78K0/Kx2

User's Manual: Hardware

8-Bit Single-Chip Microcontrollers

> All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

How to Use This Manual

Readers This manual is intended for user engineers who wish to understand the functions of the 78K0/Kx2 microcontrollers and design and develop application systems and programs for these devices. The target products are as follows.

	Conventional-specification Products	Expanded-specification Products
78K0/KB2	μ PD78F0500, 78F0501, 78F0502, 78F0503, 78F0503D, 78F0500(A), 78F0501(A), 78F0502(A), 78F0503(A), 78F0500(A2), 78F0501(A2), 78F0502(A2), 78F0503(A2)	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0500 \mathrm{~A}, 78 \mathrm{~F} 0501 \mathrm{~A}, 78 \mathrm{~F} 0502 \mathrm{~A}, \\ & 78 \mathrm{~F} 0503 \mathrm{~A}, 78 \mathrm{~F} 0503 \mathrm{DA}, 78 \mathrm{~F} 0500 \mathrm{~A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0501 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0502 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0503 \mathrm{~A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0500 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0501 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0502 \mathrm{~A}(\mathrm{~A} 2), \\ & 78 \mathrm{~F} 0503 \mathrm{~A}(\mathrm{~A} 2) \end{aligned}$
78K0/KC2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0511,78 \mathrm{~F} 0512,78 \mathrm{~F} 0513,78 \mathrm{~F} 0514, \\ & \text { 78F0515, 78F0513D, 78F0515D, 78F0511(A), } \\ & \text { 78F0512(A), 78F0513(A), 78F0514(A), } \\ & \text { 78F0515(A), 78F0511(A2), 78F0512(A2), } \\ & \text { 78F0513(A2), 78F0514(A2), 78F0515(A2) } \end{aligned}$	μ PD78F0511A, 78F0512A, 78F0513A, 78F0514A, 78F0515A, 78F0513DA, 78F0515DA, 78F0511A(A), 78F0512A(A), 78F0513A(A), 78F0514A(A), 78F0515A(A), 78F0511A(A2), 78F0512A(A2), 78F0513A(A2), 78F0514A(A2), 78F0515A(A2)
78K0/KD2	```\muPD78F0521, 78F0522, 78F0523, 78F0524, 78F0525, 78F0526, 78F0527, 78F0527D, 78F0521(A), 78F0522(A), 78F0523(A), 78F0524(A), 78F0525(A), 78F0526(A), 78F0527(A), 78F0521(A2), 78F0522(A2), 78F0523(A2), 78F0524(A2), 78F0525(A2), 78F0526(A2), 78F0527(A2)```	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521 \mathrm{~A}, 78 \mathrm{~F} 0522 \mathrm{~A}, 78 \mathrm{~F} 0523 \mathrm{~A}, \\ & 78 \mathrm{~F} 0524 \mathrm{~A}, 78 \mathrm{~F} 0525 \mathrm{~A}, 78 \mathrm{~F} 0526 \mathrm{~A}, 78 \mathrm{~F} 0527 \mathrm{~A}, \\ & 78 \mathrm{~F} 0527 \mathrm{DA}, 78 \mathrm{~F} 0521 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0522 \mathrm{~A}(\mathrm{~A}), \\ & \text { 78F0523A(A), 78F0524A(A), 78F0525A(A), } \\ & \text { 78F0526A(A), 78F0527A(A), 78F0521A(A2), } \\ & \text { 78F0522A(A2), 78F0523A(A2), 78F0524A(A2), } \\ & \text { 78F0525A(A2), 78F0526A(A2), 78F0527A(A2) } \end{aligned}$
78K0/KE2	```\muPD78F0531, 78F0532, 78F0533, 78F0534, 78F0535, 78F0536, 78F0537, 78F0537D, 78F0531(A), 78F0532(A), 78F0533(A), 78F0534(A), 78F0535(A), 78F0536(A), 78F0537(A), 78F0531(A2), 78F0532(A2), 78F0533(A2), 78F0534(A2), 78F0535(A2), 78F0536(A2), 78F0537(A2)```	μ PD78F0531A, 78F0532A, 78F0533A, 78F0534A, 78F0535A, 78F0536A, 78F0537A, 78F0537DA, 78F0531A(A), 78F0532A(A), 78F0533A(A), 78F0534A(A), 78F0535A(A), 78F0536A(A), 78F0537A(A), 78F0531A(A2), 78F0532A(A2), 78F0533A(A2), 78F0534A(A2), 78F0535A(A2), 78F0536A(A2), 78F0537A(A2)
78K0/KF2	μ PD78F0544, 78F0545, 78F0546, 78F0547, 78F0547D, 78F0544(A), 78F0545(A), 78F0546(A), 78F0547(A), 78F0544(A2), 78F0545(A2), 78F0546(A2), 78F0547(A2)	μ PD78F0544A, 78F0545A, 78F0546A, 78F0547A, 78F0547DA, 78F0544A(A), 78F0545A(A), 78F0546A(A), 78F0547A(A), 78F0544A(A2), 78F0545A(A2), 78F0546A(A2), 78F0547A(A2)

Differences Between Conventional-specification Products and Expanded-specification Products

The differences between the conventional-specification products ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}, 78 \mathrm{F05xxD}$) and expandedspecification products ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxA}, 78 \mathrm{~F} 05 \mathrm{xxDA}$) of the $78 \mathrm{KO} / \mathrm{Kx2}$ microcontrollers are described below.

- A/D conversion time
- X1 oscillator characteristics
- Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width (AC characteristics)
- The number of flash memory rewrites and retention time
- Processing time of the self programming library
- Interrupt response time of the self programming library

For details, see 1.1 Differences Between Conventional-specification Products (μ PD78F05xx, 78F05xxD) and Expanded-specification Products ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxA}, 78 \mathrm{F05xxDA}$).

Purpose This manual is intended to give users an understanding of the functions described in the Organization below.

Organization The manual for the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is separated into two parts: this manual and the instructions edition (common to the 78 KO microcontrollers).

78K0/Kx2 User's Manual (This Manual)

- Pin functions
- Internal block functions
- Interrupts
- Other on-chip peripheral functions
- Electrical specifications

78K/0 Series User's Manual Instructions

- CPU functions
- Instruction set
- Explanation of each instruction

It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.

- When using this manual as the manual for (A) grade products and (A2) grade products of the 78K0/Kx2 microcontrollers:
\rightarrow Only the quality grade differs between standard products and (A), (A2) grade products. Read the part number as follows.
- μ PD78F05xx $\rightarrow \mu$ PD78F05xx(A), 78F05xx(A2)
- μ PD78F05xxA $\rightarrow \mu$ PD78F05xxA(A), 78F05xxA(A2)
- To gain a general understanding of functions:
\rightarrow Read this manual in the order of the CONTENTS. The mark " $<R>$ " shows major revised points. The revised points can be easily searched by copying an " $<\mathrm{R}>$ " in the PDF file and specifying it in the "Find what:" field.
- How to interpret the register format:
\rightarrow For a bit number enclosed in angle brackets, the bit name is defined as a reserved word in the RA78K0, and is defined as an sfr variable using the \#pragma sfr directive in the CC78K0.
- To check the details of a register when you know the register name:
\rightarrow See APPENDIX C REGISTER INDEX.
- To know details of the 78 K 0 microcontroller instructions:

$$
\rightarrow \text { Refer to the separate document } 78 \mathrm{~K} / 0 \text { Series Instructions User's Manual }
$$ (U12326E).

Conventions
Data significance: Higher digits on the left and lower digits on the right
Active low representations: $\overline{x \times x}$ (overscore over pin and signal name)
Note:
Caution: Information requiring particular attention
Remark: Supplementary information
Numerical representations: Binary $\cdots \times x \times x$ or $x \times x \times B$
Decimal $\quad \cdots \times \times \times x$
Hexadecimal $\quad \cdots \times x \times x \mathrm{H}$

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
$78 \mathrm{K0} / \mathrm{Kx2}$ User's Manual	This manual
$78 \mathrm{~K} / 0$ Series Instructions User's Manual	U12326E
$78 \mathrm{K0} / \mathrm{Kx2}$ Flash Memory Programming (Programmer) Application Note	U17739E
78K0/Kx2 Flash Memory Self Programming User's Manual	U17516E
78K0/Kx2 EEPROM ${ }^{\text {TM }}$ Emulation Application Note	U17517E
78K0 Microcontrollers Self Programming Library Type01 User's Manual	U18274E
78K0 Microcontrollers EEPROM Emulation Library Type01 User's Manual	U18275E

Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP5 Flash Memory Programmer User's Manual	U18865E
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Documents Related to Development Tools (Hardware)

Document Name	Document No.
QB-78KOKX2 In-Circuit Emulator User's Manual	U17341E
QB-MINI2 On-Chip Debug Emulator with Programming Function User's Manual	U18371E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

Documents Related to Development Tools (Software)

Document Name		Document No.
RA78K0 Ver.3.80 Assembler Package User's Manual ${ }^{\text {Note } 1}$	Operation	U17199E
	Language	U17198E
	Structured Assembly Language	U17197E
78K0 Assembler Package RA78K0 Ver.4.01 Operating Precautions (Notification Document) ${ }^{\text {Note } 1}$		ZUD-CD-07-0181-E
CC78K0 Ver.3.70 C Compiler User's Manual ${ }^{\text {Note } 2}$	Operation	U17201E
	Language	U17200E
78K0 C Compiler CC78K0 Ver. 4.00 Operating Precautions (Notification Document) ${ }^{\text {Note } 2}$		ZUD-CD-07-0103-E
SM+ System Simulator User's Manual	Operation	U18601E
	User Open Interface	U18212E
ID78K0-QB Ver.2.94 Integrated Debugger User's Manual	Operation	U18330E
ID78K0-QB Ver.3.00 Integrated Debugger User's Manual	Operation	U18492E
PM plus Ver.5.20 ${ }^{\text {Note } 3}$ User's Manual		U16934E
PM+ Ver.6.30 ${ }^{\text {Note 4 }}$ User's Manual		U18416E

Notes 1. This document is installed into the PC together with the tool when installing RA78KO Ver. 4.01. For descriptions not included in "78K0 Assembler Package RA78K0 Ver. 4.01 Operating Precautions", refer to the user's manual of RA78K0 Ver. 3.80.
2. This document is installed into the PC together with the tool when installing CC78K0 Ver. 4.00. For descriptions not included in "78K0 C Compiler CC78K0 Ver. 4.00 Operating Precautions", refer to the user's manual of CC78K0 Ver. 3.70.
3. PM plus Ver. 5.20 is the integrated development environment included with RA78K0 Ver. 3.80.
4. PM+ Ver. 6.30 is the integrated development environment included with RA78K0 Ver. 4.01. Software tool (assembler, C compiler, debugger, and simulator) products of different versions can be managed.

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website (http://www2.renesas.com/pkg/en/mount/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

All trademarks and registered trademarks are the property of their respective owners. EEPROM is a trademark of Renesas Electronics Corporation.
Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.

CONTENTS

CHAPTER 1 OUTLINE 19
1.1 Differences Between Conventional-specification Products (μ PD78F05xx and 78F05xxD) and Expanded-specification Products (μ PD78F05xxA and 78F05xxDA) 19
1.1.1 A/D conversion time 20
1.1.2 X1 oscillator characteristics 20
1.1.3 Time Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width (AC characteristics) 21
1.1.4 Number of flash memory rewrites and retention time 22
1.1.5 Processing time for self programming library 23
1.1.6 Interrupt response time for self programming library 29
1.2 Features 33
1.3 Applications 34
1.4 Ordering Information 35
1.5.1 78K0/KB2 42
1.5.2 78K0/KC2 44
1.5.3 78K0/KD2 47
1.5.4 78K0/KE2 48
1.5.5 78K0/KF2 50
1.6 Pin Identification 51
1.7 Block Diagram 52
1.7.1 78K0/KB2 52
1.7.2 78K0/KC2 53
1.7.3 78K0/KD2 54
1.7.4 78KO/KE2 55
1.7.5 78K0/KF2 56
1.8 Outline of Functions. 57
CHAPTER 2 PIN FUNCTIONS 60
2.1 Pin Function List 60
2.1.1 78K0/KB2 61
2.1.2 78K0/KC2 64
2.1.3 78K0/KD2 67
2.1.4 78K0/KE2 70
2.1.5 78K0/KF2 74
2.2 Description of Pin Functions 78
2.2.1 P00 to P06 (port 0) 78
2.2.2 P10 to P17 (port 1) 79
2.2.3 P20 to P27 (port 2) 81
2.2.4 P30 to P33 (port 3) 82
2.2.5 P40 to P47 (port 4) 83
2.2.6 P50 to P57 (port 5) 84
2.2.7 P60 to P67 (port 6) 84
2.2.8 P70 to P77 (port 7) 85
2.2.9 P120 to P124 (port 12) 86
2.2.10 P130 (port 13) 87
2.2.11 P140 to P145 (port 14) 88
2.2.12 AVref, AVss, Vdd, EVdd, Vss, EVss 89
2.2.13 RESET 90
2.2.14 REGC 90
2.2.15 FLMDO 90
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 91
CHAPTER 3 CPU ARCHITECTURE 96
3.1 Memory Space 96
3.1.1 Internal program memory space 111
3.1.2 Memory bank (products whose flash memory is at least 96 KB only) 113
3.1.3 Internal data memory space 114
3.1.4 Special function register (SFR) area 116
3.1.5 Data memory addressing 116
3.2 Processor Registers 125
3.2.1 Control registers 125
3.2.2 General-purpose registers 129
3.2.3 Special function registers (SFRs) 130
3.3 Instruction Address Addressing 136
3.3.1 Relative addressing 136
3.3.2 Immediate addressing 137
3.3.3 Table indirect addressing 138
3.3.4 Register addressing 139
3.4 Operand Address Addressing 139
3.4.1 Implied addressing 139
3.4.2 Register addressing 140
3.4.3 Direct addressing 141
3.4.4 Short direct addressing 142
3.4.5 Special function register (SFR) addressing 143
3.4.6 Register indirect addressing 144
3.4.7 Based addressing 145
3.4.8 Based indexed addressing 146
3.4.9 Stack addressing 147
CHAPTER 4 MEMORY BANK SELECT FUNCTION (PRODUCTS WHOSE FLASH MEMORY IS AT LEAST 96 KB ONLY). 148
4.1 Memory Bank 148
4.2 Difference in Representation of Memory Space 149
4.3 Memory Bank Select Register (BANK) 150
4.4 Selecting Memory Bank 151
4.4.1 Referencing values between memory banks 151
4.4.2 Branching instruction between memory banks 153
4.4.3 Subroutine call between memory banks 155
4.4.4 Instruction branch to bank area by interrupt. 157
CHAPTER 5 PORT FUNCTIONS 159
5.1 Port Functions 159
5.2 Port Configuration 163
5.2.1 Port 0 164
5.2.2 Port 1 175
5.2.3 Port 2 181
5.2.4 Port 3 183
5.2.5 Port 4 186
5.2.6 Port 5 188
5.2.7 Port 6 189
5.2.8 Port 7 194
5.2.9 Port 12 196
5.2.10 Port 13. 199
5.2.11 Port 14. 200
5.3 Registers Controlling Port Function 204
5.4 Port Function Operations 221
5.4.1 Writing to I/O port 221
5.4.2 Reading from I/O port 221
5.4.3 Operations on I/O port 221
5.5 Settings of Port Mode Register and Output Latch When Using Alternate Function 221
5.6 Cautions on 1-Bit Manipulation Instruction for Port Register n(Pn) 224
CHAPTER 6 CLOCK GENERATOR 225
6.1 Functions of Clock Generator 225
6.2 Configuration of Clock Generator 226
6.3 Registers Controlling Clock Generator 229
6.4 System Clock Oscillator 240
6.4.1 X1 oscillator 240
6.4.2 XT1 oscillator 240
6.4.3 When subsystem clock is not used 243
6.4.4 Internal high-speed oscillator 243
6.4.5 Internal low-speed oscillator 243
6.4.6 Prescaler 243
6.5 Clock Generator Operation 244
6.6 Controlling Clock 248
6.6.1 Example of controlling high-speed system clock 248
6.6.2 Example of controlling internal high-speed oscillation clock 251
6.6.3 Example of controlling subsystem clock 254
6.6.4 Example of controlling internal low-speed oscillation clock 256
6.6.5 Clocks supplied to CPU and peripheral hardware 257
6.6.6 CPU clock status transition diagram 258
6.6.7 Condition before changing CPU clock and processing after changing CPU clock 265
6.6.8 Time required for switchover of CPU clock and main system clock 266
6.6.9 Conditions before clock oscillation is stopped 268
6.6.10 Peripheral hardware and source clocks 269
CHAPTER 7 16-BIT TIMER/EVENT COUNTERS 00 AND 01 270
7.1 Functions of 16-Bit Timer/Event Counters 00 and 01 270
7.2 Configuration of 16-Bit Timer/Event Counters 00 and 01 271
7.3 Registers Controlling 16-Bit Timer/Event Counters 00 and 01 277
7.4 Operation of 16-Bit Timer/Event Counters 00 and 01 289
7.4.1 Interval timer operation 289
7.4.2 Square-wave output operation 292
7.4.3 External event counter operation 295
7.4.4 Operation in clear \& start mode entered by TIOOn pin valid edge input 299
7.4.5 Free-running timer operation 312
7.4.6 PPG output operation 321
7.4.7 One-shot pulse output operation 325
7.4.8 Pulse width measurement operation 330
7.5 Special Use of TMOn 338
7.5.1 Rewriting CR01n during TMOn operation 338
7.5.2 Setting LVSOn and LVROn 338
7.6 Cautions for 16-Bit Timer/Event Counters 00 and 01 340
CHAPTER 8 8-BIT TIMER/EVENT COUNTERS 50 AND 51 345
8.1 Functions of 8-Bit Timer/Event Counters 50 and 51 345
8.2 Configuration of 8-Bit Timer/Event Counters 50 and 51 345
8.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51 348
8.4 Operations of 8-Bit Timer/Event Counters 50 and 51 354
8.4.1 Operation as interval timer 354
8.4.2 Operation as external event counter 356
8.4.3 Square-wave output operation 357
8.4.4 PWM output operation 358
8.5 Cautions for 8-Bit Timer/Event Counters 50 and 51 362
CHAPTER 9 8-BIT TIMERS HO AND H1 363
9.1 Functions of 8-Bit Timers H 0 and H 1 363
9.2 Configuration of 8-Bit Timers H 0 and H 1 363
9.3 Registers Controlling 8-Bit Timers H 0 and H 1 367
9.4 Operation of 8-Bit Timers H0 and H1 373
9.4.1 Operation as interval timer/square-wave output 373
9.4.2 Operation as PWM output 376
9.4.3 Carrier generator operation (8-bit timer H1 only) 382
CHAPTER 10 WATCH TIMER 389
10.1 Functions of Watch Timer 389
10.2 Configuration of Watch Timer 391
10.3 Register Controlling Watch Timer 391
10.4 Watch Timer Operations 394
10.4.1 Watch timer operation 394
10.4.2 Interval timer operation 394
10.5 Cautions for Watch Timer 395
CHAPTER 11 WATCHDOG TIMER 396
11.1 Functions of Watchdog Timer 396
11.2 Configuration of Watchdog Timer 397
11.3 Register Controlling Watchdog Timer. 398
11.4 Operation of Watchdog Timer 399
11.4.1 Controlling operation of watchdog timer 399
11.4.2 Setting overflow time of watchdog timer 400
11.4.3 Setting window open period of watchdog timer 401
CHAPTER 12 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER 403
12.1 Functions of Clock Output/Buzzer Output Controller 403
12.2 Configuration of Clock Output/Buzzer Output Controller 404
12.3 Registers Controlling Clock Output/Buzzer Output Controller 404
12.4 Operations of Clock Output/Buzzer Output Controller 408
12.4.1 Operation as clock output 408
12.4.2 Operation as buzzer output 408
CHAPTER 13 A/D CONVERTER 409
13.1 Function of A/D Converter. 409
13.2 Configuration of A/D Converter 410
13.3 Registers Used in A/D Converter 412
13.4 A/D Converter Operations 421
13.4.1 Basic operations of A / D converter 421
13.4.2 Input voltage and conversion results 422
13.4.3 A/D converter operation mode 424
13.5 How to Read A/D Converter Characteristics Table 426
13.6 Cautions for A/D Converter 428
CHAPTER 14 SERIAL INTERFACE UARTO 432
14.1 Functions of Serial Interface UARTO 432
14.2 Configuration of Serial Interface UARTO 433
14.3 Registers Controlling Serial Interface UARTO 436
14.4 Operation of Serial Interface UARTO 441
14.4.1 Operation stop mode 441
14.4.2 Asynchronous serial interface (UART) mode 442
14.4.3 Dedicated baud rate generator 448
14.4.4 Calculation of baud rate 449
CHAPTER 15 SERIAL INTERFACE UART6 453
15.1 Functions of Serial Interface UART6 453
15.2 Configuration of Serial Interface UART6. 457
15.3 Registers Controlling Serial Interface UART6 460
15.4 Operation of Serial Interface UART6 469
15.4.1 Operation stop mode 469
15.4.2 Asynchronous serial interface (UART) mode 470
15.4.3 Dedicated baud rate generator 483
15.4.4 Calculation of baud rate 484
CHAPTER 16 SERIAL INTERFACES CSI10 AND CSI11 490
16.1 Functions of Serial Interfaces CSI10 and CSI11 490
16.2 Configuration of Serial Interfaces CSI10 and CSI11 491
16.3 Registers Controlling Serial Interfaces CSI10 and CSI11 493
16.4 Operation of Serial Interfaces CSI10 and CSI11 499
16.4.1 Operation stop mode 499
16.4.2 3-wire serial I/O mode 500
CHAPTER 17 SERIAL INTERFACE CSIAO 512
17.1 Functions of Serial Interface CSIAO 512
17.2 Configuration of Serial Interface CSIA0 513
17.3 Registers Controlling Serial Interface CSIAO 515
17.4 Operation of Serial Interface CSIAO 524
17.4.1 Operation stop mode. 524
17.4.2 3-wire serial I/O mode 525
17.4.3 3-wire serial I/O mode with automatic transmit/receive function 530
CHAPTER 18 SERIAL INTERFACE IICO 550
18.1 Functions of Serial Interface IICO 550
18.2 Configuration of Serial Interface IIC0 553
18.3 Registers to Control Serial Interface IIC0 556
18.4 I $^{2} \mathrm{C}$ Bus Mode Functions 569
18.4.1 Pin configuration 569
18.5 $I^{2} \mathrm{C}$ Bus Definitions and Control Methods 570
18.5.1 Start conditions 570
18.5.2 Addresses 571
18.5.3 Transfer direction specification 571
18.5.4 Acknowledge ($\overline{\mathrm{ACK}}$) 572
18.5.5 Stop condition 573
18.5.6 Wait 574
18.5.7 Canceling wait 576
18.5.8 Interrupt request (INTIICO) generation timing and wait control 576
18.5.9 Address match detection method 577
18.5.10 Error detection 577
18.5.11 Extension code 578
18.5.12 Arbitration 579
18.5.13 Wakeup function. 580
18.5.14 Communication reservation. 581
18.5.15 Cautions 584
18.5.16 Communication operations 585
18.5.17 Timing of $\mathrm{I}^{2} \mathrm{C}$ interrupt request (INTIICO) occurrence 593
18.6 Timing Charts 614
CHAPTER 19 MULTIPLIER/DIVIDER 621
19.1 Functions of Multiplier/Divider. 621
19.2 Configuration of Multiplier/Divider 621
19.3 Register Controlling Multiplier/Divider 625
19.4 Operations of Multiplier/Divider 626
19.4.1 Multiplication operation 626
19.4.2 Division operation 628
CHAPTER 20 INTERRUPT FUNCTIONS 630
20.1 Interrupt Function Types 630
20.2 Interrupt Sources and Configuration 630
20.3 Registers Controlling Interrupt Functions 635
20.4 Interrupt Servicing Operations 656
20.4.1 Maskable interrupt acknowledgment 656
20.4.2 Software interrupt request acknowledgment 658
20.4.3 Multiple interrupt servicing 659
20.4.4 Interrupt request hold 662
CHAPTER 21 KEY INTERRUPT FUNCTION 663
21.1 Functions of Key Interrupt 663
21.2 Configuration of Key Interrupt 664
21.3 Register Controlling Key Interrupt 665
CHAPTER 22 STANDBY FUNCTION 666
22.1 Standby Function and Configuration 666
22.1.1 Standby function 666
22.1.2 Registers controlling standby function 667
22.2 Standby Function Operation 669
22.2.1 HALT mode 669
22.2.2 STOP mode 674
CHAPTER 23 RESET FUNCTION 681
23.1 Register for Confirming Reset Source 691
CHAPTER 24 POWER-ON-CLEAR CIRCUIT 692
24.1 Functions of Power-on-Clear Circuit 692
24.2 Configuration of Power-on-Clear Circuit 693
24.3 Operation of Power-on-Clear Circuit 693
24.4 Cautions for Power-on-Clear Circuit 696
CHAPTER 25 LOW-VOLTAGE DETECTOR 698
25.1 Functions of Low-Voltage Detector 698
25.2 Configuration of Low-Voltage Detector 699
25.3 Registers Controlling Low-Voltage Detector 699
25.4 Operation of Low-Voltage Detector 702
25.4.1 When used as reset 703
25.4.2 When used as interrupt 708
25.5 Cautions for Low-Voltage Detector 713
CHAPTER 26 OPTION BYTE 716
26.1 Functions of Option Bytes 716
26.2 Format of Option Byte. 717
CHAPTER 27 FLASH MEMORY 721
27.1 Internal Memory Size Switching Register 721
27.2 Internal Expansion RAM Size Switching Register 722
27.3 Writing with Flash Memory Programmer 724
27.4 Programming Environment 724
27.5 Communication Mode 725
27.6 Connection of Pins on Board 727
27.6.1 FLMD0 pin 728
27.6.2 Serial interface pins 728
27.6.3 RESET pin 730
27.6.4 Port pins 730
27.6.5 REGC pin 730
27.6.6 Other signal pins 731
27.6.7 Power supply 731
27.7 Programming Method 732
27.7.1 Controlling flash memory 732
27.7.2 Flash memory programming mode 732
27.7.3 Selecting communication mode 733
27.7.4 Communication commands 734
27.8 Security Settings 735
27.9 Processing Time for Each Command When PG-FP4 or PG-FP5 Is Used (Reference) 737
27.10 Flash Memory Programming by Self-Programming 739
27.10.1 Boot swap function 753
27.11 Creating ROM Code to Place Order for Previously Written Product 755
27.11.1 Procedure for using ROM code to place an order 755
CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD and 78F05xxDA ONLY) 756
28.1 Connecting QB-MINI2 to μ PD78F05xxD and 78F05xxDA 756
28.2 Reserved Area Used by QB-MINI2 758
CHAPTER 29 INSTRUCTION SET 759
29.1 Conventions Used in Operation List 759
29.1.1 Operand identifiers and specification methods 759
29.1.2 Description of operation column 760
29.1.3 Description of flag operation column 760
29.2 Operation List 761
29.3 Instructions Listed by Addressing Type 769
CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) 772
CHAPTER 31 ELECTRICAL SPECIFICATIONS ((A) GRADE PRODUCTS) 802
CHAPTER 32 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA = $\mathbf{- 4 0}$ to +110${ }^{\circ} \mathrm{C}$) 830
CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{TA}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$) 859
CHAPTER 34 PACKAGE DRAWINGS 888
34.1 78KO/KB2 888
34.2 78KO/KC2 891
34.3 78K0/KD2 896
34.4 78K0/KE2 898
34.5 78K0/KF2 908
CHAPTER 35 RECOMMENDED SOLDERING CONDITIONS 912
CHAPTER 36 CAUTIONS FOR WAIT 917
36.1 Cautions for Wait 917
36.2 Peripheral Hardware That Generates Wait 918
APPENDIX A DEVELOPMENT TOOLS 920
A. 1 Software Package 923
A. 2 Language Processing Software 923
A. 3 Flash Memory Programming Tools 924
A.3.1 When using flash memory programmer FG-FP5, FL-PR5, FG-FP4, and FL-PR4 924
A.3.2 When using on-chip debug emulator with programming function QB-MINI2 925
A. 4 Debugging Tools (Hardware) 925
A.4.1 When using in-circuit emulator QB-78K0KX2 925
A.4.2 When using on-chip debug emulator with programming function QB-MINI2 927
A. 5 Debugging Tools (Software) 928
APPENDIX B NOTES ON TARGET SYSTEM DESIGN 929
APPENDIX C REGISTER INDEX 936
C. 1 Register Index (In Alphabetical Order with Respect to Register Names) 936
C. 2 Register Index (In Alphabetical Order with Respect to Register Symbol) 940
APPENDIX D LIST OF CAUTIONS 944
APPENDIX E REVISION HISTORY 974
E. 1 Major Revisions in This Edition 974
E. 2 Revision History of Preceding Editions 975

-RENESNS

CHAPTER 1 OUTLINE

1.1 Differences Between Conventional-specification Products ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}$ and $78 \mathrm{F05xxD}$) and Expanded-specification Products ($\mu \mathrm{PD} 78 \mathrm{FO5xxA}$ and 78F05xxDA)

The differences between the conventional-specification products (μ PD78F05xx and 78 F 05 xxD) and expandedspecification products (μ PD78F05xxA and 78F05xxDA) of the $78 \mathrm{K0} / \mathrm{Kx} 2$ microcontrollers are described below.

- A/D conversion time
- X1 oscillator characteristics
- Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width (AC characteristics)
- The number of flash memory rewrites and retention time
- Processing time of the self programming library
- Interrupt response time of the self programming library

1.1.1 A/D conversion time

(1) Conventional-specification products (μ PD78F05xx and 78F05xxD)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Conversion time	tconv	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$	6.1	36.7	$\mu \mathrm{~s}$
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$	12.2	36.7	$\mu \mathrm{~s}$
	$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<2.7 \mathrm{~V}^{\text {Note }}$	27	66.6	$\mu \mathrm{~s}$	

(2) Expanded-specification products (μ PD78F05xxA and 78F05xxDA)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Conversion time	tconv	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$	6.1	66.6	$\mu \mathrm{~s}$
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$	12.2	66.6	$\mu \mathrm{~s}$
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<2.7 \mathrm{~V}$ Note	27	66.6	$\mu \mathrm{~s}$

Note Standard and (A) grade products only

1.1.2 X1 oscillator characteristics

(1) Conventional-specification products (μ PD78F05xx and 78F05xxD)

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 clock oscillation frequency (fx)	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$1.0{ }^{\text {Note } 2}$		20.0	MHz
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$1.0{ }^{\text {Note } 2}$		10.0	
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note }} 1$	1.0		5.0	

(2) Expanded-specification products ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxA}$ and 78F05xxDA)

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 clock oscillation frequency (fx)	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 2}$		20.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note }} 1$	1.0		5.0	

Notes 1. Standard and (A) grade products only
2. It is 2.0 MHz (MIN.) when programming on the board via UART6.
1.1.3 Time Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width (AC characteristics)
(1) Conventional-specification products (μ PD78F05xx and 78F05xxD)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fxp) operation	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$	0.2		32	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note } 1}$	$0.4{ }^{\text {Note } 3}$		32	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation ${ }^{\text {Note } 2}$		114	122	125	$\mu \mathrm{S}$
Peripheral hardware clock frequency	fprs	$\begin{aligned} & \text { fPRS }=f_{X H} \\ & (X S E L=1) \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			20	MHz
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note } 1}$			5	MHz
		$\begin{aligned} & \text { fPRS }=f_{R H} \\ & (X S E L=0) \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	7.6		8.4	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Notes } 1,5}$	7.6		10.4	MHz
External main system clock frequency	fexcle	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		$1.0^{\text {Note } 6}$		20.0	MHz
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$		$1.0^{\text {Note } 6}$		10.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note } 1}$		1.0		5.0	MHz
External main system clock input high-level width, low-level width	texclekh, texclkL	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		24			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		48			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note } 1}$		96			ns

(2) Expanded-specification products (μ PD78F05xxA and 78F05xxDA)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fxp) operation	$2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{~L} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note }} 1$	$0.4{ }^{\text {Note } 3}$		32	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation ${ }^{\text {Note } 2}$		114	122	125	$\mu \mathrm{s}$
Peripheral hardware clock frequency	fprs	$\begin{aligned} & \text { fPRS }=f_{x H} \\ & (X S E L=1) \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			20	MHz
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}^{\text {Note } 4}$			20	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note } 1}$			5	MHz
		$\begin{aligned} & f_{P R S}=f_{R H} \\ & (X S E L=0) \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	7.6		8.4	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Notes } 1,5}$	7.6		10.4	MHz
External main system clock frequency	fexclk	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		$1.0{ }^{\text {Note } 6}$		20.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note } 1}$		1.0		5.0	MHz
External main system clock input high-level width, low-level width	tехсцкн, texclek	$2.7 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$		24			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}^{\text {Note } 1}$		96			ns

Notes 1. Standard and (A) grade products only
2. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.
3. $0.38 \mu \mathrm{~s}$ when operating with the 8 MHz internal oscillator.
4. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $\mathrm{fxH} / 2(10 \mathrm{MHz})$ or less. The multiplier/divider, however, can operate on $\mathrm{fxH}(20 \mathrm{MHz})$.
5. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to frh/2 or less.
6. 2.0 MHz (MIN.) when using UART6 during on-board programming.
1.1.4 Number of flash memory rewrites and retention time

Item	Conventional-specification Products (μ PD78F05xx and 78F05xxD)	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)	
Number of rewrites per chip (retention time)	100 times (Retention: 10 years)	- When a flash memory programmer is used, and the libraries ${ }^{\text {Note } 1}$ provided by Renesas Electronics are used - For program update	1,000 times (Retention: 15 years)
		- When the EEPROM emulation libraries ${ }^{\text {Note } 2}$ provided by Renesas Electronics are used -The rewritable ROM size: 4 KB - For data update	10,000 times (Retention: 5 years)
		Conditions other than the above ${ }^{\text {Note } 3}$	100 times (Retention: 10 years)

Notes 1. The sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (Document No.: U17516E) is excluded.
2. The sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) is excluded.
3. These include when the sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (Document No.: U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) are used.

