoome	d area.				
		0	Disable the be	oundary for z	oomed area (default)			
		1	Enable the bo	oundary for zo	oomed area				
ZMAF	REAEN	Enat	ole the mark fo	or zoomed are	ea				
		0	Disable the m	nark for zoom	n area (default	:)			
		1	Enable the ma	ark for zoom	area				
ZMAF	REA	Cont	rol the effect f	or zoomed aı	ea.				
		0	10 IRE bright	up for inside	of zoomed ar	ea (default)			
		1	20 IRE bright	-					
		2	10 IRE bright	-					
		3	20 IRE bright	-					

X 1v0D Z00MH	Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
	X	1x0D		ZOOMH								

ZOOMH

Define the horizontal left point of zoomed area. 4 pixels/step.

0 Left end value (default) : :

180 Right end value

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
Х	1x0E		ZOOMV									

ZOOMV	Define t	he vertical top point of zoom area. 2 lines/step.
	0	Top end value (default)
	:	:
	120	Bottom end value for 60Hz, 525 lines system
	:	:
	144	Bottom end value for 50Hz, 625 lines system

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
Х	1x0F	FRZ_FLD		BND	DCOL	BGD	COL	BLKCOL		

FRZ_FLD

Select the image for freeze function or for last image capture on video loss.

- 0 Last image (default)
- 1 Last image of 1 field before
- 2 Last image of 2 fields before
- 3 Last image of 3 fields before

- 0 0% Black
- 1 25% Gray
- 2 75% Gray
- 3 100% White (default)

Channel boundary color is changed according to this value when boundary is blinking.

- 0 100% White
- 1 100% White
- 2 0% Black
- 3 0% Black (default)

BGDCOL Define the background color.

- 0 0% Black
- 1 40% Gray (default)
- 2 75% Gray
- 3 100% Amplitude 100% Saturation Blue

BLKCOL Define the color of the blanked channel.

- 0 0% Black
- 1 40% Gray
- 2 75% Gray
- 3 100% Amplitude 100% Saturation Blue (default)

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
	0	1x10							0 (RES	ERVED)			
	1	1x18			FUNC	_MODE			1(RES	ERVED)			
	2	1x20			FUNC				2 (RES	ERVED)			
х	3	1x28	CH_EN	POP_UP			ANA_ PATH_	PB_PATH_	3 (RES	ERVED)			
~	4	1x13					SEL	EN	-	ERVED)			
	5	1x1B	_		0	FUNC_				ERVED)			
	6	1x23	_			MODE[0]			2 (RESERVED)				
	7	1x2B		3 (RESERVED)									
CH_ENEnable the channel.0Disable the channel (default)1Enable the channel													
POP_	UP		Enable pop-up.										
			0 Disable pop-up (default)										
				e pop up (ue) e pop-up	aan)								
FUNC	_MODE		Select the c	peration mod	de.								
			0 Live mode (default)										
			1 Strobe mode										
			2-3 Switch mode for Channel $0/1/2/3$										
ΔΝΔ	PATH_S	FI	Select the switching path on PR display mode with PR AUTO $EN = 4$										
	<u>i Am_</u> 5		Select the switching path on PB display mode with PB_AUTO_EN = 1										
			0 Main channel selection (default)										
			1 Sub channel selection										
PB_P	ATH_EN		Select the input between Live and PB for each channel										
			0 Norma	al live analog	input (defau	lt)							
			1 PB pa	th input									
RESE	RVED		The followir	g value shou	ld be set for	proper opera	ition. (defau	t = 0)					
			1x10/1x13 0										
			1x18/1x1B 1										
			1x20/1x23 2										
			1x28/1x2B 3										
			TV50/ TV5D	5									

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	0	1x11	RECALL_ EN	FREEZE	H_MIRROR	V_MIRROR	ENHANCE	BLANK		BLINK
	1	1x19								
	2	1x21							BOUND	
x	3	1x29								
^	4	1x14								
	5	1x1C								
	6	1x24								
	7	1x2C								

RECALL_EN	Enable the recall function of main channel.							
	0	Disable the recall function (default)						
	1	Enable the recall function						
FREEZE	Ena	able the freeze function of main channel.						
	0	Normal operation (default)						
	1	Enable the freeze function						
H_MIRROR	Ena	able the horizontal mirroring function of main channel.						
	0	Normal operation (default)						
	1	Enable the horizontal mirroring function						
V_MIRROR	Ena	able the vertical mirroring function of main channel.						
	0	Normal operation (default)						
	1	Enable the vertical mirroring function						
ENHANCE	Ena	able the image enhancement function of main channel.						
	0	Normal operation (default)						
	1	Enable the image enhancement function						
BLANK	Ena	able the blank of main channel.						
	0	Disable the blank (default)						
	1	Enable the blank						
BOUND	Ena	able the channel boundary of main channel.						
	0	Disable the channel boundary (default)						
	1	Enable the channel boundary						
BLINK	Ena	able the boundary blink of main channel when boundary is enabled.						
	0	Disable the boundary blink (default)						
	1	Enable the boundary blink						

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
	0	1x12	0	0	FLD_0P	DVR_IN					
	1	1x1A					RECALL_ADDR				
	2	1x22									
x	3	1x2A									
^	4	1x15									
	5	1x1D									
	6	1x25									
	7	1x2D									

FLD_OP	Enable Field to Frame conversion mode.							
	0 Normal operation (default)							
	1 Enable Field to Frame conversion mode							
DVR_IN	Enable DVR to normal conversion mode.							
	0 Normal operation (default)							
	1 DVR to normal conversion mode							
	Define the recall address for main channel (default = 0)							

RECALL_ADDRDefine the recall address for main channel. (default = 0)A valid RECALL_ADDR is from 4 to 9.

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
	0	1x16	PB_AUTO _EN	FLD_CONV	PB_STOP	EVENT _PB					
х	1	1x1E	0				PB_CH_NUM				
	2	1x26	0								
	3	1x2E	0								

PB_AUTO_EN	Enable the auto strobe and auto cropping function for playback input							
	0 Disable the auto strobe/cropping function (default)							
	1 Enable the auto strobe/cropping function							
FLD_CONV	Enable Frame to Field conversion mode							
	0 Normal operation (default)							
	1 Enable Frame to Field conversion mode							
PB_STOP	Disable the auto strobe operation for playback input							
	0 Normal operation (default)							
	1 Disable the auto strobe operation for playback input							
EVEN_PB	Enable the event strobe function for playback input							
	0 Disable the event strobe function for playback input (default)							
	1 Enable the event strobe function for playback input							
PB_CH_NUM	Select the channel number from playback input for display (default = 0)							

PB_CH_NUM[3:2] represents the stage of cascaded chips

- 0 Master chip
- 1 1st slaver chip
- 2 2nd slaver chip
- 3 3rd slaver chip

PB_CH_NUM[1:0] represents the channel number

- 0 Channel 0
- 1 Channel 1
- 2 Channel 2
- 3 Channel 3

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
x	0	1x17	0	0	0	0	0	0	0	0
	1	1x1F								
	2	1x27								
	3	1x2F								

These registers are reserved. For normal operation, the above value should be set in this register.

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
	0	1x30											
	1	1x34											
	2	1x38											
x	3	1x3C		PICHL									
^	4	1x40				FIC							
	5	1x44											
	6	1x48											
	7	1x4C											

PICHL

Define the horizontal left position of channel

- 0 Left end (default)
- : :
- 180 Right end

Path	CH	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]						
	0	1x31														
	1	1x35														
	2	1x39		PICHR												
x	3	1x3D														
^	4	1x41														
	5	1x45														
	6	1x49														
	7	1x4D														

PICHR

Define the horizontal right position of channel region

- Left end (default) 0 :
- 180 Right end

:

Path	CH	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
	0	1x32													
	1	1x36													
	2	1x3A													
x	3	1x3E		PICVT											
^	4	1x42				FIC									
	5	1x46													
	6	1x4A													
	7	1x4E													

PICVT

Define the vertical top position of channel region.

- 0 Top end (default)
 - :
- 120 Bottom end for 60Hz system
 - :

:

144 Bottom end for 50Hz system

Path	CH	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]						
	0	1x33														
	1	1x37														
	2	1x3B														
х	3	1x3F		PICVB												
^	4	1x43		FICVB												
	5	1x47														
	6	1x4B														
	7	1x4F														
PICVB			Define the ve	ertical bottor	n position of	channel reg	ion.									
		() Top end	d (default)												

Top end (default) :

120 Bottom end for 60Hz system

:

:

144 Bottom end for 50Hz system

Index	[7]		[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x50	MEDIAN_MD		TM_S	SLOP			TM_THR		
MEDIA	N_MD	Sele	ct the no	ise reduction f	filter mode.				
		0	Adaptiv	e median filte	r mode (defaul	t)			
		1	Simple	median filter r	node				
TM_SL	M_SLOP Select the slope of adaptive median filter mode								
0 Gradient is 0									
		1	Gradien	t is 1 (default)	1				
		2	Gradien	t is 2					
		3	Gradien	t is 3					
TM_TH	IR	Sele	ct the thr	eshold of ada	ptive median f	ilter mode			
		0	No three	shold					
		:	:						
		8	Median	value (default)				
		:	:						
		31	Max val	ue					

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x51	0	FRAME_OP	FRAME_ FLD	DIS_MODE	0	0	SIZE_MODE	

FRAME_OP	Select the frame operation mode for record path.
	0 Normal operation mode (Default)
	1 Frame operation mode
DIS_MODE	Select the record mode depending on FRAME_OP.
	When FRAME_OP = 0
	0 Normal record mode (Default)
	1 DVR normal record Mode
	When FRAME_OP = 1
	0 Frame record mode
	1 DVR frame record mode
FRAME_FLD	Select the displayed field when FRAME_OP = "1".
	0 Odd field is displayed
	1 Even field is displayed
SIZE_MODE	Select the active pixel size per line
	0 720 pixels (default)
	1 704 pixels

- 2 640 pixels
- 3 640 pixels

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
Y	1x52	TBLINK	FRZ_FRAME	TM_W	/IN_MD	0	0	0	0				
TBLIN	ik	Contr	Control the blink period of channel boundary.										
		0	0 Blink for every 30 fields (default)										
		1	1 Blink for every 60 fields										
FRZ_	FRAME	Selec	Select field or frame display mode on freeze status										
		0	Field display r	node (defaul	t)								
		1	Frame display	/ mode									
TM_V	VIN_MD	Selec	t the mask ty	pe of median	/adaptive me	dian filter							
		0	9x9 mask (de	fault)									
		1	Cross mask										
		2	Multiplier mas	sk									
		3	Vertical bar m	lask									

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x53	0	0	0	0	0	0	0	0

This is reserved register. For normal operation, the above value should be set in this register.

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
Y	1x54	0	STRB	_FLD	DUAL_PAGE		STRB	S_REQ				
STRB	_FLD	Contr	rol the field m	ode for strobe	e operation.							
		0	Capture odd f	ield only (def	ault)							
		1 Capture even field only										
		2	2 Capture first field of any field									
		3 Capture frame										
DUAL	_PAGE	Enab	le dual page o	peration.								
		0	Normal strobe operation for each channel (default)									
		1	Enable the du	al page oper	ation							
STRB	_REQ	Requ	est the strobe	operation.								
		STRB_REQ[3:0] represents the channel 3 to 0										
		0	None operation	on (default)								
		1	Request to st	art strobe ope	eration							

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
Y	1x55	NOVID	_MODE	0	CH_START	0	AUTO_NR_ EN	INVALIE	_MODE					
NOVIE	_MODE	Selec	t the indicatio	n method fo	r no video dete	ected channe	ł							
		0	Bypass (defau	ılt)										
		1	Capture last in	mage										
		2 Blanked with blank color												
	3 Capture last image and blink channel boundary													
CH S	START Enable the digital channel ID in horizontal boundary of channel													
-			-			-								
				visable the digital channel ID in horizontal boundary (default) nable the digital channel ID in horizontal boundary										
41170		E h	able the noise reduction filter automatically when night is detected											
AUTO	_NR_EN		Enable the noise reduction filter automatically when night is detected 0 Disable auto noise reduction filter operation (default)											
					-	. ,								
		1	Enable auto n	oise reductio	on filter operat	ion								
INVAL	ID_MODE	E Selec	t the indicatio	n mode for n	o channel are	а								
		In ho	rizontal and ve	ertical active	region									
		0	Background la	ayer with bac	kground color	(default)								
		1	Y = 0, Cb/Cr =	- 128										
		2	2 $Y/Cb/Cr = 0$											
		3	Y/Cb/Cr = 0											
		In ho	rizontal and ve	ertical blanki	ng region									
		0	Y = 16, Cb/Cr	= 128 (defa	ult)									
		1	Background la	ayer with bac	kground color									
		2	$Y = 0, Cb = \{0\}$, F, V, 0, Casc	cade, linenum[8:7]}, Cr = {0	, linenum[6:0]	}						
			Y/Cb/Cr = 0											

	Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
ľ	v	1x56	MUX_MODE	TRIG_MODE	MUX	_FLD	PIN_TRIG_MD PIN_TRIG_EN				
	•	1x57	STRB_AUTO		QUE_SIZE						

MUX_MODE	Define the switch mode.Switch channel with still picture (default)Switch channel with live picture
TRIG_MODE	 Define the switch trigger mode. MUX with external trigger from host (default) MUX with internal trigger
MUX_FLD	Control the capturing field for switch operation. O Capture odd field only (default)

	 Capture even field only Capture frame
	3 Capture frame
PIN_TRIG_MD	Select the triggering input on external trigger mode
	0 No triggering by VLINKI Pin (default)
	1 Triggering by positive edge of VLINKI pin
	2 Triggering by negative edge of VLINKI pin
	3 Triggering by both positive and negative edge of VLINKI pin
PIN_TRIG_EN	Enable triggering by VLINKI Pin
	[0] is stand for switching control, [1] is stand for popup position control
	0 Disable pin triggering (default)
	1 Enable pin triggering
STRB_AUTO	Enable automatic strobe mode when FUNC_MODE = "1"
	0 Manual strobe mode (default)
	1 Automatic strobe mode
QUE_SIZE	Define the actually using queue size in switching mode.
	0 Queue size = 1 (default)
	: :
	127 Queue size = 128

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]					
Y	1x58				QUE_PER	IOD [7:0]								
•	1x59	QUE_PEF	RIOD [9:8]	EXT_TRIG	INTR_REQ	MUX_WR_CH								
QUE_	E_PERIODControl the trigger period for internal trigger mode.0Trigger period = 1 field (default)													
		:												
		1023	1023 Trigger period = 1024 fields											
EXT_	EXT_TRIG Make trigger when TRIG_MODE = "0" (external trigger mode).													
		0	None operation	on (default)										
		1	Request to st	art MUX with	external trigge	er mode								
INTR_	_REQ	Requ	est to start th	e switch oper	ation by interr	upt								
		0	None operation	on (default)										
		1	Request to st	art the switch	operation by	interrupt								
MUX_	_WR_CH	MUX_ 0												

- 2 2nd slaver chip
- 3 3rd slaver chip

MUX_WR_CH[1:0] stands for channel number

- 0 Channel 0 (default)
- 1 Channel 1
- 2 Channel 2
- 3 Channel 3

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x5A	QUE_WR				QUE_ADDR			

QUE_WR

Control to write the data of internal queue.