1.1.5 Processing time for self programming library

(1) Conventional-specification products (μ PD78F05xx and 78F05xxD) (1/3)
$<1>$ When internal high-speed oscillation clock is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		4.25			
Initialize library		977.75			
Mode check library		753.875		753.125	
Block blank check library		12770.875		12765.875	
Block erase library		36909.5	356318	36904.5	356296.25
Word write library		1214 (1214.375)	2409 (2409.375)	1207 (1207.375)	2402 (2402.375)
Block verify library		25618.875		25613.875	
Self programming end library		4.25			
Get information library	Option value: 03 H	871.25 (871.375)		866 (866.125)	
	Option value: 04 H	863.375 (863.5)		858.125 (858.25)	
	Option value: 05 H	1024.75 (1043.625)		1037.5 (1038.375)	
Set information library		105524.75	790809.375	105523.75	790808.375
EEPROM write library		$\begin{gathered} 1496.5 \\ (1496.875) \\ \hline \end{gathered}$	$\begin{gathered} 2691.5 \\ (2691.875) \\ \hline \end{gathered}$	$\begin{gathered} 1489.5 \\ (1489.875) \\ \hline \end{gathered}$	$\begin{gathered} 2684.5 \\ (2684.875) \\ \hline \end{gathered}$

<2> When internal high-speed oscillation clock is used and entry RAM is located in short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		4.25			
Initialize library		443.5			
Mode check library		219.625		218.875	
Block blank check library		12236.625		12231.625	
Block erase library		36363.25	355771.75	36358.25	355750
Word write library		$\begin{gathered} 679.75 \\ (680.125) \end{gathered}$	$\begin{gathered} 1874.75 \\ (1875.125) \\ \hline \end{gathered}$	$\begin{gathered} 672.75 \\ (673.125) \end{gathered}$	$\begin{gathered} 1867.75 \\ (1868.125) \end{gathered}$
Block verify library		25072.625		25067.625	
Self programming end library		4.25			
Get information library	Option value: 03 H	337 (337.125)		331.75 (331.875)	
	Option value: 04 H	329.125 (239.25)		323.875 (324)	
	Option value: 05 H	502.25 (503.125)		497 (497.875)	
Set information library		104978.5	541143.125	104977.5	541142.125
EEPROM write library		$\begin{gathered} 962.25 \\ (962.625) \end{gathered}$	$\begin{gathered} 2157.25 \\ (2157.625) \end{gathered}$	$\begin{gathered} 955.25 \\ (955.625) \end{gathered}$	$\begin{gathered} 2150.25 \\ (2150.625) \end{gathered}$

Remarks 1. Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

(1) Conventional-specification products (μ PD78F05xx and 78F05xxD) (2/3)

$<3>$ When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		49/fcPu +485.8125			
Mode check library		35/fcPu +374.75		29/fcpu +374.75	
Block blank check library		174/fcPu +6382.0625		134/fcPu + 6382.0625	
Block erase library		$\begin{gathered} 174 / \text { fcPu }+ \\ 31093.875 \end{gathered}$	$\begin{gathered} 174 / \text { fcPu }+ \\ 298948.125 \\ \hline \end{gathered}$	$\begin{aligned} & 134 / \text { fcPu }+ \\ & 31093.875 \end{aligned}$	$\begin{gathered} 134 / \text { fcPu }+ \\ 298948.125 \\ \hline \end{gathered}$
Word write library		$\begin{gathered} 318(321) / \text { fcpu }+ \\ 644.125 \end{gathered}$	$\begin{gathered} 318(321) / \text { fcpu + } \\ 1491.625 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcpu }+ \\ 644.125 \end{gathered}$	$\begin{gathered} 262(265) / \text { fcPu }+ \\ 1491.625 \end{gathered}$
Block verify library		174/fcPu + 13448.5625		134/fcpu +13448.5625	
Self programming end library		34/ficpu			
Get information library	Option value: 03 H	171 (172)/fcpu +432.4375		$129(130) / \mathrm{fcpu}+432.4375$	
	Option value: 04 H	181 (182)/fcpu +427.875		139 (140)/fcpu + 427.875	
	Option value: 05 H	404 (411)/fcpu +496.125		362 (369)/fcpu +496.125	
Set information library		$\begin{gathered} 75 / \text { fcPu }+ \\ 79157.6875 \end{gathered}$	$75 / \mathrm{fcPu}+652400$	$\begin{gathered} 67 \mathrm{fcPu}+ \\ 79157.6875 \\ \hline \end{gathered}$	$67 \mathrm{fcPu}+652400$
EEPROM write library		$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 799.875 \\ \hline \end{gathered}$	$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 1647.375 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \mathrm{f} \mathrm{cPu}+ \\ 799.875 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcpu }+ \\ 1647.375 \\ \hline \end{gathered}$

Remarks 1. Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
3. fcpu: CPU operation clock frequency
4. RSTS: Bit 7 of the internal oscillation mode register (RCM)
(1) Conventional-specification products (μ PD78F05xx and 78F05xxD) (3/3)
<4> When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located in short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		49/fcPu +224.6875			
Mode check library		35/fcPu +113.625		29/fcPu +113.625	
Block blank check library		174/fcpu +6120.9375		134/fcPu +6120.9375	
Block erase library		$\begin{aligned} & 174 / \text { fcPu }+ \\ & 30820.75 \\ & \hline \end{aligned}$	$\begin{gathered} 174 / \text { fcPu }+ \\ 298675 \\ \hline \end{gathered}$	$\begin{aligned} & 134 / \text { fcPu }+ \\ & 30820.75 \\ & \hline \end{aligned}$	$\begin{gathered} 134 / \text { fcPu }+ \\ 298675 \\ \hline \end{gathered}$
Word write library		$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 383 \end{gathered}$	$\begin{gathered} 318(321) / f c \mathrm{f} u+ \\ 1230.5 \end{gathered}$	$\begin{gathered} 262(265) / \text { fcpu }+ \\ 383 \end{gathered}$	$\begin{gathered} 262(265) / \text { fcpu }+ \\ 1230.5 \end{gathered}$
Block verify library		174/fcPu +13175.4375		134/fcPu + 13175.4375	
Self programming end library		34/fcPu			
Get information library	Option value: 03 H	171 (172)/fcpu +171.3125		129 (130)/fcpu + 171.3125	
	Option value: 04 H	181 (182)/fcpu +166.75		139 (140)/fcpu + 166.75	
	Option value: 05 H	404 (411)/fcpu +231.875		362 (369)/fcpu + 231.875	
Set information library		$\begin{gathered} 75 / \text { fcpu }+ \\ 78884.5625 \end{gathered}$	$\begin{gathered} 75 / \text { fcpu }+ \\ 527566.875 \\ \hline \end{gathered}$	$\begin{gathered} \text { 67/fcpu + } \\ 78884.5625 \end{gathered}$	$\begin{gathered} \text { 67/fcPu + } \\ 527566.875 \end{gathered}$
EEPROM write library		$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 538.75 \\ \hline \end{gathered}$	$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 1386.25 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \mathrm{fcPu}+ \\ 538.75 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \mathrm{fcPu}+ \\ 1386.25 \\ \hline \end{gathered}$

Remarks 1. Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
3. fcpu: CPU operation clock frequency
4. RSTS: Bit 7 of the internal oscillation mode register (RCM)
(2) Expanded-specification products (μ PD78F05xxA and 78F05xxDA) (1/3)
<1> When internal high-speed oscillation clock is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		4.0	4.5	4.0	4.5
Initialize library		1105.9	1106.6	1105.9	1106.6
Mode check library		905.7	906.1	904.9	905.3
Block blank check library		12776.1	12778.3	12770.9	12772.6
Block erase library		26050.4	349971.3	26045.3	349965.6
Word write library		$1180.1+203 \times w$	$\begin{gathered} 1184.3+2241 \\ \times w \\ \hline \end{gathered}$	$1172.9+203 \times w$	$\begin{gathered} 1176.3+2241 \\ \times w \\ \hline \end{gathered}$
Block verify library		25337.9	25340.2	25332.8	25334.5
Self programming end library		4.0	4.5	4.0	4.5
Get information library	Option value: 03 H	1072.9	1075.2	1067.5	1069.1
	Option value: 04 H	1060.2	1062.6	1054.8	1056.6
	Option value: 05 H	1023.8	1028.2	1018.3	1022.1
Set information library		70265.9	759995.0	70264.9	759994.0
EEPROM write library		$1316.8+347 \times w$	$\begin{gathered} 1320.9+2385 \\ \times w \\ \hline \end{gathered}$	$1309.0+347 \times w$	$\begin{gathered} 1312.4+2385 \\ \times w \\ \hline \end{gathered}$

<2> When internal high-speed oscillation clock is used and entry RAM is located in short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		4.0	4.5	4.0	4.5
Initialize library		449.5	450.2	449.5	450.2
Mode check library		249.3	249.7	248.6	248.9
Block blank check library		12119.7	12121.9	12114.6	12116.3
Block erase library		25344.7	349266.4	25339.6	349260.8
Word write library		$445.8+203 \times w$	$449.9+2241 \times w$	$438.5+203 \times w$	$441.9+2241 \times w$
Block verify library		24682.7	24684.9	24677.6	24679.3
Self programming end library		4.0	4.5	4.0	4.5
Get information library	Option value: 03 H	417.6	419.8	412.1	413.8
	Option value: 04 H	405.0	407.4	399.5	401.3
	Option value: 05 H	367.4	371.8	361.9	365.8
Set information library		69569.3	759297.3	69568.3	759296.2
EEPROM write library		$795.1+347 \times$ w	$799.3+2385 \times w$	$787.4+347 \times w$	$790.8+2385 \times w$

Remarks 1. The above processing times are those when a write start address structure is located in the internal highspeed RAM and during stabilized operation of the internal high-speed oscillator (RSTS =1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
3. w: Number of words in write data (1 word = 4 bytes)

(2) Expanded-specification products (μ PD78F05xxA and 78F05xxDA) (2/3)

$<3>$ When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		55/fcPu + 594			
Mode check library		36/fcpu +495		30/fcpu + 495	
Block blank check library		179/fcpu + 6429		136/fcpu + 6429	
Block erase library		179/fcpu +19713	$\begin{gathered} 179 / f \mathrm{fPU}+ \\ 268079 \\ \hline \end{gathered}$	$136 / \mathrm{fcPu}+19713$	$\begin{gathered} 136 / \text { fcpu }+ \\ 268079 \\ \hline \end{gathered}$
Word write library		$\begin{gathered} 333 / \text { fcPu }+647+ \\ 136 \times w \\ \hline \end{gathered}$	$\begin{gathered} 333 / \text { fcPu }+647+ \\ 1647 \times w \\ \hline \end{gathered}$	$\begin{gathered} 272 / \text { fcPu }+647+ \\ 136 \times w \\ \hline \end{gathered}$	$\begin{gathered} 272 / \text { fcpu }+647+ \\ 1647 \times w \end{gathered}$
Block verify library		179/fcpu +13284		136/fcpu + 13284	
Self programming end library		34/fcpu			
Get information library	Option value: 03 H	180/fcpu +581		$134 \mathrm{fcPu}+581$	
	Option value: 04 H	190/fcpu +574		$144 / \mathrm{fCPU}+574$	
	Option value: 05 H	$350 / \mathrm{fcPu}+535$		304/fcPu +535	
Set information library		$80 / \mathrm{fcPu}+43181$	80/fcpu +572934	$72 / \mathrm{fcpu}+43181$	72/fcPu + 572934
EEPROM write library		$\begin{gathered} 333 / \text { fcPu }+729+ \\ 209 \times \mathrm{w} \end{gathered}$	$\begin{gathered} 333 / \text { fcpu }+729+ \\ 1722 \times \mathrm{w} \end{gathered}$	$\begin{gathered} 268 / \text { fcPu }+729+ \\ 209 \times w \end{gathered}$	$\begin{gathered} 268 / \text { fcpu }+729+ \\ 1722 \times \mathrm{w} \\ \hline \end{gathered}$

Remarks 1. The above processing times are those when a write start address structure is located in the internal highspeed RAM and during stabilized operation of the internal high-speed oscillator (RSTS =1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
3. fcpu: CPU operation clock frequency
4. w: Number of words in write data (1 word $=4$ bytes)

(2) Expanded-specification products (μ PD78F05xxA and 78F05xxDA) (3/3)

<4> When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located in short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		$55 / \mathrm{fcPu}+272$			
Mode check library		36/fcPu + 173		$30 / \mathrm{fcPu}+173$	
Block blank check library		179/fcPu + 6108		136/fcpu + 6108	
Block erase library		179/fcpu +19371	$\begin{gathered} \text { 179/fcpu + } \\ 267738 \end{gathered}$	$136 / \mathrm{fcPu}+19371$	$\begin{gathered} 136 / \mathrm{fcPu}+ \\ 267738 \\ \hline \end{gathered}$
Word write library		$\begin{gathered} 333 / \text { fcPu }+247+ \\ 136 \times w \end{gathered}$	$\begin{gathered} 333 / f \mathrm{fcPu}+247+ \\ 1647 \times \mathrm{w} \\ \hline \end{gathered}$	$\begin{gathered} 272 / \text { fcpu }+247+ \\ 136 \times w \end{gathered}$	$\begin{gathered} 272 / f c \mathrm{cPu}+247+ \\ 1647 \times \mathrm{w} \\ \hline \end{gathered}$
Block verify library		179/fcPu +12964		136/f¢PU + 12964	
Self programming end library		34/fcpu			
Get information library	Option value: 03 H	180/fcpu +261		134/fcpu +261	
	Option value: 04 H	190/fcPu +254		144/fcPu +254	
	Option value: 05 H	$350 / \mathrm{fcPu}+213$		304/fcPu +213	
Set information library		80/fcpu + 42839	80/fcpu +572592	$72 / \mathrm{fcPu}+42839$	$72 / \mathrm{fcPu}+572592$
EEPROM write library		$\begin{gathered} 333 / \text { fcPu }+516+ \\ 209 \times w \\ \hline \end{gathered}$	$\begin{gathered} 333 / \text { fcPu }+516+ \\ 1722 \times w \\ \hline \end{gathered}$	$\begin{gathered} 268 / \text { fcPu }+516+ \\ 209 \times w \\ \hline \end{gathered}$	$\begin{gathered} 268 / \mathrm{fcPu}+516+ \\ 1722 \times \mathrm{w} \\ \hline \end{gathered}$

Remarks 1. The above processing times are those when a write start address structure is located in the internal highspeed RAM and during stabilized operation of the internal high-speed oscillator (RSTS =1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
3. fcpu: CPU operation clock frequency
4. w : Number of words in write data (1 word $=4$ bytes)

1.1.6 Interrupt response time for self programming library

(1) Conventional-specification products (μ PD78F05xx and 78F05xxD) (1/2)
<1> When internal high-speed oscillation clock is used

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	Normal Model of C Compiler		Static Model of C Compiler/Assembler	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	933.6	668.6	927.9	662.9
Block erase library	1026.6	763.6	1020.9	757.9
Word write library	2505.8	1942.8	2497.8	1934.8
Block verify library	958.6	693.6	952.9	687.9
Set information library	476.5	211.5	475.5	210.5
EEPROM write library	2760.8	2168.8	2759.5	2167.5

Remarks 1. The above interrupt response times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
<2> When high-speed system clock is used (normal model of C compiler)

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	RSTOP $=0$, RSTS $=1$		RSTOP = 1	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	179/fCPU +507	179/fcpu +407	179/fcPu + 1650	179/fcpu +714
Block erase library	179/fcpu +559	179/fcpu +460	179/fcpu + 1702	179/fcpu +767
Word write library	333/fcpu + 1589	$333 / \mathrm{fcpu}+1298$	333/fcpu + 2732	333/fcpu + 1605
Block verify library	$179 / \mathrm{fcPu}+518$	179/fcpu +418	179/fcpu + 1661	179/fcpu +725
Set information library	80/fcpu + 370	80/fcpu + 165	$80 / \mathrm{fcPu}+1513$	80/fcpu +472
EEPROM write library ${ }^{\text {Note }}$	29/fcpu +1759	29/fcpu ± 1468	29/ffcp + 1759	29/fcpu + 1468
	$333 / \mathrm{fcPu}+834$	$333 / \mathrm{fcpu}+512$	333/fcPu + 2061	$333 / \mathrm{fcPu}+873$

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcpu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)
(1) Conventional-specification products (μ PD78F05xx and 78F05xxD) (2/2)
<3> When high-speed system clock is used (static model of C compiler/assembler)

Library Name	Interrupt Response Time (μ s (Max.))			
	RSTOP $=0, \mathrm{RSTS}=1$		RSTOP = 1	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	136/fcpu + 507	136/fcpu +407	136/fcpu + 1650	136/fcpu +714
Block erase library	136/fcpu +559	136/fcpu +460	136/fcpu + 1702	136/fcpu +767
Word write library	272/fcPu + 1589	272/fcPu + 1298	272/fcPu + 2732	272/fcPu + 1605
Block verify library	136/fcpu +518	136/fcpu +418	136/fcpu + 1661	136/fcpu +725
Set information library	$72 / \mathrm{fcpu}+370$	72/fcpu + 165	72/fcpu +1513	$72 / \mathrm{fcpu}+472$
EEPROM write library ${ }^{\text {Note }}$	19/f¢Pu + 1759	19/f¢Pu + 1468	19/f¢Pu + 11759	19/fcpu +1468
	268/fcpu +834	268/fcpu +512	268/fcpu + 2061	268/fcpu +873

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcpu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)
(2) Expanded-specification products (μ PD78F05xxA and 78F05xxDA) (1/2)
<1> When internal high-speed oscillation clock is used

Library Name	Interrupt Response Time (μ s (Max.))			
	Normal Model of Compiler		Static Model of C Compiler/Assembler	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	1100.9	431.9	1095.3	426.3
Block erase library	1452.9	783.9	1447.3	778.3
Word write library	1247.2	579.2	1239.2	571.2
Block verify library	1125.9	455.9	1120.3	450.3
Set information library	906.9	312.0	905.8	311.0
EEPROM write library	1215.2	547.2	1213.9	545.9

Remarks 1. The above interrupt response times are those during stabilized operation of the internal high-speed oscillator (RSTS =1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
<2> When high-speed system clock is used (normal model of Compiler)

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	RSTOP $=0, \mathrm{RSTS}=1$		RSTOP = 1	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	179/fcpu +567	179/fcpu +246	179/fcpu + 1708	179/fcpu +569
Block erase library	$179 / \mathrm{fcPu}+780$	179/fcPu +459	179/fcPu + 1921	179/fcpu +782
Word write library	$333 / \mathrm{fcPu}+763$	$333 / \mathrm{fcpu}+443$	$333 / \mathrm{fcPu}+1871$	$333 / \mathrm{fcPu}+767$
Block verify library	179/fcPu +580	179/fcpu + 259	179/fcPu + 1721	179/fcPu +582
Set information library	80/fcpu +456	80/fcpu + 200	$80 / \mathrm{fcpu}+1598$	80/fcpu + 459
EEPROM write library ${ }^{\text {Note }}$	29/f¢Pu + 767	29/fcpu + 447	29/fcpu + 767	29/fcpu + 447
	$333 / \mathrm{fcpu}+696$	$333 / \mathrm{fcPu}+376$	$333 / \mathrm{fcPu}+1838$	$333 / \mathrm{fcpu}+700$

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcPu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)
(2) Expanded-specification products (μ PD78F05xxA and 78F05xxDA) (2/2)
$<3>$ When high-speed system clock is used (static model of C compiler/assembler)

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	RSTOP $=0, \mathrm{RSTS}=1$		RSTOP = 1	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	136/fcpu + 567	136/fcpu + 246	136/fcpu + 1708	136/fcpu + 569
Block erase library	$136 / \mathrm{fcPu}+780$	136/fcpu +459	136/fcPu + 1921	$136 / \mathrm{fcPu}+782$
Word write library	272/fcpu +763	272/fcpu +443	272/fcpu + 1871	272/fcpu +767
Block verify library	$136 / \mathrm{fcPu}+580$	136/fcpu +259	136/fcpu + 1721	$136 / \mathrm{fcPu}+582$
Set information library	$72 / \mathrm{fcPu}+456$	72/fcpu + 200	72/fcpu + 1598	$72 / \mathrm{fcPu}+459$
EEPROM write library ${ }^{\text {Note }}$	19/fcpu + 767	19/f¢PU + 447	19/fCPU + 767	19/fcpuv +447
	268/fcpu +696	$268 / \mathrm{fcPu}+376$	268/fcpu + 1838	$268 / \mathrm{fcPu}+700$

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcpu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

1.2 Features

O Minimum instruction execution time can be changed from high speed ($0.1 \mu \mathrm{~s}$: @ 20 MHz operation with high-speed system clock) to ultra low-speed ($122 \mu \mathrm{~s}$: @ 32.768 kHz operation with subsystem clock)
O General-purpose register: 8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)
O ROM (flash memory), RAM capacities

ROM ${ }^{\text {Note }}$	High- Speed RAM ${ }^{\text {Note }}$	Expansion $R A M^{\text {Note }}$	78K0/KB2	78K0/KC2		78K0/KD2	78K0/KE2	78K0/KF2
			30/36 pins	38/44 pins	48 pins	52 pins	64 pins	80 pins
128 KB	1 KB	6 KB	-	-	-	$\begin{aligned} & \mu \text { PD78F0527D, } \\ & \text { 78F0527DA } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0537D, } \\ & \text { 78F0537DA } \end{aligned}$	μ PD78F0547D, 78F0547DA
						$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0527, \\ & \text { 78F0527A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0537, \\ & 78 \mathrm{~F} 0537 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0547 \\ & \text { 78F0547A } \end{aligned}$
96 KB	1 KB	4 KB	-	-	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0526, \\ & \text { 78F0526A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0536, \\ & \text { 78F0536A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0546, } \\ & \text { 78F0546A } \end{aligned}$
60 KB	1 KB	2 KB	-	-	$\begin{aligned} & \mu \text { PD78F0515D, } \\ & \text { 78F0515DA } \end{aligned}$	μ PD78F0525, 78F0525A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0535, \\ & \text { 78F0535A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0545, } \\ & \text { 78F0545A } \end{aligned}$
					$\begin{array}{\|l} \mu \mathrm{PD} 78 \mathrm{~F} 0515, \\ \text { 78F0515A } \\ \hline \end{array}$			
48 KB	1 KB	1 KB	-	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0514, \\ & \text { 78F0514A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0524, \\ & \text { 78F0524A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0534, \\ & \text { 78F0534A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0544, } \\ & \text { 78F0544A } \end{aligned}$
32 KB	1 KB	-	$\begin{aligned} & \mu \text { PD78F0503D } \\ & \text { 78F0503DA } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0513 \mathrm{D}, \\ & \text { 78F0513DA } \end{aligned}$	μ PD78F0513, 78F0513A	μ PD78F0523, 78F0523A	μ PD78F0533, 78F0533A	-
			$\begin{array}{\|l\|} \hline \mu \text { PD78F0503, } \\ \text { 78F0503A } \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0513, \\ & \text { 78F0513A } \end{aligned}$				
24 KB	1 KB	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0502, \\ & \text { 78F0502A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0512, \\ & \text { 78F0512A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0512, } \\ & \text { 78F0512A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0522, \\ & \text { 78F0522A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0532, \\ & \text { 78F0532A } \end{aligned}$	-
16 KB	768 B	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0501, \\ & \text { 78F0501A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0511, } \\ & \text { 78F0511A } \end{aligned}$	$\mu \text { PD78F0511, }$ 78F0511A	$\begin{aligned} & \mu \text { PD78F0521, } \\ & \text { 78F0521A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531, \\ & 78 \mathrm{~F} 0531 \mathrm{~A} \end{aligned}$	-
8 KB	512 B	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0500, \\ & \text { 78F0500A } \end{aligned}$	-	-	-	-	-

Note The internal flash memory, internal high-speed RAM capacities, and internal expansion RAM capacities can be changed using the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS). For IMS and IXS, see $\mathbf{2 7 . 1}$ Internal Memory Size Switching Register and $\mathbf{2 7 . 2}$ Internal Expansion RAM Size Switching Register.

O Buffer RAM: 32 bytes (can be used for transfer in CSI with automatic transmit/receive function) ($78 \mathrm{KO} 0 / \mathrm{KF} 2$ only)
O On-chip single-power-supply flash memory
O Self-programming (with boot swap function)
O On-chip debug function (μ PD78F05xxD and 78F05xxDA only) $)^{\text {Note }}$

Note The μ PD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

O On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)
O On-chip watchdog timer (operable with the on-chip internal low-speed oscillation clock)

O On-chip 10-bit resolution A/D converter (AVref $=2.3$ to 5.5 V)
O On-chip multiplier/divider (16 bits $\times 16$ bits, 32 bits/16 bits), key interrupt function, clock output/buzzer output controller, I/O ports, timer, and serial interface
O Power supply voltage

- Standard products, (A) grade products: VDD $=1.8$ to 5.5 V
- (A2) grade products:
$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V
O Operating ambient temperature
- Standard products, (A) grade products: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
- (A2) grade products: $\quad \mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$

Remark The functions mounted depend on the product. See 1.7 Block Diagram and 1.8 Outline of Functions.

1.3 Applications

O Automotive equipment (compatible with (A) and (A2) grade products)

- System control for body electricals (power windows, keyless entry reception, etc.)
- Sub-microcontrollers for control

O Car audio
O AV equipment, home audio
O PC peripheral equipment (keyboards, etc.)
O Household electrical appliances

- Air conditioners
- Microwave ovens, electric rice cookers

O Industrial equipment

- Pumps
- Vending machines
- FA (Factory Automation)

1.4 Ordering Information

[Part Number]

$\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xy} \mathrm{XXXX}(\mathrm{X})-\mathrm{XXX}-\mathrm{XX}$

	Semiconductor	
A	Lead-	Product contains no lead in any area
AX, free		Product contains no lead in any area (Terminal finish is Ni/Pd/Au plating)

	Quality Grade
None	Standard $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
(A), A	Special $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
(A2), A2	Special $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

		Package Type
$\begin{aligned} & 50 y \\ & \text { (KB2) } \end{aligned}$	MC-5A4	30-pin plastic SSOP (7.62 mm (300))
	MC-CAB	
	FC-AA3	36-pin plastic FLGA (4x4)
51y (KC2)	MC-GAA	38 -pin plastic SSOP (7.62 mm (300))
	GB-UES	44-pin plastic LQFP (10x10)
	GB-GAF	
	GA-8EU	48-pin plastic LQFP (fine pitch) (7x7)
	GA-GAM	
$\begin{array}{\|l} \hline 52 y \\ \text { (KD2) } \end{array}$	GB-UET	52-pin plastic LQFP (10x10)
	GB-GAG	
$\begin{aligned} & 53 y \\ & \text { (KE2) } \end{aligned}$	GB-UEU	64-pin plastic LQFP (fine pitch) (10x10)
	GB-GAH	
	GC-UBS	64-pin plastic LQFP (14×14)
	GC-GAL	
	GK-UET	64-pin plastic LQFP (12x12)
	GK-GAJ	
	GA-9EV	64-pin plastic TQFP (fine pitch) (7x7)
	GA-HAB	
	FC-AA1	64-pin plastic FLGA (5x5)
	F1-AA2	64-pin plastic FBGA (4×4)
$\begin{array}{\|l\|} \hline 54 y \\ (K F 2) \end{array}$	GC-UBT	80 -pin plastic LQFP (14×14)
	GC-GAD	
	GK-8EU	80-pin plastic LQFP (fine pitch) (12x12)
	GK-GAK	

	High-speed RAM Capacity	Expansion RAM Capacity	Flash Memory Capacity
5×0	512 bytes	-	8 KB
5×1	768 bytes	-	16 KB
5×2	1 KB	-	24 KB
5×3	1 KB	-	32 KB
5×4	1 KB	1 KB	48 KB
5×5	1 KB	2 KB	60 KB
5×6	1 KB	4 KB	96 KB
5×7	1 KB	6 KB	128 KB

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by
Renesas Electronics to know the specification of quality grade on the devices and its recommended applications.

[List of Part Number]

78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KB2	30-pin plastic SSOP (7.62 mm (300))	Conventionalspecification products	Standard products	$\begin{aligned} & \mu \text { PD78F0500MC-5A4-A, 78F0501MC-5A4-A, } \\ & \text { 78F0502MC-5A4-A, 78F0503MC-5A4-A, } \\ & \text { 78F0503DMC-5A4-A }{ }^{\text {Note }} \end{aligned}$
			(A) grade products	μ PD78F0500MC(A)-CAB-AX, 78F0501MC(A)-CAB-AX, 78F0502MC(A)-CAB-AX, 78F0503MC(A)-CAB-AX
			(A2) grade products	μ PD78F0500MC(A2)-CAB-AX, 78F0501MC(A2)-CAB-AX, 78F0502MC(A2)-CAB-AX, 78F0503MC(A2)-CAB-AX
		Expandedspecification products	Standard products	μ PD78F0500AMC-CAB-AX, 78F0501AMC-CAB-AX, 78F0502AMC-CAB-AX, 78F0503AMC-CAB-AX, 78F0503DAMC-CAB-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0500AMCA-CAB-G, 78F0501AMCA-CAB-G, 78F0502AMCA-CAB-G, 78F0503AMCA-CAB-G
			(A2) grade products	μ PD78F0500AMCA2-CAB-G, 78F0501AMCA2-CAB-G, 78F0502AMCA2-CAB-G, 78F0503AMCA2-CAB-G
	36-pin plastic FLGA (4x4)	Conventionalspecification products	Standard products	$\begin{aligned} & \mu \text { PD78F0500FC-AA3-A, 78F0501FC-AA3-A, } \\ & \text { 78F0502FC-AA3-A, 78F0503FC-AA3-A, } \\ & \text { 78F0503DFC-AA3-A } \end{aligned}$
		Expandedspecification products	Standard products	$\begin{aligned} & \mu \text { PD78F0500AFC-AA3-A, 78F0501AFC-AA3-A, } \\ & \text { 78F0502AFC-AA3-A, 78F0503AFC-AA3-A, } \\ & \text { 78F0503DAFC-AA3-A } \end{aligned}$
78K0/KC2	38-pin plastic SSOP (7.62 mm (300))	Expandedspecification products	Standard products	μ PD78F0511AMC-GAA-AX, 78F0512AMC-GAA-AX, 78F0513AMC-GAA-AX, 78F0513DAMC-GAA-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0511AMCA-GAA-G, 78F0512AMCA-GAA-G, 78F0513AMCA-GAA-G
			(A2) grade products	μ PD78F0511AMCA2-GAA-G, 78F0512AMCA2-GAA-G, 78F0513AMCA2-GAA-G
	44-pin plastic LQFP (10x10)	Conventionalspecification products	Standard products	μ PD78F0511GB-UES-A, 78F0512GB-UES-A, 78F0513GB-UES-A, 78F0513DGB-UES-A ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0511GB(A)-GAF-AX, 78F0512GB(A)-GAF-AX, 78F0513GB(A)-GAF-AX
			(A2) grade products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0511 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAF}-\mathrm{AX}, 78 \mathrm{~F} 0512 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAF}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0513 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAF}-\mathrm{AX} \end{aligned}$
		Expandedspecification products	Standard products	μ PD78F0511AGB-GAF-AX, 78F0512AGB-GAF-AX, 78F0513AGB-GAF-AX, 78F0513DAGB-GAF-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0511AGBA-GAF-G, 78F0512AGBA-GAF-G, 78F0513AGBA-GAF-G
			(A2) grade products	μ PD78F0511AGBA2-GAF-G, 78F0512AGBA2-GAF-G, 78F0513AGBA2-GAF-G

Note The μ PD78F0503D, 78F0503DA, 78F0513D, and 78F0513DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KC2	48-pin plastic LQFP (fine pitch) (7x7)	Conventionalspecification products	Standard products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0511 \mathrm{GA}-8 \mathrm{EU}-\mathrm{A}, 78 \mathrm{~F} 0512 \mathrm{GA}-8 \mathrm{EU}-\mathrm{A}, \\ & \text { 78F0513GA-8EU-A, 78F0514GA-8EU-A, 78F0515GA-8EU-A, } \\ & \text { 78F0515DGA-8EU-A }{ }^{\text {Note }} \end{aligned}$
			(A) grade products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0511 \mathrm{GA}(\mathrm{~A})-\mathrm{GAM}-\mathrm{AX}, 78 \mathrm{~F} 0512 \mathrm{GA}(\mathrm{~A})-\mathrm{GAM}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0513 \mathrm{GA}(\mathrm{~A})-\mathrm{GAM}-\mathrm{AX}, 78 \mathrm{~F} 0514 \mathrm{GA}(\mathrm{~A})-\mathrm{GAM}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0515 \mathrm{GA}(\mathrm{~A})-\mathrm{GAM}-\mathrm{AX} \end{aligned}$
			(A2) grade products	$\begin{aligned} & \mu \text { PD78F0511GA(A2)-GAM-AX, 78F0512GA(A2)-GAM-AX, } \\ & \text { 78F0513GA(A2)-GAM-AX, 78F0514GA(A2)-GAM-AX, } \\ & \text { 78F0515GA(A2)-GAM-AX } \end{aligned}$
		Expandedspecification products	Standard products	μ PD78F0511AGA-GAM-AX, 78F0512AGA-GAM-AX, 78F0513AGA-GAM-AX, 78F0514AGA-GAM-AX, 78F0515AGA-GAM-AX, 78F0515DAGA-GAM-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0511AGAA-GAM-G, 78F0512AGAA-GAM-G, 78F0513AGAA-GAM-G, 78F0514AGAA-GAM-G, 78F0515AGAA-GAM-G
			(A2) grade products	$\begin{aligned} & \mu \text { PD78F0511AGAA2-GAM-G, 78F0512AGAA2-GAM-G, } \\ & \text { 78F0513AGAA2-GAM-G, 78F0514AGAA2-GAM-G, } \\ & \text { 78F0515AGAA2-GAM-G } \end{aligned}$
78K0/KD2	52-pin plastic LQFP (10x10)	Conventionalspecification products	Standard products	μ PD78F0521GB-UET-A, 78F0522GB-UET-A, 78F0523GB-UET-A, 78F0524GB-UET-A, 78F0525GB-UET-A, 78F0526GB-UET-A, 78F0527GB-UET-A, 78F0527DGB-UET-A ${ }^{\text {Note }}$
			(A) grade products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAG}-\mathrm{AX}, 78 \mathrm{~F} 0522 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAG}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0523 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAG}-\mathrm{AX}, 78 \mathrm{~F} 0524 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAG}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0525 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAG}-\mathrm{AX}, 78 \mathrm{~F} 0526 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAG}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0527 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAG}-\mathrm{AX} \end{aligned}$
			(A2) grade products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAG}-\mathrm{AX}, 78 \mathrm{F0522GB}(\mathrm{~A} 2)-\mathrm{GAG}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0523 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAG}-\mathrm{AX}, 78 \mathrm{~F} 0524 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAG}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0525 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAG}-\mathrm{AX}, 78 \mathrm{~F} 0526 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAG}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0527 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAG}-\mathrm{AX} \end{aligned}$
		Expandedspecification products	Standard products	μ PD78F0521AGB-GAG-AX, 78F0522AGB-GAG-AX, 78F0523AGB-GAG-AX, 78F0524AGB-GAG-AX, 78F0525AGB-GAG-AX, 78F0526AGB-GAG-AX, 78F0527AGB-GAG-AX, 78F0527DAGB-GAG-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0521AGBA-GAG-G, 78F0522AGBA-GAG-G, 78F0523AGBA-GAG-G, 78F0524AGBA-GAG-G, 78F0525AGBA-GAG-G, 78F0526AGBA-GAG-G, 78F0527AGBA-GAG-G
			(A2) grade products	$\begin{aligned} & \mu \text { PD78F0521AGBA2-GAG-G, 78F0522AGBA2-GAG-G, } \\ & \text { 78F0523AGBA2-GAG-G, 78F0524AGBA2-GAG-G, } \\ & \text { 78F0525AGBA2-GAG-G, 78F0526AGBA2-GAG-G, } \\ & \text { 78F0527AGBA2-GAG-G } \end{aligned}$

Note The μ PD78F0515D, 78F0515DA, 78F0527D, and 78F0527DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KE2	64-pin plastic LQFP (fine pitch) (10x10)	Conventionalspecification products	Standard products	μ PD78F0531GB-UEU-A, 78F0532GB-UEU-A, 78F0533GB-UEU-A, 78F0534GB-UEU-A, 78F0535GB-UEU-A, 78F0536GB-UEU-A, 78F0537GB-UEU-A, 78F0537DGB-UEU-A ${ }^{\text {Note }}$
			(A) grade products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAH}-\mathrm{AX}, 78 \mathrm{~F} 0532 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAH}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0533 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAH}-\mathrm{AX}, 78 \mathrm{~F} 0534 \mathrm{~GB}(\mathrm{~A})-\mathrm{GAH}-\mathrm{AX}, \\ & \text { 78F0535GB(A)-GAH-AX, 78F0536GB(A)-GAH-AX, } \\ & \text { 78F0537GB(A)-GAH-AX } \end{aligned}$
			(A2) grade products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAH}-\mathrm{AX}, 78 \mathrm{~F} 0532 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAH}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0533 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAH}-\mathrm{AX}, 78 \mathrm{~F} 0534 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAH}-\mathrm{AX}, \\ & 78 \mathrm{~F} 0535 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAH}-\mathrm{AX}, 78 \mathrm{~F} 0536 \mathrm{~GB}(\mathrm{~A} 2)-\mathrm{GAH}-\mathrm{AX}, \\ & \text { 78F0537GB(A2)-GAH-AX } \end{aligned}$
		Expandedspecification products	Standard products	μ PD78F0531AGB-GAH-AX, 78F0532AGB-GAH-AX, 78F0533AGB-GAH-AX, 78F0534AGB-GAH-AX, 78F0535AGB-GAH-AX, 78F0536AGB-GAH-AX, 78F0537AGB-GAH-AX, 78F0537DAGB-GAH-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0531AGBA-GAH-G, 78F0532AGBA-GAH-G, 78F0533AGBA-GAH-G, 78F0534AGBA-GAH-G, 78F0535AGBA-GAH-G, 78F0536AGBA-GAH-G, 78F0537AGBA-GAH-G
			(A2) grade products	μ PD78F0531AGBA2-GAH-G, 78F0532AGBA2-GAH-G, 78F0533AGBA2-GAH-G, 78F0534AGBA2-GAH-G, 78F0535AGBA2-GAH-G, 78F0536AGBA2-GAH-G, 78F0537AGBA2-GAH-G