- 0 None operation (default)
- 1 Request to write the QUE_CH in QUE_ADDR of internal queue

QUE_ADDR

Define the queue address.

- 0 1st queue address (default)
- : :
- 127 128th queue address

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]				
v	1x5B	0	Q_POS_RD _CTL	Q_DATA	_RD_CTL	MUX_ SKIP_EN	ACCU_TRIG	QUE_CNT_ RST	QUE_POS_ RST				
T	1x5C		MUX_SKIP_CH[15:8]										
	1x5D		MUX_SKIP_CH[7:0]										

Q_POS_RD_CTL	Control the read mode of the QUE_ADDR
	0 Current queue address of internal queue (default)
	1 Written value into the QUE_ADDR
Q_DATA_RD_CTL	Control the read mode of the MUX_WR_CH
	0 Current queue data of internal queue (default)
	1 Written value into the MUX_WR_CH
	2,3 Queue data at the QUE_ADDR
MUX_SKIP_EN	Enable the switch skip mode
	0 Disable the switch skip mode (default)
	1 Enable the switch skip mode
ACCU_TRIG	Adjust the switch timing in external triggering via the VLINKI pin
	0 Output is delayed in 4 fields from triggering (default)
	1 Output is matched with triggering
QUE_CNT_RST	Reset the internal field counter to count queue period.

	0 None operation (default)
	1 Reset the field counter
QUE POS RST	Reset the queue address.
QUE_FUS_KSI	reset the queue address.
	0 None operation (default)
	1 Reset the queue address and restart address
MUX_SKIP_CH	Define the switch skip channel
	MUX_SKIP_CH[15:0] stands for channel 15 ~ 0 including cascaded chip
	0 Normal operation (default)
	1 Skip channel

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x5E				CHID_MU	JX_OUT *			

Notes "*" stand for read only register

CHID_MUX_OUT Channel ID of current field/frame in switch operation (Read only register) CHID_MUX_OUT [7] represents the channel ID latch enabling pulse

- 0->1 Rising edge for updating the channel ID
- 1->0 Falling edge after 16 clock * 18.5 ns from rising edge

CHID_MUX_OUT [6] represents the updated picture in switch operation

- 0 No Updated
- 1 Updated by New Switching

CHID_MUX_OUT [5] represents the field mode in switch operation

- 0 Frame mode
- 1 Field mode

CHID_MUX_OUT [4] represents the analog switching path

- 0 Analog switching 0 path
- 1 Analog switching 1 path

CHID_MUX_OUT [3:2] represents the stage of cascaded chip for switch operation

- 0 Master chip
- 1 1st slaver chip
- 2 2nd slaver chip
- 3 3rd slaver chip

CHID_MUX_OUT [1:0] represents the channel number for switch operation

- 0 Channel 0
- 1 Channel 1
- 2 Channel 2

		3	Channel 3						
Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x5F		Z_FLD		DCOL		DCOL	BLK	
FRZ_	FLD	Sele	ect the image fo	or freeze func	tion or for las	t capturing m	ode on video	loss.	
		0	Last image (d	efault)					
		1	Last image of	1 field befor	e				
		2	Last image of	2 fields befo	ore				
		3	Last image of	3 fields befo	ore				
BNDC	COL		ine the boundar	y color of cha	annel.				
		0	0% Black						
		1	25% Gray						
		2	75% Gray						
		3	100% White (-					
		Cha	nnel boundary	color is chang	ged according	to this value	when bounda	ry is blinking.	
		0	100% White						
		1	100% White						
		2	0% Black						
		3	0% Black (def	ault)					
BGDC	COL	Defi	ine the backgro	und color.					
		0	0% Black						
		1	40% Gray (de	fault)					
		2	75% Gray						
		3	100% Amplite	ude 100% Sa	turation Blue				
BLKC	OL	Defi	ine the color of	the blanked o	channel.				
2-110		0	0% Black						
		1	40% Gray						
		2	75% Gray						
		3	100% Ampliti	ude 100% Sa	turation Blue	(default)			
		-				· · · ·			

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	0	1x60			FUNC_MODE				DEC_PATH_Y	
v	1	1x63	CH_EN	POP_UP			NR_EN_DM	NR_EN		
1	Y 2	1x66		FOF_OF						
	3	1x69								

CH_EN Enable the channel.

- 0 Disable the channel (default)
- 1 Enable the channel

POP_UP Enable

Enable the pop-up attribute.

			0	Disable	e the pop-up	attribute (de	fault)			
			1	Enable	the pop-up a	attribute				
FUNC_I	MODE		Sele	ct the op	peration mod	le.				
			0	Live mo	ode (default)					
			1	Strobe	mode					
			2-3	Switch	mode					
NR_EN			Enat	ole the n	oise reductio	on filter in ma	ain path with	ANA_SW =	0	
NR_EN	_DM		Enat	ole the n	oise reductio	on filter in su	b path with A	ANA_SW = 1		
			0	Disable	e the noise re	eduction filte	r (defaut)			
			1	Enable	the noise re	duction filter				
DEC_P	ATH_Y		Sele	ct the vi	deo input for	each chann	el.			
			0	Video ii	nput from int	ternal video o	decoder on V	'INO pins (de	fault)	
			1	Video ii	nput from int	ternal video	decoder on V	'IN1 pins		
			2	Video ii	nput from int	ternal video	decoder on V	'IN2 pins		
			3 Video input from internal video decoder on VIN3 pins							
Path	CH	Index		[7]	[6]	[5]	[4]	[3]	[2]	[1]

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	0	1x61		FREEZE	H_MIRROR	V_MIRROR	0	BLANK	BOUND	
v	1	1 1x64	0							BLINK
•	2	1x67	0							DLINK
	3	1x6A								

FREEZE	Enable the freeze function of main channel.0 Normal operation (default)1 Enable the freeze function
H_MIRROR	 Enable the horizontal mirroring function of main channel. Normal operation (default) Enable the horizontal mirroring function
V_MIRROR	 Enable the vertical mirroring function of main channel. Normal operation (default) Enable the vertical mirroring function
BLANK	Enable the blank of main channel.0 Disable the blank (default)1 Enable the blank
BOUND	Enable the channel boundary of main channel.0 Disable the channel boundary (default)1 Enable the channel boundary

BLINK

Enable the boundary blink of main channel when boundary is enabled.

- 0 Disable the boundary blink (default)
- 1 Enable the boundary blink

Path	СН	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	0	1x62	0	0	FIELD_OP	0	0	0	0	0
	1	1x65								
	2	1x68								
	3	1x6B								

FIELD_OP

Enable Field to Frame conversion mode.

- 0 Normal operation (default)
- 1 Enable Field to Frame conversion mode

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x6C	PIC_SIZE3		PIC_S	SIZE2	PIC_S	SIZE1	PIC_SIZE0	

PIC_SIZE

Define the channel size

in normal record mode or DVR normal record mode

- 0 Half Size for both direction (360x120/144) (default)
- 1 Half size for vertical size (720x120/144)
- 2 Half size for horizontal size (360x240/288)
- 3 Full size (720x240/288)

in Frame record mode or DVR frame record mode

- 0 Half size for horizontal size (360x240/288) (default)
- 1 Full size for horizontal size (720x240/288)
- 2/3 Not supported

	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x6D	PIC	_P0S3	PIC_F	P0S2	PIC_	P0S1	PIC_P	0S 0
PIC_PO	OS	Defi	ne the channel	start position	1				
		in No	ormal record m	node					
		0	No offset for I	ooth horizonta	al and vertical	direction (de	fault)		
		1	Half offset for	horizontal an	nd no offset fo	or vertical dire	ection		
		2	No offset for I	norizontal and	I half offset fo	or vertical dire	ection		
		3	Half offset for	horizontal ar	nd half offset	for vertical di	rection		
		in Fr	ame record me	ode					
		0	No offset for I	ooth horizonta	al and vertical	direction (de	fault)		
		1	Half offset for	horizontal an	nd no offset fo	or vertical dire	ection		
		2	No offset for I	norizontal and	I field offset f	or vertical dire	ection		
		3	Half offset for	horizontal ar	nd field offset	for vertical di	irection		
		in D	VR normal reco	ord mode					
		0	No offset for I	ooth horizonta	al and vertical	direction (de	fault)		
		1	Quarter offset	t for vertical d	irection				
		2	Half offset for	vertical direc	tion				
		3	Three Quarter	r offset for ver	tical directior	I			
		in D	VR Frame reco	rd mode					
		0	No offset for I	ooth horizonta	al and vertical	direction (de	fault)		
		1	Half offset for			-			
		2	Field offset fo	r vertical dire	ction				
		3	Field and half	offset for ver	tical direction				
Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	1x6E	[7]	MUX_OU		[4]	[3]		IT_CH1 *	[U]
Y	1x6E			T_CH2 *				IT_CH3 *	

MUX_OUT_CH0Channel Information in current field/frame for switch operationMUX_OUT_CH1Channel Information in next field/frame for switch operationMUX_OUT_CH2Channel Information after 2 fields for switch operationMUX_OUT_CH3Channel Information after 3 fields for switch operationMUX_OUT_CH3MUX_OUT_CH [3:2] represents the stage of cascaded chips

- 0 Master chip (default)
- 1 1st slaver chip
- 2 2nd slaver chip
- 3 3rd slaver chip

MUX_OUT_CH [1:0] represents the channel number

0 Channel 0 (default)

		_		Channel 1						
				Channel 2						
			3	Channel 3						
Path	Index	[7]		[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x70	POS_C _EN		POS_TRIG _MODE	POS_TRIG	POS_INTR	0	POS_RD _CTL	POS_DATA	RD_CTL
POS_	CTL_EN	E	Enabl	e the position	/popup contr	ol				
		(0	Disable the p	osition/popup	o control (defa	ult)			
		1	1	Enable the po	sition/popup	control				
DOC .			Soloo	t the position	/nonun triaco	r modo				
POS_TRIG_MODE Select the position/popup trigger mode 0 External trigger mode (default)										
1 Internal trigger mode										
		-	L							
POS_TRIG Request the external trigger on external trigger mode										
		(0	None Operati	on (default)					
		1	1	Request to st	art position/p	opup control	n external tri	gger mode		
POS_	INTR	F	Requ	est to start po	sition/popup	control with in	nterrupt			
		(0	None Operati	on (default)					
		1	1	Request to st	art position/p	opup control	with interrupt			
POS_	RD_CTL	(Contr	ol the read m	ode for the P(DS_QUE_ADD	R			
		(0	Current queue	e address for	internal positi	on/popup qu	eue (default)		
		1	1	Written value	into the POS	_QUE_ADDR				
POS_	DATA_RD	D_CTL (Contr	ol the read m	ode for the P(DS_CH				
		(0	Current queue	e data for inte	ernal queue po	sition (defau	lt)		
		2	1	Written POS_	CH value					
		2	2	Queue data o	f the POS_QU	E_ADDR				
		3	3	Queue data o	f the POS_QU	E_ADDR				

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
	1x71	POS_QUE	_PER[9:8]	POS_FLD_ MD		-	POS_QUE_SIZE	-		
Y	1x72				POS_QUE_PER [7:0]					
	1x73		POS_	_CHO			POS_	_CH1		
	1x74		POS_	_CH2	POS_CH3					

POS_QUE_SIZE

Control the position/popup queue size

0 Queue size = 1 (default)

: :

31 Queue size = 32

POS_FLD_MD	Select the position/popup queue period unit0 Frame (default)1 Field
POS_QUE_PER	Control the trigger period for internal trigger mode.
	0 Trigger period = 1 field or frame (default)
	: :
	1023 Trigger period = 1024 fields or frames
POS_CH	Define the channel for each region POS_CH0 stands for no offset region of both H/V POS_CH1 stands for half offset of H POS_CH2 stands for half offset of V POS_CH3 stands for half offset of both H/V POS_CH [3:2] stands for the stage of cascaded chips 0 Master chip (default) 1 1st slaver chip 2 2nd slaver chip
	3 3rd slaver chip
	POS_CH [1:0] stands for the channel number

- 0 Channel 0 (default)
- 1 Channel 1
- 2 Channel 2
- 3 Channel 3

Path	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Y	1x75	POS_QUE	POS_CNT	POS_QUE			POS_QUE_ADDR		
		_WR	_RST	_RST					
POS_0	QUE_WR	Contr	ol to write the	data of inter	nal position q	ueue			
		0	None operation	on (default)					
		1	Write data int	o the POS_CH	H register at th	ne POS_QUE_	ADDR		
POS_	CNT_RST	Reset	t the internal f	ield counter t	o count queu	e period of po	sition queue.		
		0	None operatio	on (default)					
		1	Reset the field	d counter					
POS_	QUE_RST	Reset	t the queue ac	ldress of posi	tion queue.				
		0	None operatio	on (default)					
		1	Reset the que	ue address a	nd restart add	lress			
			•						
POS_	QUE_ADD	R Defin	e the queue a	ddress.					
			1st queue ado)				
		-		•	,				

: :

31 32nd queue address

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
1x76	IRQENA_RD	0	0	0	0	0	IRQ_POL	IRQ_RPT		
1x77		IRQ_PERIOD								

IRQENA_RD	 Select the read mode for IRQENA_XX registers Read the Status/Event information (default) IRQ event will be cleared after host reads IRQENA_XX registers. Read the written data IRQ event is not cleared even if host reads IRQENA_XX registers.
IRQ_POL	 Select the IRQ polarity. Active high (default) Active low
IRQ_RPT	 Select the IRQ mode. IRQ pin maintains the state "1" until the interrupt request is cleared (default) Interrupt request is repeated with 5msec period via IRQ pin when the interrupt is not cleared in long time.
IRQ_PERIOD	 Control the interrupt generation period (The unit is field). Immediate generation of interrupt when any Interrupt happens (default) : : 255 Interrupt generation by the duration of the IRQ_PERIOD

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x78				IRQENA	_NOVID			

IRQENA_NOVID Enable the interrupt for video loss detection. IRQENA_NOVID[3:0] stand for VIN3 to VIN0 with ANMA_SW = 0 IRQENA_NOVID[7:4] stand for VIN3 to VIN0 with ANMA_SW = 1 0 Video-loss interrupt is disabled (default) 1 Video-loss interrupt is enabled The read information is determined by the IRQENA_RD (1x76). When the IRQ_ENA_RD = "0", the information is like the following and the interrupt will be cleared when the register is read by host. 0 Video is alive (default) 1 Video loss is detected

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x79		[0]	[0]		IA_MD	[-]	[-]	[0]
1x7A				IRQEI	NA_BD			
1x7B				IRQEI	NA_ND			
IRQEN	A MD	Enable the	interrupt for mo	otion detection.				
	-		D[3:0] stand for			• 0		
			D[7:4] stand for					
			n interrupt is dis		—			
			n interrupt is en	-	, ,			
			•					
		The read in	nformation is de	etermined by t	he IRQENA_RE	0 (1x76). Whe	n the IRQ_ENA	_RD = "0",
		the informa	ation is like the t	following and t	he interrupt wi	ll be cleared w	hen the registe	r is read by
		host.						
		0 No m	otion is detected	d (default)				
		1 Motio	n is detected					
IRQEN		Enable the	intorrunt for bli	ad dotostion				
IRQEN	A_DU		interrupt for blin D [3:0] stand for		with ANA SW -	- 0		
			D [7:4] stand for					
			interrupt is disa		VIUI ANA_3W -	- 1.		
			interrupt is enal					
		The read ir	nformation is de	etermined by t	he IRQENA_RD	0 (1x76). Whe	n the IRQ_ENA	_RD = "0",
		the informa	ation is like the t	following and t	he interrupt wi	ll be cleared w	hen the registe	r is read by
		host.						
		0 No bli	nd is detected (default)				
		1 Blind	is detected					
IRQEN	A_ND		interrupt for nig			0		
			D[3:0] stand for $D[7:4]$ stand for		_			
			D [7:4] stand for		with ANA_SW =	= <u>1</u> .		
		-	interrupt is disa	,				
		1 Night	interrupt is ena	bieu				
		The read in	nformation is de	etermined by t	he IRQENA_RD	0 (1x76). Whe	n the IRQ_ENA	_RD = "0",
		the informa	ation is like the t	following and t	he interrupt wi	ll be cleared w	hen the registe	r is read by
		host.						
		0 Day is	detected (defa	ult)				
		1 Night	is detected					
	[7]	101	151	[4]	[0]	[0]	[4]	101
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x7C		PB_NOV	ID_DET*		0	0	0	0

NOTE: "*" STAND FOR READ ONLY REGISTER

PB_NOVID_DET Status for playback input

- 0 Playback input is alive
- 1 Video-loss is detected for playback input

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x7D				()			

This is a reserved register. For normal operation, the above value should be set in this register.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x7E	0		SYNC_DEL			MCL	KDEL	

 SYNC_DEL
 Control relative data delay for cascade channel extension

 SYNC_DEL should be defined to have 2 offset from slaver chip.

 Please refer to Figure 48Error! Reference source not found. ~ Figure 51 for reference.

 The default value is 0.

MCLKDEL Control the clock delay of the CLK54MEM pin The delay can be controlled about 1ns. The default value is 0.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x7F	MEM_INIT	0	T_CASCADE _EN	0	0	0	0	0

MEM_INIT	Initialize the operation mode of SDRAM. This is cleared by itself after setting "1".
	 0 None operation (default) 1 Request to start initializing operation mode of SDRAM
T_CASCADE_EN	Enable the infinite cascade mode for display path

- 0 Normal operation (default)
- 1 Enable the infinite cascade mode for display path

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x80	VIS_ENA	VIS_AUTO_ EN	AUTO_RPT_ EN	VIS_DET_EN	VIS_USER_ EN	VIS_CODE_ EN	VIS_RIC_ EN	0
1x81	VIS_PIXEL_HOS							

VIS_ENA

Enable the Analog channel ID during vertical blanking interval

0 Disable the Analog channel ID (default)

1 Enable the Analog channel ID

VIS_AUTO_EN	 Enable the Auto channel ID In Analog channel ID 0 Disable the Auto channel ID (default) 1 Enable the Auto channel ID 					
AUTO_RPT_EN	Enable the Auto channel ID repetition mode in Analog channel ID 0 Disable the Auto channel ID repetition mode (default)					
	1 Enable the Auto channel ID repetition mode					
VIS_DET_EN	Enable the Detection channel ID in Analog channel ID					
	0 Disable the Detection channel ID (default)					
	1 Enable the Detection channel ID					
VIS_USER_EN	Enable the User channel ID in Analog channel ID					
	0 Disable the User channel ID (default)					
	1 Enable the User channel ID					
VIS_CODE_EN	Enable the Digital channel ID					
	0 Disable the Digital channel ID (default)					
	1 Enable the Digital channel ID					
VIS_RIC_EN	Enable the run-in clock of Analog channel ID during VBI					
	0 Disable the run-in clock (default)					
	1 Enable the run-in clock					
VIS_PIXEL_HOS	Define the horizontal starting offset for Analog channel ID					
	0 No offset (default)					
	: :					
	255 255 pixel Offset					

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x82	2 VIS_FLD_OS 0 VIS_PIXEL_WIDTH							
1x83	0	VIS_DM_MD	0	VIS_LINE_OS				
1x84	VIS_HIGH_VAL							
1x85	VIS_LOW_VAL							

VIS_FLD_OS	Control the vertical starting offset of each field for Analog channel ID				
	0 Odd : 1 Line, Even : 0 Line (default)				
	1 Odd : 1 Line, Even : 1 Line				
	2 Odd : 1 Line, Even : 2 Line				
	3 Odd : 1 Line, Even : 3 Line				
VIS_DM_MD	Select the non-realtime mode for Detection channel ID				
	0 Normal mode (default)				
	1 Non-realtime Mode				
VIS_PIXEL_WIDTH	Control the pixel width of each bit for Analog channel ID				

	0	1 pixel
	:	:
	31	32 pixels (default)
VIS_LINE_OS	Cont	rol the vertical starting offset from field transition for Analog channel ID
	0	No offset
	:	:
	8	7 lines (default)
	:	:
	31	30 lines
	: 8 :	: 7 lines (default) :

VIS_HIGH_VALMagnitude value for bit "1" of Analog channel ID (default = 235d)VIS_LOW_VALMagnitude value for bit "0" of Analog channel ID (default = 16d)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
1x86	AUTO_VBI _DET	0	VBI_ENA	VBI_CODE_ EN	VBI_RIC_ON	VBI_FLT_EN	CHID_RD_ TYPE	VBI_RD_CTL			
AUTO_	_VBI_DET		he detection mode	_		-					
		0 Manual detection mode for Analog channel ID (default)									
		1 Au	tomatic detection	mode for Analo	og channel ID						
VBI_E	NA	Enable t	Enable the Analog channel ID detection for playback input								
		0 Dis	sable the Analog ch	nannel ID deteo	tion (default)						
		1 En									
VBI_C	ODE_EN	Enable the Digital channel ID detection for playback input									
		0 Disable the Digital channel ID detection mode (default)									
		1 En	able the Digital cha	annel ID detect	ion mode						
VBI_R		Select the run-in clock mode for Analog channel ID									
		0 No run-in clock mode (default)									
		1 Run-in clock mode									
VBI_FI	LT_EN	Select the LPF filter mode for playback input									
		0 Bypass mode (default)									
		1 Enable the LPF filter									
CHID_	CHID_RD_TYPE		Control the read mode of channel ID decoder								
		0 Read the channel valid data from channel ID decoder (default)									
		1 Read the channel ID type from channel ID decoder									
VBI_R	RD_CTL Control the read mode of channel ID for channel ID CODEC (default = 0)										

Read the encoded result in DET_CHID registers (1X98 ~ 1x9F) Read the encoded ID data from AUTO_CHID registers. $(1x8C \sim 1x8F)$

1 Read the decoded ID data from USER_CHID registers ($1x90 \sim 1x97$) Read the decoded result for DET_CHID registers (1X98 ~ 1x9F) Read the decoded ID data from AUTO_CHID registers ($1x8C \sim 1x8F$)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x87				VBI_PIXEL_HOS				
1x88	VBI_F	VBI_FLD_OS VAV_CHK				VBI_PIXEL_HW		
When Ma			al detection m et (Not suppor	ng offset of Ana ode of Analog o ted in No run-ir	channel ID (AU	TO_VBI_DET =	0)	
VBI_FL	.D_OS	0 Odd:1 1 Odd:1 2 Odd:1	_	Line		g channel ID		
VAV_C	HK			ection in vertica detection for '	•	v (default)		
		1 Enable	the channel ID	detection for	/BI and vertica	I active period		
VBI_PI	XEL_HW	-	(default)	each bit of Ana	og channel ID			
When Auto detection mode of Analog channel ID (AUTO_VBI_DET = 1)								

this register notifies the detected horizontal width for Analog channel ID.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
1x89	VBI_LINE_SIZE			VBI_LINE_OS					
1x8A	VBI_MID_VAL								
1x8B	CHID_TYPE/CHID_VALID *								

Notes "*" stand for read only register

VBI_LINE_SIZE

Control the line width for Analog channel ID

When Manual detection mode of Analog channel ID (AUTO_VBI_DET = 0)

- 0 1 line
- : :

	7 8 lines (default)					
	When Auto detection mode of Analog channel ID (AUTO_VBI_DET = 1), this register notifies the detected line width for Analog channel ID.					
VBI_LINE_OS	Control the vertical starting offset from field transition for Analog channel ID					
	0 No offset					
	: :					
	8 7 lines (default)					
	: :					
	31 30 lines					
VBI_MID_VAL	Define the threshold level to detect bit "0" or bit "1" from Analog channel ID (default = 128)					
CHID_VALID	Status for validity of detected channel ID when CHID_RD_TYPE = 0					
0	CHID_VALID[4] stands for Auto Channel ID					
	CHID_VALID[3] stands for Detection Channel ID 0					
	CHID_VALID[2] stands for Detection Channel ID 1					
	CHID_VALID[1] stands for User Channel ID 0					
	CHID_VALID[0] stands for User Channel ID 1					
	0 Not Valid					
	1 Valid					
CHID_TYPE	Indication of the detected channel ID type when CHID_RD_TYPE = 1					
	CHID_TYPE[5:0] stands for line number for Analog channel ID					
	0 Auto channel ID					
	1 User/Detection channel ID					

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1x8C	AUTO_CHIDO*							
1x8D				AUTO_	CHID1*			
1x8E				AUTO_	CHID2*			
1x8F				AUTO_	CHID3*			
1x90	USER_CHID0							
1x91	USER_CHID1							
1x92	USER_CHID2							
1x93	USER_CHID3							
1x94	USER_CHID4							
1x95	USER_CHID5							
1x96	USER_CHID6							
1x97				USER_	CHID7			
1x98				DET_C	HID0 *			
1x99				DET_C	HID1 *			
1x9A				DET_C	HID2 *			
1x9B				DET_C	HID3 *			
1x9C				DET_C	HID4 *			
1x9D				DET_C	HID5 *			
1x9E				DET_C	HID6 *			
1x9F				DET_C	HID7 *			

NOTE: "*" STAND FOR READ ONLY REGISTER

AUTO_CHID	Data information of Auto channel ID
USER_CHID	Data information of User channel ID (default = 0)
	USER_CHID $0/1/2/3$ stands for 1 st line channel ID
	USER_CHID $4/5/6/7$ stands for 2^{nd} line channel ID
DET_CHID	Data information of Detection channel ID
	DET_CHID $0/1/2/3$ stands for 1^{st} line channel ID
	DET_CHID $4/5/6/7$ stands for 2^{nd} line channel ID
	— • • •

Read mode depends on VBI_RD_CTL register

- 0 Encoded Auto/User/Detection channel ID
- 1 Decoded Auto/User/Detection channel ID

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xA0	ENC_	_IN_X	ENC_	IN_Y	CCIR	_IN_X	CCIR	_IN_Y