Note The μ PD78F0537D and 78F0537DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KE2	64-pin plastic LQFP (14x14)	Conventionalspecification products	Standard products	μ PD78F0531GC-UBS-A, 78F0532GC-UBS-A, 78F0533GC-UBS-A, 78F0534GC-UBS-A, 78F0535GC-UBS-A, 78F0536GC-UBS-A, 78F0537GC-UBS-A, 78F0537DGC-UBS-A ${ }^{\text {Note }}$
			(A) grade products	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531 \mathrm{GC}(\mathrm{~A})-\mathrm{GAL}-\mathrm{AX}, 78 \mathrm{~F} 0532 \mathrm{GC}(\mathrm{~A})-\mathrm{GAL}-\mathrm{AX}, \\ & \text { 78F0533GC(A)-GAL-AX, 78F0534GC(A)-GAL-AX, } \\ & \text { 78F0535GC(A)-GAL-AX, 78F0536GC(A)-GAL-AX, } \\ & \text { 78F0537GC(A)-GAL-AX } \end{aligned}$
			(A2) grade products	$\begin{aligned} & \mu \text { PD78F0531GC(A2)-GAL-AX, 78F0532GC(A2)-GAL-AX, } \\ & \text { 78F0533GC(A2)-GAL-AX, 78F0534GC(A2)-GAL-AX, } \\ & \text { 78F0535GC(A2)-GAL-AX, 78F0536GC(A2)-GAL-AX, } \\ & \text { 78F0537GC(A2)-GAL-AX } \end{aligned}$
		Expandedspecification products	Standard products	μ PD78F0531AGC-GAL-AX, 78F0532AGC-GAL-AX, 78F0533AGC-GAL-AX, 78F0534AGC-GAL-AX, 78F0535AGC-GAL-AX, 78F0536AGC-GAL-AX, 78F0537AGC-GAL-AX, 78F0537DAGC-GAL-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0531AGCA-GAL-G, 78F0532AGCA-GAL-G, 78F0533AGCA-GAL-G, 78F0534AGCA-GAL-G, 78F0535AGCA-GAL-G, 78F0536AGCA-GAL-G, 78F0537AGCA-GAL-G
			(A2) grade products	```\muPD78F0531AGCA2-GAL-G, 78F0532AGCA2-GAL-G, 78F0533AGCA2-GAL-G, 78F0534AGCA2-GAL-G, 78F0535AGCA2-GAL-G, 78F0536AGCA2-GAL-G, 78F0537AGCA2-GAL-G```

Note The μ PD78F0537D and 78F0537DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KE2	64-pin plastic LQFP (12x12)	Conventionalspecification products	Standard products	μ PD78F0531GK-UET-A, 78F0532GK-UET-A, 78F0533GK-UET-A, 78F0534GK-UET-A, 78F0535GK-UET-A, 78F0536GK-UET-A, 78F0537GK-UET-A, 78F0537DGK-UET-A ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0531GK(A)-GAJ-AX, 78F0532GK(A)-GAJ-AX, 78F0533GK(A)-GAJ-AX, 78F0534GK(A)-GAJ-AX, 78F0535GK(A)-GAJ-AX, 78F0536GK(A)-GAJ-AX, 78F0537GK(A)-GAJ-AX
			(A2) grade products	$\begin{aligned} & \mu \text { PD78F0531GK(A2)-GAJ-AX, 78F0532GK(A2)-GAJ-AX, } \\ & \text { 78F0533GK(A2)-GAJ-AX, 78F0534GK(A2)-GAJ-AX, } \\ & \text { 78F0535GK(A2)-GAJ-AX, 78F0536GK(A2)-GAJ-AX, } \\ & \text { 78F0537GK(A2)-GAJ-AX } \end{aligned}$
		Expandedspecification products	Standard products	μ PD78F0531AGK-GAJ-AX, 78F0532AGK-GAJ-AX, 78F0533AGK-GAJ-AX, 78F0534AGK-GAJ-AX, 78F0535AGK-GAJ-AX, 78F0536AGK-GAJ-AX, 78F0537AGK-GAJ-AX, 78F0537DAGK-GAJ-AX ${ }^{\text {Note }}$
			(A) grade products	μ PD78F0531AGKA-GAJ-G, 78F0532AGKA-GAJ-G, 78F0533AGKA-GAJ-G, 78F0534AGKA-GAJ-G, 78F0535AGKA-GAJ-G, 78F0536AGKA-GAJ-G, 78F0537AGKA-GAJ-G
			(A2) grade products	μ PD78F0531AGKA2-GAJ-G, 78F0532AGKA2-GAJ-G, 78F0533AGKA2-GAJ-G, 78F0534AGKA2-GAJ-G, 78F0535AGKA2-GAJ-G, 78F0536AGKA2-GAJ-G, 78F0537AGKA2-GAJ-G
	64-pin plastic TQFP (fine pitch) (7x7)	Conventionalspecification products	Standard products	```\muPD78F0531GA-9EV-A, 78F0532GA-9EV-A, 78F0533GA-9EV-A, 78F0534GA-9EV-A, 78F0535GA-9EV-A, 78F0536GA-9EV-A, 78F0537GA-9EV-A, 78F0537DGA-9EV-A Aote```
		Expandedspecification products	Standard products	μ PD78F0531AGA-HAB-AX, 78F0532AGA-HAB-AX, 78F0533AGA-HAB-AX, 78F0534AGA-HAB-AX, 78F0535AGA-HAB-AX, 78F0536AGA-HAB-AX, 78F0537AGA-HAB-AX, 78F0537DAGA-HAB-AX ${ }^{\text {Note }}$

Note The μ PD78F0537D and 78F0537DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Note The μ PD78F0537D, 78F0537DA, 78F0547D, and 78F0547DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
1.5 Pin Configuration (Top View)

1.5.1 78K0/KB2

- 30-pin plastic SSOP (7.62 mm (300))

Note Products with on-chip debug function only

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
3. ANIO/P20 to ANI3/P23 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

- 36-pin plastic FLGA (4x4)

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
A1	$N C^{\text {Note } 1}$	C1	P17/TI50/TO50	E1	AVref
A2	P32/INTP3/OCD1B ${ }^{\text {Note } 2}$	C2	P14/RxD6	E2	AVss
A3	P30/INTP1	C3	P13/TxD6	E3	ANI2/P22
A4	P61/SDA0	C4	P00/TI000	E4	ANI1/P21
A5	P33/TI51/TO51/INTP4	C5	Vdd	E5	FLMD0
A6	NC ${ }^{\text {Note } 1}$	C6	P121/X1/OCD0A ${ }^{\text {Note } 2}$	E6	RESET
B1	P31/INTP2/OCD1A ${ }^{\text {Note } 2}$	D1	P11/SI10/RxD0	F1	$N C^{\text {Note } 1}$
B2	P16/TOH1/INTP5	D2	P12/SO10	F2	ANI3/P23
B3	P15/TOH0	D3	P10/SCK10/TxD0	F3	ANIO/P20
B4	P60/SCL0	D4	REGC	F4	P01/TI010/TO00
B5	EVdd	D5	Vss	F5	P120/INTP0/EXLVI
B6	EVss	D6	$\begin{aligned} & \text { P122/X2/EXCLK/ } \\ & \text { OCDOB }^{\text {Note } 2} \end{aligned}$	F6	NC ${ }^{\text {Note } 1}$

Notes 1. It is recommended to connect NC to Vss.
2. Products with on-chip debug function only

Cautions 1. Make $A V_{s s}$ and $E V_{s s}$ the same potential as Vss.
2. Make EVdd the same potential as Vdd.
3. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
4. ANIO/P20 to ANI3/P23 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

1.5.2 78K0/KC2

- 38-pin plastic SSOP (7.62 mm (300))

Note Products with on-chip debug function only

Cautions 1. Make $A V$ ss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
3. ANIO/P20 to ANI5/P25 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

- 44-pin plastic LQFP (10 $\times 10$)

Note Products with on-chip debug function only

Cautions 1. Make $A V$ ss the same potential as Vss.
2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
3. ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

- 48-pin plastic LQFP (fine pitch) (7×7)

Note Products with on-chip debug function only

Cautions 1. Make AV ss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
3. ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

1.5.3 78K0/KD2

- 52-pin plastic LQFP (10 $\times 10$)

Note Products with on-chip debug function only

Cautions 1. Make AVss the same potential as Vss.
2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
3. ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

1.5.4 78K0/KE2

- 64-pin plastic LQFP (fine pitch) (10×10)
- 64-pin plastic LQFP (14×14)
- 64-pin plastic LQFP (12×12)
- 64-pin plastic TQFP (fine pitch) (7×7)

Notes 1. Products with on-chip debug function only
2. Products whose flash memory is at least 48 KB only

Cautions 1. Make AVss and EVss the same potential as Vss.

2. Make EVdd the same potential as Vdd.
3. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
4. ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

- 64-pin plastic FLGA (5×5)
- 64-pin plastic FBGA (4×4)

Top View

Bottom View

Pin No.	Pin Name						
A1	AVss	C1	ANI4/P24	E1	P130	G1	P141/BUZ/INTP7
A2	AVref	C2	ANI3/P23	E2	ANIO/P20	G2	P140/PCL/INTP6
A3	P11/SI10/RxD0	C3	ANI7/P27	E3	P03/SI11 ${ }^{\text {Note } 2}$	G3	P43
A4	P13/TxD6	C4	P10/SCK10/TxD0	E4	P42	G4	RESET
A5	P16/TOH1/INTP5	C5	P17/TI50/TO50	E5	P77/KR7	G5	REGC
A6	P53	C6	P30/INTP1	E6	P33/TI51/TO51/INTP4	G6	Vss
A7	P51	C7	$\begin{aligned} & \text { P31/INTP2/ } \\ & \text { OCD1A }^{\text {Note } 1} \end{aligned}$	E7	P74/KR4	G7	VdD
A8	P32/INTP3/ $\text { OCD1B }{ }^{\text {Note } 1}$	C8	$\begin{aligned} & \text { P06/TO01 }{ }^{\text {Note 2 }} / \\ & \text { Tl011 }{ }^{\text {Note } 2} \end{aligned}$	E8	P76/KR6	G8	P61/SDA0
B1	ANI5/P25	D1	ANI1/P21	F1	P01/TI010/TO00	H1	P120/INTP0/EXLVI
B2	ANI6/P26	D2	ANI2/P22	F2	P00/T1000	H2	P124/XT2/EXCLKS
B3	P12/SO10	D3	P04/SCK11 ${ }^{\text {Note } 2}$	F3	P02/SO11 ${ }^{\text {Note 2 }}$	H3	P123/XT1
B4	P15/TOH0	D4	P72/KR2	F4	P41	H4	FLMD0
B5	P14/RxD6	D5	P70/KR0	F5	P40	H5	$\begin{aligned} & \text { P122/X2/EXCLK/ } \\ & \text { OCDOB }^{\text {Note } 1} \end{aligned}$
B6	P52	D6	P71/KR1	F6	P60/SCL0	H6	P121/X1/OCD0A ${ }^{\text {Note } 1}$
B7	P50	D7	P75/KR5	F7	P62/EXSCL0	H7	EVss
B8	$\begin{aligned} & \mathrm{P} 05 / \overline{\mathrm{SSI} 11}^{\text {Note } 2 /} \\ & \text { TIO01 }^{\text {Note } 2} \end{aligned}$	D8	P73/KR3	F8	P63	H8	EVdd

Notes 1. Product with on-chip debug function only
2. Products whose flash memory is at least 48 KB only

Cautions 1. Make $A V$ ss and $E V$ ss the same potential as Vss.
2. Make EVdd the same potential as Vdd.
3. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
4. ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

1.5.5 78K0/KF2

- 80-pin plastic LQFP (14×14)
- 80 -pin plastic LQFP (fine pitch) (12×12)

Note Products with on-chip debug function only

Cautions 1. Make $A V$ ss and $E V_{s s}$ the same potential as Vss.

2. Make EVdd the same potential as Vdd.
3. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
4. ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.

Remark For pin identification, see 1.6 Pin Identification.

1.6 Pin Identification

ANIO to ANIT:	Analog input	P120 to P124:	Port 12
AVref:	Analog reference voltage	P130:	Port 13
AVss:	Analog ground	P140 to P145:	Port 14
BUSYO:	Serial busy input	PCL:	Programmable clock output
BUZ:	Buzzer output	REGC	Regulator capacitance
EVdD:	Power supply for port	RESET:	Reset
EVss:	Ground for port	RxD0, RxD6:	Receive data
EXCLK:	External clock input (main system clock)	SCK10, $\overline{\text { SCK11 }}, \overline{\text { SCKA0 }}$ SCLO:	Serial clock input/output Serial clock input/output
EXCLKS:	External clock input (subsystem clock)	SDAO: SI10, SI11, SIAO:	Serial data input/output Serial data input
EXLVI:	External potential input for low-voltage detector	SO10, SO11, SOA0: SSI11:	Serial data output Serial interface chip select input
EXSCLO:	External serial clock input	STB0:	Serial strobe
FLMDO:	Flash programming mode	TI000, TI010,	
INTP0 to INTP7:	External interrupt input	TI001, TI011,	
KR0 to KR7:	Key return	TI50, TI51:	Timer input
NC:	Non-connection	TO00, TO01,	
OCDOA, OCDOB,		TO50, TO51,	
OCD1A, OCD1B:	On chip debug input/output	TOH0, TOH1:	Timer output
P00 to P06:	Port 0	TxD0, TxD6:	Transmit data
P10 to P17:	Port 1	VDD:	Power supply
P20 to P27:	Port 2	Vss:	Ground
P30 to P33:	Port 3	X1, X2:	Crystal oscillator (main system clock)
P40 to P47:	Port 4	XT1, XT2:	Crystal oscillator (subsystem clock)
P50 to P57:	Port 5		
P60 to P67:	Port 6		
P70 to P77:	Port 7		

1.7 Block Diagram

1.7.1 78K0/KB2

Notes 1. Available only in the products with on-chip debug function.
2. Available only in the 36 -pin products.

1.7.2 78K0/KC2

Notes 1. Available only in the 44-pin and 48-pin products.
2 Available only in the 48-pin products.
3. Available only in the products whose flash memory is at least 48 KB.
4. Available only in the products with on-chip debug function.

1.7.3 78K0/KD2

Notes 1. Available only in the products whose flash memory is at least 96 KB .
2. Available only in the products whose flash memory is at least 48 KB .
3. Available only in the products with on-chip debug function.

1.7.4 78K0/KE2

Notes 1. Available only in the products whose flash memory is at least 96 KB.
2. Available only in the products whose flash memory is at least 48 KB .
3. Available only in the products with on-chip debug function.

1.7.5 78K0/KF2

Notes 1. Available only in the products whose flash memory is at least 96 KB .
2. Available only in the products with on-chip debug function.

1.8 Outline of Functions

Notes 1. This is applicable to a standard expanded-specification product (μ PD78F05xxA and 78F05xxDA). See CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA: $\mathbf{- 4 0}$ to $\mathbf{+ 1 2 5 ^ { \circ }} \mathbf{C}$) for products with other specifications and grades.
2. Select either of the functions of these alternate-function pins.

$78 \mathrm{KO} / \mathrm{Kx} 2$ Item			78K0/KD2							78K0/KE2							78K0/KF2			
			52 Pins							64 Pins							80 Pins			
Flash memory (KB)			16	24	32	48	60	96	128	16	24	32	48	60	96	128	48	60	96	128
High-Speed RAM (KB)			0.75	1	1	1	1	1	1	0.75	1	1	1	1	1	1	1	1	1	1
Expansion RAM (KB)			-	-	-	1	2	4	6	-	-	-	1	2	4	6	1	2	4	6
Bank (flash memory)			-					4	6	-					4	6			4	6
Power supply voltage			Standard products, (A) grade products: $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V , (A2) grade products: $\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V																	
Regulator			Provided																	
Minimum instruction execution time			$0.1 \mu \mathrm{~s}\left(20 \mathrm{MHz}: \mathrm{V}_{\mathrm{DD}}=2.7\right.$ to 5.5 V$) / 0.4 \mu \mathrm{~s}\left(5 \mathrm{MHz} \text { : } \mathrm{V}_{\mathrm{DD}}=1.8 \text { to } 5.5 \mathrm{~V}\right)^{\text {Note } 1}$																	
$\begin{aligned} & \text { 등 } \\ & \text { O } \end{aligned}$		High-speed system	$20 \mathrm{MHz}: \mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V} / 5 \mathrm{MHz}$: $\mathrm{V}_{\mathrm{DD}}=1.8$ to $5.5 \mathrm{~V}^{\text {Note } 1}$																	
		Internal high-speed oscillation	8 MHz (TYP.): $\mathrm{V}_{\mathrm{DD}}=1.8$ to $5.5 \mathrm{~V}^{\text {Note } 1}$																	
	Subsystem		32.768 kHz (TYP.): $\mathrm{V}_{\mathrm{DD}}=1.8$ to $5.5 \mathrm{~V}^{\text {Note } 1}$																	
	Internal low-speed oscillation		240 kHz (TYP.): VDD $=1.8$ to $5.5 \mathrm{~V}^{\text {Note } 1}$																	
$\begin{aligned} & \frac{士}{0} \\ & \hline 0 \end{aligned}$	Tot		45							55							71			
		O.D. (6 V tolerance)	4							4							4			
$\begin{aligned} & \stackrel{ \pm}{\Phi} \\ & \stackrel{\Xi}{1} \end{aligned}$		(TM0)	1 ch										2 ch							
		(TM5)	2 ch																	
	8 b	its (TMH)	2 ch																	
	Wa		1 ch																	
	WD		1 ch																	
	3-w	ire CSI	-										1 ch							
		omatic transmit/ eive 3-wire CSI	-														1 ch			
		RT/3-wire CSI ${ }^{\text {Note }}$	1 ch																	
	UAR	RT supporting LIN-bus	1 ch																	
	$\mathrm{I}^{2} \mathrm{C}$	bus	1 ch																	
10-bit A/D			8 ch																	
	Ext	ernal	8							9										
	Internal		16										19				20			
Key interrupt			8 ch																	
$\begin{aligned} & \pm \\ & \mathbb{0} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	RE	SET pin	Provided																	
	PO		$1.59 \mathrm{~V} \pm 0.15 \mathrm{~V}$																	
	LVI		The detection level of the supply voltage is selectable.																	
	WD		Provided																	
Clock output/buzzer output			Clock output only							Provided										
Multiplier/divider				-			Prov	ded			-		Provided							
On-chip debug function			μ PD78F0527D, 78F0527DA only							μ PD78F0537D, 78F0537DA only							μ PD78F0547D, 78F0547DA only			
Operating ambient temperature			Standard products, (A) grade products: $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, (A2) grade products: $\mathrm{TA}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$																	

Notes 1. This is applicable to a standard expanded-specification product (μ PD78F05xxA and $78 F 05 x x D A$). See CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA: $\mathbf{- 4 0}$ to $\mathbf{+ 1 2 5 ^ { \circ }} \mathbf{C}$) for products with other specifications and grades.
2. Select either of the functions of these alternate-function pins.

An outline of the timer is shown below.

		16-Bit Timer/ Event Counters 00 and 01		8-Bit Timer/ Event Counters 50 and 51		8-Bit Timers H 0 and H 1		Watch Timer	Watchdog Timer
		TM00	TM01	TM50	TM51	TMH0	TMH1		
Function	Interval timer	1 channel $^{\text {Note } 1}$	-						
	External event counter	1 channel	1 channel	1 channel	1 channel	-	-	-	-
	PPG output	1 output	1 output	-	-	-	-	-	-
	PWM output	-	-	1 output	1 output	1 output	1 output	-	-
	Pulse width measurement	2 inputs	2 inputs	-	-	-	-	-	-
	Square-wave output	1 output	-	-					
	Carrier generator	-	-	-	-	-	1 output $^{\text {Nore } 2}$	-	-
	Timer output	-	-	-	-	-	-	1 channel $^{\text {Nore } 1}$	-
	Watchdog timer	-	-	-	-	-	-	-	1 channel
Interrupt source		2	2	1	1	1	1	1	-

Notes 1. In the watch timer, the watch timer function and interval timer function can be used simultaneously.
2. TM51 and TMH1 can be used in combination as a carrier generator mode.

Remark The timer mounted depends on the product.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
16-bit timer/event counter 00	\checkmark					
16-bit timer/event counter 01	-					
8 -bit timer/event counter 50	\checkmark					
8-bit timer/event counter 51	\checkmark					
8 -bit timer H0	\checkmark					
8-bit timer H1	\checkmark					
Watch timer	-	\checkmark				
Watchdog timer	\checkmark					

ل: Mounted, -: Not mounted

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Function List

Pin I/O buffer power supplies depend on the product. The relationship between these power supplies and the pins is shown below.

Table 2-1. Pin I/O Buffer Power Supplies (AVref, Vdd)

- 78K0/KB2: 30-pin plastic SSOP (7.62 mm (300))
- 78K0/KC2: 38-pin plastic SSOP (7.62 mm (300)), 44-pin plastic LQFP (10x10), 48-pin plastic LQFP (fine pitch) (7x7)
- 78K0/KD2: 52-pin plastic LQFP (10x10)

Power Supply	Corresponding Pins
AV $_{\text {REF }}$	P20 to P27
VDD	Pins other than P20 to P27

Table 2-2. Pin I/O Buffer Power Supplies (AVref, EVdd, Vdd)

- 78K0/KB2: 36-pin plastic FLGA (4x4)
- 78K0/KE2: 64-pin plastic LQFP (fine pitch) (10x10), 64-pin plastic LQFP (14x14), 64-pin plastic LQFP (12x12), 64 -pin plastic TQFP (fine pitch) (7×7), 64-pin plastic FLGA (5×5), 64 -pin plastic FBGA (4×4)
- 78K0/KF2: 80-pin plastic LQFP (14x14), 80-pin plastic LQFP (fine pitch) (12x12)

Power Supply	Corresponding Pins
$A_{\text {REF }}$	P20 to P27
EV	Port pins other than P20 to P27 and P121 to P124
$V_{D D}$	- P121 to P124 - Pins other than port

2.1.1 78K0/KB2

(1) Port functions: 78K0/KB2

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TIOOO
P01				TI010/TO00
P10	I/O	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK10/TxD0 }}$
P11				SI10/RxD0
P12				SO10
P13				TxD6
P14				RxD6
P15				TOH0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P23	I/O	Port 2. 4-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANIO to ANI3
P30	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTP1
P31				INTP2/OCD1A ${ }^{\text {Note }}$
P32				INTP3/OCD1B ${ }^{\text {Note }}$
P33				INTP4/TI51/TO51
P60	I/O	Port 6. 2-bit I/O port. Output is N -ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.	Input port	SCLO
P61				SDAO
P120	I/O	Port 12. 3-bit I/O port. Input/output can be specified in 1-bit units. Only for P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121				X1/OCD0A ${ }^{\text {Note }}$
P122				X2/EXCLK/ OCDOB ${ }^{\text {Note }}$

Note μ PD78F0503D and 78F0503DA (product with on-chip debug function) only
(2) Non-port functions (1/2): 78K0/KB2

Function Name	I/O	Function	After Reset	Alternate Function
ANIO to ANI3	Input	A/D converter analog input	Analog input	P20 to P23
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
FLMD0	-	Flash memory programming mode setting	-	-
INTPO	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30
INTP2				P31/OCD1A ${ }^{\text {Note }}$
INTP3				P32/OCD1B ${ }^{\text {Note }}$
INTP4				P33/TI51/TO51
INTP5				P16/TOH1
REGC	-	Connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-
RESET	Input	System reset input	-	-
RxD0	Input	Serial data input to UART0	Input port	P11/SI10
RxD6	Input	Serial data input to UART6	Input port	P14
TxD0	Output	Serial data output from UART0	Input port	P10/SCK10
TxD6	Output	Serial data output from UART6	Input port	P13
$\overline{\text { SCK10 }}$	I/O	Clock input/output for CSI10	Input port	P10/TxD0
SI10	Input	Serial data input to CSI10		P11/RxD0
SO10	Output	Serial data output from CSI10		P12
SCLO	I/O	Clock input/output for $\mathrm{I}^{2} \mathrm{C}$	Input port	P60
SDA0		Serial data I/O for $\mathrm{I}^{2} \mathrm{C}$		P61
T1000	Input	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input port	P00
T1010	Input	Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00	Input port	P01/TO00
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input port	P17/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
TO00	Output	16-bit timer/event counter 00 output	Input port	P01/T1010
TO50	Output	8 -bit timer/event counter 50 output	Input port	P17/TI50
TO51		8 -bit timer/event counter 51 output		P33/TI51/INTP4
TOH0	Output	8 -bit timer H0 output	Input port	P15
TOH1		8-bit timer H1 output		P16/INTP5
X1	-	Connecting resonator for main system clock	Input port	P121/OCD0A ${ }^{\text {Note }}$
X2	-		Input port	P122/EXCLK/OCD0B ${ }^{\text {Note }}$
EXCLK	Input	External clock input for main system clock	Input port	P122/X2/OCD0B ${ }^{\text {Note }}$

Note μ PD78F0503D and 78F0503DA (product with on-chip debug function) only
(2) Non-port functions (2/2): 78K0/KB2

Function Name	I/O	Function	After Reset	Alternate Function
Vdo	-	For 30-pin products: Positive power supply for pins other than P20 to P23 For 36-pin products: Positive power supply for P121, P122, and non-port pins	-	-
$E V_{\text {do }}$ Note 1	-	For 36-pin products: Positive power supply for port pins other than P20 to P23, P121, and P122. Make the same potential as Vod.	-	-
AVref	-	A/D converter reference voltage input and positive power supply for P20 to P23 and A/D converter	-	-
Vss	-	For 30-pin products: Ground potential for pins other than P20 to P23 For 36-pin products: Ground potential for P121, P122, and non-port pins	-	-
$E V s s^{\text {Note } 1}$	-	For 36-pin products: Ground potential for port pins other than P20 to P23, P121, and P122. Make the same potential as Vss.	-	-
AVss	-	A/D converter ground potential. Make the same potential as Vss.	-	-
OCDOA ${ }^{\text {Note } 2}$	Input	Connection for on-chip debug mode setting pins (μ PD78F0503D and 78F0503DA only)	Input port	P121/X1
OCD1A ${ }^{\text {Note } 2}$				P31/INTP2
OCDOB ${ }^{\text {Note } 2}$	-			P122/X2/EXCLK
OCD1B ${ }^{\text {Note } 2}$				P32/INTP3

Notes 1. 36-pin products only
2. μ PD78F0503D and 78F0503DA (product with on-chip debug function) only

2.1.2 78K0/KC2

(1) Port functions (1/2): 78K0/KC2

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TIOOO
P01				TI010/TO00
P10	I/O	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK10 }} / \mathrm{T} \times \mathrm{D} 0$
P11				SI10/RxD0
P12				SO10
P13				TxD6
P14				RxD6
P15				TOH0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P25	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANIO to ANI5
P26 ${ }^{\text {Note 1 }}, \mathrm{P} 27^{\text {Note } 1}$				ANI6 ${ }^{\text {Note 1 }}, \mathrm{ANI}^{\text {Note } 1}$
P30	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTP1
P31				INTP2/OCD1A ${ }^{\text {Note } 2}$
P32				INTP3/OCD1B ${ }^{\text {Note 2 }}$
P33				TI51/TO51/INTP4
$\mathrm{P} 40^{\text {Note }} 1, \mathrm{P} 41^{\text {Note } 1}$	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
P60	I/O	Port 6. 4-bit I/O port. Output of P60 to P63 is N-ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.	Input port	SCLO
P61				SDA0
P62				EXSCLO
P63				-
P70, P71	I/O	Port 7. 6-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0, KR1
$\mathrm{P} 72^{\text {Note } 1}, \mathrm{P} 73^{\text {Note } 1}$				KR2 ${ }^{\text {Note } 1}, \mathrm{KR}^{\text {Note } 1}$
$\mathrm{P} 74^{\text {Note } 3}, \mathrm{P} 75^{\text {Note 3 }}$				-

Notes 1. 44-pin and 48-pin products only
For the 38 -pin products, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 0 and 1 of PM4, bits 2 and 3 of PM7, bits 6 and 7 of P2, bits 0 and 1 of P4, and bits 2 and 3 of $P 7$ to " 0 ".
2. μ PD78F0513D, 78F0513DA, 78F0515D and 78F0515DA (product with on-chip debug function) only
3. 48-pin products only

(1) Port functions (2/2): 78K0/KC2

Function Name	I/O	Function	After Reset	Alternate Function
P120	I/O	Port 12. 5-bit I/O port. Input/output can be specified in 1-bit units. Only for P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121				X1/OCD0A ${ }^{\text {Note } 1}$
P122				X2/EXCLK/OCD0B ${ }^{\text {Note } 1}$
P123				XT1
P124				XT2/EXCLKS
$\mathrm{P} 130^{\text {Note } 2}$	Output	Port 13. 1-bit output-only port.	Output port	-
$\mathrm{P} 140^{\text {Note } 2}$	I/O	Port 14. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	PCL/INTP6 ${ }^{\text {Note } 2}$

Notes 1. μ PD78F0513D, 78F0513DA, 78F0515D and 78F0515DA (product with on-chip debug function) only
2. 48-pin products only
(2) Non-port functions (1/2): 78K0/KC2

Function Name	I/O	Function	After Reset	Alternate Function
ANIO to ANI5	Input	A/D converter analog input	Analog input	P20 to P25
ANI6 ${ }^{\text {Note } 1}, \mathrm{ANI}^{\text {Note } 1}$				P26 ${ }^{\text {Note } 1}, \mathrm{P} 27^{\text {Note } 1}$
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
EXSCLO	Input	External clock input for serial interface. To input an external clock, input a clock of 6.4 MHz .	Input port	P62
FLMD0	-	Flash memory programming mode setting	-	-
INTP0	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30
INTP2				P31/OCD1A ${ }^{\text {Note } 2}$
INTP3				P32/OCD1B ${ }^{\text {Note } 2}$
INTP4				P33/TI51/TO51
INTP5				P16/TOH1
INTP6 ${ }^{\text {Note } 3}$				P140/PCL ${ }^{\text {Note } 3}$
KR0, KR1	Input	Key interrupt input	Input port	P70, P71
KR2 ${ }^{\text {Note } 1}, \mathrm{KR}^{\text {Note } 1}$				$\mathrm{P} 72{ }^{\text {Note } 1}, \mathrm{P} 73^{\text {Note } 1}$
PCL ${ }^{\text {Note } 3}$	Output	Clock output (for trimming of high-speed system clock, subsystem clock)	Input port	P140/INTP6 ${ }^{\text {Note } 3}$

Notes 1. 44-pin and 48 -pin products only
For the 38 -pin products, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 2 and 3 of PM7, bits 6 and 7 of P2, and bits 2 and 3 of $P 7$ to " 0 ".
2. μ PD78F0513D, 78F0513DA, 78F0515D and 78F0515DA (product with on-chip debug function) only
3. 48 -pin products only

(2) Non-port functions (2/2): 78K0/KC2

Function Name	I/O	Function	After Reset	Alternate Function
REGC	-	Connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-
RESET	Input	System reset input	-	-
RxD0	Input	Serial data input to UART0	Input port	P11/SI10
RxD6	Input	Serial data input to UART6	Input port	P14
$\overline{\text { SCK10 }}$	I/O	Clock input/output for CSI10	Input port	P10/TxD0
SCLO	I/O	Clock input/output for $\mathrm{I}^{2} \mathrm{C}$	Input port	P60
SDAO	I/O	Serial data I/O for $\mathrm{I}^{2} \mathrm{C}$	Input port	P61
SI10	Input	Serial data input to CSI10	Input port	P11/RxD0
SO10	Output	Serial data output from CSI10	Input port	P12
TIOOO	Input	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input port	P00
TI010		Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00		P01/TO00
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input port	P17/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
TO00	Output	16-bit timer/event counter 00 output	Input port	P01/T1010
TO50	Output	8 -bit timer/event counter 50 output	Input port	P17/TI50
TO51		8 -bit timer/event counter 51 output		P33/TI51/INTP4
TOH0	Output	8 -bit timer H0 output	Input port	P15
TOH1		8-bit timer H 1 output		P16/INTP5
TxD0	Output	Serial data output from UART0	Input port	P10/SCK10
TxD6	Output	Serial data output from UART6	Input port	P13
X1	-	Connecting resonator for main system clock	Input port	P121/OCD0A ${ }^{\text {Note }}$
X2	-			$\begin{aligned} & \text { P122/EXCLK/ } \\ & \text { OCDOB }^{\text {Note }} \end{aligned}$
EXCLK	Input	External clock input for main system clock	Input port	$\begin{aligned} & \text { P122/X2/ } \\ & \text { OCDOB }^{\text {Note }} \end{aligned}$
XT1	-	Connecting resonator for subsystem clock	Input port	P123
XT2	-		Input port	P124/EXCLKS
EXCLKS	Input	External clock input for subsystem clock	Input port	P124/XT2
Vdd	-	Positive power supply for pins other than P20 to P27	-	-
AVREF	-	A/D converter reference voltage input and positive power supply for P20 to P27 and A/D converter	-	-
Vss	-	Ground potential for pins other than P20 to P27	-	-
AVss	-	A/D converter ground potential. Make the same potential as Vss.	-	-
OCDOA ${ }^{\text {Note }}$	Input	Connection for on-chip debug mode setting pins (μ PD78F0513D, 78F0513DA, 78F0515D and 78F0515DA only)	Input port	P121/X1
OCD1A ${ }^{\text {Note }}$				P31/INTP2
OCDOB ${ }^{\text {Note }}$	-			P122/X2/EXCLK
OCD1B ${ }^{\text {Note }}$				P32/INTP3

Note μ PD78F0513D, 78F0513DA, 78F0515D and 78F0515DA (product with on-chip debug function) only

2.1.3 78K0/KD2

(1) Port functions (1/2): 78K0/KD2

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TIOOO
P01				TI010/TO00
P02				-
P03				-
P10	I/O	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK10/TxD0 }}$
P11				SI10/RxD0
P12				SO10
P13				TxD6
P14				RxD6
P15				TOH0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P27	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANIO to ANI7
P30	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTP1
P31				INTP2/OCD1A ${ }^{\text {Note }}$
P32				INTP3/OCD1B ${ }^{\text {Note }}$
P33				TI51/TO51/INTP4
P40, P41	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
P60	I/O	Port 6. 4-bit I/O port. Output is N -ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.	Input port	SCLO
P61				SDA0
P62				EXSCLO
P63				-
P70 to P77	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0 to KR7
P120	I/O	Port 12. 5-bit I/O port. Input/output can be specified in 1-bit units. Only for P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121				X1/OCD0A ${ }^{\text {Note }}$
P122				X2/EXCLK/ OCDOB ${ }^{\text {Note }}$
P123				XT1
P124				XT2/EXCLKS

Note μ PD78F0527D and 78F0527DA (product with on-chip debug function) only

(1) Port functions (2/2): 78K0/KD2

Function Name	I/O	Function	After Reset	Alternate Function
P130	Output	Port 13. 1-bit output-only port.	Output port	-
P140	I/O	Port 14. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	PCL/INTP6

(2) Non-port functions (1/2): 78K0/KD2

Function Name	I/O	Function	After Reset	Alternate Function
ANIO to ANI7	Input	A/D converter analog input	Analog input	P20 to P27
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
EXSCLO	Input	External clock input for $I^{2} \mathrm{C}$ To input an external clock, input a clock of 6.4 MHz .	Input port	P62
FLMD0	-	Flash memory programming mode setting	-	-
INTPO	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30
INTP2				P31/OCD1A ${ }^{\text {Note }}$
INTP3				P32/OCD1B ${ }^{\text {Note }}$
INTP4				P33/TI51/TO51
INTP5				P16/TOH1
INTP6				P140/PCL
KR0 to KR7	Input	Key interrupt input	Input port	P70 to P77
PCL	Output	Clock output (for trimming of high-speed system clock, subsystem clock)	Input port	P140/INTP6
REGC	-	Connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-
RESET	Input	System reset input	-	-
RxD0	Input	Serial data input to UART0	Input port	P11/SI10
RxD6		Serial data input to UART6		P14
$\overline{\text { SCK10 }}$	I/O	Clock input/output for CSI10	Input port	P10/TxD0
SCL0		Clock input/output for $\mathrm{I}^{2} \mathrm{C}$		P60
SDA0	I/O	Serial data I/O for ${ }^{2} \mathrm{C}$	Input port	P61
SI10	Input	Serial data input to CSI10	Input port	P11/RxD0
SO10	Output	Serial data output from CSI10	Input port	P12
TxD0	Output	Serial data output from UART0	Input port	P10/SCK10
TxD6		Serial data output from UART6		P13

Note μ PD78F0527D and 78F0527DA (product with on-chip debug function) only
(2) Non-port functions (2/2): 78K0/KD2