ENC_IN	Select the video data for analog output of video encoder.
	0 Video data of display path without OSD and mouse overlay (default)
	1 Video data of display path with OSD and mouse overlay
	2 Video data of record path without OSD and mouse overlay
	3 Video data of record path with OSD and mouse overlay
CCIR_IN	Select the video data for ITU-R BT 656 digital output.
	0 Video data of display path without OSD and mouse overlay (default)
	1 Video data of display path with OSD and mouse overlay

- 2 Video data of record path without OSD and mouse overlay
- 3 Video data of record path with OSD and mouse overlay

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xA1	DAC_PD_CX	0	DAC_0	DAC_OUT_YX		0	DAC_OI	UT_CX

DAC_PD_YX	Enable the power down of VAOYX DAC.
DAC_PD_CX	Enable the power down of VAOCX DAC.
	0 Normal operation (default)
	1 Enable power down of DAC
DAC OUT YX	Define the analog video format for VAOYX DAC.
DAC_OUT_CX	Define the analog video format for VAOCX DAC.
	0 No Output (default)
	1 CVBS for display path
	2 Luminance for display nath

- 2 Luminance for display path
- 3 Chrominance for display path

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xA2	0	DAC_OUT_YY			DAC_PD_YY	0	0	0

DAC_PD_YY	Enable the power down of VAOYY DAC.
	0 Normal operation (default)
	1 Enable power down of DAC
DAC_OUT_YY	Define the analog video format for VAOYY DAC.
	0 No Output (default)
	1 CVBS for display path
	2 Not supported
	3 Not supported
	4 Not supported

- 4 Not supported
- 5 CVBS for record path
- 6 Not supported
- 7 Not supported

	Path		Record			
Format		No Output	CVBS	Luma	Chroma	CVBS
	VAOYX	0	0	0	0	Х
Ouptput	VAOCX	0	0	0	0	x
	VAOYY	0	0	Х	Х	0

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xA3	CCIR_601	0	CCIR_	_OUT_X	CCIR_601_ INV	0	CCIR_0	OUT_Y
CCIR_(601	0 ITU-R B	gital data outp Г.656 mode (c Г.601 mode					
CCIR_	601_INV	0 VDOX : '	tput port wher Y output, C output,	n CCIR_601 = : VDOY : C out VDOY : Y out	put (default)			
CCIR_(OUTDefine the mode of ITU-R BT.656 digit The default value is "0" for CCIR_OUT_ When ITU-R BT.656 is selected (CCIR_ 0 Display path video data with sing 1 Record path video data with sing 2 Display and Record path video d 3 Record and Display path video d			CCIR_OUT_X, k cted (CCIR_602 ta with single o ta with single o ath video data	but "1" for CCIF L = 0) butput mode (2 butput mode (2 with dual outp	27MHz) 27MHz) ut mode (54M	-	
		0 Display 1 Record	path video da path video da	cted (CCIR_602 ta with single o ta with single o th Display and	output mode (1 output mode (1	.3.5MHz)	Hz)	

3 Dual output mode with Record and Display path video data (27MHz)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
1xA4	ENC_ MODE	CCIR_LMT	ENC_VS	ENC_FLD	CCIR_ FLDPOL	ENC_ HSPOL	ENC_ VSPOL	ENC_ FLDPOL		
ENC_N	NODE	0 Slave o	peration mode peration mode operation mode	· ,	der.					
CCIR_I	LMT	 Control the data range of ITU-R BT 656 output. 0 Not limited (default) 1 Data range is limited to 1 ~ 254 code 								
ENC_VS Define the vertical sync detection type.				ection type.						
		0 Detect vertical sync from VSENC pin (default)								
		1 Detect vertical sync from combination of HSENC and FLDEN pins								
ENC_FLD Define the field polarity de			eld polarity det	ection type						
		0 Detect	field polarity fr	om FLDENC pi	n (default)					
		1 Detect	field polarity fr	om combinatio	on of HSENC a	nd VSENC pins				

CCIR_FLDPOL	Cor 0 1	ntrol the field polarity of ITU-R BT 656 output. High for even field (default) High for odd field
ENC_HSPOL	Cor	trol the horizontal sync polarity.
	0	Active low (default)
	1	Active high
ENC_VSPOL	Cor	trol the vertical sync polarity.
	0	Active low (default)
	1	Active high
ENC_FLDPOL	Cor	itrol the field polarity.
	0	Even field is high (default)
	1	Odd field is high

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xA5	ENC_VSOFF				ENC_\	/SDEL		

ENC_VSOFF

Compensate the field offset for first active video line.

- 0 Apply same ENC_VSDEL for odd and even field (default)
- 1 Apply {ENC_VSDEL+1} for odd and ENC_VSDEL for even field
- 2 Apply ENC_VSDEL for odd and {ENC_VSDEL +1} for even field
- 3 Apply ENC_VSDEL for odd and {ENC_VSDEL +2} for even field

ENC_VSDEL Control the line delay of vertical sync from active video by 1 line/step.

- 0 No delayed
 - :

:

- 32 32 line delay (default)
- : :

63 line delay

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xA6	ENC_HSDEL[9:2]							
1xA7	ENC_HSDEL[1:0]		0			ACTIVE_VDEL		

ENC_HSDEL

Control the pixel delay of horizontal sync from active video by 1/2 pixel/step.

- 0 No delayed : :
- 128 64 pixel delay (default)
- : :
- 1023 255 pixel delay

ACTIVE_VDEL

Control the line delay of active video by 1 line/step.

0 - 11 Lines delayed

:

:

:

:

12 0 Line delayed (default)

+ 13 Lines delayed

	-							
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xA8	ACTIVE_MD	CCIR_STD			ACTIVE	_HDEL		
1xA9	ENC.	_FSC	0	0	1	ENC_ PHALT	ENC_ ALTRST	ENC_ PED

ACTIVE_MD	Select the active delay mode for digital BT. 656 output
	0 Control the active delay for both analog encoder and digital output
	(default)
	1 Control the active delay for only analog encoder
CCIR_STD	Select the ITU-R BT656 standard format for 60Hz system.
	0 240 line for odd and even field (default)
	1 244 line for odd and 243 line for even field (ITU-R BT.656 standard)
ACTIVE_HDEL	Control the pixel delay of active video by 1 pixel/step.
	0 - 32 Pixel delay
	: :
	32 0 Pixel delay (default)
	: :
	63 + 31 Pixel delay
ENC_FSC	Set color sub-carrier frequency for video encoder.
	0 3.57954545 MHz (default)
	1 4.43361875 MHz
	2 3.57561149 MHz
	3 3.58205625 MHz
ENC_PHALT	Set the phase alternation.
	0 Disable phase alternation for line-by-line (default)
	1 Enable phase alternation for line-by-line
ENC_ALTRST	Reset the phase alternation every 8 field
	0 No reset mode (default)
	1 Reset the phase alternation every 8 field
ENC_PED	Set 7.5IRE for pedestal level
	0 0 IRE for pedestal level
	1 7.5 IRE for pedestal level (default)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xAA	ENC_CBW_X		ENC_Y	/BW_X	ENC_C	BW_Y	ENC_Y	/BW_Y

ENC_CBW

Control the chrominance bandwidth of video encoder.

- 0 0.8 MHz
- 1 1.15 MHz
- 2 1.35 MHz (default)
- 3 1.35 MHz

ENC_YBW

Control the luminance bandwidth of video encoder.

- 0 Narrow bandwidth
- 1 Narrower bandwidth
- 2 Wide bandwidth (default)
- 3 Middle band width

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1xAB	0	HOUT*	VOUT*	FOUT*	ENC_ BAR_X	ENC_ CKILL_X	ENC_ BAR_Y	ENC_ CKILL_Y

NOTE: "*" STAND FOR READ ONLY REGISTER

HOUT	Status of horizontal sync for encoder timing
VOUT	Status of vertical sync for encoder timing
FOUT	Status of field polarity for encoder timing
ENC_BAR	Enable the test pattern output.
	0 Normal operation (default)
	1 Internal color bar with 100% amplitude 100 % saturation
ENC_CKILL	Enable the color killing function
	0 Normal operation (default)

- 0 Normal operation (default)
- 1 Color is killed

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
1xAC	ENC_CLK_FR_X		ENC_CLK_PH_X		ENC_CLKDEL_X				
1xAD	ENC_CLK_FR_Y		ENC_CLK_PH_Y		ENC_CLKDEL_Y				
1xAE	DEC_CLK_FR_X		DEC_CLK_PH_X		DEC_CLKDEL_X				
1xAF	DEC_CLK_FR_Y		DEC_CL	.K_PH_Y		DEC_CL	.KDEL_Y		

ENC_CLK_FR_X	Control the clock frequency of CLKVDOX pin (default = 1, 27MHz)
ENC_CLK_FR_Y	Control the clock frequency of CLKVDOY pin (default = 1, 27MHz)
DEC_CLK_FR_X	Control the clock frequency of CLKMPP1 pin (default = 2, 27MHz)
DEC_CLK_FR_Y	Control the clock frequency of CLKMPP2 pin (default = 0, 54MHz)
	0 54MHz
	1 27MHz for Memory Controlled Digital Output

	2	27MHz for Decoder Bypassed Digital Output
	_	
	3	13.5MHz for Memory Controlled Digital Output
ENC_CLK_PH_X	Con	trol the clock phase of CLKVDOX pin (default = 0, 0 degree)
ENC_CLK_PH_Y	Con	trol the clock phase of CLKVDOY pin (default = 2, 180 degree)
DEC_CLK_PH_X	Con	trol the clock phase of CLKMPP1 pin (default = 0, 0 degree)
DEC_CLK_PH_Y	Con	trol the clock phase of CLKMPP2 pin (default = 0, 0 degree)
	0	None operation
	1	None operation when clock frequency is not 13.5MHz
		90 degree shift when clock frequency is 13.5MHz
	2	180 degree Phase Inverting
	3	180 degree Phase Inverting when clock frequency is not 13.5MHz
		270 degree shift when clock frequency is 13.5MHz
ENC_CLKDEL_X	Con	trol the clock delay of CLKVDOX pin
ENC_CLKDEL_Y	Con	trol the clock delay of CLKVDOY pin
DEC_CLKDEL_X	Con	trol the clock delay of CLKMPP1 pin
DEC_CLKDEL_Y	Con	trol the clock delay of CLKMPP2 pin

The delay can be controlled by 1ns.

The default value is 0.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
1xB0	0	0	MPP	_MD2	MPP_	MPP_MD1 MPP_MD0				
1xB1		MPPSE	ro_msb			MPPSET0_LSB				
1xB2		MPPDAT	A0_MSB		MPPDATA0_LSB					
1xB3	MPPSET1_MSB				MPPSET1_LSB					
1xB4		MPPDAT	A1_MSB		MPPDATA1_LSB					
1xB5		MPPSET	2_MSB		MPPSET2_LSB					
1xB6	MPPDATA2_MSB					MPPDAT	A2_LSB			

MPP_MD2	Select the MPP2 pin function (default= 0)						
MPP_MD1	Select the MPP1 pin function (default= 0)						
MPP_MD0	Select the DLINKI pin function (default= 0)						
	In cascaded mode, DLINKI pin is reserved for cascaded operation						
	0 Multi purpose output mode 1 (default)						
	1 GPPIO mode						
	2 Multi purpose output mode 2						
MPPSET_MSB	Select the function for MPP [7:4] pins in Multi purpose output Mod 1						
	Select I/O for each bit for MPP [7:4] pins in GPPIO Mode						
	Select the function for MPP [7:4] pins in Multi purpose output Mod 2						
	(default= 0)						
MPPSET_LSB	Select the function for MPP [3:0] pins in Multi purpose output Mod ${\bf 1}$						
	Select I/O for each bit for MPP [3:0] pins in GPPIO Mode						
	Select the function for MPP [3:0] pins in Multi purpose output Mod 2						
	(default= 0)						

The detailed description for each mode is shown in following table

MPPDATA_MSBIn writing mode, the data is for MPP [7:4] in GPPIO modeIn reading mode, the data stands for MPP [7:4] pin status (default= 0)MPPDATA_LSBIn writing mode, the data is for MPP [3:0] in GPPIO modeIn reading mode, the data stands for MPP [3:0] pin status (default= 0)

MPP_MD	MPP_SET	I/0	MPP_DATA	Remark
	0	In	Input Data from Pin	Default
	1		STROBE_DET_C	
	2		CHID_MUX[3:0]	Capture path
	3		CHID_MUX[7:4]	
0	4		MUX_OUT_DET[15:12]	
0	5 - 7	Out	-	Reserved
	8		STROBE_DET_D	Display Path
	9 - 13		-	Reserved
	14		{1'b0, H, V, F}	BT. 656 Sync
	15		{hsync, vsync, field, link}	Analog Encoder Sync
1	0	Out	Write Data to Pin	GPP I/O Mode
1	1	In	Input Data from Pin	
	0		Decoder H Sync	
	1		Decoder V Sync	Bit[3:0] : VIN3 ~ VIN0
	2		Decoder Field Sync	
	3		Decoder Ch 0/1 [7:4]	MSB for Ch 0/1
	4		Decoder Ch 0/1 [3:0]	LSB for Ch 0/1
	5		Decoder Ch 2/3 [7:4]	MSB for Ch 2/3
	6		Decoder Ch 2/3 [3:0]	LSB for Ch 2/3
2	7	Out	-	Reserved
2	8	Out	NOVID_DET_M	
	9		MD_DET_M	For VINA
	10		BD_DET_M	$(ANA_SW = 0)$
	11		ND_DET_M	
	12		NOVID_DET_S	
	13		MD_DET_S	For VINB
ľ	14		BD_DET_S	$(ANA_SW = 1)$
	15		ND_DET_S	

TW2837

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
1xB7		00							
1xB8		00							
1xB9				C	0				
1xBA		00							
1xBB				0	0				
1xBC				C	0				
1xBD		00							
1xBE	00								
1xBF		00							

This is reserved register. For normal operation, the above value should be set in this register.