	Function Name	I/O	Function	After Reset	Alternate Function
	TIO00	Input	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input port	P00
	TI010		Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00		P01/TO00
	TI50	Input	External count clock input to 8-bit timer/event counter 50	Input port	P17/TO50
	TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
	TO00	Output	16-bit timer/event counter 00 output	Input port	P01/T1010
	TO50	Output	8 -bit timer/event counter 50 output	Input port	P17/TI50
	TO51		8 -bit timer/event counter 51 output		P33/TI51/INTP4
	TOH0		8 -bit timer HO output		P15
	TOH1		8-bit timer H1 output		P16/INTP5
<R>	X1	-	Connecting resonator for main system clock	Input port	P121/OCD0A ${ }^{\text {Note }}$
	X2	-			P122/EXCLK/OCD0B ${ }^{\text {Note }}$
	EXCLK	Input	External clock input for main system clock	Input port	P122/X2/OCD0B ${ }^{\text {Note }}$
<R>	XT1	-	Connecting resonator for subsystem clock	Input port	P123
	XT2	-		Input port	P124/EXCLKS
	EXCLKS	Input	External clock input for subsystem clock	Input port	P124/XT2
	Vdd	-	Positive power supply for pins other than P20 to P27	-	-
<R>	AVref	-	A/D converter reference voltage input and positive power supply for P20 to P27 and A/D converter	-	-
	Vss	-	Ground potential for pins other than P20 to P27	-	-
	AVss	-	A/D converter ground potential. Make the same potential as Vss.	-	-
	OCDOA ${ }^{\text {Note }}$	Input	Connection for on-chip debug mode setting pins	Input port	P121/X1
	OCD1 ${ }^{\text {Note }}$		(μ PD78F0527D and 78F0527DA only)		P31/INTP2
	OCD0B ${ }^{\text {Note }}$	-			P122/X2/EXCLK
	OCD1B ${ }^{\text {Note }}$				P32/INTP3

Note μ PD78F0527D and 78F0527DA (product with on-chip debug function) only

2.1.4 78K0/KE2

(1) Port functions (1/2): 78K0/KE2

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 7-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TIOOO
P01				TI010/TO00
P02				SO11 ${ }^{\text {Note } 1}$
P03				SI11 ${ }^{\text {Note } 1}$
P04				$\overline{\text { SCK11 }}^{\text {Note } 1}$
P05				$\frac{\text { TIOO1 }^{\text {Note } 1 / /}}{\text { SSI11 }^{\text {Note } 1}}$
P06				$\begin{aligned} & \text { TIO11 }^{\text {Note } 1 /} \\ & \text { TO01 } \end{aligned}$
P10	I/O	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK10/TxD0 }}$
P11				SI10/RxD0
P12				SO10
P13				TxD6
P14				RxD6
P15				TOH0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P27	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANIO to ANI7
P30	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTP1
P31				INTP2/OCD1A ${ }^{\text {Note } 2}$
P32				INTP3/OCD1B ${ }^{\text {Note } 2}$
P33				TI51/TO51/INTP4
P40 to P43	I/O	Port 4. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
P50 to P53	I/O	Port 5. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
P60	I/O	Port 6. 4-bit I/O port. Output of P60 to P63 is N-ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.	Input port	SCL0
P61				SDA0
P62				EXSCLO
P63				-

Notes 1. Available only in the products whose flash memory is at least 48 KB .
2. μ PD78F0537D and 78F0537DA (product with on-chip debug function) only

(1) Port functions (2/2): 78K0/KE2

Function Name	I/O	Function	After Reset	Alternate Function
P70 to P77	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0 to KR7
P120	I/O	Port 12. 5-bit I/O port. Input/output can be specified in 1-bit units. Only for P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121				X1/OCD0A ${ }^{\text {Note }}$
P122				X2/EXCLK/OCD0B ${ }^{\text {Note }}$
P123				XT1
P124				XT2/EXCLKS
P130	Output	Port 13. 1-bit output-only port.	Output port	-
P140	I/O	Port 14. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	PCL/INTP6
P141				BUZ/INTP7

Note μ PD78F0537D and 78F0537DA (product with on-chip debug function) only

(2) Non-port functions (1/3): 78K0/KE2

Function Name	I/O	Function	After Reset	Alternate Function
ANIO to ANI7	Input	A/D converter analog input	Analog input	P20 to P27
BUZ	Output	Buzzer output	Input port	P141/INTP7
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
EXSCLO	Input	External clock input for $I^{2} C$. To input an external clock, input a clock of 6.4 MHz .	Input port	P62
FLMD0	-	Flash memory programming mode setting	-	-
INTPO	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30
INTP2				P31/OCD1A ${ }^{\text {Note }}$
INTP3				P32/OCD1B ${ }^{\text {Note }}$
INTP4				P33/TI51/TO51
INTP5				P16/TOH1
INTP6				P140/PCL
INTP7				P141/BUZ
KR0 to KR7	Input	Key interrupt input	Input port	P70 to P77
PCL	Output	Clock output (for trimming of high-speed system clock, subsystem clock)	Input port	P140/INTP6
REGC	-	Connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-

Note μ PD78F0537D and 78F0537DA (product with on-chip debug function) only
(2) Non-port functions (2/3): 78K0/KE2

Notes 1. Available only in the products whose flash memory is at least 48 KB .
2. μ PD78F0537D and 78F0537DA (product with on-chip debug function) only
(2) Non-port functions (3/3): 78K0/KE2

Function Name	1/0	Function	After Reset	Alternate Function
VDD	-	Positive power supply for P121 to P124 and other than ports	-	-
EVDD	-	Positive power supply for ports other than P20 to P27 and P121 to P124. Make EVDD the same potential as VDD.	-	-
$\mathrm{AV}_{\text {geF }}$	-	A/D converter reference voltage input and positive power supply for P20 to P27 and A/D converter	-	-
Vss	-	Ground potential for P121 to P124 and other than ports	-	-
EVss	-	Ground potential for ports other than P20 to P27 and P121 to P124. Make EVss the same potential as Vss.	-	-
AVss	-	A/D converter ground potential. Make the same potential as Vss.	-	-
OCDOA ${ }^{\text {Note }}$	Input	Connection for on-chip debug mode setting pins (μ PD78F0537D and 78F0537DA only)	Input port	P121/X1
OCD1A ${ }^{\text {Note }}$				P31/INTP2
OCDOB ${ }^{\text {Note }}$	-			P122/X2/EXCLK
OCD1B ${ }^{\text {Note }}$				P32/INTP3

Note μ PD78F0537D and 78F0537DA (product with on-chip debug function) only

2.1.5 78K0/KF2

(1) Port functions (1/2): 78K0/KF2

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 7-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TIOOO
P01				TI010/TO00
P02				SO11
P03				SI11
P04				$\overline{\text { SCK11 }}$
P05				TI001/SSI11
P06				TI011/TO01
P10	I/O	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK10 }} / \mathrm{T} x$ D0
P11				SI10/RxD0
P12				SO10
P13				TxD6
P14				RxD6
P15				TOH0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P27	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANIO to ANI7
P30	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTP1
P31				INTP2/OCD1A ${ }^{\text {Note }}$
P32				INTP3/OCD1B ${ }^{\text {Note }}$
P33				TI51/TO51/INTP4
P40 to P47	I/O	Port 4. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
P50 to P57	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
P60	I/O	Port 6. 8-bit I/O port. Output of P60 to P63 is N-ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units. Only for P64 to P67, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SCLO
P61				SDA0
P62				EXSCLO
P63 to P67				-

Note μ PD78F0547D and 78F0547DA (product with on-chip debug function) only

(1) Port functions (2/2): 78K0/KF2

Function Name	I/O	Function	After Reset	Alternate Function
P70 to P77	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0 to KR7
P120	I/O	Port 12. 5-bit I/O port. Input/output can be specified in 1-bit units. Only for P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121				X1/OCD0A ${ }^{\text {Note }}$
P122				X2/EXCLK/OCD0B ${ }^{\text {Note }}$
P123				XT1
P124				XT2/EXCLKS
P130	Output	Port 13. 1-bit output-only port.	Output port	-
P140	I/O	Port 14. 6-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	PCL/INTP6
P141				BUZ/BUSY0/INTP7
P142				$\overline{\text { SCKAO }}$
P143				SIAO
P144				SOAO
P145				STB0

Note μ PD78F0547D and 78F0547DA (product with on-chip debug function) only
(2) Non-port functions (1/3): 78K0/KF2

Function Name	I/O	Function	After Reset	Alternate Function
ANIO to ANI7	Input	A/D converter analog input	Analog input	P20 to P27
BUSYO	Input	CSIAO busy input	Input port	P141/BUZ/INTP7
BUZ	Output	Buzzer output	Input port	P141/BUSY0/INTP7
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
EXSCLO	Input	External clock input for $I^{2} C$. To input an external clock, input a clock of 6.4 MHz .	Input port	P62
FLMD0	-	Flash memory programming mode setting	-	-
INTPO	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30
INTP2				P31/OCD1A ${ }^{\text {Note }}$
INTP3				P32/OCD1B ${ }^{\text {Note }}$
INTP4				P33/TI51/TO51
INTP5				P16/TOH1
INTP6				P140/PCL
INTP7				P141/BUZ/BUSY0
KR0 to KR7	Input	Key interrupt input	Input port	P70 to P77

Note μ PD78F0547D and 78F0547DA (product with on-chip debug function) only
(2) Non-port functions (2/3): 78K0/KF2

Function Name	I/O	Function	After Reset	Alternate Function
PCL	Output	Clock output (for trimming of high-speed system clock, subsystem clock)	Input port	P140/INTP6
REGC	-	Connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-
RESET	Input	System reset input	-	-
RxD0	Input	Serial data input to UART0	Input port	P11/SI10
RxD6	Input	Serial data input to UART6	Input port	P14
$\overline{\text { SCK10 }}$	I/O	Clock input/output for CSI10, CSI11	Input port	P10/TxD0
$\overline{\text { SCK11 }}$				P04
$\overline{\text { SCKA0 }}$	I/O	Clock input/output for CSIAO	Input port	P142
SCL0	I/O	Clock input/output for $\mathrm{I}^{2} \mathrm{C}$	Input port	P60
SDA0	I/O	Serial data I/O for $\mathrm{I}^{2} \mathrm{C}$	Input port	P61
SI10	Input	Serial data input to CSI10, CSI11	Input port	P11/RxD0
SI11				P03
SIAO	Input	Serial data input to CSIAO	Input port	P143
SO10	Output	Serial data output from CSI10, CSI11	Input port	P12
SO11				P02
SOAO	Output	Serial data output from CSIA0	Input port	P144
$\overline{\text { SSIT1 }}$	Input	Chip select input to CSI11	Input port	P05/T1001
STB0	Output	Strobe output from CSIAO	Input port	P145
TIO00	Input	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input port	P00
TI001		External count clock input to 16-bit timer/event counter 01 Capture trigger input to capture registers (CR001, CR011) of 16-bit timer/event counter 01		P05/ $\overline{\text { SSI11 }}$
T1010	Input	Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00	Input port	P01/TO00
TI011		Capture trigger input to capture register (CR001) of 16-bit timer/event counter 01		P06/TO01
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input port	P17/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
TO00	Output	16-bit timer/event counter 00 output	Input port	P01/TI010
TO01		16-bit timer/event counter 01 output		P06/TI011
TO50	Output	8 -bit timer/event counter 50 output	Input port	P17/TI50
TO51		8 -bit timer/event counter 51 output		P33/TI51/INTP4
TOH0	Output	8 -bit timer H 0 output	Input port	P15
TOH1		8-bit timer H1 output		P16/INTP5
TxD0	Output	Serial data output from UART0	Input port	P10/ $\overline{\text { SCK10 }}$
TxD6	Output	Serial data output from UART6	Input port	P13

(2) Non-port functions (3/3): 78K0/KF2

Function Name	I/O	Function	After Reset	Alternate Function
X1	-	Connecting resonator for main system clock	Input port	P121/OCD0A ${ }^{\text {Note }}$
X2	-		Input port	P122/EXCLK/OCD0B ${ }^{\text {Note }}$
EXCLK	Input	External clock input for main system clock	Input port	P122/X2/OCD0B ${ }^{\text {Note }}$
XT1	-	Connecting resonator for subsystem clock	Input port	P123
XT2	-		Input port	P124/EXCLKS
EXCLKS	Input	External clock input for subsystem clock	Input port	P124/XT2
Vdd	-	Positive power supply for P121 to P124 and other than ports	-	-
EVDD	-	Positive power supply for ports other than P20 to P27 and P121 to P124. Make EVdd the same potential as Vdd.	-	-
AVref	-	A/D converter reference voltage input and positive power supply for P20 to P27 and A/D converter	-	-
Vss	-	Ground potential for P121 to P124 and other than ports	-	-
EVss	-	Ground potential for ports other than P20 to P27 and P121 to P124. Make EVss the same potential as Vss.	-	-
AVss	-	A/D converter ground potential. Make the same potential as Vss.	-	-
OCDOA ${ }^{\text {Note }}$	Input	Connection for on-chip debug mode setting pins (μ PD78F0547D and 78F0547DA only)	Input port	P121/X1
OCD1 ${ }^{\text {Note }}$				P31/INTP2
OCDOB ${ }^{\text {Note }}$	-			P122/X2/EXCLK
OCD1B ${ }^{\text {Note }}$				P32/INTP3

Note μ PD78F0547D and 78F0547DA (product with on-chip debug function) only

2.2 Description of Pin Functions

Remark The pins mounted depend on the product. See 1.4 Ordering Information and 2.1 Pin Function List.

2.2.1 P00 to P06 (port 0)

P00 to P06 function as an I/O port. These pins also function as timer I/O, serial interface data I/O, clock I/O, and chip select input.

Note The $78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB and $78 \mathrm{~K} 0 / \mathrm{KD} 2$ products are only provided with port functions and not alternate functions.

Remark \downarrow : Mounted, -: Not mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P00 to P06 function as an I/O port. P00 to P06 can be set to input or output port in 1-bit units using port mode register 0 (PMO). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

(2) Control mode

P00 to P06 function as timer I/O, serial interface data I/O, clock I/O, and chip select input.
(a) TIOOO, TIOO1

These are the pins for inputting an external count clock to 16-bit timer/event counters 00 and 01 and are also for inputting a capture trigger signal to the capture registers (CR000, CR010 or CR001, CR011) of 16-bit timer/event counters 00 and 01.
(b) TIO10, TIO11

These are the pins for inputting a capture trigger signal to the capture register (CR000 or CR001) of 16-bit timer/event counters 00 and 01.
(c) TO00, TO01

These are timer output pins of 16 -bit timer/event counters 00 and 01 .
(d) S 111

This is a serial data input pin of serial interface CSI11.
(e) SO 11

This is a serial data output pin of serial interface CSI11.
(f) $\overline{\text { SCK11 }}$

This is a serial clock I/O pin of serial interface CSI11.
(g) SSI11

This is a chip select input pin of serial interface CSI11.

2.2.2 P10 to P17 (port 1)

P10 to P17 function as an I/O port. These pins also function as pins for external interrupt request input, serial interface data I/O, clock I/O, and timer I/O

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P10/ $\overline{\text { SCK10 }} / \mathrm{T} x$ D0	\checkmark					
P11/SI10/RxD0	\checkmark					
P12/SO10	\checkmark					
P13/TxD6	\checkmark					
P14/RxD6	\checkmark					
P15/TOH0	\checkmark					
P16/TOH1/INTP5	\checkmark					
P17/TI50/TO50	\checkmark					

Remark V : Mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P10 to P17 function as an I/O port. P10 to P17 can be set to input or output port in 1-bit units using port mode register 1 (PM1). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 1 (PU1).

(2) Control mode

P10 to P17 function as external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.
(a) SI 10

This is a serial data input pin of serial interface CSI10.
(b) $\mathrm{SO10}$

This is a serial data output pin of serial interface CSI10
(c) SCK10

This is a serial clock I/O pin of serial interface CSI10.
(d) RxD0

This is a serial data input pin of serial interface UARTO.
(e) RxD6

This is a serial data input pin of serial interface UART6.

(f) TxDO

This is a serial data output pin of serial interface UARTO.
(g) TxD6

This is a serial data output pin of serial interface UART6.
(h) TI50

This is the pin for inputting an external count clock to 8-bit timer/event counter 50.
(i) TO 50

This is a timer output pin of 8-it timer/event counter 50.
(j) $\mathrm{TOH} 0, \mathrm{TOH} 1$

These are the timer output pins of 8 -bit timers H 0 and H 1 .

(k) INTP5

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

2.2.3 P20 to P27 (port 2)

P20 to P27 function as an I/O port. These pins also function as pins for A/D converter analog input.

Note This is not mounted onto 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$. For the 38 -pin products, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 6 and 7 of P2 to " 0 ".

Remark $\sqrt{ }$: Mounted, -: Not mounted

The following operation modes can be specified in 1-bit units.
(1) Port mode

P20 to P27 function as an I/O port. P20 to P27 can be set to input or output port in 1-bit units using port mode register 2 (PM2).
(2) Control mode

P20 to P27 function as A/D converter analog input pins (ANIO to ANI7). When using these pins as analog input pins, see (5) ANIO/P20 to ANI7/P27 in 13.6 Cautions for A/D Converter.

Caution ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.

2.2.4 P30 to P33 (port 3)

P30 to P33 function as an I/O port. These pins also function as pins for external interrupt request input and timer I/O.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P30/INTP1	\checkmark					
P31/INTP2/ $\text { OCD1A }{ }^{\text {Note }}$	\checkmark					
$\begin{aligned} & \text { P32/INTP3/ } \\ & \text { OCD1B }^{\text {Note }} \end{aligned}$	\checkmark					
P33/INTP4/TI51/ TO51	\checkmark					

Note OCD1A and OCD1B are provided to the products with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) only.

Remark \downarrow : Mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P30 to P33 function as an I/O port. P30 to P33 can be set to input or output port in 1-bit units using port mode register 3 (PM3). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).

(2) Control mode

P30 to P33 function as external interrupt request input and timer I/O.
(a) INTP1 to INTP4

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.
(b) TI51

This is an external count clock input pin to 8-bit timer/event counter 51.
(c) TO51

This is a timer output pin from 8-bit timer/event counter 51.

Caution 1. In the product with an on-chip debug function ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$ and 78 F 05 xxDA), be sure to pull the P31/INTP2/OCD1A pin down before a reset release, to prevent malfunction.

Caution 2. Process the P31/INTP2/OCD1A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator.

	P31/INTP2/OCD1A	
Flash memory programmer connection		Connect to EVss ${ }^{\text {Note }}$ via a resistor.
On-chip debug emulator connection (when it is not used as an on-chip debug mode setting pin)	During reset	

Note With products without an EVss pin, connect them to Vss. With products without an EVdd pin, connect them to Vod.

Remark P31 and P32 of the product with an on-chip debug function ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$ and 78 F 05 xxDA) can be used as on-chip debug mode setting pins (OCD1A and OCD1B) when the on-chip debug function is used. For how to connect an on-chip debug emulator (QB-MINI2), see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD and 78F05xxDA ONLY).

2.2.5 P40 to P47 (port 4)

P40 to P47 function as an I/O port. P40 to P47 can be set to input or output port in 1-bit units using port mode register 4 (PM4). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 4 (PU4).

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P40	-	$V^{\text {Note }}$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$
P41	-	$\checkmark^{\text {Note }}$	$\sqrt{ }$	\checkmark		\checkmark
P42	-	-		\checkmark		\checkmark
P43	-	-		\checkmark		\checkmark
P44	-	-		-		$\sqrt{ }$
P45	-	-		-		\checkmark
P46	-	-		-		$\sqrt{ }$
P47	-	-		-		$\sqrt{ }$

Note This is not mounted onto 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC2}$. For the 38 -pin products, be sure to set bits 0 and 1 of PM4 and P4 to "0".

Remark V : Mounted, -: Not mounted

2.2.6 P50 to P57 (port 5)

P50 to P57 function as an I/O port. P50 to P57 can be set to input or output port in 1-bit units using port mode register 5 (PM5). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 5 (PU5).

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P50		-				\checkmark
P51		-				$\sqrt{ }$
P52		-				$\sqrt{ }$
P53		-				\checkmark
P54		-				\checkmark
P55		-				\checkmark
P56		-				$\sqrt{ }$
P57		-				\checkmark

Remark $\sqrt{ }$: Mounted, -: Not mounted

2.2.7 P60 to P67 (port 6)

P60 to P67 function as an I/O port. These pins also function as pins for serial interface data I/O, clock I/O, and external clock input.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P60/SCL0	\checkmark	\checkmark				\checkmark
P61/SDA0	\checkmark	\checkmark				\checkmark
P62/EXSCL0	-	\checkmark				\checkmark
P63	-	\checkmark				\checkmark
P64	-	-				\checkmark
P65	-	-				\checkmark
P66	-	-				\checkmark
P67	-	-				\checkmark

Remark \downarrow : Mounted, -: Not mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P60 to P67 function as an I/O port. P60 to P67 can be set to input port or output port in 1-bit units using port mode register 6 (PM6). Only for P64 to P67, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 6 (PU6).
Output of P60 to P63 is N -ch open-drain output (6 V tolerance).

(2) Control mode

P60 to P67 function as serial interface data I/O, clock I/O, and external clock input.
(a) SDAO

This is a serial data I/O pin for serial interface IIC0.
(b) SCLO

This is a serial clock I/O pin for serial interface IICO.
(c) EXSCLO

This is an external clock input pin to serial interface IICO. To input an external clock, input a clock of 6.4 MHz .

2.2.8 P70 to P77 (port 7)

P70 to P77 function as an I/O port. These pins also function as key interrupt input pins.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P70/KR0	-	\checkmark	$\sqrt{ }$			
P71/KR1	-	$\sqrt{ }$	\checkmark			
P72/KR2	-	$V^{\text {Note } 1}$	\checkmark			
P73/KR3	-	$V^{\text {Note } 1}$	\checkmark			
P74/KR4	-	P74 ${ }^{\text {Note } 2}$	\checkmark			
P75/KR5	-	P75 ${ }^{\text {Note } 2}$	$\sqrt{ }$			
P76/KR6	-	-	\checkmark			
P77/KR7	-	-	$\sqrt{ }$			

Notes 1. This is not mounted onto 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$. For the 38 -pin products, be sure to set bits 2 and 3 of PM7 and P7 to " 0 ".
2. This is not mounted onto 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$. The 48 -pin products are only provided with port functions and not alternate functions.

Remark $\sqrt{ }$: Mounted, -: Not mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P70 to P77 function as an I/O port. P70 to P77 can be set to input or output port in 1-bit units using port mode register 7 (PM7). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).

(2) Control mode

P70 to P77 function as key interrupt input pins.

(a) KR0 to KR7

These are the key interrupt input pins.

2.2.9 P120 to P124 (port 12)

P120 to P124 function as an I/O port. These pins also function as pins for external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, connecting resonator for subsystem clock, external clock input for main system clock, and external clock input for subsystem clock.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P120/INTP0/EXLVI	$\sqrt{ }$	\checkmark				
P121/X1/OCD0 ${ }^{\text {Note }}$	\checkmark	\checkmark				
$\begin{aligned} & \text { P122/X2/EXCLK/ } \\ & \text { OCDOB }^{\text {Note }} \end{aligned}$	\checkmark	\checkmark				
P123/XT1	-	\checkmark				
P124/XT2/EXCLKS	-	$\sqrt{ }$				

Note OCDOA and OCDOB are provided to the products with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) only.

Remark \downarrow : Mounted, -: Not mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P120 to P124 function as an I/O port. P120 to P124 can be set to input or output port using port mode register 12
(PM12). Only for P120, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

(2) Control mode

P120 to P124 function as pins for external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, connecting resonator for subsystem clock, external clock input for main system clock, and external clock input for subsystem clock.

(a) INTPO

This functions as an external interrupt request input (INTPO) for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.
(b) EXLVI

This is a potential input pin for external low-voltage detection.
(c) $\mathrm{X} 1, \mathrm{X} 2$

These are the pins for connecting a resonator for main system clock.
(d) EXCLK

This is an external clock input pin for main system clock.
(e) $\mathrm{XT} 1, \mathrm{XT} 2$

These are the pins for connecting a resonator for subsystem clock.
(f) EXCLKS

This is an external clock input pin for subsystem clock.

Caution Process the P121/X1/OCD0A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator.

	P121/X1/OCDOA	
Flash memory programmer connection	Connect to Vss via a resistor.	
On-chip debug emulator connection (when it is not used as an on-chip debug mode setting pin)		During reset released

Remark X1 and X2 of the product with an on-chip debug function (μ PD78F05xxD and 78 F 05 xxDA) can be used as on-chip debug mode setting pins (OCDOA and OCDOB) when the on-chip debug function is used. For how to connect an on-chip debug emulator (QB-MINI2), see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD and 78F05xxDA ONLY).

2.2.10 P130 (port 13)

P130 functions as an output-only port.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P130	-	$\sqrt{\text { Note }}$	\checkmark			

Note This is not mounted onto 38 -pin and 44-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$.
Remarks 1. When the device is reset, P130 outputs a low level. Therefore, to output a high level from P130 before the device is reset, the output signal of P130 can be used as a pseudo reset signal of the CPU (see the figure for Remark in 5.2.10 Port 13).
2. $\sqrt{ }$: Mounted, -: Not mounted

2.2.11 P140 to P145 (port 14)

P140 to P145 function as an I/O port. These pins also function as external interrupt request input, clock output, buzzer output, serial interface data I/O, clock I/O, busy input, and strobe output pins.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P140/PCL/INTP6	-	$V^{\text {Note } 1}$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$
P141/BUZ/BUSY0/ INTP7	-	-	-	P141/BUZ/INTP7 ${ }^{\text {Note } 2}$		\checkmark
P142/SCKA0	-	-	-	-		\checkmark
P143/SIA0	-	-	-	-		$\sqrt{ }$
P144/SOA0	-	-	-	-		\checkmark
P145/STB0	-	-	-	-		$\sqrt{ }$

Notes 1. This is not mounted onto 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$.
2. The $78 \mathrm{KO} / \mathrm{KE} 2$ products are not provided with the BUSYO input function.

Remark V : Mounted, -: Not mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P140 to P145 function as an I/O port. P140 to P145 can be set to input or output port in 1-bit units using port mode register 14 (PM14). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 14 (PU14).

(2) Control mode

P140 to P145 function as external interrupt request input, clock output, buzzer output, serial interface data I/O, clock I / O, busy input, and strobe output pins.

(a) INTP6, INTP7

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.
(b) PCL

This is a clock output pin.
(c) BUZ

This is a buzzer output pin.
(d) BUSYO

This is a serial interface CSIAO busy input pin.
(e) SIAO

This is a serial interface CSIAO serial data input pin
(f) SOAO

This is a serial interface CSIAO serial data output pin.
(g) $\overline{\text { SCKAO }}$

This is a serial interface CSIAO serial clock I/O pin.
(h) STBO

This is a serial interface CSIAO strobe output pin.

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
$\mathrm{AV}_{\text {geF }}$	\checkmark	\checkmark		\checkmark		
AVss	\checkmark	\checkmark		\checkmark		
VDD	\checkmark	\checkmark		\checkmark		
EVDD	$V^{\text {Note }}$	-		\checkmark		
Vss	\checkmark	\checkmark		1		
EVss	$V^{\text {Note }}$	-		\checkmark		

Note This is not mounted onto 30 -pin products of the $78 \mathrm{KO} / \mathrm{KB} 2$.

Remark ل : Mounted, -: Not mounted
(a) $A V_{\text {ref }}$

This is the A/D converter reference voltage input pin and the positive power supply pin of P20 to P27 and A/D converter.
When the A/D converter is not used, connect this pin directly to EVDD or VDD ${ }^{\text {Note }}$.

Note Make the $A V_{\text {ref }}$ pin the same potential as the Vdd pin when port 2 is used as a digital port.
(b) AVss

This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the Vss pin.
(c) Vod and EVDd

Vdo is the positive power supply pin for P121 to P124 and other than ports ${ }^{\text {Note }}$.
EVDD is the positive power supply pin for ports other than P20 to P27 and P121 to P124.
Always make EVdd the same potential as Vdd.

Note With products that are not mounted with an EVDD pin, use VDD as a positive power supply pin other than P20 to P27.
(d) Vss and EVss

Vss is the ground potential pin for P 121 to P 124 and other than ports.
EVss is the ground potential pin for ports other than P20 to P27 and P121 to P124.
Always make EVss the same potential as Vss.

Note With products that are not mounted with an EVss pin, use Vss as a ground potential pin other than P20 to P27.

2.2.13 $\overline{R E S E T}$

This is the active-low system reset input pin.

2.2.14 REGC

This is the pin for connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

2.2.15 FLMDO

This is a pin for setting flash memory programming mode.
Connect FLMD0 to EVss or Vss in the normal operation mode.
In flash memory programming mode, connect this pin to the flash memory programmer.

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-3 shows the types of pin I/O circuits and the recommended connections of unused pins.
See Figure 2-1 for the configuration of the I/O circuit of each type.

Remark The pins mounted depend on the product. See 1.5 Ordering Information (Top View) and 2.1 Pin Function List.

Table 2-3. Pin I/O Circuit Types (1/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/T1000	5-AQ	I/O	Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.
P01/TI010/TO00			
P02/SO11	5-AG		
P03/SI11	Note 1		
P04/SCK11			
P05/TI001/ $\overline{\text { SSI11 }}$			
P06/TI011/TO01			
P10/SCK10/TxD0	5-AQ		
P11/SI10/RxD0			
P12/SO10	5-AG		
P13/TxD6			
P14/RxD6	5-AQ		
P15/TOH0	5-AG		
P16/TOH1/INTP5	5-AQ		
P17/TI50/TO50			
ANIO/P20 to ANI7/P27 ${ }^{\text {Note } 2}$	11-G		< Digital input setting and analog input setting> Independently connect to $A V_{\text {ref }}$ or $A V_{\text {ss }}$ via a resistor. <Digital output setting> Leave open.

Notes 1. " $5-\mathrm{AG}$ " type: $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is less than 32 KB and $78 \mathrm{KO} / \mathrm{KD} 2$
" $5-A Q$ " type: $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is at least 48 KB and 78K0/KF2
(Products other than the above are not mounted with P03 to P06.)
2. $\mathrm{ANIO} / \mathrm{P} 20$ to ANI7/P27 are set in the analog input mode after release of reset.

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Table 2-3. Pin I/O Circuit Types (2/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P30/INTP1	5-AQ	I/O	Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.
P31/INTP2/OCD1A ${ }^{\text {Note } 1}$			
P32/INTP3/OCD1B			
P33/TI51/TO51/INTP4			
P40 to P47	5-AG		
P50 to P57			
P60/SCL0	13-AI		Independently connect to EVDD or EVss via a resistor, or connect directly to EVss. Leave this pin open at low-level output after clearing the output latch of the port to 0 .
P61/SDA0			
P62/EXSCL0			
P63	13-P		
P64 to P67	5-AG		Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open.
P70/KR0 to P77/KR7	5-AQ		
P120/INTP0/EXLVI			
P121/X1/OCD0A ${ }^{\text {Notes 1,2 }}$	37		Input: Independently connect to Vdd or Vss via a resistor. Output: Leave open.
$\begin{aligned} & \text { P122/X2/EXCLK/ } \\ & \text { OCDOB }^{\text {Notes } 2} \end{aligned}$			
P123/XT1 ${ }^{\text {Note } 2}$			
P124/XT2/EXCLKS ${ }^{\text {Note } 2}$			
P130	3-C	Output	Leave open.

Notes 1. Process the P31/INTP2/OCD1A and P121/X1/OCD0A pins of the products mounted with the on-chip debug function ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$ and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator.

		P31/INTP2/OCD1A	P121/X1/OCDOA
Flash memory programmer connection		Connect to EVss via a resistor.	Connect to Vss via a resistor.
On-chip debug	During reset		
emulator connection (when it is not used as an on-chip debug mode setting pin)	During reset released	Input: Connect to EVDD or EVss via a resistor. Output: Leave open.	Input: Connect to VDD or Vss via a resistor. Output: Leave open.

2. Use recommended connection above in I/O port mode (see Figure 6-3 and Figure 6-4 Format of Clock Operation Mode Select Register (OSCCTL)) when these pins are not used.

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Table 2-3. Pin I/O Circuit Types (3/3)

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
	P140/PCLINTP6	5-AQ	I/O	Input: Independently connect to $\mathrm{EV}_{\mathrm{DD}}$ or $\mathrm{EV}_{\mathrm{Ss}}$ via a resistor.
	P141/BUZ/BUSY0/INTP7			Output: Leave open.
	P142/SCKA0			
	P143/SIAO			
	P144/SOA0	5-AG		
	P145/STB0			
<R>	$\mathrm{AV}_{\text {gef }}$	-	-	<When one or more of P20 to P27 are set as a digital port> Make this pin the same potential as $E_{D D}$ and $V_{D D}$. <When all of P20 to P27 are set as analog ports> Make this pin to have a potential where $1.8 \mathrm{~V} \leq \mathrm{AV}$ REF $\leq \mathrm{V}_{\mathrm{DD}}$.
<R>	AVss	-	-	Make this pin the same potential as the EVss and Vss.
	FLMD0	38-A	-	Connect to EVss or Vss ${ }^{\text {Note }}$.
<R>	RESET	2	Input	Connect directly to EVDD or via a resistor.
<R>	REGC	-	-	Connect to Vss via capacitor (0.47 to $1 \mu \mathrm{~F}$).

Note FLMDO is a pin that is used to write data to the flash memory. To rewrite the data of the flash memory on-board, connect this pin to EVss or Vss via a resistor ($10 \mathrm{k} \Omega$: recommended). The same applies when executing on-chip debugging with a product with an on-chip debug function (μ PD78F05xxD and 78F05xxDA).

Remark With products not provided with an EVDD or EVss pin, replace EVDD with Vod, or replace EVss with Vss.

Figure 2-1. Pin I/O Circuit List (1/2)

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

Figure 2-1. Pin I/O Circuit List (2/2)

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

Products in the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers can access a 64 KB memory space. Figures $3-1$ to $3-11$ show the memory maps.

Cautions 1. Regardless of the internal memory capacity, the initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) of all products in the $78 \mathrm{KO} / \mathrm{Kx2}$ microcontrollers are fixed (IMS $=\mathbf{C F H}, \mathrm{IXS}=\mathbf{O C H}$). Therefore, set the value corresponding to each product as indicated below.
2. To set the memory size, set IMS and then IXS. Set the memory size so that the internal ROM and internal expansion RAM areas do not overlap.

Table 3-1. Set Values of Internal Memory Size Switching Register (IMS)
($78 \mathrm{KO} / \mathrm{KB} 2$, and 38 -pin products and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC2}$)

78K0/KB2	38-pin products and 44-pin products of the 78K0/KC2	IMS	ROM Capacity	Internal High-Speed RAM Capacity
μ PD78F0500, 78F0500A	-	42H	8 KB	512 bytes
μ PD78F0501, 78F0501A	μ PD78F0511, 78F0511A	04H	16 KB	768 bytes
μ PD78F0502, 78F0502A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0512, \\ & \text { 78F0512A } \end{aligned}$	C6H	24 KB	1 KB
μ PD78F0503, 78F0503A, 78F0503D ${ }^{\text {Note }}$, 78F0503DA ${ }^{\text {Note }}$	$\begin{aligned} & \mu \text { PD78F0513, } \\ & \text { 78F0513A, } \\ & \text { 78F0513D }{ }^{\text {Note }}, \\ & \text { 78F0513DA }^{\text {Note }} \end{aligned}$	C 8 H	32 KB	1 KB

Note The ROM and RAM capacities of the products with the on-chip debug function can be debugged by setting IMS, according to the debug target products. Set IMS according to the debug target products.

Table 3-2. Set Values of Internal Memory Size Switching Register (IMS) and Internal Expansion RAM Size Switching Register (IXS) (48-pin products of the $78 \mathrm{KO} / \mathrm{KC2}, 78 \mathrm{K0} / \mathrm{KD} 2,78 \mathrm{KO} / \mathrm{KE2}$, and $78 \mathrm{K0} / \mathrm{KF} 2$)

48-pin products of the 78K0/KC2	78K0/KD2	78K0/KE2	78K0/KF2	IMS	IXS	ROM Capacity	Internal HighSpeed RAM Capacity	Internal Expansion RAM Capacity
$\begin{aligned} & \mu \mathrm{PD} 78 \text { F0511, } \\ & \text { 78F0511A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521, \\ & \text { 78F0521A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0531, } \\ & \text { 78F0531A } \end{aligned}$	-	04H	OCH	16 KB	768 bytes	-
$\begin{aligned} & \mu \text { PD78F0512, } \\ & \text { 78F0512A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0522, } \\ & \text { 78F0522A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0532, } \\ & \text { 78F0532A } \end{aligned}$	-	C6H	OCH	24 KB	1 KB	-
μ PD78F0513, 78F0513A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0523, \\ & 78 \mathrm{~F} 0523 \mathrm{~A} \end{aligned}$	μ PD78F0533, 78F0533A	-	C8H	OCH	32 KB	1 KB	-
μ PD78F0514, 78F0514A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0524, \\ & 78 \mathrm{~F} 0524 \mathrm{~A} \end{aligned}$	μ PD78F0534, 78F0534A	μ PD78F0544, 78F0544A	CCH	OAH	48 KB	1 KB	1 KB
$\begin{aligned} & \mu \text { PD78F0515, } \\ & \text { 78F0515A, } \\ & \text { 78F0515D }{ }^{\text {Note } 1,} \text {, } \\ & \text { 78F0515DA }{ }^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0525, } \\ & \text { 78F0525A } \end{aligned}$	μ PD78F0535, 78F0535A	$\begin{aligned} & \mu \text { PD78F0545, } \\ & \text { 78F0545A } \end{aligned}$	CFH	08H	60 KB		2 KB
-	$\begin{aligned} & \mu \text { PD78F0526, } \\ & \text { 78F0526A } \end{aligned}$	$\mu \text { PD78F0536, }$ 78F0536A	$\begin{aligned} & \mu \text { PD78F0546, } \\ & \text { 78F0546A } \end{aligned}$	CCH Note 2	04H	$96 \mathrm{~KB}^{\text {Note } 2}$		4 KB
-	$\begin{aligned} & \mu \text { PD78F0527, } \\ & \text { 78F0527A, } \\ & \text { 78F0527D }{ }^{\text {Note } 1,} \text {, } \\ & \text { 78F0527DA }{ }^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0537, } \\ & \text { 78F0537A, } \\ & \text { 78F0537D }{ }^{\text {Note } 1}, \\ & \text { 78F0537DA } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0547, } \\ & \text { 78F0547A, } \\ & \text { 78F0547D }{ }^{\text {Note } 1,} \text {, } \\ & \text { 78F0547DA }{ }^{\text {Note } 1} \end{aligned}$	$\underset{\text { Note } 2}{\mathrm{CCH}}$	OOH	$128 \mathrm{~KB}^{\text {Note } 2}$		6 KB

Notes 1. The ROM and RAM capacities of the products with the on-chip debug function can be debugged according to the debug target products. Set IMS and IXS according to the debug target products.
2. The μ PD78F05x6 and 78 F05x6A ($x=2$ to 4) have internal ROMs of 96 KB , and the $\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{x} 7$, $78 F 05 x 7 A, 78 F 05 x 7 D$ and $78 F 05 x 7 D A(x=2$ to 4$)$ have those of 128 KB . However, the set value of IMS of these devices is the same as those of the 48 KB product because memory banks are used. For how to set the memory banks, see 4.3 Memory Bank Select Register (BANK).

Figure 3-1. Memory Map (μ PD78F0500 and 78F0500A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see
Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-2. Memory Map (μ PD78F0501, 78F0501A, 78F0511, 78F0511A, 78F0521, 78F0521A, 78F0531, and 78F0531A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

3FFFH 3 COOH 3BFFH	Block 0FH	
07FFH	Block 01H	
03 FFH 0000 H	Block 00H	1 KB

Figure 3-3. Memory Map (μ PD78F0502, 78F0502A, 78F0512, 78F0512A, 78F0522, 78F0522A, 78F0532, and 78F0532A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-4. Memory Map (μ PD78F0503, 78F0503A, 78F0513, 78F0513A, 78F0523, 78F0523A, 78F0533 and 78F0533A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-5. Memory Map (μ PD78F0503D, 78F0503DA, 78F0513D, and 78F0513DA)

Notes 1. When boot swap is not used: Set the option bytes to 0080 H to 0084 H , and the on-chip debug security IDs to 0085 H to 008 EH .

When boot swap is used: \quad Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H , and the on-chip debug security IDs to 0085 H to 008 EH and 1085 H to 108 EH .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-6. Memory Map (μ PD78F0514, 78F0514A, 78F0524, 78F0524A, 78F0534, 78F0534A, 78F0544, and 78F0544A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).
3. The buffer RAM is incorporated only in the μ PD78F0544 and 78F0544A (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0514, 78F0514A, 78F0524, 78F0524A, 78F0534, and 78F0534A.

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see
Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

BFFFH BCOOH BBFFH	Block 2FH	
07FFH	Block 01H	
03 FFH 0000 H	Block 00H	1 KB

Figure 3-7. Memory Map (μ PD78F0515, 78F0515A, 78F0525, 78F0525A, 78F0535, 78F0535A, 78F0545, and 78F0545A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).
3. The buffer RAM is incorporated only in the μ PD78F0545 and 78F0545A (78KO/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0515, 78F0515A, 78F0525, 78F0525A, 78F0535, and 78F0535A.

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-8. Memory Map (μ PD78F0515D and 78F0515DA)

Notes 1. When boot swap is not used: Set the option bytes to 0080 H to 0084 H , and the on-chip debug security IDs to 0085 H to 008 EH .

When boot swap is used: \quad Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H , and the on-chip debug security IDs to 0085 H to 008 EH and 1085 H to 108 EH .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-9. Memory Map (μ PD78F0526, 78F0526A, 78F0536, 78F0536A, 78F0546, and 78F0546A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).
3. The buffer RAM is incorporated only in the μ PD78F0546 and 78F0546A (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0526, 78F0526A, 78F0536, and 78F0536A.

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-10. Memory Map (μ PD78F0527, 78F0527A, 78F0537, 78F0537A, 78F0547, and 78F0547A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).
3. The buffer RAM is incorporated only in the $\mu \mathrm{PD} 78 \mathrm{~F} 0547$ and 78F0547A (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0527, 78F0527A, 78F0537 and 78F0537A.

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Figure 3-11. Memory Map (μ PD78F0527D, 78F0527DA, 78F0537D, 78F0537DA, 78F0547D, and 78F0547DA)

Notes 1. When boot swap is not used: Set the option bytes to 0080 H to 0084 H , and the on-chip debug security IDs to 0085 H to 008 EH .
When boot swap is used: Set the option bytes to 0080 H to 0084 H and 1080 H to 1084 H , and the on-chip debug security IDs to 0085 H to 008 EH and 1085 H to 108 EH .
2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).
3. The buffer RAM is incorporated only in the μ PD78F0547D and 78F0547DA (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0527D, 78F0527DA, 78F0537D and 78F0537DA.

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory.

Correspondence between the address values and block numbers in the flash memory are shown below.

Table 3-3. Correspondence Between Address Values and Block Numbers in Flash Memory (1/2)

(1) Products whose flash memory is less than 60 KB (without memory bank)

Address Value	Block Number						
0000H to 03FFH	00H	4000 H to 43FFH	10H	8000 H to 83FFH	20H	C000H to C3FFH	30 H
0400H to 07FFH	01H	4400 H to 47FFH	11H	8400 H to 87FFH	21H	C 400 H to C7FFH	31H
0800H to OBFFH	02H	4800 H to 4BFFH	12H	8800 H to 8BFFH	22H	$\mathrm{C800H}$ to CBFFH	32H
0 COOH to 0FFFH	03H	4 COOH to 4FFFH	13H	8 COOH to 8FFFH	23H	CCOOH to CFFFFH	33H
1000 H to 13FFH	04H	5000 H to 53FFH	14H	9000 H to 93FFH	24H	D000H to D3FFH	34H
1400 H to 17FFH	05H	5400 H to 57FFH	15H	9400H to 97FFH	25H	D400H to D7FFH	35H
1800 H to 1BFFH	06H	5800 H to 5BFFH	16H	9800 H to 9BFFH	26H	D800H to DBFFH	36H
1 COOH to 1FFFH	07H	5 COOH to 5FFFH	17H	9 COOH to 9FFFH	27H	DCOOH to DFFFH	37H
2000 H to 23FFH	08H	6000 H to 63FFH	18H	A000H to A3FFH	28H	E000H to E3FFH	38 H
2400 H to 27FFH	09H	6400H to 67FFH	19H	A400H to A7FFH	29H	E400H to E7FFH	39H
2800 H to 2BFFH	OAH	6800 H to 6BFFH	1AH	A800H to ABFFH	2AH	E800H to EBFFH	3AH
2 COOH to 2FFFH	OBH	6 COOH to 6FFFH	1BH	ACOOH to AFFFH	2BH	ECOOH to EFFFH	3BH
3000 H to 33FFH	OCH	7000H to 73FFH	1 CH	$\mathrm{B000H}$ to B3FFH	2 CH		
3400 H to 37FFH	ODH	7400 H to 77FFH	1DH	B400H to B7FFH	2DH		
3800 H to 3BFFH	OEH	7800 H to 7BFFH	1EH	B 800 H to BBFFH	2EH		
3 COOH to 3FFFH	0FH	7 COOH to 7FFFH	1FH	BCOOH to BFFFH	2FH		

Remark μ PD78F0500, 78F0500A:
μ PD78F05x1, 78F05x1A ($x=0$ to 3):
μ PD78F05x2, 78F05x2A ($x=0$ to 3):
μ PD78F05x3, 78F05x3A ($x=0$ to 3),
78F0503D, 78F0503DA, 78F0513D, 78F0513DA:
μ PD78F05x4, 78F05x4A ($x=1$ to 4):
μ PD78F05x5, 78F05x5A ($x=1$ to 4), 78F0515D, 78F0515DA: Block numbers 00H to 3BH

Block numbers 00 H to 07 H Block numbers 00 H to 0 FH Block numbers 00 H to 17 H

Block numbers 00 H to 1 FH Block numbers 00 H to 2 FH

Table 3-3. Correspondence Between Address Values and Block Numbers in Flash Memory (2/2)
(2) Products whose flash memory is at least 96 KB (with memory bank)

Address Value	Block Number	Address Value		Block Number	Address Value		Block Number	Address Value		Block Number
0000 H to 03FFH	OOH	8000 H to 83FFH	0	20 H	8000H to 83FFH	2	40H	8000 H to 83FFH	4	60H
0400H to 07FFH	01H	8400 H to 87FFH		21H	8400 H to 87FFH		41H	8400 H to 87FFH		61H
0800H to 0BFFFH	02H	8800 H to 8BFFH		22 H	8800 H to 8BFFH		42H	8800 H to 8BFFH		62H
0 COOH to OFFFH	03H	8 COOH to 8FFFH		23 H	8 COOH to 8FFFH		43H	8 COOH to 8FFFH		63H
1000 H to 13 FFH	04H	9000H to 93FFH		24H	9000 H to 93FFH		44H	9000H to 93FFH		64H
1400 H to 17FFH	05H	9400H to 97FFH		25 H	9400H to 97FFH		45H	9400H to 97FFH		65H
1800 H to 1BFFH	06H	9800H to 9BFFH		26 H	9800H to 9BFFH		46H	9800 H to 9BFFH		66H
1 COOH to 1FFFH	07H	9 COOH to 9FFFH		27H	9C00H to 9FFFH		47H	9 COOH to 9FFFH		67H
2000 H to 23FFH	08H	A 000 H to A3FFH		28 H	A 000 H to A3FFH		48 H	A 000 H to A3FFH		68 H
2400 H to 27FFH	09H	A400H to A7FFH		29 H	A400H to A7FFH		49H	A 400 H to A7FFH		69H
2800 H to 2BFFH	OAH	A800H to ABFFH		2AH	A 800 H to ABFFH		4AH	A800H to ABFFFH		6АН
2 COOH to 2FFFH	OBH	ACOOH to AFFFH		2BH	ACOOH to AFFFH		4BH	ACOOH to AFFFH		6BH
3000 H to 33FFH	OCH	B 000 H to B3FFH		2 CH	B000H to B3FFH		4 CH	$\mathrm{B000H}$ to B3FFH		6CH
3400 H to 37FFH	ODH	B400H to B7FFH		2DH	B400H to B7FFH		4DH	B400H to B7FFH		6DH
3800 H to 3BFFH	OEH	B800H to BBFFH		2 EH	B800H to BBFFH		4EH	B800H to BBFFH		6EH
3 COOH to 3FFFH	OFH	BCOOH to BFFFH		2FH	BCOOH to BFFFH		4FH	BCOOH to BFFFH		6FH
4000 H to 43FFH	10H	8000 H to 83FFH	1	30 H	8000 H to 83FFH	3	50 H	8000 H to 83FFH	5	70H
4400 H to 47FFH	11H	8400 H to 87FFH		31H	8400 H to 87FFH		51H	8400 H to 87FFH		71H
4800 H to 4BFFH	12H	8800 H to 8BFFH		32H	8800 H to 8BFFH		52 H	8800 H to 8BFFH		72H
4 COOH to 4FFFH	13H	8 COOH to 8FFFH		33H	8 COOH to 8FFFH		53H	8 COOH to 8FFFH		73H
5000 H to 53FFH	14H	9000 H to 93FFH		34H	9000 H to 93FFH		54H	9000 H to 93FFH		74H
5400 H to 57FFH	15H	9400H to 97FFH		35H	9400H to 97FFH		55H	9400H to 97FFH		75H
5800 H to 5BFFH	16H	9800H to 9BFFH		36H	9800 H to 9BFFH		56H	9800 H to 9BFFH		76H
5 COOH to 5FFFH	17H	9 COOH to 9FFFH		37H	9 COOH to 9FFFH		57H	9 COOH to 9FFFH		77H
6000 H to 63FFH	18H	A000H to A3FFH		38 H	A000H to A3FFH		58 H	A000H to A3FFH		78H
6400 H to 67FFH	19H	A400H to A7FFH		39H	A400H to A7FFH		59H	A 400 H to A7FFH		79H
6800 H to 6BFFH	1AH	A800H to ABFFH		3AH	A 800 H to ABFFH		5 AH	A800H to ABFFH		7AH
6 COOH to 6FFFH	1BH	ACOOH to AFFFH		3BH	ACOOH to AFFFH		5BH	ACOOH to AFFFH		7BH
7000 H to 73FFH	1 CH	B000H to B3FFH		3 CH	B000H to B3FFH		5 CH	B000H to B3FFH		7CH
7400 H to 77FFH	1DH	B400H to B7FFH		3DH	B400H to B7FFH		5DH	B400H to B7FFH		7DH
7800 H to 7BFFH	1EH	B 800 H to BBFFH		3EH	B 800 H to BBFFH		5EH	B800H to BBFFH		7EH
7 COOH to 7FFFH	1FH	BCOOH to BFFFH		3FH	BCOOH to BFFFFH		5FH	BCOOH to BFFFH		7FH

Remark μ PD78F05x6, 78F05x6A ($\mathrm{x}=2$ to 4):
Block numbers 00 H to 5 FH
μ PD78F05x7, 78F05x7A, 78F05x7D, 78F05x7DA ($x=2$ to 4): Block numbers 00H to 7FH

3.1.1 Internal program memory space

The internal program memory space stores the program and table data. Normally, it is addressed with the program counter (PC).

78K0/Kx2 microcontrollers incorporate internal ROM (flash memory), as shown below.

Table 3-4. Internal ROM Capacity

78K0/KB2	78K0/KC2		78K0/KD2	78K0/KE2	78K0/KF2	Internal ROM (Flash memory)
30/36 Pins	38/44 Pins	48 Pins	52 Pins	64 Pins	80 Pins	
μ PD78F0500, PD78F0500A	-	-	-	-	-	8192×8 bits (0000 H to 1FFFH)
μ PD78F0501, 78F0501A	μ PD78F0511, 78F0511A	μ PD78F0511, 78F0511A	μ PD78F0521, 78F0521A	μ PD78F0531, 78F0531A	-	16384×8 bits (0000 H to 3FFFH)
μ PD78F0502, 78F0502A	μ PD78F0512, 78F0512A	μ PD78F0512, 78F0512A	μ PD78F0522, 78F0522A	μ PD78F0532, 78F0532A	-	24576×8 bits (0000 H to 5 FFFH)
$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{F0503D}, \\ & \text { 78F0503DA } \end{aligned}$	μ PD78F0513D, 78F0513DA	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0513, \\ & \text { 78F0513A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0523, } \\ & \text { 78F0523A } \end{aligned}$	μ PD78F0533, 78F0533A	-	32768×8 bits (0000H to 7FFFH)
μ PD78F0503, 78F0503A	μ PD78F0513, 78F0513A					
-	-	$\begin{aligned} & \mu \text { PD78F0514, } \\ & \text { 78F0514A } \end{aligned}$	μ PD78F0524, 78F0524A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0534, \\ & \text { 78F0534A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544, \\ & \text { 78F0544A } \end{aligned}$	49152×8 bits (0000 H to BFFFH)
-	-	μ PD78F0515D, 78F0515DA	μ PD78F0525, 78F0525A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0535, \\ & \text { 78F0535A } \end{aligned}$	μ PD78F0545, 78F0545A	61440×8 bits (0000H to EFFFH)
		$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0515, \\ & 78 \mathrm{~F} 0515 \mathrm{~A} \end{aligned}$				
-	-	-	μ PD78F0526, 78F0526A	μ PD78F0536, 78F0536A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0546, \\ & \text { 78F0546A } \end{aligned}$	$\begin{aligned} & 98304 \times 8 \text { bits } \\ & (0000 \mathrm{H} \text { to } 7 \mathrm{FFFH} \\ & (\text { common area: } 32 \mathrm{~KB}) \\ & +8000 \mathrm{H} \text { to } \mathrm{BFFFH} \\ & (\text { bank area: } 16 \mathrm{~KB}) \times 4) \end{aligned}$
-	-	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0527 \mathrm{D}, \\ & \text { 78F0527DA } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0537 \mathrm{D}, \\ & \text { 78F0537DA } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0547 \mathrm{D}, \\ & \text { 78F0547DA } \end{aligned}$	$\begin{aligned} & 131072 \times 8 \text { bits } \\ & (0000 \mathrm{H} \text { to } 7 \text { FFFH } \\ & (\text { common area: } 32 \mathrm{~KB}) \\ & +8000 \mathrm{H} \text { to } \mathrm{BFFFH} \\ & (\text { bank area: } 16 \mathrm{~KB}) \times 6) \end{aligned}$
			$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0527, \\ & \text { 78F0527A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0537, \\ & 78 \mathrm{~F} 0537 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0547, \\ & \text { 78F0547A } \end{aligned}$	

The internal program memory space is divided into the following areas.

(1) Vector table area

The 64 -byte area 0000 H to 003 FH is reserved as a vector table area. The program start addresses for branch upon reset or generation of each interrupt request are stored in the vector table area.

Of the 16 -bit address, the lower 8 bits are stored at even addresses and the higher 8 bits are stored at odd addresses.

Table 3-5. Vector Table

Vector Table Address	Interrupt Source	KB2	KC2	KD2	KE2	KF2
0000H	$\overline{\text { RESET }}$ input, POC, LVI, WDT	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0004H	INTLVI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0006H	INTP0	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$
0008H	INTP1	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark
000AH	INTP2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
000CH	INTP3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
O00EH	INTP4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0010H	INTP5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0012H	INTSRE6	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark
0014H	INTSR6	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
0016H	INTST6	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$
0018H	INTCSI10/INTST0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
001AH	INTTMH1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
001 CH	INTTMH0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
001EH	INTTM50	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark
0020H	INTTM000	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$
0022H	INTTM010	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0024H	INTAD	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark
0026H	INTSR0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0028H	INTWTI	-	\checkmark	\checkmark	\checkmark	\checkmark
002AH	INTTM51	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$
002CH	INTKR	-	\checkmark	\checkmark	\checkmark	\checkmark
002EH	INTWT	-	\checkmark	\checkmark	\checkmark	\checkmark
0030H	INTP6	-	$V^{\text {Note } 1}$	\checkmark	\checkmark	\checkmark
0032H	INTP7	-	-	-	\checkmark	\checkmark
0034H	INTIIC0/NTDMU	$V^{\text {Note } 2}$	\checkmark			
0036H	INTCSI11	-	-	-	$V^{\text {Note } 3}$	\checkmark
0038H	INTTM001	-	-	-	$V^{\text {Note } 3}$	\checkmark
003AH	INTTM011	-	-	-	$V^{\text {Note } 3}$	\checkmark
003CH	INTACSI	-	-	-	-	\checkmark
003EH	BRK	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark

Notes 1. 48-pin products only.
2. INTIICO: products whose flash memory is less than 32 KB INTIIC/INTDMU: products whose flash memory is at least 48 KB
3. Products whose flash memory is at least 48 KB only.

Remark V : Mounted, -: Not mounted
(2) CALLT instruction table area

The 64 -byte area 0040 H to 007 FH can store the subroutine entry address of a 1 -byte call instruction (CALLT).
(3) Option byte area

A 5 -byte area of 0080 H to 0084 H and 1080 H to 1084 H can be used as an option byte area. Set the option byte at 0080 H to 0084 H when the boot swap is not used, and at 0080 H to 0084 H and 1080 H to 1084 H when the boot swap is used. For details, see CHAPTER 26 OPTION BYTE.
(4) CALLF instruction entry area

The area 0800 H to 0 FFFH can perform a direct subroutine call with a 2-byte call instruction (CALLF).
(5) On-chip debug security ID setting area (μ PD78F05xxD and 78F05xxDA only)

A 10 -byte area of 0085 H to 008 EH and 1085 H to 108 EH can be used as an on-chip debug security ID setting area.
Set the on-chip debug security ID of 10 bytes at 0085 H to 008 EH when the boot swap is not used and at 0085 H to 008EH and 1085H to 108EH when the boot swap is used. For details, see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD and 78F05xxDA ONLY).
3.1.2 Memory bank (products whose flash memory is at least 96 KB only)

The 16 KB area 8000 H to BFFFH is assigned to memory banks 0 to 3 in the μ PD78F05x6 and $78 \mathrm{~F} 05 \times 6 \mathrm{~A}(\mathrm{x}=2$ to 4), and assigned to memory banks 0 to 5 in the μ PD78F05x7, 78F05x7A, 78F05x7D and 78F05x7DA ($x=2$ to 4).

The banks are selected by using a memory bank select register (BANK). For details, see CHAPTER 4 MEMORY BANK SELECT FUNCTION (PRODUCTS WHOSE FLASH MEMORY IS AT LEAST 96 KB ONLY).

Cautions 1. Instructions cannot be fetched between different memory banks.
2. Branch and access cannot be directly executed between different memory banks. Execute branch or access between different memory banks via the common area.
3. Allocate interrupt servicing in the common area.
4. An instruction that extends from 7FFFH to $\mathbf{8 0 0 0 \mathrm { H }}$ can only be executed in memory bank 0 .

3.1.3 Internal data memory space

$78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers incorporate the following RAMs.
(1) Internal high-speed RAM

The 32-byte area FEEOH to FEFFH is assigned to four general-purpose register banks consisting of eight 8 -bit registers per bank.
This area cannot be used as a program area in which instructions are written and executed.
The internal high-speed RAM can also be used as a stack memory.

Table 3-6. Internal High-Speed RAM Capacity

78K0/KB2	78K0/KC2		78K0/KD2	78K0/KE2	78K0/KF2	Internal High-Speed RAM
30/36 Pins	38/44 Pins	48 Pins	52 Pins	64 Pins	80 Pins	
μ PD78F0500, PD78F0500A	-	-	-	-	-	512×8 bits (FD00H to FEFFH)
$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0501, \\ & \text { 78F0501A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0511, } \\ & \text { 78F0511A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0511, } \\ & \text { 78F0511A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521, \\ & 78 \mathrm{~F} 0521 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531, \\ & 78 \mathrm{~F} 0531 \mathrm{~A} \end{aligned}$	-	768×8 bits (FCOOH to FEFFH)
μ PD78F0502, 78F0502A	$\begin{aligned} & \mu \text { PD78F0512, } \\ & \text { 78F0512A } \end{aligned}$	μ PD78F0512, 78F0512A	$\begin{aligned} & \mu \text { PD78F0522, } \\ & \text { 78F0522A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0532, \\ & \text { 78F0532A } \end{aligned}$	-	1024×8 bits (FB00H to FEFFH)
μ PD78F0503D, 78F0503DA	$\begin{aligned} & \mu \text { PD78F0513D, } \\ & \text { 78F0513DA } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0513, } \\ & \text { 78F0513A } \end{aligned}$	μ PD78F0523, 78F0523A	μ PD78F0533, 78F0533A	-	
μ PD78F0503, 78F0503A	$\begin{aligned} & \mu \text { PD78F0513, } \\ & \text { 78F0513A } \end{aligned}$					
-	-	μ PD78F0514, 78F0514A	μ PD78F0524, 78F0524A	μ PD78F0534, 78F0534A	μ PD78F0544, 78F0544A	
-	-	μ PD78F0515D, 78F0515DA	μ PD78F0525, 78F0525A	μ PD78F0535, 78F0535A	μ PD78F0545, 78F0545A	
		μ PD78F0515, 78F0515A				
-	-	-	μ PD78F0526, 78F0526A	μ PD78F0536, 78F0536A	μ PD78F0546, 78F0546A	
-	-	-	μ PD78F0527D, 78F0527DA	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0537 \mathrm{D}, \\ & \text { 78F0537DA } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0547D, } \\ & \text { 78F0547DA } \end{aligned}$	
			μ PD78F0527, 78F0527A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0537, \\ & \text { 78F0537A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0547, \\ & \text { 78F0547A } \end{aligned}$	

(2) Internal expansion RAM

The internal expansion RAM can also be used as a normal data area similar to the internal high-speed RAM, as well as a program area in which instructions can be written and executed.
The internal expansion RAM cannot be used as a stack memory.

Table 3-7. Internal Expansion RAM Capacity

78K0/KB2	78K0/KC2		78K0/KD2	78K0/KE2	78K0/KF2	Internal Expansion RAM
30/36 Pins	38/44 Pins	48 Pins	52 Pins	64 Pins	80 Pins	
μ PD78F0500, PD78F0500A	-	-	-	-	-	-
$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0501, \\ & \text { 78F0501A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0511, \\ & \text { 78F0511A } \end{aligned}$	μ PD78F0511, 78F0511A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521, \\ & \text { 78F0521A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531, \\ & \text { 78F0531A } \end{aligned}$	-	
μ PD78F0502, 78F0502A	μ PD78F0512, 78F0512A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0512, \\ & \text { 78F0512A } \end{aligned}$	μ PD78F0522, 78F0522A	μ PD78F0532, 78F0532A	-	
μ PD78F0503D, 78F0503DA	μ PD78F0513D, 78F0513DA	μ PD78F0513, 78F0513A	μ PD78F0523, 78F0523A	μ PD78F0533, 78F0533A	-	
μ PD78F0503, 78F0503A	μ PD78F0513, 78F0513A					
-	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0514, \\ & 78 \mathrm{~F} 0514 \mathrm{~A} \end{aligned}$	μ PD78F0524, 78F0524A	μ PD78F0534, 78F0534A	μ PD78F0544, 78F0544A	1024×8 bits (F400H to F7FFH)
-	-	μ PD78F0515D, 78F0515DA	μ PD78F0525, 78F0525A	μ PD78F0535, 78F0535A	μ PD78F0545, 78F0545A	2048×8 bits (F000H to F7FFH)
		$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0515, \\ & 78 \mathrm{~F} 0515 \mathrm{~A} \end{aligned}$				
-	-	-	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0526, \\ & 78 \mathrm{~F} 0526 \mathrm{~A} \end{aligned}$	μ PD78F0536, 78F0536A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0546, \\ & 78 \mathrm{~F} 0546 \mathrm{~A} \end{aligned}$	4096×8 bits (E800H to F7FFH)
-	-	-	$\begin{aligned} & \mu \text { PD78F0527D, } \\ & \text { 78F0527DA } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0537 \mathrm{D}, \\ & \text { 78F0537DA } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0547 \mathrm{D}, \\ & \text { 78F0547DA } \end{aligned}$	6144×8 bits (E000H to F7FFH)
			μ PD78F0527, 78F0527A	μ PD78F0537, 78F0537A	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0547, \\ & \text { 78F0547A } \end{aligned}$	

(3) Buffer RAM (78K0/KF2 only)

The 78K0/KF2 products incorporate 32 bytes (FA00H to FA1FH) of buffer RAM. The buffer RAM can be used for transfer in CSI with automatic transmit/receive function.

3.1.4 Special function register (SFR) area

On-chip peripheral hardware special function registers (SFRs) are allocated in the area FF00H to FFFFH (see Table 38 Special Function Register List in 3.2.3 Special function registers (SFRs)).

Caution Do not access addresses to which SFRs are not assigned.

3.1.5 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions.

Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers, based on operability and other considerations. For areas containing data memory in particular, special addressing methods designed for the functions of special function registers (SFR) and general-purpose registers are available for use. Figures 3-12 to 3-19 show correspondence between data memory and addressing. For details of each addressing mode, see 3.4 Operand Address Addressing.

Figure 3-12. Correspondence Between Data Memory and Addressing (μ PD78F0500 and 78F0500A)

Figure 3-13. Correspondence Between Data Memory and Addressing (μ PD78F0501, 78F0501A, 78F0511, 78F0511A, 78F0521, 78F0521A, 78F0531, and 78F0531A)

Figure 3-14. Correspondence Between Data Memory and Addressing (μ PD78F0502, 78F0502A, 78F0512, 78F0512A, 78F0522, 78F0522A, 78F0532, and 78F0532A)

Figure 3-15. Correspondence Between Data Memory and Addressing (μ PD78F0503, 78F0503A, 78F0513, 78F0513A, 78F0523, 78F0523A, 78F0533, 78F0533A, 78F0503D, 78F0503DA, 78F0513D, and 78F0513DA)

Figure 3-16. Correspondence Between Data Memory and Addressing (μ PD78F0514, 78F0514A, 78F0524, 78F0524A, 78F0534, 78F0534A, 78F0544, and 78F0544A)

Note The buffer RAM is incorporated only in the μ PD78F0544 and 78F0544A (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0514, 78F0514A, 78F0524, 78F0524A, 78F0534, and 78F0534A.

Figure 3-17. Correspondence Between Data Memory and Addressing (μ PD78F0515, 78F0515A, 78F0525, 78F0525A, 78F0535, 78F0535A, 78F0545, 78F0545A, 78F0515D and 78F0515DA)

Note The buffer RAM is incorporated only in the μ PD78F0545 and 78F0545A (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0515, 78F0515A, 78F0525, 78F0525A, 78F0535, 78F0535A, 78F0515D, and 78F0515DA.

Figure 3-18. Correspondence Between Data Memory and Addressing (μ PD78F0526, 78F0526A, 78F0536, 78F0536A, 78F0546, and 78F0546A)

Notes 1. The buffer RAM is incorporated only in the μ PD78F0546 and 78F0546A (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0526, 78F0526A, 78F0536 and 78F0536A.
2. To branch to or address a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

Figure 3-19. Correspondence Between Data Memory and Addressing (μ PD78F0527, 78F0527A, 78F0537, 78F0537A, 78F0547, 78F0547A, 78F0527D, 78F0527DA, 78F0537D, 78F0537DA, 78F0547D and 78F0547DA)

Notes 1. The buffer RAM is incorporated only in the μ PD78F0547, 78F0547A, 78F0547D and 78F0547DA (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0527, 78F0527A, 78F0537, 78F0537A, 78F0527D, 78F0527DA, 78F0537D and 78F0537DA.
2. To branch to or address a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

3.2 Processor Registers

The 78K0/Kx2 microcontrollers incorporate the following processor registers.

3.2.1 Control registers

The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 16-bit register that holds the address information of the next program to be executed.
In normal operation, PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set.
Reset signal generation sets the reset vector table values at addresses 0000 H and 0001 H to the program counter.

Figure 3-20. Format of Program Counter

(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags set/reset by instruction execution.
Program status word contents are stored in the stack area upon vectored interrupt request acknowledgement or PUSH PSW instruction execution and are restored upon execution of the RETB, RETI and POP PSW instructions. Reset signal generation sets PSW to 02H.

Figure 3-21. Format of Program Status Word

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.
When 0 , the IE flag is set to the interrupt disabled (DI) state, and all maskable interrupt requests are disabled.
When 1 , the IE flag is set to the interrupt enabled (EI) state and interrupt request acknowledgment is controlled with an in-service priority flag (ISP), an interrupt mask flag for various interrupt sources, and a priority specification flag.
The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgment and is set (1) upon El instruction execution.
(b) Zero flag (Z)

When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.

(c) Register bank select flags (RBS0 and RBS1)

These are 2-bit flags to select one of the four register banks.
In these flags, the 2-bit information that indicates the register bank selected by SEL RBn instruction execution is stored.
(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3 , this flag is set (1). It is reset (0) in all other cases.
(e) In-service priority flag (ISP)

This flag manages the priority of acknowledgeable maskable vectored interrupts. When this flag is 0 , low-level vectored interrupt requests specified by a priority specification flag register (PROL, PROH, PR1L, PR1H) (see 20.3 (3) Priority specification flag registers (PROL, PROH, PR1L, PR1H)) can not be acknowledged. Actual request acknowledgment is controlled by the interrupt enable flag (IE).

(f) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.
(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal high-speed RAM area can be set as the stack area.

Figure 3-22. Format of Stack Pointer

The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restored) from the stack memory.
Each stack operation saves/restores data as shown in Figures 3-23 and 3-24.

Caution Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.

Figure 3-23. Data to Be Saved to Stack Memory
(a) PUSH rp instruction (when SP = FEEOH)

(b) CALL, CALLF, CALLT instructions (when SP = FEEOH)

(c) Interrupt, BRK instructions (when SP = FEEOH)

Figure 3-24. Data to Be Restored from Stack Memory
(a) POP rp instruction (when SP = FEDEH)

(b) RET instruction (when $\mathrm{SP}=\mathrm{FEDEH}$)

(c) RETI, RETB instructions (when SP = FEDDH)

3.2.2 General-purpose registers

General-purpose registers are mapped at particular addresses (FEEOH to FEFFH) of the data memory. The generalpurpose registers consists of 4 banks, each bank consisting of eight 8 -bit registers ($\mathrm{X}, \mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{E}, \mathrm{D}, \mathrm{L}$, and H).

Each register can be used as an 8-bit register, and two 8-bit registers can also be used in a pair as a 16-bit register (AX, $B C, D E$, and $H L$).

These registers can be described in terms of function names ($\mathrm{X}, \mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{E}, \mathrm{D}, \mathrm{L}, \mathrm{H}, \mathrm{AX}, \mathrm{BC}, \mathrm{DE}$, and HL) and absolute names (R0 to R7 and RP0 to RP3).

Register banks to be used for instruction execution are set by the CPU control instruction (SEL RBn). Because of the 4register bank configuration, an efficient program can be created by switching between a register for normal processing and a register for interrupts for each bank.

Figure 3-25. Configuration of General-Purpose Registers
(a) Function name

(b) Absolute name

3.2.3 Special function registers (SFRs)

Unlike a general-purpose register, each special function register has a special function.
SFRs are allocated to the FFOOH to FFFFH area.
Special function registers can be manipulated like general-purpose registers, using operation, transfer, and bit manipulation instructions. The manipulatable bit units, 1,8 , and 16 , depend on the special function register type.

Each manipulation bit unit can be specified as follows.

- 1-bit manipulation

Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (sfr.bit).
This manipulation can also be specified with an address.

- 8-bit manipulation

Describe the symbol reserved by the assembler for the 8-bit manipulation instruction operand (sfr).
This manipulation can also be specified with an address.

- 16-bit manipulation

Describe the symbol reserved by the assembler for the 16 -bit manipulation instruction operand (sfrp). When specifying an address, describe an even address.

Table 3-8 gives a list of the special function registers. The meanings of items in the table are as follows.

- Symbol

Symbol indicating the address of a special function register. It is a reserved word in the RA78K0, and is defined as an sfr variable using the \#pragma sfr directive in the CC78K0. When using the RA78K0, ID78K0-QB, SM+ for 78K0, and SM+ for $78 \mathrm{KO} / \mathrm{KX} 2$, symbols can be written as an instruction operand.

- R/W

Indicates whether the corresponding special function register can be read or written.
R/W: Read/write enable
R: Read only
W: Write only

- Manipulatable bit units

Indicates the manipulatable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

- After reset

Indicates each register status upon reset signal generation.