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
2x00		OSD_BUF_DATA[31:24]							
2x01		OSD_BUF_DATA[23:16]							
2x02	OSD_BUF_DATA[15:8]								
2x03				OSD_BUF_	_DATA[7:0]				
2x04	OSD_BUF_ OSD_BUF_ 0 OSD_BUF_ADDR								

Define the writing data of OSD buffer (Internal Buffer Size = 32Bit x 16) in normal single writing mode							
Define the OSD acceleration data in acceleration downloading mode							
(default = 0)							
[31:24] is left top font from 4 OSD dot in display path							
[31:28] is left top font from 8 OSD dot in capture path							
Read mode depends on OSD_BUF_RD							
0 Read the buffer data with OSD_BUF_ADDR (default)							
1 Read the OSD acceleration downloading data							
Request to write the OSD internal buffer							
This bit is cleared automatically after downloading is finished							
0 Disable the writing or Writing is finished (default)							
1 Enable the writing							
Select the OSD internal buffer address to read/write							
0 0 internal buffer address (default)							
: :							
15 15 internal buffer address							

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
2x05		OSD_START_HPOS							
2x06		OSD_END_HPOS							
2x07		OSD_START_VPOS[7:0]							
2x08		OSD_END_VPOS[7:0]							
2x09		OSD_START_VPOS[9:8] OSD_END_VPOS[9:8]							

OSD_START_HPOS Define the horizontal starting position in normal single writing mode Define the horizontal starting position in acceleration downloading mode For display path, 4 pixel per unit 0 1 pixel (default) : : 179 716 pixel For record path, 8 pixel per unit 0 1 pixel : 89 712 pixel OSD_END_HPOS Define the horizontal end position in acceleration wiring mode (default = 0) Same unit as the OSD_START_HPOS OSD_START_VPOS Define the vertical starting position in normal single writing mode Define the vertical starting position in acceleration downloading mode Bit [9] stands for writing field Odd field (default) 0 1 Even field Bit [8:0] stands for writing line number 0 1 Line (default) : 239 240 Line for 60Hz system : 288 Line for 50Hz system

OSD_END_VPOS Define the vertical end position in acceleration downloading mode (default = 0) The unit is same as the OSD_START_VPOS

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x09		OSD_B	L_SIZE					
2x0A	OSD_MEM_ WR	OSD_ACC_ EN	OSD_MEM_ PATH		OSD_PAGE_D		0	INDEX_RD_ MD

OSD_BL_SIZE Define the buffer downloading size in normal single writing mode

TW283	37										
		0	32 Bit X 1	(default)							
		:	:								
		15	32 Bit X 1	6							
OSD_N	MEM_WR	Ena	ble to write	the OSD into	memory.						
		This	This bit is cleared automatically after downloading is finished								
		0	Disable th	e writing or W	Vriting is finishe	d (default)					
		1	Enable the	e writing							
OSD_A	D_ACC_EN Select the OSD writing mode										
		0	Normal single writing mode using internal buffer (default)								
		1	Accelerat	on downloadi	ing mode						
OSD_N	MEM_PATH	Sele	ect the OSD	writing Path							
		0	Display path (default)								
		1	Record pa	th							
OSD V	WR_PAGE	Sele	ect OSD writ	ing page for c	display path						
_	-	0	Page = 0								
		:	:	. ,							
		5	Page = 5								
		6/7	Not allow	ed							
Index	[7]		[6]	[5]	[4]	[3]	[2]	[1]	[0]		
2x0B					OSD_IND						
2x0C					OSD_INDE	_					
2x0D 2x0E	OSD_INDEX				OSD_INDE	X_CR SD_INDEX_ADDF	2				
ZAUL	_WR				0.		`				

OSD_INDEX_Y	Ү со	f component for Color Look-Up Table (default = 0)					
OSD_INDEX_CB	Cb c	omponent for Color Look-Up Table (default = 0)					
OSD_INDEX_CR	Cr c	omponent for Color Look-Up Table (default = 0)					
OSD_INDEX_WR	Req	uest to write the Color Look-Up Table					
	This	register is cleared automatically after downloading is finished					
	0	Disable the writing or Writing is finished (default)					
	1	Enable the Writing					
OSD_INDEX_ADDR	Defi	ne the OSD index address for Color Look-Up Table					
	0	0 index of LUT for display path (default)					
	:	:					
	63	63 index of LUT for display path					
	64	0 index of LUT for capture path					
	:	:					
	67	3 index of LUT for capture path					
	68-	Not allowed					

TW2837

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x0F	0		OSD_RD_PAGE_X	(OSD_I	FLD_X	OSD_F	LD_Y
OSD_F	RD_PAGE_X	Select the OSD reading page for display path 0 Page = 0 (default)						
Page =	= 5	: : 6/7 Not allowed						
OSD_F	LD	Enable the bitmap overlay 0 Disable the bitmap overlay (default)						
		1 Enable the bitmap overlay with even field display RAM						
		 2 Enable the bitmap overlay with odd field display RAM 3 Enable the bitmap overlay with both odd and even field display RAM 						

2x10 CUR_ON_Y CUR_TYPE CUR_BINK 0 CUR_HP[0] CUR_VP[0] 2x11	Index	[7]]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x11 CUR_HP[8:1] 2x12 CUR_VP[8:1] CUR_ON Enable the mouse pointer. 0 Disable mouse pointer (default) 1 Enable the mouse pointer (default) 1 Enable mouse pointer (default) 1 Enable mouse pointer (default) 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable position (default) : : : : : : : : : :	2x10							0	CUR HPIOI	CUR VP[0]
2x12 CUR_VP[8:1] CUR_ON Enable the mouse pointer. 0 Disable mouse pointer (default) 1 Enable mouse pointer CUR_TYPE Select the mouse type 0 Small mouse pointer (default) 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : : : : : : : : : : : : : : : : : : : : :		ON_X	0	N_Y	TYPE			-	001.7.1.[0]	00.1211 [0]
CUR_ON Enable the mouse pointer. 0 Disable mouse pointer (default) 1 Enable mouse pointer CUR_TYPE Select the mouse type 0 Small mouse pointer (default) 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :										
0 Disable mouse pointer (default) 1 Enable mouse pointer CUR_TYPE Select the mouse type 0 Small mouse pointer (default) 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 2 : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : : : :										
1 Enable mouse pointer CUR_TYPE Select the mouse type 0 Small mouse pointer (default) 1 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 2 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 2 Enable blink of mouse pointer. 0 Disable blink (default) 1 3 Enable blink (default) 1 Enable blink (default) 1 4 Enable blink (default) 1 Enable blink (default) 1 5 Second period CUR_HP Control the horizontal location of mouse pointer. 0 0 O Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 O Line position (default) : : :	COR_C)N								
CUR_TYPE Select the mouse type 0 Small mouse pointer (default) 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : : :										
0 Small mouse pointer (default) 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 2 : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : : : :			1	Enable i	mouse pointer					
0 Small mouse pointer (default) 1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 2 : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : : : :			Calaa							
1 Large mouse pointer CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink of mouse pointer. O 0 Disable blink (default) 1 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 O Pixel position (default) : : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 O Line position (default) : : :	COR_I	TPE				(-1 - 614)				
CUR_SUB Control inside style of mouse pointer. 0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :					-	(default)				
0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 1 Enable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :			1	Large m	iouse pointer					
0 Transparent (default) 1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 1 Enable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :		UB	Contr	ol inside	style of mous	e nointer				
1 Filled with white color CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : : : : : : : : :		.00								
CUR_BLINK Enable blink of mouse pointer. 0 Disable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :					. ,					
0 Disable blink (default) 1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :			-	i incu wi						
1 Enable blink with 0.5 second period CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : : : : : : : : : : : : : : : : : : : : :	CUR_E	BLINK	Enab	le blink (of mouse poin	ter.				
CUR_HP Control the horizontal location of mouse pointer. 0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : : : :			0	Disable	blink (default)					
0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :			1	Enable I	blink with 0.5	second period				
0 0 Pixel position (default) : : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :										
: : 360 720 Pixel position CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :	CUR_H	IP	Contr	rol the he	orizontal locat	ion of mouse p	ointer.			
CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :			0	0 Pixel p	position (defau	ılt)				
CUR_VP Control the vertical location of mouse pointer. 0 0 Line position (default) : :			:	:						
0 0 Line position (default) : :			360	720 Pix	el position					
0 0 Line position (default) : :		VP Control the vertical location of mouse pointer								
: :		1								
288 Line position										
				288 Lin	e position					

....

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x13				CLUT	Г0_Ү			
2x14				CLUT	0_СВ			
2x15				CLUT	0_CR			
2x16				CLUT	Г1_Y			
2x17		CLUT1_CB						
2x18				CLUT	1_CR			
2x19				CLUT	T2_Y			
2x1A				CLUT	2_CB			
2x1B				CLUT	2_CR			
2x1C	CLUT3_Y							
2x1D	CLUT3_CB							
2x1E				CLUT	3_CR			

CLUTO_Y	Y component for user defined color 0 (default = D2h)
CLUTO_CB	Cb component for user defined color 0 (default = 10h)
CLUT0_CR	Cr component for user defined color 0 (default = 92h)
CLUT1_Y	Y component for user defined color 1 (default = 91h)
CLUT1_CB	Cb component for user defined color 1 (default = 36h)
CLUT1_CR	Cr component for user defined color 1 (default = 22h)
CLUT2_Y	Y component for user defined color 2 (default = 6Ah)
CLUT2_CB	Cb component for user defined color 2 (default = CAh)
CLUT2_CR	Cr component for user defined color 2 (default = DEh)
CLUT3_Y	Y component for user defined color 3 (default = 51h)
CLUT3_CB	Cb component for user defined color 3 (default = 5Ah)
CLUT3_CR	Cr component for user defined color 3 (default = F0h)

Index	[7]		[6]	[5]	[4]	[3]	[2]	[1]	[0]			
2x1F	TBLIN	K_OSD		ALPHA	A_OSD	ALPHA_	2DBOX	ALPH	A_BOX			
TBLINK	(_OSD	Sele	ect the bli	ink time for bi	itmap overlay							
	-	0	0.25 sec (default)									
		1	0.5 sec									
		2	1 sec									
		3	2 sec									
ALPHA	_OSD	Sele	ect the al	pha blending	mode for bitm	ap overlay						
		0	50% (d	efault)								
		1	50%									
		2	75%									
		3	25%									
	05507	•										
ALPHA	_2DBOX				mode for 2D a	arrayed Box						
		0	50% (d	efault)								
		1	50%									

- 2 75%
- 3 25%

ALPHA_BOX

Select the alpha blending mode for Single Box

- 0 50% (default)
- 1 50%
- 2 75%
- 3 25%

Box	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BO	2x20		BOX_BND_COL		BOX_	BOX_	BOX_		BOX_
B1	2x26							BOX_	
B2	2x2C	B07_B			BNDEN_Y	PLNEN_Y	PLNMIX_X	BNDEN_X	PLNEN_X
B3	2x32								

BOX_BND_COL	Defi	ne the box boundary color for each box
	0	0% White (Default)
	1	25% White
	2	50% White
	3	75% White
BOX_PLNMIX_Y	Enal	ble the alpha blending for box plane area in record path
	0	No alpha blending (Default)
	1	Enable alpha blending
BOX_BNDEN_Y	Enal	ble the box boundary in record path
	0	Disable (Default)
	1	Enable
BOX_PLNEN_Y	Enal	ble the box plane area in record path
	0	Disable (Default)
	1	Enable
BOX_PLNMIX_X	Enal	ble the alpha blending of box plane area in display path
	0	No alpha blending (Default)
	1	Enable alpha blending
BOX_BNDEN_X	Enal	ble the box boundary in display path
	0	Disable (Default)
	1	Enable
BOX_PLNEN_X	Enal	ble the box plane area in display path
	0	Disable (Default)
	1	Enable

TW2837

Box	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BO	2x21								
B1	2x27		BOX_P						
B2	2x2D		BOX_P	LINCOL					
B3	2x33								

BOX_PLNCOL

Define the box plane color for each box

- 0 White (75% Amplitude 100% Saturation) (default)
- 1 Yellow (75% Amplitude 100% Saturation)
- 2 Cyan (75 % Amplitude 100 Saturation)
- 3 Green (75% Amplitude 100% Saturation)
- 4 Magenta (75% Amplitude 100% Saturation)
- 5 Red (75% Amplitude 100% Saturation)
- 6 Blue (75% Amplitude 100% Saturation)
- 7 0% Black
- 8 100% White
- 9 50% Gray
- 10 25% Gray
- 11 Blue (75% Amplitude 75% Saturation)
- 12 Defined by CLUT0
- 13 Defined by CLUT1
- 14 Defined by CLUT2
- 15 Defined by CLUT3

Box	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
BO	2x21		-		-			-		
B1	2x27					BOXHL[0]				
B2	2x2D					BOXHLUJ				
B3	2x33									
BO	2x22									
B1	2x28				BOXH	1 [9-1]				
B2	2x2E		BOXHL[8:1]							
B3	2x34									

BOX_HL

Define the horizontal left location of box.

0 Left end (default)

:

:

		ļ	Right end						
Box	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BO	2x21				-	-			
B1	2x27						BOXHW[0]		
B2	2x2D						BOXINV[0]		
B3	2x33								
BO	2x23								
B1	2x29				BOXH	M/[Q-1]			
B2	2x2F				ВОЛП	w[0.1]			
B3	2x35								

BOX_HW

Define the horizontal size of box.

0 Pixel width (default) 0

> : 720 Pixels width

:

Box	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
BO	2x21		-		-	-	-		
B1	2x27							BOXITIO	
B2	2x2D							BOXVT[0]	
B3	2x33								
BO	2x24								
B1	2x2A				POVV	T(0.41			
B2	2x30				BUAV	T[8:1]			
B3	2x36								

BOX_VT

Define the vertical top location of box.