Table 3-8. Special Function Register List (1/5)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipulatable Bit Unit			After Reset	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{D} \\ & 2 \end{aligned}$	K	KF2
				1 Bit	8 Bits	16 Bits						
FFOOH	Port register 0	P0	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF01H	Port register 1	P1	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF02H	Port register 2	P2	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF03H	Port register 3	P3	R/W	\checkmark	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF04H	Port register 4	P4	R/W	\checkmark	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF05H	Port register 5	P5	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	-	-	-	$\sqrt{ }$	\checkmark
FF06H	Port register 6	P6	R/W	\checkmark	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF07H	Port register 7	P7	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	-	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
FF08H	10-bit A/D conversion result register	ADCR	R	-	-	\checkmark	0000H	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF09H	8-bit A/D conversion result register	ADCRH	R	-	\checkmark	-	OOH	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
FFOAH	Receive buffer register 6	RXB6	R	-	\checkmark	-	FFH	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
FFOBH	Transmit buffer register 6	TXB6	R/W	-	$\sqrt{ }$	-	FFH	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FFOCH	Port register 12	P12	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FFODH	Port register 13	P13	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	-	Note	\checkmark	$\sqrt{ }$	\checkmark
FFOEH	Port register 14	P14	R/W	$\sqrt{ }$	\checkmark	-	00H	-	Note	\checkmark	$\sqrt{ }$	\checkmark
FFOFH	Serial I/O shift register 10	SIO10	R	-	$\sqrt{ }$	-	00H	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF10H	16-bit timer counter 00	TM00	R	-	-	\checkmark	0000H	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark
FF11H												
FF12H	16-bit timer capture/compare register 000	CR000	R/W	-	-	\checkmark	0000H	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	\checkmark
FF13H												
FF14H	16-bit timer capture/compare register 010	CR010	R/W	-	-	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF15H												
FF16H	8-bit timer counter 50	TM50	R	-	$\sqrt{ }$	-	00H	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF17H	8-bit timer compare register 50	CR50	R/W	-	$\sqrt{ }$	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF18H	8-bit timer H compare register 00	CMP00	R/W	-	$\sqrt{ }$	-	OOH	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF19H	8-bit timer H compare register 10	CMP10	R/W	-	\checkmark	-	OOH	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
FF1AH	8-bit timer H compare register 01	CMP01	R/W	-	$\sqrt{ }$	-	00H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$
FF1BH	8 -bit timer H compare register 11	CMP11	R/W	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF1FH	8-bit timer counter 51	TM51	R	-	$\sqrt{ }$	-	00H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
FF20H	Port mode register 0	PM0	R/W	$\sqrt{ }$	$\sqrt{ }$	-	FFH	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF21H	Port mode register 1	PM1	R/W	$\sqrt{ }$	$\sqrt{ }$	-	FFH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF22H	Port mode register 2	PM2	R/W	\checkmark	\checkmark	-	FFH	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
FF23H	Port mode register 3	PM3	R/W	$\sqrt{ }$	$\sqrt{ }$	-	FFH	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF24H	Port mode register 4	PM4	R/W	\checkmark	\checkmark	-	FFH	-	\checkmark	\checkmark	\checkmark	\checkmark
FF25H	Port mode register 5	PM5	R/W	\checkmark	\checkmark	-	FFH	-	-	-	\checkmark	\checkmark
FF26H	Port mode register 6	PM6	R/W	\checkmark	\checkmark	-	FFH	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF27H	Port mode register 7	PM7	R/W	$\sqrt{ }$	$\sqrt{ }$	-	FFH	-	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF28H	A/D converter mode register	ADM	R/W	$\sqrt{ }$	$\sqrt{ }$	-	OOH	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
FF29H	Analog input channel specification register	ADS	R/W	\checkmark	\checkmark	-	OOH	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
FF2CH	Port mode register 12	PM12	R/W	$\sqrt{ }$	$\sqrt{ }$	-	FFH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF2EH	Port mode register 14	PM14	R/W	$\sqrt{ }$	$\sqrt{ }$	-	FFH	-	Note	\checkmark	$\sqrt{ }$	$\sqrt{ }$
FF2FH	A/D port configuration register	ADPC	R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Note This register is incorporated only in 48-pin products.

Table 3-8. Special Function Register List (2/5)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulatable Bit Unit			After Reset	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{E} \\ & 2 \end{aligned}$	KF2	
				1 Bit	8 Bits	16 Bits								
FF30H	Pull-up resistor option register 0	PU0			R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF31H	Pull-up resistor option register 1	PU1		R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF33H	Pull-up resistor option register 3	PU3		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF34H	Pull-up resistor option register 4	PU4		R/W	\checkmark	\checkmark	-	00H	-	\checkmark	\checkmark	\checkmark	\checkmark	
FF35H	Pull-up resistor option register 5	PU5		R/W	\checkmark	\checkmark	-	00H	-	-	-	\checkmark	\checkmark	
FF36H	Pull-up resistor option register 6	PU6		R/W	\checkmark	\checkmark	-	00 H	-	-	-	-	\checkmark	
FF37H	Pull-up resistor option register 7	PU7		R/W	\checkmark	\checkmark	-	OOH	-	\checkmark	\checkmark	\checkmark	\checkmark	
FF3CH	Pull-up resistor option register 12	PU12		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF3EH	Pull-up resistor option register 14	PU14		R/W	$\sqrt{ }$	$\sqrt{ }$	-	OOH	-	Note 1	$\sqrt{ }$	\checkmark	\checkmark	
FF40H	Clock output selection register	CKS		R/W	\checkmark	\checkmark	-	OOH	-	Note 1	\checkmark	\checkmark	\checkmark	
FF41H	8-bit timer compare register 51	CR51		R/W	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF43H	8-bit timer mode control register 51	TMC5		R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF48H	External interrupt rising edge enable register	EGP		R/W	\checkmark	\checkmark	-	OOH	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	
FF49H	External interrupt falling edge enable register	EGN		R/W	\checkmark	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	
FF4AH	Serial I/O shift register 11	SIO1		R	-	\checkmark	-	00H	-	-	-	Note 2	\checkmark	
FF4CH	Transmit buffer register 11	SOTB	11	R/W	-	\checkmark	-	00H	-	-	-	Note 2	\checkmark	
FF4FH	Input switch control register	ISC		R/W	$\sqrt{ }$	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF50H	Asynchronous serial interface operation mode register 6	ASIM		R/W	$\sqrt{ }$	\checkmark	-	01H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	
FF53H	Asynchronous serial interface reception error status register 6	ASIS6		R	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF55H	Asynchronous serial interface transmission status register 6	ASIF6		R	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF56H	Clock selection register 6	CKSR		R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF57H	Baud rate generator control register 6	BRGC		R/W	-	\checkmark	-	FFH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF58H	Asynchronous serial interface control register 6	ASICL		R/W	$\sqrt{ }$	\checkmark	-	16H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FF60H	Remainder data register 0	SDRO	SDROL	R	-	\checkmark	\checkmark	00H	-	Note 2	Note 2	Note 2	\checkmark	
FF61H			SDROH		-	\checkmark		00H	-	Note 2	Note 2	Note 2	\checkmark	
FF62H	Multiplication/division data register A0	MDAOL	MDAOLL	R/W	-	$\sqrt{ }$	\checkmark	00H	-	Note 2	Note 2	Note 2	\checkmark	
FF63H			MDAOLH		-	\checkmark		00H	-	Note 2	Note 2	Note 2	\checkmark	
FF64H		MDAOH	MDAOHL	R/W	-	\checkmark	\checkmark	00H	-	Note 2	Note 2	Note 2	\checkmark	
FF65H			MDAOHH		-	\checkmark		OOH	-	Note 2	Note 2	Note 2	$\sqrt{ }$	
FF66H	Multiplication/division data register B0	MDB0	MDBOL	R/W	-	\checkmark	\checkmark	00H	-	Note 2	Note 2	Note 2	\checkmark	
FF67H			MDBOH		-	\checkmark		OOH	-	Note 2	Note 2	Note 2	\checkmark	
FF68H	Multiplier/divider control register 0	DMUC0		R/W	\checkmark	\checkmark	-	00H	-	Note 2	Note 2	Note 2	\checkmark	
FF69H	8 -bit timer H mode register 0	TMHMD0		R/W	\checkmark	\checkmark	-	00 H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Notes 1. This register is incorporated only in 48-pin products.
2. This register is incorporated only in products whose flash memory is at least 48 KB .

Table 3-8. Special Function Register List (3/5)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipulatable Bit Unit			After Reset	KB2	$\begin{aligned} & \mathrm{K} \\ & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{E} \\ & 2 \end{aligned}$	K F 2
				1 Bit	8 Bits	16 Bits						
FF6AH	Timer clock selection register 50	TCL50	R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF6BH	8-bit timer mode control register 50	TMC50	R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF6CH	8-bit timer H mode register 1	TMHMD1	R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF6DH	8-bit timer H carrier control register 1	TMCYC1	R/W	$\sqrt{ }$	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
FF6EH	Key return mode register	KRM	R/W	\checkmark	\checkmark	-	00H	-	\checkmark	\checkmark	\checkmark	\checkmark
FF6FH	Watch timer operation mode register	WTM	R/W	$\sqrt{ }$	\checkmark	-	00H	-	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
FF70H	Asynchronous serial interface operation mode register 0	ASIMO	R/W	\checkmark	\checkmark	-	01H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF71H	Baud rate generator control register 0	BRGC0	R/W	-	\checkmark	-	1FH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF72H	Receive buffer register 0	RXB0	R	-	\checkmark	-	FFH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF73H	Asynchronous serial interface reception error status register 0	ASIS0	R	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF74H	Transmit shift register 0	TXS0	W	-	\checkmark	-	FFH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF80H	Serial operation mode register 10	CSIM10	R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF81H	Serial clock selection register 10	CSIC10	R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF84H	Transmit buffer register 10	SOTB10	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF88H	Serial operation mode register 11	CSIM11	R/W	\checkmark	\checkmark	-	OOH	-	-	-	$\begin{gathered} \text { Note } \\ 1 \end{gathered}$	\checkmark
FF89H	Serial clock selection register 11	CSIC11	R/W	\checkmark	\checkmark	-	00H	-	-	-	$\begin{gathered} \text { Note } \\ 1 \end{gathered}$	\checkmark
FF8CH	Timer clock selection register 51	TCL51	R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF90H	Serial operation mode specification register 0	CSIMAO	R/W	\checkmark	$\sqrt{ }$	-	00H	-	-	-	-	\checkmark
FF91H	Serial status register 0	CSISO	R/W	\checkmark	\checkmark	-	00H	-	-	-	-	\checkmark
FF92H	Serial trigger register 0	CSITO	R/W	\checkmark	\checkmark	-	OOH	-	-	-	-	\checkmark
FF93H	Division value selection register 0	BRGCA0	R/W	-	$\sqrt{ }$	-	03H	-	-	-	-	\checkmark
FF94H	Automatic data transfer address point specification register 0	ADTP0	R/W	-	\checkmark	-	OOH	-	-	-	-	\checkmark
FF95H	Automatic data transfer interval specification register 0	ADTIO	R/W	-	$\sqrt{ }$	-	OOH	-	-	-	-	\checkmark
FF96H	Serial I/O shift register 0	SIOAO	R/W	-	\checkmark	-	00H	-	-	-	-	\checkmark
FF97H	Automatic data transfer address count register 0	ADTC0	R	-	\checkmark	-	00H	-	-	-	-	\checkmark
FF99H	Watchdog timer enable register	WDTE	R/W	-	\checkmark	-	$\begin{gathered} 1 \mathrm{AH} / \\ 9 \mathrm{AH}^{\text {Note } 2} \end{gathered}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FF9FH	Clock operation mode select register	OSCCTL	R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FFAOH	Internal oscillation mode register	RCM	R/W	\checkmark	\checkmark	-	$80 \mathrm{H}^{\text {Note } 3}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FFA1H	Main clock mode register	MCM	R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
FFA2H	Main OSC control register	MOC	R/W	\checkmark	\checkmark	-	80 H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FFA3H	Oscillation stabilization time counter status register	OSTC	R	$\sqrt{ }$	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FFA4H	Oscillation stabilization time select register	OSTS	R/W	-	\checkmark	-	05H	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark

Notes 1. This register is incorporated only in products whose flash memory is at least 48 KB .
2. The reset value of WDTE is determined by setting of option byte.

3 The value of this register is 00 H immediately after a reset release but automatically changes to 80 H after oscillation accuracy stabilization of high-speed internal oscillator has been waited.

Table 3-8. Special Function Register List (4/5)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulatable Bit Unit			After Reset	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~B} \\ & 2 \\ & \hline \end{aligned}$	KC2	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{E} \\ & 2 \end{aligned}$	KF2	
				1 Bit	8 Bits	16 Bits								
FFA5H	IIC shift register 0	IICO			R/W	-	$\sqrt{ }$	-	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$
FFA6H	IIC control register 0	IICCO		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFA7H	Slave address register 0	SVAO		R/W	-	\checkmark	-	00H	$\sqrt{ }$					
FFA8H	IIC clock selection register 0	IICCL		R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	$\sqrt{ }$					
FFA9H	IIC function expansion register 0	IICXO		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFAAH	IIC status register 0	IICS0		R	\checkmark	\checkmark	-	00H	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFABH	IIC flag register 0	IICFO		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFACH	Reset control flag register	RESF		R	-	$\sqrt{ }$	-	$00 \mathrm{H}^{\text {Note } 1}$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFBOH	16-bit timer counter 01	TM01		R	-	-	$\sqrt{ }$	0000H	-	-	-	Note 2	\checkmark	
FFB1H														
FFB2H	16-bit timer capture/compare register 001	CR001		R/W	-	-	\checkmark	0000H	-	-	-	Note 2	$\sqrt{ }$	
FFB3H														
FFB4H	16-bit timer capture/compare register 011	CR011		R/W	-	-	\checkmark	0000H	-	-	-	$\begin{gathered} \text { Note } \\ 2 \\ \hline \end{gathered}$	$\sqrt{ }$	
FFB5H														
FFB6H	16-bit timer mode control register 01	TMC0		R/W	\checkmark	\checkmark	-	00H	-	-	-	$\begin{array}{\|c} \hline \text { Note } \\ 2 \\ \hline \end{array}$	\checkmark	
FFB7H	Prescaler mode register 01	PRM0		R/W	\checkmark	\checkmark	-	00H	-	-	-	$\begin{gathered} \text { Note } \\ 2 \\ \hline \end{gathered}$	\checkmark	
FFB8H	Capture/compare control register 01	CRCO		R/W	\checkmark	\checkmark	-	00H	-	-	-	$\begin{array}{\|c} \text { Note } \\ 2 \end{array}$	$\sqrt{ }$	
FFB9H	16-bit timer output control register 01	TOC0		R/W	$\sqrt{ }$	\checkmark	-	00H	-	-	-	$\begin{array}{\|c} \text { Note } \\ 2 \end{array}$	$\sqrt{ }$	
FFBAH	16-bit timer mode control register 00	TMC0		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFBBH	Prescaler mode register 00	PRM00		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$					
FFBCH	Capture/compare control register 00	CRCO		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	
FFBDH	16-bit timer output control register 00	TOC0		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFBEH	Low-voltage detection register	LVIM		R/W	\checkmark	$\sqrt{ }$	-	$00 \mathrm{H}^{\text {Note } 3}$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFBFH	Low-voltage detection level selection register	LVIS		R/W	\checkmark	\checkmark	-	$00 \mathrm{H}^{\text {Note } 3}$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	
FFEOH	Interrupt request flag register OL	IFO	IFOL	R/W	\checkmark	\checkmark	\checkmark	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	
FFE1H	Interrupt request flag register OH		IFOH	R/W	\checkmark	\checkmark		00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFE2H	Interrupt request flag register 1L	IF1	IF1L	R/W	\checkmark	\checkmark	$\sqrt{ }$	00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFE3H	Interrupt request flag register 1H		IF1H	R/W	\checkmark	\checkmark		00H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFE4H	Interrupt mask flag register OL	MKO	MKOL	R/W	\checkmark	\checkmark	\checkmark	FFH	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFE5H	Interrupt mask flag register OH		MKOH	R/W	\checkmark	\checkmark		FFH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFE6H	Interrupt mask flag register 1L	MK1	MK1L	R/W	\checkmark	\checkmark	\checkmark	FFH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFE7H	Interrupt mask flag register 1H		MK1H	R/W	\checkmark	\checkmark		FFH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	

Notes 1. The reset value of RESF varies depending on the reset source.
2. This register is incorporated only in products whose flash memory is at least 48 KB .
3. The reset values of LVIM and LVIS vary depending on the reset source.

Table 3-8. Special Function Register List (5/5)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulatable Bit Unit			After Reset	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{E} \\ & 2 \end{aligned}$	$\begin{gathered} \hline \mathrm{K} \\ \mathrm{~F} \\ 2 \end{gathered}$	
				1 Bit	8 Bits	16 Bits								
FFE8H	Priority specification flag register OL	PR0	PROL		R/W	\checkmark	\checkmark	\checkmark	FFH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FFE9H	Priority specification flag register OH		PROH	R/W	\checkmark	\checkmark	FFH		$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	
FFEAH	Priority specification flag register 1L	PR1	PR1L	R/W	\checkmark	\checkmark	$\sqrt{ }$	FFH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	
FFEBH	Priority specification flag register 1 H		PR1H	R/W	\checkmark	\checkmark		FFH	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	
FFFOH	Internal memory size switching register ${ }^{\text {Notes } 3,4}$	IMS		R/W	-	\checkmark	-	CFH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
FFF3H	Memory bank select register	BANK		R/W	-	\checkmark	-	00H	-	-	Note 1	Note 1	Note 1	
FFF4H	Internal expansion RAM size switching register ${ }^{\text {Notes } 3,4}$	IXS		R/W	-	\checkmark	-	0 CH	Note 2	$\begin{array}{\|c} \text { Note } \\ 2 \end{array}$	$\begin{gathered} \text { Note } \\ 2 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Note } \\ 2 \\ \hline \end{array}$	\checkmark	
FFFBH	Processor clock control register	PCC		R/W	$\sqrt{ }$	\checkmark	-	01H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Notes 1. This register is incorporated only in products whose flash memory is at least 96 KB .
2. Set this register only in products with internal expansion RAM.
3. Regardless of the internal memory capacity, the initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) of all products in the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers are fixed (IMS = CFH, IXS = OCH). Therefore, set the value corresponding to each product as indicated in Tables 3-1 and 3-2.
4. The ROM and RAM capacities of the products with the on-chip debug function can be debugged by setting IMS and IXS, according to the debug target products. Set IMS and IXS according to the debug target products.

3.3 Instruction Address Addressing

An instruction address is determined by contents of the program counter (PC) and memory bank select register (BANK), and is normally incremented (+1 for each byte) automatically according to the number of bytes of an instruction to be fetched each time another instruction is executed. When a branch instruction is executed, the branch destination information is set to PC and branched by the following addressing (for details of instructions, refer to the 78K/0 Series Instructions User's Manual (U12326E)).

3.3.1 Relative addressing

[Function]

The value obtained by adding 8-bit immediate data (displacement value: jdisp8) of an instruction code to the start address of the following instruction is transferred to the program counter (PC) and branched. The displacement value is treated as signed two's complement data (-128 to +127) and bit 7 becomes a sign bit.
In other words, relative addressing consists of relative branching from the start address of the following instruction to the -128 to +127 range.
This function is carried out when the BR \$addr16 instruction or a conditional branch instruction is executed.
[IIlustration]

When $\mathrm{S}=0$, all bits of α are 0 .
When $S=1$, all bits of α are 1 .

3.3.2 Immediate addressing

[Function]

Immediate data in the instruction word is transferred to the program counter (PC) and branched.
This function is carried out when the CALL !addr16 or BR !addr16 or CALLF !addr11 instruction is executed.
CALL !addr16 and BR !addr16 instructions can be branched to the entire memory space. However, before branching to a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.
The CALLF !addr11 instruction is branched to the 0800 H to 0 FFFH area.

[IIlustration]

In the case of CALL !addr16 and BR !addr16 instructions

In the case of CALLF !addr11 instruction

3.3.3 Table indirect addressing

[Function]

Table contents (branch destination address) of the particular location to be addressed by bits 1 to 5 of the immediate data of an operation code are transferred to the program counter (PC) and branched.
This function is carried out when the CALLT [addr5] instruction is executed.
This instruction references the address that is indicated by addr5 and is stored in the memory table from 0040 H to 007 FH , and allows branching to the entire memory space.
[Illustration]

3.3.4 Register addressing

[Function]

Register pair (AX) contents to be specified with an instruction word are transferred to the program counter (PC) and branched.
This function is carried out when the BR AX instruction is executed.

[IIlustration]

3.4 Operand Address Addressing

The following methods are available to specify the register and memory (addressing) to undergo manipulation during instruction execution.

3.4.1 Implied addressing

[Function]

The register that functions as an accumulator (A and AX) among the general-purpose registers is automatically (implicitly) addressed.
Of the 78K0/Kx2 microcontroller instruction words, the following instructions employ implied addressing.

Instruction	Register to Be Specified by Implied Addressing
MULU	A register for multiplicand and AX register for product storage
DIVUW	AX register for dividend and quotient storage
ADJBA/ADJBS	A register for storage of numeric values that become decimal correction targets
ROR4/ROL4	A register for storage of digit data that undergoes digit rotation

[Operand format]

Because implied addressing can be automatically determined with an instruction, no particular operand format is necessary.

[Description example]

In the case of MULU X
With an 8 -bit $\times 8$-bit multiply instruction, the product of the A register and X register is stored in $A X$. In this example, the A and $A X$ registers are specified by implied addressing.

3.4.2 Register addressing

[Function]

The general-purpose register to be specified is accessed as an operand with the register bank select flags (RBSO to RBS1) and the register specify codes of an operation code.
Register addressing is carried out when an instruction with the following operand format is executed. When an 8 -bit register is specified, one of the eight registers is specified with 3 bits in the operation code.

[Operand format]

Identifier	Description
r	$\mathrm{X}, \mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{E}, \mathrm{D}, \mathrm{L}, \mathrm{H}$
rp	$\mathrm{AX}, \mathrm{BC}, \mathrm{DE}, \mathrm{HL}$

' r ' and ' $r p$ ' can be described by absolute names ($R 0$ to $R 7$ and RP0 to RP3) as well as function names (X, A, C, B, E, $D, L, H, A X, B C, D E$, and $H L$).

[Description example]

MOV A, C; when selecting C register as r

INCW DE; when selecting DE register pair as rp

3.4.3 Direct addressing

[Function]

The memory to be manipulated is directly addressed with immediate data in an instruction word becoming an operand address.
This addressing can be carried out for all of the memory spaces. However, before addressing a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

[Operand format]

Identifier	Description
addr16	Label or 16-bit immediate data

[Description example]

MOV A, !0FE00H; when setting !addr16 to FEOOH

Operation code

$\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$
OP code
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} \quad 00 \mathrm{H}$
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array} \quad$ FEH
[IIlustration]

3.4.4 Short direct addressing

[Function]

The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word.
This addressing is applied to the 256 -byte space FE20H to FF1FH. Internal high-speed RAM and special function registers (SFRs) are mapped at FE20H to FEFFH and FF00H to FF1FH, respectively.
The SFR area (FFOOH to FF1FH) where short direct addressing is applied is a part of the overall SFR area. Ports that are frequently accessed in a program and compare and capture registers of the timer/event counter are mapped in this area, allowing SFRs to be manipulated with a small number of bytes and clocks.
When 8 -bit immediate data is at 20 H to FFH , bit 8 of an effective address is set to 0 . When it is at 00 H to 1 FH , bit 8 is set to 1 . See the [Illustration] shown below.

[Operand format]

Identifier	Description
saddr	Immediate data that indicate label or FE20H to FF1FH
saddrp	Immediate data that indicate label or FE20H to FF1FH (even address only)

[Description example]

LB1 EQU 0FE30H ; Defines FE30H by LB1.

MOV LB1, A ; When LB1 indicates FE30H of the saddr area and the value of register A is transferred to that address

[IIlustration]

When 8 -bit immediate data is 20 H to $\mathrm{FFH}, \alpha=0$
When 8 -bit immediate data is 00 H to $1 \mathrm{FH}, \alpha=1$

3.4.5 Special function register (SFR) addressing

[Function]

A memory-mapped special function register (SFR) is addressed with 8-bit immediate data in an instruction word.
This addressing is applied to the 240-byte spaces FFOOH to FFCFH and FFEOH to FFFFH. However, the SFRs mapped at FFOOH to FF1FH can be accessed with short direct addressing.

[Operand format]

Identifier	
sfr	Special function register name
sfrp	16-bit manipulatable special function register name (even address only)

[Description example]

MOV PMO, A; when selecting PMO (FF2OH) as sfr

| Operation code \quad1 1 1 1 0 1 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad OP code

$$
\begin{array}{llllllll|l}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 20 \mathrm{H} \text { (sfr-offset) }
\end{array}
$$

[Illustration]

3.4.6 Register indirect addressing

[Function]

Register pair contents specified by a register pair specify code in an instruction word and by a register bank select flag (RBS0 and RBS1) serve as an operand address for addressing the memory.
This addressing can be carried out for all of the memory spaces. However, before addressing a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

[Operand format]

Identifier		Description
-	$[\mathrm{DE}],[\mathrm{HL}]$	

[Description example]

MOV A, [DE]; when selecting [DE] as register pair

Operation code	1	0	0	0	0	1	0	1

[IIlustration]

3.4.7 Based addressing

[Function]

8 -bit immediate data is added as offset data to the contents of the base register, that is, the HL register pair in the register bank specified by the register bank select flag (RBSO and RBS1), and the sum is used to address the memory. Addition is performed by expanding the offset data as a positive number to 16 bits. A carry from the 16 th bit is ignored.
This addressing can be carried out for all of the memory spaces. However, before addressing a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

[Operand format]

Identifier		Description
-	$[H L+$ byte $]$	

[Description example]

MOV A, $[\mathrm{HL}+10 \mathrm{H}]$; when setting byte to 10 H

$$
\begin{array}{c|llllllll}
\hline 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
\hline & \begin{array}{|llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
\end{array}
$$

[Illustration]

3.4.8 Based indexed addressing

[Function]

The B or C register contents specified in an instruction word are added to the contents of the base register, that is, the HL register pair in the register bank specified by the register bank select flag (RBS0 and RBS1), and the sum is used to address the memory. Addition is performed by expanding the B or C register contents as a positive number to 16 bits. A carry from the 16th bit is ignored.
This addressing can be carried out for all of the memory spaces. However, before addressing a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

[Operand format]

Identifier		Description
-	$[H L+B],[H L+C]$	

[Description example]

MOV A, [HL +B]; when selecting B register

Operation code
$\begin{array}{llllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$

[IIlustration]

3.4.9 Stack addressing

[Function]

The stack area is indirectly addressed with the stack pointer (SP) contents.
This addressing method is automatically employed when the PUSH, POP, subroutine call and return instructions are executed or the register is saved/reset upon generation of an interrupt request.
With stack addressing, only the internal high-speed RAM area can be accessed.

[Description example]

PUSH DE; when saving DE register

Operation code
$\begin{array}{llllllll}1 & 0 & 1 & 1 & 0 & 1 & 0 & 1\end{array}$

[IIlustration]

CHAPTER 4 MEMORY BANK SELECT FUNCTION (PRODUCTS WHOSE FLASH MEMORY IS AT LEAST 96 KB ONLY)

4.1 Memory Bank

The μ PD78F05x6, 78F05x6A, 78F05x7, 78F05x7A, 78F05x7D and 78F05x7DA of $78 \mathrm{~K} 0 / \mathrm{KD} 2,78 \mathrm{~K} 0 / \mathrm{KE} 2$, and 78K0/KF2 implement a ROM capacity of 96 KB or 128 KB by selecting a memory bank from a memory space of 8000 H to BFFFH.

The μ PD78F05x6 and 78F05x6A have memory banks 0 to 3 , and the μ PD78F05x7, 78F05x7A, 78F05x7D and 78F05x7DA have memory banks 0 to 5 , as shown below.

The memory banks are selected by using a memory bank select register (BANK).

Figure 4-1. Internal ROM (Flash Memory) Configuration
(a) $\mu \mathrm{PD} 78 \mathrm{~F} 05 \times 6$ and $78 \mathrm{~F} 05 \times 6 \mathrm{~A}$ (products whose flash memory is 96 KB)

(b) $\mu \mathrm{PD} 78 \mathrm{~F} 05 \times 7,78 \mathrm{~F} 05 \times 7 \mathrm{~A}, 78 \mathrm{~F} 05 \times 7 \mathrm{D}$, and $78 \mathrm{~F} 05 \times 7 \mathrm{DA}$ (products whose flash memory is 128 KB)

Remark $x=2$ to 4

4.2 Difference in Representation of Memory Space

With the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontroller products which support the memory bank, addresses can be viewed in the following two different ways.

- Memory bank number + CPU address
- Flash memory real address (HEX FORMAT [BANK])

Figure 4-2. Address View
(a) Memory bank number + CPU address

(b) Flash memory real address (HEX FORMAT [BANK])

1FFFFH 1 COOOH 1 BFFFH	$\begin{gathered} \text { Memory bank } 5 \\ (16 \mathrm{~KB}) \end{gathered}$
	Memory bank 4 (16 KB)
18000 H	Memory bank 3 (16 KB)
14000 H 13 FFFH	Memory bank 2 (16 KB)
$\begin{aligned} & 10000 H \\ & \text { OFFFFH } \end{aligned}$	Memory bank 1 (16 KB)
$\begin{aligned} & \text { OCOOOH } \\ & \text { OBFFFH } \end{aligned}$	Memory bank 0 (16 KB)
$\begin{aligned} & 08000 H \\ & 07 F F F H \end{aligned}$	Common (32 KB)
00000 H	

"Memory bank number + CPU address" is represented with a vacancy in the address space, while the flash memory real address is shown with no vacancy in the address space.
"Memory bank number + CPU address" is used for addressing in the user program. For on-board programming and self programming not using the self programming sample library ${ }^{\text {Note } 1}$, the flash memory real address is used.

Note that the HEX file that is output by the assembler (RA78K0) by default uses the flash memory real address. For address representation of the other tools such as the simulator and the debugger ${ }^{\text {Note } 2}$, see Table 4-1.

Notes 1. "Memory bank number + CPU address" can be used when performing self programming, using the self programming sample library, because the addresses are automatically translated.
2. SM+ for 78 KO , SM+ for $78 \mathrm{KO} / \mathrm{Kx} 2$, and ID78K0-QB

Table 4-1. Memory Bank Address Representation

Memory Bank Number	CPU Address	Flash Memory Real Address	Address Representation in Simulator and Debugger ${ }^{\text {Note } 1}$
Memory bank 0	08000H-0BFFFFH ${ }^{\text {Note } 2}$	08000H-0BFFFH	08000H-0BFFFH
Memory bank 1		0C000H-0FFFFFH	18000H-1BFFFH
Memory bank 2		10000H-13FFFH	$28000 \mathrm{H}-2 \mathrm{BFFFH}$
Memory bank 3		14000H-17FFFH	$38000 \mathrm{H}-3 \mathrm{BFFFFH}$
Memory bank 4		18000H-1BFFFH	48000H-4BFFFH
Memory bank 5		1C000H-1FFFFFH	58000H-5BFFFH

Notes 1. SM+ for 78K0, SM+ for $78 \mathrm{KO} / \mathrm{Kx} 2$, and ID78K0-QB
2. Set the memory bank to be used by the memory bank select register (BANK) (see Figure 4-3).

For details, see the RA78KO Ver. 3.80 Assembler Package Operation User's Manual (U17199E) and the 78K0 Microcontrollers Self Programming Library Type01 User's Manual (U18274E).

4.3 Memory Bank Select Register (BANK)

The memory bank select register (BANK) is used to select a memory bank to be used.
BANK can be set by an 8 -bit memory manipulation instruction.
Reset signal generation clears BANK to 00 H .

Figure 4-3. Format of Memory Bank Select Register (BANK)

BANK2	BANK1	BANKO	Bank setting	
			μ PD78F05x6 and 78F05x6A	μ PD78F05x7, 78F05x7A, 78F05x7D, and 78F05x7DA
0	0	0	Common area (32 KB) + memory bank 0 (16 KB)	
0	0	1	Common area (32 KB) + memory bank 1 (16 KB)	
0	1	0	Common area (32 KB) + memory bank 2 (16 KB)	
0	1	1	Common area (32 KB) + memory bank 3 (16 KB)	
1	0	0	Setting prohibited	Common area (32 KB) + memory bank 4 (16 KB)
1	0	1		Common area (32 KB) + memory bank 5 (16 KB)
Other than above			Setting prohibited	

Caution Be sure to change the value of the BANK register in the common area (0000 H to 7 FFFFH). If the value of the BANK register is changed in the bank area (8000 H to BFFFH), an inadvertent program loop occurs in the CPU. Therefore, never change the value of the BANK register in the bank area.

Remark $x=2$ to 4

4.4 Selecting Memory Bank

The memory bank selected by the memory bank select register (BANK) is reflected on the bank area and can be addressed. Therefore, to access a memory bank different from the one currently selected, that memory bank must be selected by using the BANK register.

The value of the BANK register must not be changed in the bank area (8000 H to BFFFH). Therefore, to change the memory bank, branch an instruction to the common area (0000 H to 7FFFH) and change the value of the BANK register in that area.

Cautions 1. Instructions cannot be fetched between different memory banks.

2. Branching and accessing cannot be directly executed between different memory banks. Execute branching or accessing between different memory banks via the common area.
3. Allocate interrupt servicing in the common area.
4. An instruction that extends from 7FFFH to 8000 H can only be executed in memory bank 0 .

4.4.1 Referencing values between memory banks

Values cannot be directly referenced from one memory bank to another.
To access another memory bank from one memory bank, branch once to the common area (0000 H to 7 FFFH), change the setting of the BANK register there, and then reference a value.

- Software example (to store a value to be referenced in register A)

4.4.2 Branching instruction between memory banks

Instructions cannot branch directly from one memory bank to another.
To branch an instruction from one memory bank to another, branch once to the common area (0000 H to 7FFFH), change the setting of the BANK register there, and then execute the branch instruction again.

- Software example 1 (to branch from all areas)

- Software example 2 (to branch from common area to any bank area)

ETRC ENTRY:	CSEG	AT 2000 H	
	$\begin{aligned} & \text { MOV } \\ & \text { BR } \end{aligned}$	R_BNKN,\#BANKNUM TEST !TEST	; Stores the memory bank number at the branch destination in RAM. ; Stores the address at the branch destination in RAM.
$\begin{aligned} & \text { BN3 } \\ & \text { TEST: } \end{aligned}$	CSEG	BANK3	
	MOV ...		
END			

4.4.3 Subroutine call between memory banks

Subroutines cannot be directly called between memory banks.
To call a subroutine between memory banks, branch once to the common area (0000 H to 7 FFFH), specify the memory bank at the calling destination by using the BANK register there, execute the CALL instruction, and branch to the call destination by that instruction.

At this time, save the current value of the BANK register to RAM. Restore the value of the BANK register before executing the RET instruction.

- Software example

Remark In the software example above, multiplexed processing is not supported.

4.4.4 Instruction branch to bank area by interrupt

When an interrupt occurs, instructions can branch to the memory bank specified by the BANK register by using the vector table, but it is difficult to identify the BANK register when the interrupt occurs.

Therefore, specify the branch destination address specified by the vector table in the common area (0000 H to 7FFFH), specify the memory bank at the branch destination by using the BANK register in the common area, and execute the CALL instruction. At this time, save the BANK register value before the change to RAM, and restore the value of the BANK register before executing the RETI instruction.

Remark Allocate interrupt servicing that requires a quick response in the common area.

- Software example (when using interrupt request of 16 -bit timer/event counter 00)

Remark Note the following points to use the memory bank select function efficiently.

- Allocate a routine that is used often in the common area.
- If a value that is planned to be referenced is placed in RAM, it can be referenced from all of the areas.
- If the reference destination and the branch destination of the routine placed in a memory bank are placed in the same memory bank, then the code size and processing are more efficient.
- Allocate interrupt servicing that requires a quick response in the common area.

CHAPTER 5 PORT FUNCTIONS

5.1 Port Functions

Pin I/O buffer power supplies depend on the product. The relationship between these power supplies and the pins is shown below.