- 0 Vertical top (default)
 - :

:

:

Vertical bottom

Box	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
B0	2x21										
B1	2x27								BOX////OI		
B2	2x2D								BOXVW[0]		
B3	2x33										
B0	2x25										
B1	2x2B				BOXV	M/[Q-1]					
B2	2x31	1	BOXVW[8:1]								
B3	2x37										

BOX_VW

Define the vertical size of box.

0 0 Lines height (default)

> : 288 Lines height

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x38	0		0		OSD_OV	′L_MD_D	OSD_OV	L_MD_C

OSD_OVL_MD

Control the OSD overlay mode for each path

- 0 No overlay (default)
- 1 Enable overlay with high priority
- 2 Enable overlay with low priority
- 3 Enable overlay with no priority

[0]

		1						
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x40	OSD_NEWTABLE	0	0	0	C	SD_INDEX_SEL		OSD_EXTOP_EN
OSD_NE	- WTABLE Enal 0 1	ble new color ta Use the TW28 Use the TW28 the target tak No table selec Reserved Reserved Select 256 col	35 tables (6 37 tables (2 ble used by i ted (default)	4-color table 56-color tab ndirect acce	and 4 color e for display le for displa	for capture) and 4-color ta	-	ıre) (default)
 3 Select 256 color look up table 4 Select 4 color look up table OSD_EXTOP_EN Extended OSD feature enable. 0 New OSD acceleration features are not turned on. The OSD function is the same as TW2835. (default) 1 Enable new OSD acceleration features such as block write, block fill, block move, and 256 color tables read/write. 								
Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x41	OSD_IN_IDLE	OSD_WRSTALL	0	0	0	0	OS	D_OPMODE

OSD_IN_IDLE	 Once the MCU set the OSD_OPSTART at 2x4F to start a block move, block fill, or bitmap write, OSD_IN_IDLE becomes 0. Before the operation is completed, the MCU should not issue another operation. When the operation is completed, OSD_IN_IDLE bit will be set to 1. 0 OSD is performing block/bitmap operation. (default) 1 OSD is not performing any block/bitmap operation.
OSD_WRSTALL	 For bitmap write, TW2837 provides an internal buffer of 64 bytes to burst write into the SDRAM. After each burst write (64 bytes or less than 64 bytes at the end of a line), the MCU checks this busy wait flag to decide whether to write the next burst. 0 The internal data buffer is available for the next write. (default) 1 The internal data buffer is not available for the next burst write.
OSD_OPMODE	OSD Operation Mode 0 No Operation (default) 1 Perform Bitmap Write 2 Perform Block Fill 3 Perform Block Move

D_START_VSRC Vertical starting line for block move opera (default = 0h) 742 Rev. 1.00 [0]

j	[7]	[6]	[5]	[4]	[3]	[2]	[1]						
	OSD_FILL_COLOR												

OSD_FILL_COLOR The pixel data used for OSD block fill operation (default = 18h)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x46	0	0	0	0	0	OSD_AUTOINC_DIS	OSD_INDR_RD_EN	OSD_INDR_WR_EN

OSD_INDR_WR_EN Indirect Write Enable to write 256 color or 4 color tables. The table selection is set by OSD_INDEX_SEL in 2x40. This bit will be self cleared after set.

- 0 No Operation
- 1 Enable indirect write

OSD_INDR_RD_EN Indirect Read Enable to read 256 color or 4 color tables. The table selection is set by OSD_INDEX_SEL in 2x40. This bit will be self cleared after set.

- 0 No Operation
- 1 Enable indirect read

OSD_AUTOINC_DIS Disable address auto-increment after each indirect access.

- 0 Enable address auto-increment (default)
- **1** Disable address auto-increment

Ind	ex	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x4	47				OSD_IND	R_ADDR			

OSD_INDR_ADDR Address used in OSD indirect access (default = 00h)

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]			
2x48		OSD_INDR_DATA[7:0]									
2x49		OSD_INDR_DATA[15:8]									
2x4A				OSD_INDR_I	DATA[23:16]						
2x4B		OSD_INDR_ATRB[1:0]									

OSD_INDR_DATA Data used to write into the OSD table (default = 0h) OSD_INDR_ATRB Data written into the 256 color look up table (default = 0h) Bit 1: Alpha Mix Bit 0: Blink

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
2x4C		OSD_START_HSRC[7:0]								
2x4D				OSD_START	_VSRC[15:8]					
2x4E	OSD_START	OSD_START_HPOS[9:8] OSD_END_HPOS[9:8] OSD_START_VSRC[9:8] OSD_START_HSRC[9:8]								

OSD_START_HSRC	Horizontal starting pixel for block move operation source window
	(default = 0h)
OSD_START_VSRC	Vertical starting line for block move operation source window
	(default = 0h)

Index

2x43

OSD_START_HPOS	Horizontal starting pixel for block move operation destination window (default = 0h) Lower
	8 bits are at 2x05
OSD_END_HPOS	Horizontal ending pixel for block move operation destination window (default = 0h) Lower
	8 bits are at 2x06

Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2x4F	0	0	0	0	0	OSD_DSTLOC	OSD_SRCLOC	OSD_OPSTART

OSD_OPSTART Start OSD operation such as block move, block fill, and bitmap write. This bit will be self cleared after the operation is done

- 0 No Operation (default)
- 1 Enable the block operations

OSD_SRCLOC Source location for the block move operations

- 0 Scratch buffer (default)
- 1 Display/Record OSD buffers

OSD_DSTLOC Destination location for the bit map write/block fill/block move operations.

- 0 Scratch buffer (default)
- 1 Display/Record OSD buffers

2DBox	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
2DB0	2x5B									
2DB1	2x5C		МОЛО	EA COL		DETAREA COL				
2DB2	2x5D		WIDARI			DETAILE_COL				
2DB3	2x5E									
2x5	2x5F MDBND3_COL		MDBNI	DBND2_COL MDBND1_COL			MDBN	D0_COL		

MDAREA_COL DETAREA_COL Define the color of Mask plane in 2D arrayed box. (default = 0)

Define the color of Detection plane in 2D arrayed box. (default = 0)

- 0 White (75% Amplitude 100% Saturation)
- 1 Yellow (75% Amplitude 100% Saturation)
- 2 Cyan (75 % Amplitude 100 Saturation)
- 3 Green (75% Amplitude 100% Saturation)
- 4 Magenta (75% Amplitude 100% Saturation)
- 5 Red (75% Amplitude 100% Saturation)
- 6 Blue (75% Amplitude 100% Saturation)
- 7 0% Black
- 8 100% White
- 9 50% Gray
- 10 25% Gray
- 11 Blue (75% Amplitude 75% Saturation)
- 12 Defined by CLUT0
- 13 Defined by CLUT1
- 14 Defined by CLUT2
- 15 Defined by CLUT3

MDBND_COL

Define the color of 2D arrayed box boundary

- 0 0 % Black (default)
- 1 25% Gray
- 2 50% Gray
- 3 75% White

Define the displayed color for cursor cell and motion-detected region

- 0,1 75% White (default)
- 2,3 0% Black

2Dbox	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2DB0	2x60								
2DB1	2x68	2DBOX	2DBOX	2DBOX	2DBOX_	2DBOX		2DBOX_IN_SEL	
2DB2	2x70	_EN_X	_EN_Y	_MODE	CUREN	_MIX		20BOX_IN_SEL	
2DB3	2x78								

2DBOX_	EN	Ena	able	the 2Dbox						
		0	Di	isable the 2D	box (default))				
		1	Er	nable the 2D	box					
2DBOX_	_MODE	Det	fine	the operation	mode of 2D	arrayed box.				
		0	Та	able mode (de	efault)					
		1	Μ	otion display	mode					
2DBOX_	_CUREN	Ena	able	the cursor ce	ll inside 2D a	rrayed box.				
		0	Di	isable the cur	sor cell (defa	ult)				
		1	Er	nable the curs	sor cell					
2DBOX_	_MIX	Ena	able	the alpha ble	nding for 2D	arrayed box p	plane with vid	eo data.		
		0	Di	isable the alp	ha blending ((default)				
		1	Er	nable the alpl	na blending v	vith ALPHA_2	DBOX setting	(2x03)		
2DBOX_	IN_SEL	Sel	ect 1	the input for N	/lask / Detec	tion data of 2	D Box.			
		0	Μ	ask and Dete	ction Data fo	or VIN 0 and A	NA_SW = 0 (default)		
		1	Μ	ask and Dete	ction Data fo	or VIN1 and AN	$NA_SW = 0$			
		2	Μ	ask and Dete	ction Data fo	or VIN 2 and A	NA_SW = 0			
		3	Μ	ask and Dete	ction Data fo	or VIN 3 and A	NA_SW = 0			
		4	Μ	ask and Dete	ction Data fo	or VIN 0 and A	NA_SW = 1			
		5	Μ	ask and Dete	ction Data fo	or VIN1 and AN	NA_SW = 1			
		6	Μ	ask and Dete	ction Data fo	or VIN 2 and A	NA_SW = 1			
		7	Μ	ask and Dete	ction Data fo	or VIN 3 and A	NA_SW = 1			
2Dbox	Index	[7]		[6]	[5]	[4]	[3]	[2]	[1]	[0]

2DB0	2x61							
2DB1	2x69	2DBOX_	2DBOX_	2DBOX_	2DBOX_	2DBOX_	0	
2DB2	2x71	HINV	VINV	MSKEN	DETEN	BNDEN	U U	
2DB3	2x79							
2DBOX	_HINV	Enable	the horizonta	I mirroring fo	or 2D arrayed	box.		
		0 N	ormal operati	ion (default)				
		1 E	nable the hori	izontal mirror	ring			
2DBOX	VINV	Enable	the vertical n	nirroring for 2	2D arrayed bo	х.		
		0 N	ormal operati	ion (default)				
		1 E	nable the vert	ical mirroring	ž			
					-			
2DBOX	_DETEN	Enable	the detection	plane of 2D	arrayed box.			
		When 2	2DBOX_MODI	E = "O"				
		0 D	isable the det	ection plane	of 2D arrayed	l box (default)	
					of 2D arrayed			
					-			
		When 2	2DBOX_MODI	E = "1"				
		0 D	isplay the mo	tion detectio	n result with i	nner boundai	y	
					n result with p		-	
2DBOX	_MSKEN	Enable	the mask pla	ine of 2D arra	ayed box.			
		0 D	isable the ma	isk plane of 2	2D arrayed bo	x (default)		
				-	D arrayed box			
					.,			
2DBOX	_BNDEN	Enable	the boundary	of 2D arraye	ed box.			
-	_		isable the bo	-				
			nable the bou		,			
		± L						

2Dbox	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2DB0	2x61		-	-	-	-	-		
2DB1	2x69							2DBOX_	
2DB2	2x71							HL[O]	
2DB3	2x79								
2DB0	2x62								
2DB1	2x6A				2DBOX_	UI (Q·1)			
2DB2	2x72				20001				
2DB3	2x7A								

2DBOX_HL

Define the horizontal left location of 2D arrayed box.

0 Horizontal left end (default)

:

:

Horizontal right end

2Dbox Index [7] [6] [5] [4] [3] [2] [1] [0]									
	2Dbox	Index	[7]	[6]		13	[2]	[1]	[0]

2DB0	2x63	2DB0X_HW					
2DB1	2x6B						
2DB2	2x73	2DBOA_HW					
2DB3	2x7B						

2DBOX_HW

Define the horizontal size of 2D arrayed box.

- 0 0 Pixel width (default)
 - :

:

510 Pixels width

2Dbox	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
2DB0	2x61		-	-	-	-	-	-			
2DB1	2x69								2DBOX_		
2DB2	2x71								VT[0]		
2DB3	2x79										
2DB0	2x64										
2DB1	2x6C										
2DB2	2x74		2DB0X_VT[8:1]								
2DB3	2x7C										
2DBOX_	VT	Define	Define the vertical top location of 2D arrayed box.								
		0 Ve	ertical top end	d (default)							

240 Vertical bottom end for 60Hz system

:

:

:

:

0

:

Vertical bottom end for 50Hz system

2Dbox	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
2DB0	2x65		-		-	-	-				
2DB1	2x6D										
2DB2	2x75		2DBOX_VW								
2DB3	2x7D										

2DBOX_VW

Define the vertical size of 2D arrayed box.

O Line height (default)

:

255 Line height

2Dbox	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
2DB0	2x66		-	-	-					
2DB1	2x6E		20802	HNUM		2DBOX_VNUM				
2DB2	2x76		20804							
2DB3	2x7E									

2DBOX_HNUM

Define the column number of 2D arrayed box.

For motion display mode, 15d is recommended and default.

0 1 Column

:

:

16 Columns (default)

2DBOX_VNUM Define the row number of 2D arrayed box.

For motion display mode, 11d is recommended and default.

- 0 1 Row
 - :

:

:

:

:

- 11 12 Row (default)
 - :
 - 16 Rows

2Dbox	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
2DB0	2x67		-	-	-	2DBOX_CURVP			
2DB1	2x6F		20805	CURHP					
2DB2	2x77		20807	_CORHF					
2DB3	2x7F								

2DBOX_CURHP

Define the horizontal location of cursor cell within 2DBOX_HNUM.