Table 5-1. Pin I/O Buffer Power Supplies (AVref, Vdd)

- $78 \mathrm{KO} / \mathrm{KB} 2: 30-\mathrm{pin}$ plastic SSOP (7.62 mm (300))
- 78K0/KC2: 38-pin plastic SSOP (7.62 mm (300)), 44-pin plastic LQFP (10x10), 48-pin plastic LQFP (fine pitch) (7×7)
- 78K0/KD2: 52-pin plastic LQFP (10x10)

Power Supply	Corresponding Pins
$A_{\text {REF }}$	P20 to P27
$V_{D D}$	Pins other than P20 to P27

Table 5-2. Pin I/O Buffer Power Supplies (AVref, EVdd, Vdd)

- 78K0/KB2: 36-pin plastic FLGA (4x4)
- 78K0/KE2: 64-pin plastic LQFP (fine pitch) (10x10), 64-pin plastic LQFP (14x14), 64-pin plastic LQFP (12x12), 64pin plastic TQFP (fine pitch) (7x7), 64-pin plastic FLGA (5x5) , 64-pin plastic FBGA (4x4)
- 78K0/KF2: 80-pin plastic LQFP (14x14), 80-pin plastic LQFP (fine pitch) (12x12)

Power Supply	Corresponding Pins
$A_{\text {REF }}$	P20 to P27
EV	Port pins other than P20 to P27 and P121 to P124
VDD	\bullet P121 to P124 \bullet

$78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers are provided with digital I/O ports, which enable variety of control operations. The functions of each port are shown in Table 5-3.

In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see CHAPTER 2 PIN FUNCTIONS.

Table 5-3. Port Functions (1/3)

KB2	KC2	KD2	KES	KF2	Function Name	I/O	Function	After Reset	Alternate Function
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	P00	I/O	Port 0. I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TIO00
$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	P01				TI010/TO00
-	- N	Note 1	Note 2	\checkmark	P02				SO11
-	- N	Note 1	Note 2	\checkmark	P03				SI11
-	-	-	Note 2	\checkmark	P04				$\overline{\text { SCK11 }}$
-	-	-	Note 2	$\sqrt{ }$	P05				TI001/ $\overline{\text { SSI11 }}$
-	-	-	Note 2	\checkmark	P06				TI011/TO01
$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	P10	I/O	Port 1. I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK10/TxD0 }}$
$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	P11				SI10/RxD0
$\sqrt{ }$	P12				SO10				
$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	P13				TxD6
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P14				RxD6
$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	P15				TOH0
$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	P16				TOH1/INTP5
$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	P17				TI50/TO50
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P20	I/O	Port 2. I/O port. Input/output can be specified in 1-bit units.	Analog input	ANIO
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P21				ANI1
$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	P22				ANI2
$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	P23				ANI3
-	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P24				ANI4
-	\checkmark	\checkmark	\checkmark	\checkmark	P25				ANI5
-	Note 3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	P26				ANI6
-	Note 3	\checkmark	$\sqrt{ }$	$\sqrt{ }$	P27				ANI7
$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	P30	I/O	Port 3. I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Analog input	INTP1
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P31				INTP2/ $\text { OCD1A }{ }^{\text {Note } 4}$
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P32				$\begin{aligned} & \text { INTP3/ } \\ & \text { OCD1B }{ }^{\text {Note } 4} \end{aligned}$
$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	P33				TI51/TO51/ INTP4

Notes 1. The $78 \mathrm{KO} / \mathrm{KD} 2$ products are only provided with port functions (P 02 and P 03) and not alternate functions.
2. The $78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB are only provided with port functions (P02 to P06) and not alternate functions. The $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB are provided with port functions (P 02 to P 06) and alternate functions.
3. This is not mounted onto 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC2}$. For the 38 -pin products, be sure to set bits 6 and 7 of PM2 to " 1 " and bits 6 and 7 of P2 to " 0 ".
4. OCD1A and OCD1B are provided to the products with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) only.

Remark V : Mounted, - : Not mounted

Table 5-3. Port Functions (2/3)

KB2	KC2	KD2	KES	KF2	Function Name	I/O	Function	After Reset	Alternate Function
-	Note 1	\checkmark	\checkmark	\checkmark	P40	I/O	Port 4. I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
-	Note 1	\checkmark	$\sqrt{ }$	\checkmark	P41				-
-	-	-	\checkmark	\checkmark	P42				-
-	-	-	\checkmark	\checkmark	P43				-
-	-	-	-	\checkmark	P44				-
-	-	-	-	$\sqrt{ }$	P45				-
-	-	-	-	\checkmark	P46				-
-	-	-	-	$\sqrt{ }$	P47				-
-	-	-	\checkmark	\checkmark	P50	I/O	Port 5. I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
-	-	-	$\sqrt{ }$	\checkmark	P51				-
-	-	-	$\sqrt{ }$	$\sqrt{ }$	P52				-
-	-	-	\checkmark	\checkmark	P53				-
-	-	-	-	\checkmark	P54				-
-	-	-	-	\checkmark	P55				-
-	-	-	-	\checkmark	P56				-
-	-	-	-	\checkmark	P57				-
$\sqrt{ }$	P60	I/O	Port 6. I/O port. Output of P60 to P 63 is N -ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units. Only for P64 to P67, use of an on-chip resistor can be specified by a software setting.	Input port	SCL0				
$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	P61				SDA0
-	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P62				EXSCLO
-	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	P63				-
-	-	-	-	$\sqrt{ }$	P64				-
-	-	-	-	\checkmark	P65				-
-	-	-	-	\checkmark	P66				-
-	-	-	-	$\sqrt{ }$	P67				-
-	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P70	I/O	Port 7. I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0
-	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	P71				KR1
-	Note 1	$\sqrt{ }$	\checkmark	\checkmark	P72				KR2
-	Note 1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	P73				KR3
-	Note 2	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P74				KR4
-	Note 2	\checkmark	$\sqrt{ }$	\checkmark	P75				KR5
-	-	\checkmark	$\sqrt{ }$	\checkmark	P76				KR6
-	-	\checkmark	$\sqrt{ }$	\checkmark	P77				KR7

Notes 1. This is not mounted onto 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$. For the 38 -pin products, be sure to set bits 0 and 1 of PM4, bits 2 and 3 of PM7, bits 0 and 1 of P4, and bits 2 and 3 of P7 to " 0 ".
2. This is not mounted onto 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$. The 48 -pin products are only provided with port functions (P74 to P75) and not alternate functions.

Remark $\sqrt{ }$: Mounted, -: Not mounted

Table 5-3. Port Functions (3/3)

KB2	KC2	KD2	KES	KF2	Function Name	I/O	Function	After Reset	Alternate Function
$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	P120	I/O	Port 12. I/O port. Input/output can be specified in 1-bit units. Only for P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	P121				X1/OCD0A ${ }^{\text {Note } 3}$
$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	P122				$\begin{aligned} & \text { X2/EXCLK/ } \\ & \text { OCDOB }^{\text {Note }} \end{aligned}$
-	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	P123				XT1
-	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	P124				XT2/EXCLKS
-	Note 1	\checkmark	\checkmark	\checkmark	P130	Output	Port 13. Output-only port.	Output port	-
-	Note 1	\checkmark	\checkmark	\checkmark	P140	I/O	Port 14. I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	PCL/INTP6
-	-	-	Note 2	\checkmark	P141				BUZ/BUSYO/ INTP7
-	-	-	-	\checkmark	P142				SCKA0
-	-	-	-	$\sqrt{ }$	P143				SIAO
-	-	-	-	\checkmark	P144				SOAO
-	-	-	-	\checkmark	P145				STB0

Notes 1. This is not mounted onto 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$.
2. The $78 \mathrm{KO} / \mathrm{KE} 2$ products are not provided with the BUSYO input function.
3. OCDOA and OCDOB are provided to the products with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) only.

Remark $\sqrt{ }$: Mounted, -: Not mounted

5.2 Port Configuration

Ports include the following hardware.
Table 5-4. Port Configuration

Item	Configuration
Control registers	- 78K0/KB2 Port mode register (PMxx): Port register (Pxx): Pull-up resistor option register (PUxx): A/D port configuration register (ADPC) - 38-pin and 44-pin products of $78 \mathrm{KO} / \mathrm{KC} 2$ Port mode register (PMxx): Port register (Pxx): Pull-up resistor option register (PUxx): A/D port configuration register (ADPC) - 48-pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2,78 \mathrm{KO} / \mathrm{KD} 2$ Port mode register (PMxx): Port register (Pxx): Pull-up resistor option register (PUxx): A/D port configuration register (ADPC) - 78K0/KE2 Port mode register (PMxx): PM0 to PM7, PM12, PM14 Port register (Pxx): $\quad \mathrm{P} 0$ to P7, P12 to P14 Pull-up resistor option register (PUxx): PU0, PU1, PU3 to PU5, PU7, PU12, PU14 A/D port configuration register (ADPC) - 78K0/KF2 Port mode register (PMxx): Port register (Pxx): PM0 to PM7, PM12, PM14 P0 to P7, P12 to P14 Pull-up resistor option register (PUxx): PU0, PU1, PU3 to PU7, PU12, PU14 A/D port configuration register (ADPC)
Port	
Pull-up resistor	- $78 \mathrm{KO} / \mathrm{KB2:}$ Total: 15 - 38-pin products of $78 \mathrm{KO} / \mathrm{KC} 2:$ Total: 17 - 44-pin products of $78 \mathrm{KO} / \mathrm{KC} 2:$ Total: 21 - 48-pin products of $78 \mathrm{KO} / \mathrm{KC} 2:$ Total: 24 - $78 \mathrm{~K} 0 / \mathrm{KD2:}$ Total: 28 - $78 \mathrm{~K} 0 / \mathrm{KE} 2:$ Total: 38 - $78 \mathrm{KO} / \mathrm{KF} 2:$ Total: 54

5.2.1 Port 0

\bar{I}	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P00/T1000			\checkmark	\checkmark		
P01/TI010/TO00			\checkmark	\checkmark		
P02/SO11			P02 ${ }^{\text {Note }}$	P02 ${ }^{\text {Note }}$		
P03/SI11			P03 ${ }^{\text {Note }}$	P03 ${ }^{\text {Note }}$		
P04/SCK11			-	P04 $4^{\text {Note }}$		
P05/TI001/SSI11			-	P05 ${ }^{\text {Note }}$		
P06/T1011/TO01			-	P06 ${ }^{\text {Note }}$		

Note The 78K0/KE2 products whose flash memory is less than 32 KB and $78 \mathrm{~K} 0 / \mathrm{KD} 2$ products are only provided with port functions and not alternate functions.

Remark V : Mounted, -: Not mounted

Port 0 is an I/O port with an output latch. Port 0 can be set to the input mode or output mode in 1 -bit units using port mode register 0 (PMO). When the P00 to P06 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 0 (PUO).

This port can also be used for timer I/O, serial interface data I/O, clock I/O, and chip select input.
Reset signal generation sets port 0 to input mode.
Figures 5-1 to 5-6 show block diagrams of port 0 .

Caution To use P02/SO11 and P04/SCK11 as general-purpose ports, set serial operation mode register 11 (CSIM11) and serial clock selection register 11 (CSIC11) to the default status (00H).

Figure 5-1. Block Diagram of P00

PO: Port register 0
PUO: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdD or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-2. Block Diagram of P01

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-3. Block Diagram of P02 (1/2)
(1) 78K0/KE2 products whose flash memory is less than 32 KB and 78K0/KD2

P0: Port register 0
PUO: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVDD with Vod, or replace EVss with Vss.

Figure 5-3. Block Diagram of P02 (2/2)
(2) $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB and $78 \mathrm{KO} / \mathrm{KF} 2$

P0: Port register 0
PUO: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WRxx: Write signal

Remark With products not provided with an EVDD or EVss pin, replace EVdD with VDD, or replace EVss with Vss.

Figure 5-4. Block Diagram of P03 and P05 (1/2)
(1) $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB and $78 \mathrm{KO} / \mathrm{KD} 2$

P0: Port register 0
PUO: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WR $\times x$: Write signal

Remarks 1. $78 \mathrm{KO} / \mathrm{KD} 2$: P03 (not mounted with P05)
78K0/KE2 products whose flash memory is less than 32 KB : P03 and P05
2. With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

Figure 5-4. Block Diagram of P03 and P05 (2/2)
(2) $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB and $78 \mathrm{KO} / \mathrm{KF} 2$

P0: Port register 0
PUO: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVDD with Vod, or replace EVss with Vss.

Figure 5-5. Block Diagram of P04 (1/2)
(1) $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB

P0: Port register 0
PU0: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-5. Block Diagram of P04 (2/2)
(2) $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB and $78 \mathrm{KO} / \mathrm{KF} 2$

P0: Port register 0
PUO: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WRxx: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVDD with Vod, or replace EVss with Vss.

Figure 5-6. Block Diagram of P06 (1/2)
(1) $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB

P0: Port register 0
PU0: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVDD with Vod, or replace EVss with Vss.

Figure 5-6. Block Diagram of P06 (2/2)
(2) $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB and $78 \mathrm{KO} / \mathrm{KF} 2$

PO: Port register 0
PUO: Pull-up resistor option register 0
PMO: Port mode register 0
RD: Read signal
WRxx: Write signal

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

5.2.2 Port 1

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P10/SCK10/TxD0	\checkmark					
P11/SI10/RxD0	\checkmark					
P12/SO10	\checkmark					
P13/TxD6	\checkmark					
P14/RxD6	\checkmark					
P15/TOH0	\checkmark					
P16/TOH1/INTP5	\checkmark					
P17/TI50/TO50	\checkmark					

Remark \downarrow : Mounted

Port 1 is an I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units using port mode register 1 (PM1). When the P10 to P17 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 1 (PU1).

This port can also be used for external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.
Reset signal generation sets port 1 to input mode.
Figures 5-7 to 5-11 show block diagrams of port 1 .

Cautions 1. To use P10/ $\overline{\mathrm{SCK} 10} / \mathrm{TxDO}$ and $\mathrm{P} 12 / \mathrm{SO10}$ as general-purpose ports, set serial operation mode register 10 (CSIM10) and serial clock selection register 10 (CSIC10) to the default status (00H).
2. To use P13/TxD6 as general-purpose port, clear bit 0 (TXDLV6) of asynchronous serial interface control register 6 (ASICL6) to 0 (normal output of TxD6).

Figure 5-7. Block Diagram of P10

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-8. Block Diagram of P11 and P14

P1: Port register 1
PU1: Pull-up resistor option register 1
PM1: Port mode register 1
RD: Read signal
WR×x: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-9. Block Diagram of P12 and P15

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-10. Block Diagram of P13

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-11. Block Diagram of P16 and P17

P1: Port register 1
PU1: Pull-up resistor option register 1
PM1: Port mode register 1
RD: Read signal
WR×x: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

5.2.3 Port 2

	78K0/KB2	78KO/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P20/ANIO	\checkmark	\checkmark	\checkmark			
P21/ANI1	\checkmark	\checkmark	\checkmark			
P22/ANI2	\checkmark	\checkmark	\checkmark			
P23/ANI3	\checkmark	\checkmark	\checkmark			
P24/ANI4	-	\checkmark	\checkmark			
P25/ANI5	-	\checkmark	\checkmark			
P26/ANI6	-	$\checkmark^{\text {Note }}$	\checkmark			
P27/ANI7	-	$\checkmark^{\text {Note }}$	\checkmark			

Note This is not mounted onto 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC2}$. For the 38 -pin products, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 6 and 7 of P2 to " 0 ".

Remark $\sqrt{ }$: Mounted, -: Not mounted

Port 2 is an I/O port with an output latch. Port 2 can be set to the input mode or output mode in 1-bit units using port mode register 2 (PM2).

This port can also be used for A/D converter analog input.
To use P20/ANIO to P27/ANI7 as digital input pins, set them in the digital I/O mode by using the A/D port configuration register (ADPC) and in the input mode by using PM2. Use these pins starting from the lower bit.

To use P20/ANIO to P27/ANI7 as digital output pins, set them in the digital I/O mode by using ADPC and in the output mode by using PM2.

Table 5-5. Setting Functions of P20/ANI0 to P27/ANI7 Pins

ADPC	PM2	ADS	P20/ANI0 to P27/ANI7 Pin
Digital I/O selection	Input mode	-	Digital input
	Output mode	-	Digital output
Analog input selection	Input mode	Selects ANI.	Analog input (to be converted)
		Does not select ANI.	Analog input (not to be converted)
	Output mode	Selects ANI.	Setting prohibited

All P20/ANI0 to P27/ANI7 are set in the analog input mode when the reset signal is generated.
Figure $5-12$ shows a block diagram of port 2.

Caution Make the AVref pin the same potential as the Vdd pin when port 2 is used as a digital port.

Figure 5-12. Block Diagram of P20 to P27

P2: Port register 2
PM2: Port mode register 2
RD: Read signal
WR $\times x$: Write signal

Caution For the 38 -pin products of $78 \mathrm{KO} / \mathrm{KC2}$, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 6 and 7 of P2 to "0".

5.2.4 Port 3

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P30/INTP1	\checkmark					
P31/INTP2/ $\text { OCD1A }{ }^{\text {Note }}$	$\sqrt{ }$					
P32/INTP3/ $\text { OCD1B }{ }^{\text {Note }}$	$\sqrt{ }$					
$\begin{aligned} & \text { P33/INTP4/TI51/ } \\ & \text { TO51 } \end{aligned}$	$\sqrt{ }$					

Note OCD1A and OCD1B are provided to the products with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) only.

Remark V : Mounted

Port 3 is an I/O port with an output latch. Port 3 can be set to the input mode or output mode in 1-bit units using port mode register 3 (PM3). When the P30 to P33 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 3 (PU3).

This port can also be used for external interrupt request input and timer I/O.
Reset signal generation sets port 3 to input mode.
Figures 5-13 and 5-14 show block diagrams of port 3 .

Cautions 1. In the product with an on-chip debug function ($\mu \mathrm{P} 78 \mathrm{~F} 05 \mathrm{xxD}$ and D 78 F 05 xxDA), be sure to pull the P31/INTP2/OCD1A pin down before a reset release, to prevent malfunction.
2. Process the P31/INTP2/OCD1A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator.

		P31/INTP2/OCD1A
Flash memory programmer connection		Connect to EVss ${ }^{\text {Note }}$ via a resistor.
On-chip debug	During reset	
emulator connection (when it is not used as an on-chip debug mode setting pin)	During reset released	Input: Connect to EVDD ${ }^{\text {Note }}$ or EVss ${ }^{\text {Note }}$ via a resistor. Output: Leave open.

Note With products without an EVss pin, connect them to Vss. With products without an EVdD pin, connect them to Vdo.

Remark P31 and P32 of the product with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) can be used as on-chip debug mode setting pins (OCD1A, OCD1B) when the on-chip debug function is used. For how to connect an on-chip debug emulator (QB-MINI2), see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD AND 78F05xxDA ONLY).

Figure 5-13. Block Diagram of P30 to P32

P3: Port register 3
PU3: Pull-up resistor option register 3
PM3: Port mode register 3
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdD or EVss pin, replace EVdd with VDD, or replace EVss with Vss.

Figure 5-14. Block Diagram of P33

P3: Port register 3
PU3: Pull-up resistor option register 3
PM3: Port mode register 3
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

5.2.5 Port 4

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P40	-	$\checkmark^{\text {Note }}$	\checkmark			\checkmark
P41	-	$\sqrt{\text { Note }}$	\checkmark			\checkmark
P42	-					\checkmark
P43	-					\checkmark
P44	-					\checkmark
P45	-					\checkmark
P46	-					\checkmark
P47	-					\checkmark

Note This is not mounted onto 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$. For the 38 -pin products, be sure to set bits 0 and 1 of PM4 and P4 to "0".

Remark $\sqrt{ }$: Mounted, -: Not mounted

Port 4 is an I/O port with an output latch. Port 4 can be set to the input mode or output mode in 1-bit units using port mode register 4 (PM4). When the P40 to P47 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 4 (PU4).

Reset signal generation sets port 4 to input mode.
Figure 5-15 shows a block diagram of port 4.

Figure 5-15. Block Diagram of P40 to P47

P4: Port register 4
PU4: Pull-up resistor option register 4
PM4: Port mode register 4
RD: Read signal
WR $\times x$: Write signal

Caution For the 38 -pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$, be sure to set bits $\mathbf{0}$ and 1 of PM4 and P4 to " 0 ".

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

5.2.6 Port 5

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P50		-				\checkmark
P51		-				\checkmark
P52		-				\checkmark
P53		-				\checkmark
P54		-				\checkmark
P55		-				\checkmark
P56		-				$\sqrt{ }$
P57		-				\checkmark

Remark $\sqrt{ }$: Mounted, -: Not mounted

Port 5 is an I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units using port mode register 5 (PM5). When the P50 to P57 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 5 (PU5).

Reset signal generation sets port 5 to input mode.
Figure 5-16 shows a block diagram of port 5 .

Figure 5-16. Block Diagram of P50 to P57

P5: Port register 5
PU5: Pull-up resistor option register 5
PM5: Port mode register 5
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdD or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

5.2.7 Port 6

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P60/SCLO	\checkmark	\checkmark				\checkmark
P61/SDA0	\checkmark	\checkmark				\checkmark
P62/EXSCLO	-	\checkmark				\checkmark
P63	-	\checkmark				\checkmark
P64	-	-				\checkmark
P65	-	-				\checkmark
P66	-	-				\checkmark
P67	-	-				\checkmark

Remark $\sqrt{ }$: Mounted, -: Not mounted

Port 6 is an I/O port with an output latch. Port 6 can be set to the input mode or output mode in 1-bit units using port mode register 6 (PM6). When the P64 to P67 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 6 (PU6).

The output of the P60 to P63 pins is N-ch open-drain output (6 V tolerance).
This port can also be used for serial interface data I/O, clock I/O, and external clock input.
Reset signal generation sets port 6 to input mode.
Figures 5-17 to 5-20 show block diagrams of port 6 .

Remark When using P62/EXSCLO as an external clock input pin of the serial interface, input a clock of 6.4 MHz to it.

Figure 5-17. Block Diagram of P60 and P61

Caution A through current flows through P60 and P61 if an intermediate potential is input to these pins, because the input buffer is also turned on when P60 and P61 are in output mode. Consequently, do not input an intermediate potential when P60 and P61 are in output mode.

Figure 5-18. Block Diagram of P62

Caution A through current flows through P62 if an intermediate potential is input to this pin, because the input buffer is also turned on when P62 is in output mode. Consequently, do not input an intermediate potential when P62 is in output mode.

Figure 5-19. Block Diagram of P63

P6: Port register 6
PM6: Port mode register 6
RD: Read signal
WRxx: Write signal

Figure 5-20. Block Diagram of P64 to P67

P6: Port register 6
PM6: Port mode register 6
RD: Read signal
WR×x: Write signal

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VdD, or replace EVss with Vss.

5.2.8 Port 7

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P70/KR0	-	\checkmark				
P71/KR1	-	\checkmark				
P72/KR2	-	$\sqrt{\text { Note } 1}$				
P73/KR3	-	$V^{\text {Note } 1}$				
P74/KR4	-	P74 ${ }^{\text {Note } 2}$				
P75/KR5	-	P75 ${ }^{\text {Note } 2}$				
P76/KR6	-	-				
P77/KR7	-	-				

Notes 1. This is not mounted onto 38 -pin products of the $78 \mathrm{~K} 0 / \mathrm{KC} 2$. For the $38-\mathrm{pin}$ products, be sure to set bits 2 and 3 of PM7 and P7 to " 0 ".
2. This is not mounted onto 38 -pin and 44 -pin products of the $78 \mathrm{~K} 0 / \mathrm{KC} 2$. The 48 -pin products are only provided with port functions and not alternate functions.

Remark V : Mounted, -: Not mounted

Port 7 is an I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units using port mode register 7 (PM7). When the P70 to P77 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 7 (PU7).

This port can also be used for key return input.
Reset signal generation sets port 7 to input mode.
Figure 5-21 shows a block diagram of port 7 .

Figure 5-21. Block Diagram of P70 to P77

P7: \quad Port register 7
PU7: Pull-up resistor option register 7
PM7: Port mode register 7
RD: Read signal
WR $\times x$: Write signal

Caution For the 38 -pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$, be sure to set bits 2 and 3 of PM7 and P7 to " 0 ".

Remark With products not provided with an EVdD or EVss pin, replace EVdD with VDD, or replace EVss with Vss.

5.2.9 Port 12

	78K0/KB2	78KO/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P120/INTPO/EXLVI	\checkmark	\checkmark				
P121/X1/OCD0A ${ }^{\text {Note }}$	\checkmark	\checkmark				
$\begin{aligned} & \text { P122/X2/EXCLK/ } \\ & \text { OCDOB }{ }^{\text {Note }} \end{aligned}$	\checkmark	\checkmark				
P123/XT1	-	\checkmark				
P124/XT2/EXCLKS	-	\checkmark				

Note OCDOA and OCDOB are provided to the products with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) only.

Remark $\sqrt{ }$: Mounted, -: Not mounted

Port 12 is an I/O port with an output latch. Port 12 can be set to the input mode or output mode in 1-bit units using port mode register 12 (PM12). When used as an input port only for P120, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

This port can also be used as pins for external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, connecting resonator for subsystem clock, external clock input for main system clock, and external clock input for subsystem clock.

Reset signal generation sets port 12 to input mode.
Figures 5-22 and 5-23 show block diagrams of port 12 .
Caution 1. When using the P121 to P124 pins to connect a resonator for the main system clock (X1, X2) or subsystem clock (XT1, XT2), or to input an external clock for the main system clock (EXCLK) or subsystem clock (EXCLKS), the X1 oscillation mode, XT1 oscillation mode, or external clock input mode must be set by using the clock operation mode select register (OSCCTL) (for details, see 6.3 (1) Clock operation mode select register (OSCCTL) and (3) Setting of operation mode for subsystem clock pin). The reset value of OSCCTL is 00 H (all of the P 121 to P 124 pins are I/O port pins). At this time, setting of the PM121 to PM124 and P121 to P124 pins is not necessary.

Caution 2. Process the $P 121 / X 1 / O C D 0 A$ pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator.

		P121/X1/OCD0A
Flash memory programmer connection	Connect to Vss via a resistor.	
On-chip debug emulator connection (when it is not used as an on-chip debug mode setting pin)	During reset	During reset released

Remark X1 and X2 of the product with an on-chip debug function (μ PD78F05xxD and 78F05xxDA) can be used as on-chip debug mode setting pins (OCDOA, OCDOB) when the on-chip debug function is used. For how to connect an on-chip debug emulator (QB-MINI2), see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD AND 78F05xxDA ONLY).

Figure 5-22. Block Diagram of P120

Remark With products not provided with an EVDD or EVss pin, replace EVdd with VDd, or replace EVss with Vss.

Figure 5-23. Block Diagram of P121 to P124

P12: Port register 12
PU12: Pull-up resistor option register 12
PM12: Port mode register 12
OSCCTL: Clock operation mode select register
RD: Read signal
WR $\times x$: Write signal

5.2.10 Port 13

	78K0/KB2	78KO/KC2	78KO/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P130	-	$V^{\text {Note }}$				

Note This is not mounted onto 38-pin and 44-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$.

Remark $\sqrt{ }$: Mounted, -: Not mounted

Port 13 is an output-only port.
Figure 5-24 shows a block diagram of port 13.

Figure 5-24. Block Diagram of P130

P13: Port register 13
RD: Read signal
WR $\times x$: Write signal

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P 130 can be dummy-output as the CPU reset signal.

5.2.11 Port 14

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P140/PCL/INTP6	-	$V^{\text {Note } 1}$	\checkmark	\checkmark		\checkmark
P141/BUZ/BUSYO/ INTP7	-	-	-	P141/BUZ/INTP7 ${ }^{\text {Note }}$		\checkmark
P142/SCKA0	-	-	-	-		\checkmark
P143/SIA0	-	-	-	-		\checkmark
P144/SOAO	-	-	-	-		\checkmark
P145/STB0	-	-	-	-		\checkmark

Notes 1. This is not mounted onto 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$.
2. The $78 \mathrm{KO} / \mathrm{KE} 2$ products are not provided with the BUSYO input function.

Remark $\sqrt{ }$: Mounted, -: Not mounted

Port 14 is an I/O port with an output latch. Port 14 can be set to the input mode or output mode in 1-bit units using port mode register 14 (PM14). When the P140 to P145 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 14 (PU14).

This port can also be used for external interrupt request input, buzzer output, clock output, serial interface data I/O, clock I/O, busy input, and strobe output.

Reset signal generation sets port 14 to input mode.
Figures 5-25 to 5-28 shows a block diagram of port 14 .

Figure 5-25. Block Diagram of P140 and P141

P14: Port register 14
PU14: Pull-up resistor option register 14
PM14: Port mode register 14
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVDD or EVss pin, replace EVDD with Vod, or replace EVss with Vss.

Figure 5-26. Block Diagram of P142

P14: Port register 14
PU14: Pull-up resistor option register 14
PM14: Port mode register 14
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-27. Block Diagram of P143

P14: Port register 14
PU14: Pull-up resistor option register 14
PM14: Port mode register 14
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdD or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

Figure 5-28. Block Diagram of P144 and P145

P14: Port register 14
PU14: Pull-up resistor option register 14
PM14: Port mode register 14
RD: Read signal
WR $\times x$: Write signal

Remark With products not provided with an EVdd or EVss pin, replace EVdd with Vdd, or replace EVss with Vss.

5.3 Registers Controlling Port Function

Port functions are controlled by the following four types of registers.

- Port mode registers (PMxx)
- Port registers (Pxx)
- Pull-up resistor option registers (PUxx)
- A/D port configuration register (ADPC)

(1) Port mode registers (PMxx)

These registers specify input or output mode for the port in 1-bit units.
These registers can be set by a 1-bit or 8 -bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.
When port pins are used as alternate-function pins, set the port mode register by referencing 5.5 Settings of Port Mode Register and Output Latch When Using Alternate Function.

Figure 5-29. Format of Port Mode Register (78K0/KB2)

Symbol	7	6	5	4	3	2	1	0	Address FF20H	After reset FFH	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \mathrm{R} / \mathrm{W} \end{aligned}$
PMO	1	1	1	1	1	1	PM01	PM00			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
PM2	1	1	1	1	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
PM6	1	1	1	1	1	1	PM61	PM60	FF26H	FFH	R/W
PM12	1	1	1	1	1	PM122	PM121	PM120	FF2CH	FFH	R/W
	PMmn	Pmn pin I/O mode selection ($m=0$ to $3,6,12 ; n=0$ to 7)									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Caution Be sure to set bits 2 to $\mathbf{7}$ of PM0, bits $\mathbf{4}$ to $\mathbf{7}$ of PM2, bits $\mathbf{4}$ to $\mathbf{7}$ of PM3, bits $\mathbf{2}$ to $\mathbf{7}$ of PM6, bits $\mathbf{3}$ to 7 of PM12 to 1.

Figure 5-30. Format of Port Mode Register (78K0/KC2)

Symbol	7	6	5	4	3	2	1	0	Address FF2OH	After reset FFH	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
PMO	1	1	1	1	1	1	PM01	PM00			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
PM4	1	1	1	1	1	1	PM41	PM40	FF24H	FFH	R/W
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
PM7	1	1	PM75 ${ }^{\text {Note }}$	PM74 ${ }^{\text {Note }}$	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W
PM14 ${ }^{\text {Note }}$	1	1	1	1	1	1	1	PM140 ${ }^{\text {Note }}$	FF2EH	FFH	R/W
	PMmn	Pmn pin I/O mode selection ($m=0$ to $4,6,7,12,14 ; n=0$ to 7)									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Note 48-pin products only

Caution For the 38-pin products, be sure to set bits 2 to 7 of PMO, bits 6 and 7 of PM2, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 4 to 7 of PM6, bits 4 to 7 of PM7, and bits 5 to 7 of PM12 to " 1 ". Also, be sure to set bits 0 and 1 of PM4, and bits 2 and 3 of PM7 to " 0 ".
For the 44-pin products, be sure to set bits 2 to 7 of PMO, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 4 to 7 of PM6, bits 4 to 7 of PM7, and bits 5 to 7 of PM12 to " 1 ".
For the 48-pin products, be sure to set bits 2 to 7 of PMO, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 4 to 7 of PM6, bits 6 and 7 of PM7, bits 5 to 7 of PM12, and bits 1 to 7 of PM14 to " 1 ".

Figure 5-31. Format of Port Mode Register (78K0/KD2)

Symbol	7	6	5	4	3	2	1	0	AddressFF2OH	After reset FFH	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
PM0	1	1	1	1	PM03	PM02	PM01	PM00			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
PM4	1	1	1	1	1	1	PM41	PM40	FF24H	FFH	R/W
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W
PM14	1	1	1	1	1	1	1	PM140	FF2EH	FFH	R/W
	PMmn	Pmn pin I/O mode selection ($m=0$ to $4,6,7,12,14 ; n=0$ to 7)									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Caution Be sure to set bits 4 to 7 of PMO, bits 4 to 7 of PM3, bits $\mathbf{2}$ to $\mathbf{7}$ of PM4, bits $\mathbf{4}$ to $\mathbf{7}$ of PM6, bits 5 to $\mathbf{7}$ of PM12, and bits $\mathbf{1}$ to $\mathbf{7}$ of PM14 to 1.

Figure 5-32. Format of Port Mode Register (78KO/KE2)

Symbol	7	6	5	4	3	2	1	0	Address FF20H	After reset FFH	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
PM4	1	1	1	1	PM43	PM42	PM41	PM40	FF24H	FFH	R/W
PM5	1	1	1	1	PM53	PM52	PM51	PM50	FF25H	FFH	R/W
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W
PM14	1	1	1	1	1	1	PM141	PM140	FF2EH	FFH	R/W
	PMmn	Pmn pin I/O mode selection ($\mathrm{m}=0$ to $7,12,14 ; \mathrm{n}=0$ to 7)									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Caution Be sure to set bit 7 of PMO, bits 4 to 7 of PM3, bits 4 to 7 of PM4, bits 4 to $\mathbf{7}$ of PM5, bits $\mathbf{4}$ to $\mathbf{7}$ of PM6, bits 5 to 7 of PM12, and bits 2 to 7 of PM14 to " 1 ".

Figure 5-33. Format of Port Mode Register (78K0/KF2)

Symbol	7	6	5	4	3	2	1	0	Address FF2OH	After reset FFH	$\begin{aligned} & R / W \\ & R / W \end{aligned}$
PMO	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40	FF24H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FF25H	FFH	R/W
PM6	PM67	PM66	PM65	PM64	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W
PM14	1	1	PM145	PM144	PM143	PM142	PM141	PM140	FF2EH	FFH	R/W
	PMmn	Pmn pin I/O mode selection ($\mathrm{m}=0$ to $7,12,14 ; \mathrm{n}=0$ to 7)									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Caution Be sure to set bit 7 of PMO, bits 4 to 7 of PM3, bits 5 to 7 of PM12, and bits 6 and 7 of PM14 to "1".

(2) Port registers (Pxx)

These registers write the data that is output from the chip when data is output from a port.
If the data is read in the input mode, the pin level is read. If it is read in the output mode, the output latch value is read.
These registers can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 5-34. Format of Port Register (78K0/KB2)

Note "0" is always read from the output latch of P121 and P122 if the pin is in the external clock input mode.

Figure 5-35. Format of Port Register (78K0/KC2)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P0	0	0	0	0	0	0	P01	P00	FFOOH	00H (output latch)	R/W
P1	P17	P16	P15	P14	P13	P12	P11	P10	FF01H	00H (output latch)	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	00H (output latch)	R/W
P3	0	0	0	0	P33	P32	P31	P30	FF03H	00H (output latch)	R/W
P4	0	0	0	0	0	0	P41	P40	FF04H	00H (output latch)	R/W
P6	0	0	0	0	P63	P62	P61	P60	FF06H	00H (output latch)	R/W
P7	0	0	P75 ${ }^{\text {Note } 1}$	P74 ${ }^{\text {Note } 1}$	P73	P72	P71	P70	FF07H	00H (output latch)	R/W
P12	0	0	0	P124 ${ }^{\text {Note } 2}$	P123 ${ }^{\text {Note } 2}$	P122 ${ }^{\text {Note } 2}$	P121 ${ }^{\text {Note } 2}$	P120	FFOCH	00H (output latch)	R/W
P13 ${ }^{\text {Note } 1}$	0	0	0	0	0	0	0	P130 ${ }^{\text {Note } 1}$	FFODH	00H (output latch)	R/W
P14 ${ }^{\text {Note } 1}$	0	0	0	0	0	0	0	P140 ${ }^{\text {Note } 1}$	FF0EH	00H (output latch)	R/W
	mn				$\mathrm{m}=0$	to $4,6,7,1$	12 to 14; n	$=0$ to 7			
			put data	ontrol (in o	utput mode)			Input da	ta read (in	put mode)	
	0	put 0					Input low	w level			
	1	put 1					Input hig	gh level			

Notes 1. 48-pin products only
2. "0" is always read from the output latch of P121 to P124 if the pin is in the external clock input mode.