- 0 1st Column (default)
 - : 16th Column

2DBOX_CURVP

- Define the vertical location of cursor cell within 2DBOX_VNUM. 0 1st Row (default)
 - :

16th Row

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	2x80									
1	2xA0	MD_DIS	MD _REFFLD	BD_CELSENS		BD_LVSENS				
2	2xC0									
3	2xE0									
0	2x81									
1	2xA1					ND_TMPSENS				
2	2xC1		ND_LVSENS			ND_IMPSENS				
3	2xE1									

MD_DIS	Disable the motion and blind detection.
	0 Enable motion and blind detection (default)
	1 Disable motion and blind detection
MD_REFFLD	Control the updating time of reference field for motion detection.
	0 Update reference field every field (default)
	1 Update reference field according to MD_SPEED
BD_CELSENS	Define the threshold of cell for blind detection.
	0 Low threshold (More sensitive) (default)

	:	:
	3	High threshold (Less sensitive)
BD_LVSENS	Defi	ne the threshold of level for blind detection.
	0	Low threshold (More sensitive) (default)
	:	:
	15	High threshold (Less sensitive)
ND_LVSENS	Defi	ne the threshold of level for night detection.
	0	Low threshold (More sensitive) (default)
	:	:
	3	High threshold (Less sensitive)
ND_TMPSENS	Defi	ne the threshold of temporal sensitivity for night detection.
	0	Low threshold (More sensitive) (default)
	:	:
		High threshold (Less sensitive)

TW2837

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0	2x82	MD_MASK_ RD_MD		MD_FLD						
1	2xA2					MD_ALGIN				
2	2xC2									
3	2xE2									
0	2x83									
1	2xA3		LSENS	MD_DUAL	MD_LVSENS					
2	2xC3			_EN						
3	2xE3									

MD_MASK_RD_MD	Select the read mode of MD_MASK register							
	0	Read motion detection information when ANA_SW = 0 (default)						
	1	Read motion detection information when ANA_SW = 1						
	2/3	Read the mask information						
MD_FLD	Select the field for motion detection.							
	0	Detecting motion for only odd field (default)						
	1	Detecting motion for only even field						
	2	Detecting motion for any field						
	3	Detecting motion for both odd and even field						
MD_ALGIN	Adjust the horizontal starting position for motion detection.							
	0	0 pixel (default)						
	:	:						
	15	15 pixels						
MD_CELSENS	Define the threshold of sub-cell number for motion detection.							
	0	Motion is detected if 1 sub-cell has motion (More sensitive) (default)						
	1	Motion is detected if 2 sub-cells have motion						
	2	Motion is detected if 3 sub-cells have motion						
	3	Motion is detected if 4 sub-cells have motion (Less sensitive)						
MD_DUAL_EN	Enak	ble the non-realtime motion detection mode						
WD_DOAL_EN	0	Normal 4 channel motion detection mode (default)						
	1							
	Ŧ	8 channel detection mode for non-realtime application						
MD_LVSENS	Cont	rol the level sensitivity of motion detector.						
	0	More sensitive (default)						
	:	:						
		Less sensitive						

TW2837

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	2x84										
1	2xA4	MD_				MD_SPEED					
2	2xC4	STRB_EN	MD_STRB			WD_3	FEED				
3	2xE4										
0	2x85										
1	2xA5		MD_TM	IPSENS			MD_S	PSENS			
2	2xC5 2xE5										
MD_S	STRB_EN	Selec	t the trigger n	node of motic	on detection						
0 Automatic trigger mode of motion de						tion (default)					
		1			notion detectio						
MD_S	STRB	Requ	lest to start m	otion detectio	on on manual	trigger mode					
		0	None Operati	on (default)							
		1	Request to st	art motion de	etection						
MD_S	SPEED	Cont	rol the velocity	of motion de	etector.						
		Large	e value is suita	able for slow r	notion detect	ion.					
		In MI	D_DUAL_EN =	1, MD_SPEE	D should be lin	nited to 0 ~ 3	31.				
		0	1 field interva	lls (default)							
		1	2 field interva	ls							
		:	:								
		61	62 field interv	/als							
		62	63 field interv	/als							
		63	Not supported	d							
MD_T	MPSENS	Cont	rol the tempor	al sensitivity	of motion det	ector.					
		0	More Sensitiv	e (default)							
		:	:								
		15	Less Sensitive	e							
MD_S	SPSENS	Cont	rol the spatial	sensitivity of	motion detect	or.					
		0	More Sensitiv	e (default)							
: :											
		15	Less Sensitive	e							

Davis		Inc	lex				Motior	n Detection M	Mask Control	for VIN		
Row	VINO	VIN1	VIN2	VIN3	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
1	2x86	2xA6	2xC6	2xE6		-			-			_
2	2x88	2xA8	2xC8	2xE8								
3	2x8A	2xAA	2xCA	2xEA								
4	2x8C	2xAC	2xCC	2xEC								
5	2x8E	2xAE	2xCE	2xEE								
6	2x90	2xB0	2xD0	2xF0		MD_MASK[15:8]						
7	2x92	2xB2	2xD2	2xF2								
8	2x94	2xB4	2xD4	2xF4								
9	2x96	2xB6	2xD6	2xF6								
10	2x98	2xB8	2xD8	2xF8								
11	2x9A	2xBA	2xDA	2xFA								
12	2x9C	2xBC	2xDC	2xFC								
1	2x87	2xA7	2xC7	2xE7								
2	2x89	2xA9	2xC9	2xE9								
3	2x8B	2xAB	2xCB	2xEB								
4	2x8D	2xAD	2xCD	2xED								
5	2x8F	2xAF	2xCF	2xEF								
6	2x91	2xB1	2xD1	2xF1					ASK[7:0]			
7	2x93	2xB3	2xD3	2xF3								
8	2x95	2xB5	2xD5	2xF5								
9	2x97	2xB7	2xD7	2xF7								
10	2x99	2xB9	2xD9	2xF9								
11	2x9B	2xBB	2xDB	2xFB								
12	2x9D	2xBD	2xDD	2xFD								

MD_MASK

Define the motion Mask/Detection cell for VIN

MD_MASK[15] is right end and MD_MASK[0] is left end of column.

In writing mode

- 0 Non-masking cell for motion detection (default)
- 1 Masking cell for motion detection

In reading mode when MASK_MODE = "0"

- 0 Motion is not detected for cell
- 1 Motion is detected for cell

In reading mode when MASK_MODE = "1"

- 0 Non-masked cell
- 1 Masked cell

TW2837

VIN	Index	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
0	2x9E										
1	2xBE		DET_RESULT_S*				DET_RESULT_M*				
2	2xDE										
3	2xFE										

NOTE: **** ** STAND FOR READ ONLY REGISTER**

- DET_RESULT_S Detection result for Video Input with ANA_SW = 1
- DET_RESULT_M Detection result for Video Input with ANA_SW = 0
 - Bit[3] stand for video loss detection result
 - Bit[2] stand for motion detection result
 - Bit[1] stand for blind detection result
 - Bit[0] stand for night detection result
 - 0 Video Enable / No Motion / No Blind / Day
 - 1 Video Loss/ Motion / Blind / Night

Parametric Information

DC Electrical Parameters

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS
VDDADC (Measured to VSSADC)	VDD _{ADCM}	-0.5		2.3	V
VDDDAC (Measured to VSSDAC)	VDD _{DACM}	-0.5		2.3	V
VDDI (Measured to VSSI)	VDDIM	-0.5		2.3	V
VDDO (Measured to VSSO)	VDD _{OM}	-0.5		4.5	V
Voltage on Any Digital Data Pin (See the note below)	-	-0.5		4.5	v
Analog Input Voltage for ADC		-0.5		2.0	V
Storage Temperature	Ts	-65		150	°C
Junction Temperature	ΤJ	0		125	°C
Reflow Soldering (10-30 Seconds)	T _{Peak}	255	255	260	°C

TABLE 15. ABSOLUTE MAXIMUM RATINGS

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNITS
VDDADC (Measured to VSSADC)	VDDADC	1.62	1.8	1.98	V
VDDDAC (Measured to VSSDAC)	VDD _{DAC}	1.62	1.8	1.98	V
VDDI (Measured to VSSI)	VDD	1.62	1.8	1.98	v
VDDO (Measured to VSSO)	VDD ₀	3.0	3.3	3.6	v
Analog VIN Amplitude Range (AC Coupling Required)	VIN _R	0	0.5	1.0	v
Analog AIN Amplitude Range (AC Coupling Required)	AIN _R	0	0.5	1.0	v
Ambient Operating Temperature	T _A	-40		85	°C

TABLE 16. RECOMMENDED OPERATING CONDITIONS

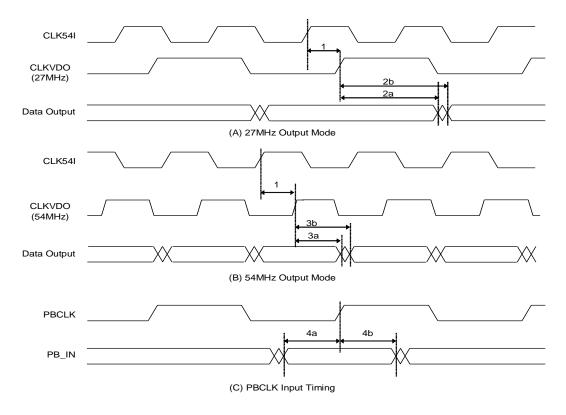
MIN MAX TYP UNITS PARAMETER SYMBOL (NOTE 2) (NOTE 2) **DIGITAL INPUTS** Input High Voltage (TTL) νн V 2.0 5.5 Input Low Voltage (TTL) VIL -0.3 0.8 V Input Leakage Current (@V₁ = 2.5V or 0V) IL. \pm 10 μΑ рF **Input Capacitance** CIN 6 **DIGITAL OUTPUTS** ۷ **Output High Voltage** Vон 2.4 ۷ V_{OL} **Output Low Voltage** 0.4 High Level Output Current (@VoH = 2.4V) 21.2 Іон 6.3 12.8 mA Low Level Output Current (@VoL = 0.4V) 7.4 lог 4.9 9.8 mA Tri-state Output Leakage Current μA loz \pm 10 $(@V_0 = 2.5V \text{ or } 0V)$ **Output Capacitance** Co 6 pF **Analog Pin Input Capacitance** 6 CA pF

TABLE 17. DC CHARACTERISTICS

TABLE 18. SUPPLY CURRENT AND POWER DISSIPATION

PARAMETER	SYMBOL	MIN (NOTE 2)	ТҮР	MAX (NOTE 2)	UNITS
Analog Supply Current (1.8V)	I _{DDA}		150	165	mA
Digital Internal Supply Current (1.8V)	IDDI		460	505	mA
Digital I/O Supply Current (3.3V)	I _{DDO}		25	27	mA
Total Power Dissipation	Pd		1.18	1.29	W

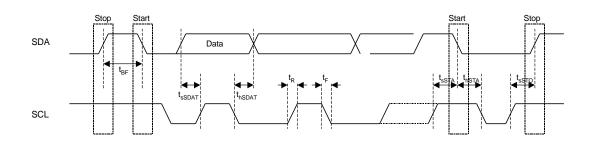
AC Electrical Parameters


TABLE 19. CLOCK TIMING PARAMETERS

PARAMETER	SYMBOL	MIN (NOTE 2)	ТҮР	MAX (NOTE 2)	UNITS
Delay from CLK54I to CLKVDO	1	4.7		12.5	ns
Hold from CLKVDO (27MHz) to Data	2a	17			ns
Delay from CLKVDO (27MHz) to Data	2b			21	ns
Hold from CLK54I to Data	За	8			ns
Delay from CLK54I to Data	3b			12	ns
Setup from PBIN to PBCLK	4a	5			ns
Hold from PBCLK to PBIN	4b	5			ns

NOTE:

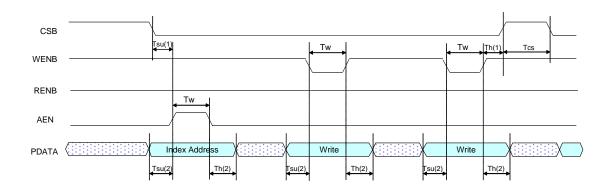
1. Cload = 25pF.



PARAMETER	SYMBOL	MIN (NOTE 1)	ТҮР	MAX (NOTE 1)	UNITS					
Bus Free Time between STOP and START	tвғ	1.3			μs					
SDAT Setup Time	t _{sSDAT}	100			ns					
SDAT Hold Time	thSDAT	0		0.9	μs					
Setup Time for START Condition	t _{sSTA}	0.6			μs					
Setup Time for STOP Condition	t sstop	0.6			μs					
Hold Time for START Condition	thSTA	0.6			μs					
Rise Time for SCLK and SDAT	t _R			300	ns					
Fall Time for SCLK and SDAT	tr			300	ns					
Capacitive Load for Each Bus Line	C _{BUS}			400	pF					
SCLK Clock Frequency	fsclk			400	kHz					

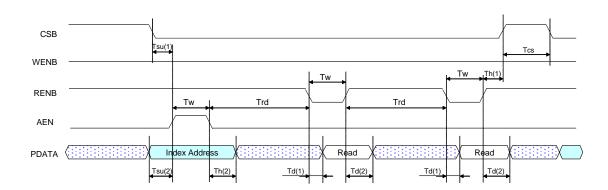
TABLE 20 SERIAL INTERFACE TIMING

NOTE:


FIGURE 82 SERIAL INTERFACE TIMING DIAGRAM

PARAMETER	SYMBOL	MIN (NOTE 1)	ТҮР	MAX (NOTE 1)	UNITS				
CSB Setup Until AEN Active	Tsu(1)	10			ns				
PDATA Setup Until AEN, WENB Active	Tsu(2)	10			ns				
AEN, WENB, RENB Active Pulse Width	Tw	40			ns				
CSB Hold After WENB, RENB Inactive	Th(1)	60			ns				
PDATA Hold After AEN, WENB Inactive	Th(2)	20			ns				
PDATA Delay After RENB active	Td(1)			12	ns				
PDATA Delay After RENB Inactive	Td(2)	60			ns				
CSB Inactive Pulse Width	Tcs	60			ns				
RENB Active Delay After AEN Inactive RENB Active Delay After RENB Inactive	Trd	60			ns				

TABLE 21. PARALLEL INTERFACE TIMING PARAMETER


NOTE:

1. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

FIGURE 83 WRITE TIMING OF PARALLEL INTERFACE WITH AUTO INDEX INCREMENT MODE

FIGURE 84 READ TIMING OF PARALLEL INTERFACE WITH AUTO INDEX INCREMENT MODE

PARAMETER	SYMBOL	MIN (NOTE 1)	ТҮР	MAX (NOTE 1)	UNITS
ADCS					
ADC Resolution	ADCR	-	10	-	Bits
ADC Integral Non-linearity	AINL	-	± 1	-	LSB
ADC Differential Non-Linearity	ADNL	-	± 1	-	LSB
ADC Clock Rate	fadc	24	27	30	MHz
Video Bandwidth (-3db)	BW	-	10	-	MHz
HORIZONTAL PLL					
Line Frequency (50Hz)	f _{LN}	-	15.625	-	KHz
Line Frequency (60Hz)	f _{LN}	-	15.734	-	KHz
Static Deviation	Δf_{H}	-	-	6.2	%
SUBCARRIER PLL	·				
Subcarrier Frequency (NTSC-M)	fsc	-	3579545	-	Hz
Subcarrier Frequency (PAL-BDGHI)	fsc	-	4433619	-	Hz
Subcarrier Frequency (PAL-M)	fsc	-	3575612	-	Hz
Subcarrier Frequency (PAL-N)	fsc	-	3582056	-	Hz
Lock In Range	Δf_{H}	±450	-	-	Hz
OSCILLATOR INPUT		•	•	·	
Nominal Frequency		-	27	-	MHz
Deviation		-	-	±25	ppm
Duty Cycle		-	-	55	%

TABLE 22.DECODER PERFORMANCE PARAMETER 1

NOTE:

TABLE 23 DECODER PERFORMANCE PARAMETER 2

PARAMETER	SYMBOL	MIN (NOTE 1)	TYP	MAX (NOTE 1)	UNITS
LOCK SPECIFICATION					
Sync Amplitude Range		1		200	%
Color Burst Range		5		200	%
Horizontal Lock Range		-5		5	%
Vertical Lock Range		45		65	Hz
Fsc Lock Range			±700		Hz
Color Burst Position Range			±2.2		μ s
Color Burst Width Range		1			cycle
VIDEO BANDWIDTH		I			
B/W			6		MHz
NOISE SPECIFICATION					
SNR (Luma flat field)			57		dB
NONLINEAR SPECIFICATION					
Y Nonlinearity			0.5	0.7	%
Differential Phase	DP		0.4	0.6	Degree
Differential Gain	DG		0.6	0.8	%
CHROMA SPECIFICATION					
Hue Accuracy			1		Degree
Chroma ACC Range				400	%
Chroma Amplitude Error			1		%
Chroma Phase Error			0.3		%
Chroma Luma Intermodulation			0.2		%
K-FACTOR	I	ıI			
К2т			0.5		%
Kpulse/bar			0.5		%

NOTE:

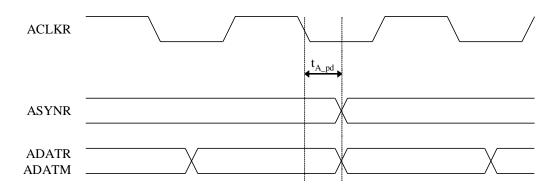
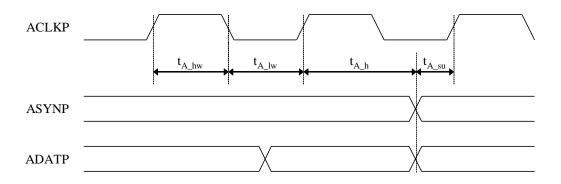

PARAMETER	SYMBOL	MIN (NOTE 2)	ТҮР	MAX (NOTE 2)	UNITS
ASYNR, ADATR, ADATM propagation delay	T _{A_pd}	0.6		2	ns
ACLKP High Pulse Duration	TA_hw	37			ns
ACLKP Low Pulse Duration	TA_Iw	74			ns
ASYNP, ADATP Setup Time	TA_su	36			ns
ASYNP, ADATP Hold Time	TA_h	35			ns

TABLE 24 DIGITAL SERIAL AUDIO INTERFACE TIMING

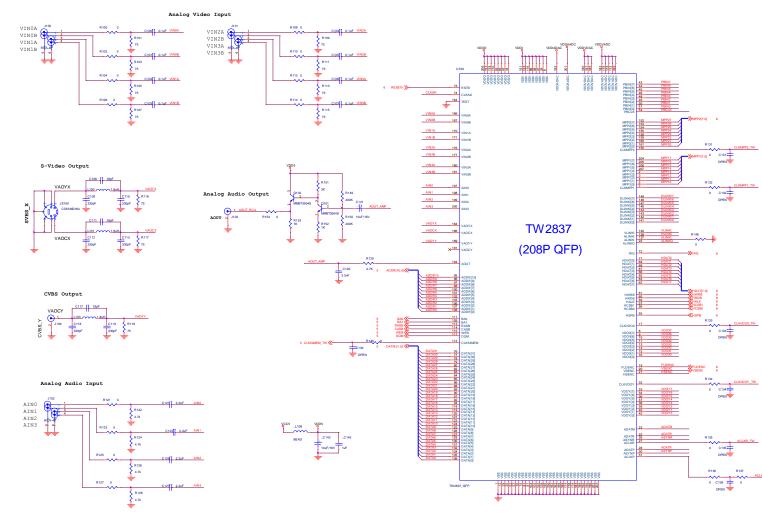

NOTE:

1. T_{A_lw} Min value and T_{A_su} Min value are Fs = 48KHz mode only. If Fs < 48KHz, these Min values are larger. High period of ACLKR/ACLKP is 27MHz one clock period.

2. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

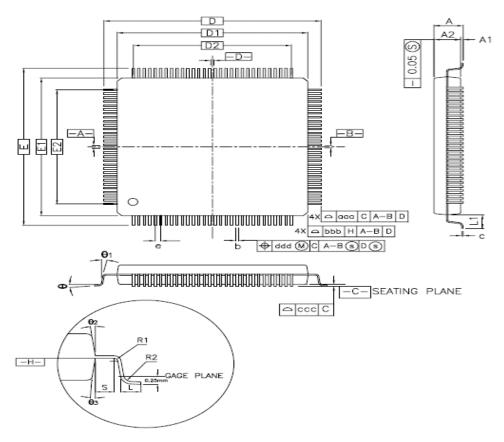
(B) PLAYBACK AUDIO(MASTER MODE)

FIGURE 85 TIMING DIAGRAM OF DIGITAL SERIAL AUDIO INTERFACE


TABLE 25 AUDIO PERFORMANCE PARAMETERS

PARAMETER	SYMBOL	MIN (NOTE 1)	ТҮР	MAX (NOTE 1)	UNITS
ANALOG AUDIO INTERFACE CHARACTERISTICS					
AIN1-4 Input Resistance	RINX	10			Kohm
AOUT Output Load Resistance	RLAO	300			ohm
AOUT Load Capacitance	CLAO			1	nF
AOUT Amplitude	VOAO			1.7	V
AOUT Offset Voltage	VOSAO			100	mV

NOTE:


Application Schematic

Package Dimension

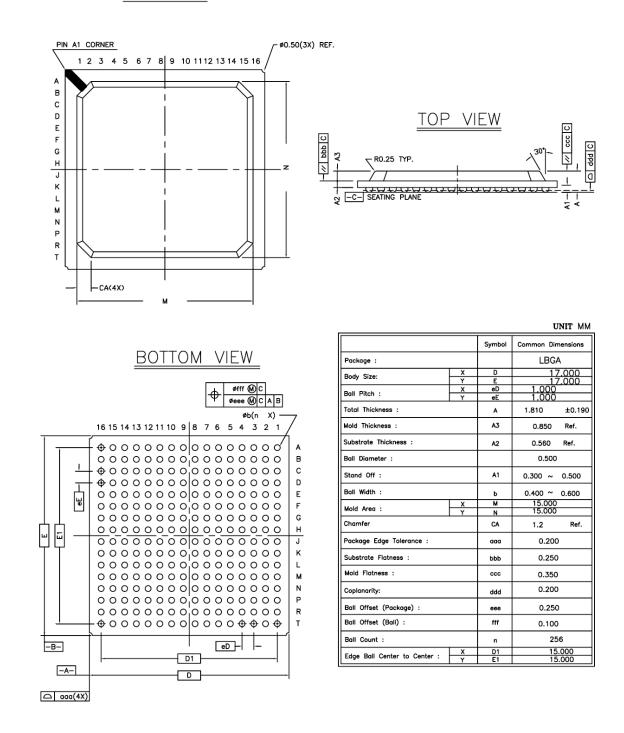
208 QFP

COTROL DIMENSIONS ARE IN MILLIMETERS.

SYMBOL	м	LLIMET	ER	INCH						
STMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.				
A			4.10			0.161				
A1	0.25			0.010						
A2	3.20	3.32	3.60	0.126	0.131	0.142				
D	- 30	0.60 B	SC.	1.	205 BSC.					
D1	28.00 BSC. 1.102 BSC.									
E	- 30	0.60 B	SC.	1.205 BSC.						
E1	24	8.00 B	SC.	1.102 BSC.						
R2	0.08	_	0.25	0.003	_	0.010				
R1	0.08			0.003						
θ	o.	3.5	7.	o .	3.5	7'				
O 1	0.			0.						
θε		8" REF		8 REF						
θз		8" REF	_		8 REF					
с	0.09	0.15	0.20	0.004	0.006	0.008				
L	0.45	0.60	0.75	0.018	0.024	0.030				
L 1	1	.30 RE	F	0	051 R	EF				
S	0.20			0.008						

	120L							128L							144L							
SYMBOL	MIL	LIMETE	R		INCH		M	LLIMET	ER		INCH		MI	LLIMET	ER	INCH						
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.				
b	0.30	0.35	0.45	0.012	0.014	0.018	0.30	0.35	0.45	0.012	0.014	0.018	0.22	0.30	0.38	0.009	0.012	0.015				
e	0.80 BSC. 0.031 BSC.				SC.	(0.80 BSC. 0.031 BSC.					(D.65 B	SC.	0.026 BSC.							
D2	23.20 0.913						24.80		0.976			22.75			0.895							
E2		23.20 0.913					24.80				0.976			22.75			0.895					
					TOLE	RANCE	S OF	FORM	AND	POSITI	ON											
aaa	0.20 0.008					0.20				0.008			0.20		0.008							
bbb	0.20 0			0.008			0.20			0.008			0.20			0.008						
CCC		0.10			0.004			0.10			0.004			0.10		—	0.004					
ddd	—	0.20		—	0.008		—	0.20		—	0.008			0.12	_	—	0.005	—				

	160L					184L					208L						256L							
SYMBOL	MIL	LLIMETER INCH MILLIMETER		INCH			MILLIMETER			INCH			MILLIMETER			INCH								
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
b	0.22	0.30	0.38	0.009	0.012	0.015	0.17	0.20	0.27	0.007	0.008	0.011	0.17	0.20	0.27	0.007	0.008	0.011	0.13	0.16	0.23	0.005	0.006	0.009
e	0.65 BSC. 0.026 BSC.			SC.		0.50	BSC.	0.020 BSC.			0.50 BSC.			0.020 BSC.			0.40 BSC.			0.016 BSC.				
D2		25.35		0.998			22.50			0.886		25.50		1.004		25.20			0.992					
E2		25.35 0.998				22.50			0.886		25.50		1.004			25.20		0.992						
										1	FOLERA	NCES	OF FC	ORM A	ND PC	SITION								
aaa		0.20			0.008			0.20		0.008			0.20			0.008			0.20			0.008		
bbb	0.20 0.008				0.20			0.008			0.20			0.008			0.20			0.008				
CCC		0.10			0.004	—		0.08			0.003	—		0.08			0.003	_		0.08			0.003	
ddd		0.12	—		0.005	—	—	0.08			0.003	—		0.08		—	0.003	_	_	0.07			0.003	


NOTES :

- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 2. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. THE MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07mm.
- THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BODY SIZE.

256 LBGA

top view

Revision History

TABLE 26 DATASHEET REVISION HISTORY

REVISION	DATE	DESCRIPTION	PRODUCT CODE
1.0	May 9, 2008	Preliminary Datasheet Release	
1.1	Aug 6, 2008	Updated 0x4C, 0xFE description	
1.2	Aug 13, 2008	Updated the VIN1A/VIN1B/VIN3A/VIN3B pin number	
1.3	Aug 20, 2008	Updated the reference schematic Fixed the typo on P. 29 for address of VBI_RIC_ON register Changed the PIN diagram for VIN1A/VIN1B/VIN3A/VIN3B	
1.4	Nov 18, 2008	Change the OSD scratch buffer size on P. 258	
1.5	Dec 1, 2008	Change the OSD Spec	
1.51	Dec 1, 2008	Change the VIN1A/VIN1B/VIN3A/VIN3B pin number back to be compatible with TW2835 Updated the rev. number	
1.6	Dec 3, 2008	Revise For Rev. B Chip	0x32
1.61	Feb 3, 2009	Added description for register 0xFF, 1xFF, 2xFF	0x32
1.62	July 20, 2009	Revise Reflow Temperature	
1.63	Oct 22. 2009	Added scratch buffer size. Revise the ambient operating temperature	
FN7742.0	Dec. 22 2010	Assigned file number FN7742.0 to datasheet as this will be the first release with an Intersil file number. Replaced header and footer with Intersil header and footer. No changes to datasheet content. Removed Techwell disclaimer from page 1.	
FN7742.1	August 28, 2012	Added Ordering Information and formatted document. Updated Spec table to add Intersil standard note to MIN MAX column (Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design). Removed Preliminary watermarking.	

© Copyright Intersil Americas LLC 2010-2012. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see <u>www.intersil.com/product_tree</u>

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at http://www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see http://www.intersil.com

FN7742 Rev. 1.00 August 28, 2012

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C M21324G-13 PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 BH76361FV-E2 ADV7391WBCPZ-RL MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7182BCPZ ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