Caution For the 38 -pin products, be sure to set bits 6 and 7 of P2, bits 0 and 1 of P4, and bits 2 and 3 of P7 to "0".

Figure 5-36. Format of Port Register (78K0/KD2)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P0	0	0	0	0	P03	P02	P01	P00	FFOOH	00H (output latch)	R/W
P1	P17	P16	P15	P14	P13	P12	P11	P10	FF01H	00H (output latch)	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	00H (output latch)	R/W
P3	0	0	0	0	P33	P32	P31	P30	FF03H	00H (output latch)	R/W
P4	0	0	0	0	0	0	P41	P40	FF04H	00H (output latch)	R/W
P6	0	0	0	0	P63	P62	P61	P60	FF06H	00H (output latch)	R/W
P7	P77	P76	P75	P74	P73	P72	P71	P70	FF07H	00H (output latch)	R/W
P12	0	0	0	P124 ${ }^{\text {Note }}$	P123 ${ }^{\text {Note }}$	P122 ${ }^{\text {Note }}$	P121 ${ }^{\text {Note }}$	P120	FFOCH	00H (output latch)	R/W
P13	0	0	0	0	0	0	0	P130	FFODH	00H (output latch)	R/W
P14	0	0	0	0	0	0	0	P140	FFOEH	00H (output latch)	R/W
	Pmn	$m=0$ to $4,6,7,12$ to $14 ; \mathrm{n}=0$ to 7									
		Output data control (in output mode)					Input data read (in input mode)				
	0	Output 0					Input low level				
	1	Output 1					Input high level				

Note "0" is always read from the output latch of P121 to P124 if the pin is in the external clock input mode.

Figure 5-37. Format of Port Register (78K0/KE2)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P0	0	P06	P05	P04	P03	P02	P01	P00	FFOOH	00H (output latch)	R/W
P1	P17	P16	P15	P14	P13	P12	P11	P10	FF01H	00H (output latch)	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	OOH (output latch)	R/W
P3	0	0	0	0	P33	P32	P31	P30	FF03H	OOH (output latch)	R/W
P4	0	0	0	0	P43	P42	P41	P40	FF04H	00H (output latch)	R/W
P5	0	0	0	0	P53	P52	P51	P50	FF05H	00H (output latch)	R/W
P6	0	0	0	0	P63	P62	P61	P60	FF06H	00H (output latch)	R/W
P7	P77	P76	P75	P74	P73	P72	P71	P70	FF07H	00H (output latch)	R/W
P12	0	0	0	P124 ${ }^{\text {Note }}$	P123 ${ }^{\text {Note }}$	P122 ${ }^{\text {Note }}$	P121 ${ }^{\text {Note }}$	P120	FFOCH	OOH (output latch)	R/W
P13	0	0	0	0	0	0	0	P130	FFODH	00H (output latch)	R/W
P14	0	0	0	0	0	0	P141	P140	FFOEH	00H (output latch)	R/W
	Pmn	$m=0$ to 7,12 to $14 ; \mathrm{n}=0$ to 7									
		Output data control (in output mode)					Input data read (in input mode)				
	0	Output 0					Input low level				
	1	Output 1					Input high level				

Note " 0 " is always read from the output latch of P121 to P124 if the pin is in the external clock input mode.

Figure 5-38. Format of Port Register (78K0/KF2)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P0	0	P06	P05	P04	P03	P02	P01	P00	FFOOH	00H (output latch)	R/W
P1	P17	P16	P15	P14	P13	P12	P11	P10	FF01H	00H (output latch)	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	OOH (output latch)	R/W
P3	0	0	0	0	P33	P32	P31	P30	FF03H	OOH (output latch)	R/W
P4	P47	P46	P45	P44	P43	P42	P41	P40	FF04H	00H (output latch)	R/W
P5	P57	P56	P55	P54	P53	P52	P51	P50	FF05H	OOH (output latch)	R/W
P6	P67	P66	P65	P64	P63	P62	P61	P60	FF06H	00H (output latch)	R/W
P7	P77	P76	P75	P74	P73	P72	P71	P70	FF07H	00H (output latch)	R/W
P12	0	0	0	P124 ${ }^{\text {Note }}$	P123 ${ }^{\text {Note }}$	P122 ${ }^{\text {Note }}$	P121 ${ }^{\text {Note }}$	P120	FFOCH	00H (output latch)	R/W
P13	0	0	0	0	0	0	0	P130	FFODH	00H (output latch)	R/W
P14	0	0	P145	P144	P143	P142	P141	P140	FFOEH	00H (output latch)	R/W
	Pmn	$m=0$ to 7,12 to $14 ; \mathrm{n}=0$ to 7									
		Output data control (in output mode)					Input data read (in input mode)				
	0	Output 0					Input low level				
	1	Output 1					Input high level				

Note " 0 " is always read from the output latch of P121 to P124 if the pin is in the external clock input mode.

(3) Pull-up resistor option registers (PUxx)

These registers specify whether the on-chip pull-up resistors are to be used or not. On-chip pull-up resistors can be used in 1-bit units only for the bits set to input mode of the pins to which the use of an on-chip pull-up resistor has been specified in these registers. On-chip pull-up resistors cannot be connected to bits set to output mode and bits used as alternate-function output pins, regardless of the settings of these registers.
These registers can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 5-39. Format of Pull-up Resistor Option Register (78K0/KB2)

Symbol	7	6	5	4	3	2	1	0	Address FF30H	After reset$00 \mathrm{H}$	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
PU0	0	0	0	0	0	0	PU01	PU00			
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	FF31H	OOH	R/W
PU3	0	0	0	0	PU33	PU32	PU31	PU30	FF33H	OOH	R/W
PU12	0	0	0	0	0	0	0	PU120	FF3CH	00H	R/W
	PUmn	Pmn pin on-chip pull-up resistor selection$(m=0,1,3,12 ; n=0 \text { to } 7)$									
	0	On-chip pull-up resistor not connected									
	1	On-chip pull-up resistor connected									

Figure 5-40. Format of Pull-up Resistor Option Register (78K0/KC2)

Symbol	7	6	5	4	3	2	1	0	Address FF30H	After reset 00 H	R/W R/W
PU0	0	0	0	0	0	0	PU01	PU00			
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	FF31H	00H	R/W
PU3	0	0	0	0	PU33	PU32	PU31	PU30	FF33H	OOH	R/W
PU4	0	0	0	0	0	0	PU41	PU40	FF34H	OOH	R/W
PU7	0	0	PU75 ${ }^{\text {Note }}$	PU74 ${ }^{\text {Note }}$	PU73	PU72	PU71	PU70	FF37H	OOH	R/W
PU12	0	0	0	0	0	0	0	PU120	FF3CH	OOH	R/W
PU14 ${ }^{\text {Note }}$	0	0	0	0	0	0	0	PU140 ${ }^{\text {Note }}$	FF3EH	OOH	R/W
	PUmn	Pmn pin on-chip pull-up resistor selection$(m=0,1,3,4,7,12,14 ; n=0 \text { to } 7)$									
	0	On-chip pull-up resistor not connected									
	1	On-chip pull-up resistor connected									

Note 48-pin products only

Figure 5-41. Format of Pull-up Resistor Option Register (78K0/KD2)

Symbol	7	6	5	4	3	2	1	0	Address FF30H	After resetOOH	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
PU0	0	0	0	0	PU03	PU02	PU01	PU00			
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	FF31H	OOH	R/W
PU3	0	0	0	0	PU33	PU32	PU31	PU30	FF33H	OOH	R/W
PU4	0	0	0	0	0	0	PU41	PU40	FF34H	00H	R/W
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	FF37H	00H	R/W
PU12	0	0	0	0	0	0	0	PU120	FF3CH	00 H	R/W
PU14	0	0	0	0	0	0	0	PU140	FF3EH	00H	R/W
	PUmn	Pmn pin on-chip pull-up resistor selection$(m=0,1,3,4,7,12,14 ; n=0 \text { to } 7)$									
	0	On-chip pull-up resistor not connected									
	1	On-chip pull-up resistor connected									

Figure 5-42. Format of Pull-up Resistor Option Register (78K0/KE2)

Symbol	7	6	5	4	3	2	1	0	Address FF3OH	After reset 00H	R/W R/W
PUO	0	PU06	PU05	PU04	PU03	PU02	PU01	PU00			
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	FF31H	OOH	R/W
PU3	0	0	0	0	PU33	PU32	PU31	PU30	FF33H	OOH	R/W
PU4	0	0	0	0	PU43	PU42	PU41	PU40	FF34H	OOH	R/W
PU5	0	0	0	0	PU53	PU52	PU51	PU50	FF35H	OOH	R/W
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	FF37H	OOH	R/W
PU12	0	0	0	0	0	0	0	PU120	FF3CH	OOH	R/W
PU14	0	0	0	0	0	0	PU141	PU140	FF3EH	00H	R/W
	PUmn	Pmn pin on-chip pull-up resistor selection ($m=0,1,3$ to $5,7,12,14 ; \mathrm{n}=0$ to 7)									
	0	On-chip pull-up resistor not connected									
	1	On-chip pull-up resistor connected									

Figure 5-43. Format of Pull-up Resistor Option Register (78K0/KF2)

(4) A/D port configuration register (ADPC)

This register switches the P20/ANI0 to P27/ANI7 pins to digital I/O of port or analog input of A/D converter. ADPC can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Remark P20/ANIO to P23/ANI3 pins: $78 \mathrm{KO} / \mathrm{KB} 2$
P20/ANIO to P25/ANI5 pins: 38-pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$
P20/ANIO to P27/ANI7 pins: Products other than above

Figure 5-44. Format of A/D Port Configuration Register (ADPC)

Address:	2F	res						
Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	0	ADPC3	ADPC2	ADPC1	ADPC0

Notes 1. Setting permitted
2. Setting prohibited

Cautions 1. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2).
2. If data is written to ADPC, a wait cycle is generated. Do not write data to ADPC when the peripheral hardware clock is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

5.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

5.4.1 Writing to I / O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.
Once data is written to the output latch, it is retained until data is written to the output latch again.
The data of the output latch is cleared when a reset signal is generated.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change.
Once data is written to the output latch, it is retained until data is written to the output latch again.
The data of the output latch is cleared when a reset signal is generated.

5.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.
(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

5.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.
Once data is written to the output latch, it is retained until data is written to the output latch again.
The data of the output latch is cleared when a reset signal is generated.
(2) Input mode

The pin level is read and an operation is performed on its contents. The result of the operation is written to the output latch, but since the output buffer is off, the pin status does not change.
The data of the output latch is cleared when a reset signal is generated.

5.5 Settings of Port Mode Register and Output Latch When Using Alternate Function

To use the alternate function of a port pin, set the port mode register and output latch as shown in Table 5-6.

Remark The port pins mounted depend on the product. See Table 5-3. Port Functions.

Table 5-6. Settings of Port Mode Register and Output Latch When Using Alternate Function (1/2)

Pin Name	Alternate Function		PM $\times \times$	Pxx
	Function Name	1/O		
P00	TIOOO	Input	1	\times
P01	TIO10	Input	1	\times
	TO00	Output	0	0
P02	SO11	Output	0	0
P03	Sl11	Input	1	\times
P04	$\overline{\text { SCK11 }}$	Input	1	\times
		Output	0	1
P05	SSI11	Input	1	\times
	Tl001	Input	1	\times
P06	TI011	Input	1	\times
	TO01	Output	0	0
P10	$\overline{\text { SCK10 }}$	Input	1	\times
		Output	0	1
	TxD0	Output	0	1
P11	SI10	Input	1	\times
	RxD0	Input	1	\times
P12	SO10	Output	0	0
P13	TxD6	Output	0	1
P14	RxD6	Input	1	\times
P15	тоНо	Output	0	0
P16	TOH1	Output	0	0
	INTP5	Input	1	\times
P17	TI50	Input	1	\times
	TO50	Output	0	0
P20 to P27 ${ }^{\text {Note }}$	ANIO to ANI7 ${ }^{\text {Note }}$	Input	1	\times

Note The function of the ANIO/P20 to ANI7/P27 pins can be selected by using the A/D port configuration register (ADPC), the analog input channel specification register (ADS), and PM2.

ADPC	PM2	ADS	ANI0/P20 to ANI7/P27 Pins
Analog input selection	Input mode	Selects ANI.	Analog input (to be converted)
		Does not select ANI.	Analog input (not to be converted)
	Output mode	Selects ANI.	Setting prohibited
		Does not select ANI.	
Digital I/O selection		-	Digital input
	Output mode	Digital output	

Remark \times : Don't care

PM $\times x$: Port mode register
$P \times x$: Port output latch

Table 5-6. Settings of Port Mode Register and Output Latch When Using Alternate Function (2/2)

Pin Name	Alternate Function		PM $\times \times$	$\mathrm{P} \times \times$
	Function Name	I/O		
P30 to P32	INTP1 to INTP3	Input	1	\times
P33	INTP4	Input	1	\times
	TI51	Input	1	\times
	TO51	Output	0	0
P60	SCLO	I/O	0	0
P61	SDAO	I/O	0	0
P62	EXSCLO	Input	1	\times
P70 to P77	KR0 to KR7	Input	1	\times
P120	INTP0	Input	1	\times
	EXLVI	Input	1	\times
P121	X1 ${ }^{\text {Note }}$	-	\times	\times
P122	X2 ${ }^{\text {Note }}$	-	\times	\times
	EXCLK ${ }^{\text {Note }}$	Input	\times	\times
P123	XT1 ${ }^{\text {Note }}$	-	\times	\times
P124	XT2 ${ }^{\text {Note }}$	-	\times	\times
	EXCLKS ${ }^{\text {Note }}$	Input	\times	\times
P140	PCL	Output	0	0
	INTP6	Input	1	\times
P141	BUZ	Output	0	0
	INTP7	Input	1	\times
	BUSYO	Input	1	\times
P142	$\overline{\text { SCKA0 }}$	Input	1	\times
		Output	0	1
P143	SIAO	Input	1	\times
P144	SOAO	Output	0	0
P145	STB0	Output	0	0

Note When using the P121 to P124 pins to connect a resonator for the main system clock (X1, X2) or subsystem clock (XT1, XT2), or to input an external clock for the main system clock (EXCLK) or subsystem clock (EXCLKS), the X1 oscillation mode, XT1 oscillation mode, or external clock input mode must be set by using the clock operation mode select register (OSCCTL) (for details, see 6.3 (1) Clock operation mode select register (OSCCTL) and (3) Setting of operation mode for subsystem clock pin). The reset value of OSCCTL is 00 H (all of the P121 to P124 are I/O port pins). At this time, setting of PM121 to PM124 and P121 to P124 is not necessary.

Remarks 1. \times : Don't care
PM $\times x$: Port mode register
$P \times x$: Port output latch
2. $\mathrm{X} 1, \mathrm{X} 2, \mathrm{P} 31$, and P 32 of the product with an on-chip debug function ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$ and 78 F 05 xxDA) can be used as on-chip debug mode setting pins (OCDOA, OCDOB, OCD1A, and OCD1B) when the on-chip debug function is used. For how to connect an on-chip debug emulator (QB-MINI2), see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD AND 78F05xxDA ONLY).

5.6 Cautions on 1-Bit Manipulation Instruction for Port Register n (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.
<Example> When P10 is an output port, P11 to P17 are input ports (all pin statuses are high level), and the port latch value of port 1 is 00 H , if the output of output port P10 is changed from low level to high level via a 1 -bit manipulation instruction, the output latch value of port 1 is FFH.
Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.
A 1-bit manipulation instruction is executed in the following order in the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers.
<1> The Pn register is read in 8-bit units.
$<2>$ The targeted one bit is manipulated.
$<3>$ The Pn register is written in 8 -bit units.

In step <1>, the output latch value (0) of P10, which is an output port, is read, while the pin statuses of P11 to P17, which are input ports, are read. If the pin statuses of P11 to P17 are high level at this time, the read value is FEH.
The value is changed to FFH by the manipulation in <2>.
FFH is written to the output latch by the manipulation in $<3>$.

Figure 5-45. Bit Manipulation Instruction (P10)

CHAPTER 6 CLOCK GENERATOR

6.1 Functions of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware.
The following three kinds of system clocks and clock oscillators are selectable.
(1) Main system clock
<1> X1 oscillator
This circuit oscillates a clock of $f x=1$ to 20 MHz by connecting a resonator to X 1 and X 2 .
Oscillation can be stopped by executing the STOP instruction or using the main OSC control register (MOC).
<2> Internal high-speed oscillator
This circuit oscillates a clock of $f_{R H}=8 \mathrm{MHz}$ (TYP.). After a reset release, the CPU always starts operating with this internal high-speed oscillation clock. Oscillation can be stopped by executing the STOP instruction or using the internal oscillation mode register (RCM).

An external main system clock (fexclk $=1$ to 20 MHz) can also be supplied from the EXCLK/X2/P122 pin. An external main system clock input can be disabled by executing the STOP instruction or using RCM.
As the main system clock, a high-speed system clock (X1 clock or external main system clock) or internal highspeed oscillation clock can be selected by using the main clock mode register (MCM).
(2) Subsystem clock ${ }^{\text {Note }}$

- Subsystem clock oscillator

This circuit oscillates at a frequency of $\mathrm{fxT}=32.768 \mathrm{kHz}$ by connecting a 32.768 kHz resonator across XT1 and XT2. Oscillation can be stopped by using the processor clock control register (PCC) and clock operation mode select register (OSCCTL).

An external subsystem clock (fexclks $=32.768 \mathrm{kHz}$) can also be supplied from the EXCLKS/XT2/P124 pin. An external subsystem clock input can be disabled by setting PCC and OSCCTL.

Note The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.

Remark fx: X1 clock oscillation frequency
frh: Internal high-speed oscillation clock frequency
fexclk: External main system clock frequency
fxt: \quad XT1 clock oscillation frequency
fexclks: External subsystem clock frequency
(3) Internal low-speed oscillation clock (clock for watchdog timer)

- Internal low-speed oscillator

This circuit oscillates a clock of $\mathrm{frL}_{\mathrm{L}}=240 \mathrm{kHz}$ (TYP.). After a reset release, the internal low-speed oscillation clock always starts operating.
Oscillation can be stopped by using the internal oscillation mode register (RCM) when "internal low-speed oscillator can be stopped by software" is set by option byte.
The internal low-speed oscillation clock cannot be used as the CPU clock. The following hardware operates with the internal low-speed oscillation clock.

- Watchdog timer
- TMH1 (when frL, frL/ 2^{7}, or frL $/ 2^{9}$ is selected)

Remark fRL: Internal low-speed oscillation clock frequency

6.2 Configuration of Clock Generator

The clock generator includes the following hardware.
Table 6-1. Configuration of Clock Generator

Item	Configuration
Control registers	Clock operation mode select register (OSCCTL) Processor clock control register (PCC) Internal oscillation mode register (RCM) Main OSC control register (MOC) Main clock mode register (MCM) Oscillation stabilization time counter status register (OSTC) Oscillation stabilization time select register (OSTS) Oscillators X1 oscillator XT1 oscillatornte Internal high-speed oscillator Internal low-speed oscillator

Note The 78K0/KB2 is not provided with an XT1 oscillator (subsystem clock).

Figure 6-1. Block Diagram of Clock Generator (78K0/KB2)

Σ

Figure 6－2．Block Diagram of Clock Generator（78K0／KC2，78K0／KD2，78K0／KE2，and 78K0

Remark	fx:	X1 clock oscillation frequency
	fRH:	Internal high-speed oscillation clock frequency
	fexcle:	External main system clock frequency
	fxн:	High-speed system clock frequency
	fxp:	Main system clock frequency
	fris:	Peripheral hardware clock frequency
	fcpu:	CPU clock frequency
	fхт:	XT1 clock oscillation frequency
	fexcles:	External subsystem clock frequency
	fsub:	Subsystem clock frequency
	frL:	Internal low-speed oscillation clock frequency

6.3 Registers Controlling Clock Generator

The following seven registers are used to control the clock generator.

- Clock operation mode select register (OSCCTL)
- Processor clock control register (PCC)
- Internal oscillation mode register (RCM)
- Main OSC control register (MOC)
- Main clock mode register (MCM)
- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)
(1) Clock operation mode select register (OSCCTL)

This register selects the operation modes of the high-speed system and subsystem clocks, and the gain of the onchip oscillator.
OSCCTL can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 6-3. Format of Clock Operation Mode Select Register (OSCCTL) (78K0/KB2)

Address: FF9FH After reset: 00 H R/W

Symbol	<7>	<6>	5	4	3	2	1	<0>
OSCCTL	EXCLK	OSCSEL	0	0	0	0	0	AMPH

EXCLK	OSCSEL	High-speed system clock pin operation mode	P121/X1 pin	P122/X2/EXCLK pin
0	0	I/O port mode	I/O port	
0	1	X1 oscillation mode	Crystal/ceramic resonator connection	
1	0	I/O port mode	I/O port	External clock input
1	1	External clock input mode	I/O port	

AMPH		Operating frequency control
0	$1 \mathrm{MHz} \leq \mathrm{fxH} \leq 10 \mathrm{MHz}$	
1	$10 \mathrm{MHz}<\mathrm{f}_{\mathrm{xH}} \leq 20 \mathrm{MHz}$	

Cautions 1. Be sure to set AMPH to 1 if the high-speed system clock oscillation frequency exceeds 10 MHz .
2. Set AMPH before setting the main clock mode register (MCM)
3. Set AMPH before setting the peripheral functions after a reset release. The value of AMPH can be changed only once after a reset release. When the high-speed system clock (X1 oscillation) is selected as the CPU clock, supply of the CPU clock is stopped for 4.06 to 16.12μ s after AMPH is set to 1 . When the high-speed system clock (external clock input) is selected as the CPU clock, supply of the CPU clock is stopped for the duration of 160 external clocks after AMPH is set to 1.
4. If the STOP instruction is executed when AMPH $=1$, supply of the CPU clock is stopped for 4.06 to 16.12μ s after the STOP mode is released when the internal highspeed oscillation clock is selected as the CPU clock, or for the duration of 160 external clocks when the high-speed system clock (external clock input) is selected as the CPU clock. When the high-speed system clock (X1 oscillation) is selected as the CPU clock, the oscillation stabilization time is counted after the STOP mode is released.
5. To change the value of EXCLK and OSCSEL, be sure to confirm that bit 7 (MSTOP) of the main OSC control register (MOC) is 1 (the X1 oscillator stops or the external clock from the EXCLK pin is disabled).
6. Be sure to clear bits $\mathbf{1}$ to $\mathbf{5}$ to 0 .

Remark fxh: High-speed system clock oscillation frequency

Figure 6-4. Format of Clock Operation Mode Select Register (OSCCTL) (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Address: FF9FH After reset: 00 H			R/W			
Symbol	<7>	<6>	<5>	<4>	32	1 <0>
OSCCTL	EXCLK	OSCSEL	EXCLKS ${ }^{\text {Note }}$	OSCSELS ${ }^{\text {Note }}$	0 0	0 AMPH
	EXCLK	OSCSEL	High-speed system clock pin operation mode		P121/X1 pin	P122/X2/EXCLK pin
	0	0	I/O port mode		I/O port	
	0	1	X1 oscillation mode		Crystal/ceramic resonator connection	
	1	0	I/O port mode		I/O port	
	1	1	External clock input mode		I/O port	External clock input

AMPH	Operating frequency control	
0	$1 \mathrm{MHz} \leq \mathrm{fxH}_{\mathrm{x}} \leq 10 \mathrm{MHz}$	
1	$10 \mathrm{MHz}<\mathrm{fxH}_{\mathrm{x}} \leq 20 \mathrm{MHz}$	

Note EXCLKS and OSCSELS are used in combination with XTSTART (bit 6 of the processor clock control register (PCC)). See (3) Setting of operation mode for subsystem clock pin.

Cautions 1. Be sure to set AMPH to 1 if the high-speed system clock oscillation frequency exceeds 10 MHz .
2. Set AMPH before setting the main clock mode register (MCM).
3. Set AMPH before setting the peripheral functions after a reset release. The value of AMPH can be changed only once after a reset release. When the high-speed system clock (X1 oscillation) is selected as the CPU clock, supply of the CPU clock is stopped for 4.06 to 16.12μ s after AMPH is set to 1 . When the high-speed system clock (external clock input) is selected as the CPU clock, supply of the CPU clock is stopped for the duration of 160 external clocks after AMPH is set to 1.
4. If the STOP instruction is executed when AMPH $=1$, supply of the CPU clock is stopped for 4.06 to 16.12μ s after the STOP mode is released when the internal highspeed oscillation clock is selected as the CPU clock, or for the duration of 160 external clocks when the high-speed system clock (external clock input) is selected as the CPU clock. When the high-speed system clock (X1 oscillation) is selected as the CPU clock, the oscillation stabilization time is counted after the STOP mode is released.
5. To change the value of EXCLK and OSCSEL, be sure to confirm that bit 7 (MSTOP) of the main OSC control register (MOC) is 1 (the X1 oscillator stops or the external clock from the EXCLK pin is disabled).
6. Be sure to clear bits 1 to $\mathbf{3}$ to 0 .

Remark fxн: High-speed system clock oscillation frequency
(2) Processor clock control register (PCC)

This register is used to select the CPU clock, the division ratio, and operation mode for subsystem clock. PCC is set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation sets PCC to 01 H .

Figure 6-5. Format of Processor Clock Control Register (PCC) (78K0/KB2)

Address:	H Aft	et: 01H						
Symbol	7	6	5	4	3	2	1	0
PCC	0	0	0	0	0	PCC2	PCC1	PCC0
	PCC2	PCC1	PCC0			k (fcpu)		
	0	0	0	fxp				
	0	0	1	fxp/2 (d				
	0	1	0	$\mathrm{fxp} / 2^{2}$				
	0	1	1	fxp/2 ${ }^{3}$				
	1	0	0	fxp/2 ${ }^{4}$				
		than ab		Setting				

Cautions1. Be sure to clear bits 3 to 7 to 0 .
2. The peripheral hardware clock (fprs) is not divided when the division ratio of the PCC is set.

Remark fxp: Main system clock oscillation frequency

Figure 6-6. Format of Processor Clock Control Register (PCC) (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Address:	After reset: 01 H		R/W $\mathrm{W}^{\text {Note } 1}$					
Symbol	7	6	<5>	<4>	3	2	1	0
PCC	0	XTSTART ${ }^{\text {Note2 }}$	CLS	CSS	0	PCC2	PCC1	PCC0

CLS	
0	Main system clock
1	Subsystem clock

CSS	PCC2	PCC1	PCCO	CPU clock (ffpu) selection
0	0	0	0	fxp
	0	0	1	fxp/2 (default)
	0	1	0	$\mathrm{fxp} / 2^{2}$
	0	1	1	$\mathrm{fxp} / 2^{3}$
	1	0	0	$\mathrm{fxp} / 2^{4}$
1	0	0	0	fsub/2
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
Other than above				Setting prohibited

Notes 1. Bit 5 is read-only.
2. XTSTART is used in combination with EXCLKS and OSCSELS (bits 5 and 4 of the clock operation mode select register (OSCCTL)). See (3) Setting of operation mode for subsystem clock pin.

Cautions 1. Be sure to clear bits 3 and 7 to " 0 ".
2. The peripheral hardware clock (fPRS) is not divided when the division ratio of the PCC is set.

Remark fxp: Main system clock oscillation frequency fsub: Subsystem clock oscillation frequency

The fastest instruction can be executed in 2 clocks of the CPU clock in the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers. Therefore, the relationship between the CPU clock (fcpu) and the minimum instruction execution time is as shown in Table 6-2.

Table 6-2. Relationship Between CPU Clock and Minimum Instruction Execution Time

CPU Clock (fcpu)	Minimum Instruction Execution Time: 2/fcpu			
	Main System Clock			Subsystem Clock ${ }^{\text {Note } 2}$
	High-Speed System Clock ${ }^{\text {Note } 1}$		Internal High-Speed Oscillation Clock ${ }^{\text {Note } 1}$	
	At 10 MHz Operation	At 20 MHz Operation	At 8 MHz (TYP.) Operation	At 32.768 kHz Operation
fxp	$0.2 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$0.25 \mu \mathrm{~s}$ (TYP.)	-
fxp/2	$0.4 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$ (TYP.)	-
$\mathrm{fxp} / 2^{2}$	$0.8 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$ (TYP.)	-
$\mathrm{fxp} / 2^{3}$	$1.6 \mu \mathrm{~s}$	$0.8 \mu \mathrm{~s}$	$2.0 \mu \mathrm{~s}$ (TYP.)	-
fxp/2 ${ }^{4}$	$3.2 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	$4.0 \mu \mathrm{~s}$ (TYP.)	-
fsub/2 ${ }^{\text {Note } 2}$	-		-	$122.1 \mu \mathrm{~s}$

Notes 1. The main clock mode register (MCM) is used to set the main system clock supplied to CPU clock (highspeed system clock/internal high-speed oscillation clock) (see Figure 6-9).
2. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.
(3) Setting of operation mode for subsystem clock pin

The operation mode for the subsystem clock pin ${ }^{\text {Note }}$ can be set by using bit 6 (XTSTART) of the processor clock control register (PCC) and bits 5 and 4 (EXCLKS, OSCSELS) of the clock operation mode select register (OSCCTL) in combination.

Note The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.

Table 6-3. Setting of Operation Mode for Subsystem Clock Pin
(78K0/KC2, 78K0/KD2, 78K0/KE2, 78K0/KF2)

PCC	OSCCTL		Subsystem Clock Pin Operation Mode	P123/XT1 Pin	P124/XT2/EXCLKS Pin
Bit 6	Bit 5	Bit 4			
XTSTART	EXCLKS	OSCSELS			
0	0	0	I/O port mode	I/O port	
0	0	1	XT1 oscillation mode	Crystal resonator connection	
0	1	0	I/O port mode	I/O port	
0	1	1	External clock input mode	I/O port	External clock input
1	\times	\times	XT1 oscillation mode	Crystal resonator connection	

Caution Confirm that bit 5 (CLS) of the processor clock control register (PCC) is $\mathbf{0}$ (CPU is operating with main system clock) when changing the current values of XTSTART, EXCLKS, and OSCSELS.

Remark \times : don't care
(4) Internal oscillation mode register (RCM)

This register sets the operation mode of internal oscillator.
RCM can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation sets this register to $80 \mathrm{H}^{\text {Note } 1}$.

Figure 6-7. Format of Internal Oscillation Mode Register (RCM)

LSRSTOP	Internal low-speed oscillator oscillating/stopped
0	Internal low-speed oscillator oscillating
1	Internal low-speed oscillator stopped

RSTOP	Internal high-speed oscillator oscillating/stopped
0	Internal high-speed oscillator oscillating
1	Internal high-speed oscillator stopped

Notes 1. The value of this register is 00 H immediately after a reset release but automatically changes to 80 H after internal high-speed oscillator has been stabilized.
2. Bit 7 is read-only.

Caution When setting RSTOP to 1, be sure to confirm that the CPU operates with a clock other than the internal high-speed oscillation clock. Specifically, set under either of the following conditions.
<1> 78K0/KB2

- When MCS = 1 (when CPU operates with the high-speed system clock) <2> 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2
- When MCS = 1 (when CPU operates with the high-speed system clock)
- When CLS = 1 (when CPU operates with the subsystem clock)

In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock before setting RSTOP to 1.
(5) Main OSC control register (MOC)

This register selects the operation mode of the high-speed system clock.
This register is used to stop the X1 oscillator or to disable an external clock input from the EXCLK pin when the CPU operates with a clock other than the high-speed system clock.
MOC can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation sets this register to 80 H .

Figure 6-8. Format of Main OSC Control Register (MOC)

Cautions 1. When setting MSTOP to 1 , be sure to confirm that the CPU operates with a clock other than the high-speed system clock. Specifically, set under either of the following conditions.
<1> 78K0/KB2

- When MCS $=0$ (when CPU operates with the internal high-speed oscillation clock)
<2> 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2
- When MCS $=0$ (when CPU operates with the internal high-speed oscillation clock)
- When CLS = 1 (when CPU operates with the subsystem clock)

In addition, stop peripheral hardware that is operating on the high-speed system clock before setting MSTOP to 1.
2. Do not clear MSTOP to 0 while bit 6 (OSCSEL) of the clock operation mode select register (OSCCTL) is 0 (I/O port mode).
3. The peripheral hardware cannot operate when the peripheral hardware clock is stopped. To resume the operation of the peripheral hardware after the peripheral hardware clock has been stopped, initialize the peripheral hardware.
(6) Main clock mode register (MCM)

This register selects the main system clock supplied to CPU clock and clock supplied to peripheral hardware clock. MCM can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 6-9. Format of Main Clock Mode Register (MCM)

Address:	After reset: 00 H		$\mathrm{R} / \mathrm{W}^{\text {Note }}$					
Symbol	7	6	5	4	3	<2>	<1>	<0>
MCM	0	0	0	0	0	XSEL	MCS	MCMO

XSEL	MCMO	Selection of clock supplied to main system clock and peripheral hardware	
		Main system clock (fxp)	Peripheral hardware clock (fprs)
0	0	Internal high-speed oscillation clock (fRH)	Internal high-speed oscillation clock (fRн)
0	1		
1	0		High-speed system clock (fxH)
1	1	High-speed system clock ($\mathrm{fxH}^{\text {\% }}$)	

MCS	Main system clock status
0	Operates with internal high-speed oscillation clock
1	Operates with high-speed system clock

Note Bit 1 is read-only.

Cautions 1. XSEL can be changed only once after a reset release.
2. Do not rewrite MCMO when the CPU clock operates with the subsystem clock.
3. A clock other than fPRs is supplied to the following peripheral functions regardless of the setting of XSEL and MCMO.

- Watchdog timer (operates with internal low-speed oscillation clock)
- When "frl", "frl/2"", or "frL/29" is selected as the count clock for 8 -bit timer H1 (operates with internal low-speed oscillation clock)
- Peripheral hardware selects the external clock as the clock source
(Except when the external count clock of TMOn ($n=0,1$) is selected (TIOOn pin valid edge))
(7) Oscillation stabilization time counter status register (OSTC)

This is the register that indicates the count status of the X1 clock oscillation stabilization time counter. When X1 clock oscillation starts with the internal high-speed oscillation clock or subsystem clock used as the CPU clock, the X1 clock oscillation stabilization time can be checked.
OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.
When reset is released (reset by RESET input, POC, LVI, and WDT), the STOP instruction and MSTOP (bit 7 of MOC register) $=1$ clear OSTC to 00 H .

Figure 6-10. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

Address:		set: 00 H						
Symbol	7	6	5	4	3	2	1	0
OSTC	0	0	0	MOST11	MOST13	MOST14	MOST15	MOST16
	MOST11	MOST13	MOST14	MOST15	MOST16	Oscillatio	stabilization tim	ime status
							$\mathrm{fx}=10 \mathrm{MHz}$	$\mathrm{fx}=20 \mathrm{MHz}$
	1	0	0	0	0	$2^{11 / f x}$ min.	$204.8 \mu \mathrm{~s} \mathrm{~min}$.	$102.4 \mu \mathrm{~s} \mathrm{~min}$.
	1	1	0	0	0	$2^{13} / \mathrm{fx}$ min.	$819.2 \mu \mathrm{~s} \mathrm{~min}$.	$409.6 \mu \mathrm{~s} \mathrm{~min}$.
	1	1	1	0	0	$2^{14} / \mathrm{fx}$ min.	1.64 ms min .	$819.2 \mu \mathrm{~s} \mathrm{~min}$.
	1	1	1	1	0	$2^{15} / \mathrm{fx}$ min.	3.27 ms min .	1.64 ms min .
	1	1	1	1	1	2/ffx min.	6.55 ms min .	3.27 ms min .

Cautions 1. After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.
2. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS
Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released

3. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency
(8) Oscillation stabilization time select register (OSTS)

This register is used to select the X1 clock oscillation stabilization wait time when the STOP mode is released.
When the X1 clock is selected as the CPU clock, the operation waits for the time set using OSTS after the STOP mode is released.
When the internal high-speed oscillation clock is selected as the CPU clock, confirm with OSTC that the desired oscillation stabilization time has elapsed after the STOP mode is released. The oscillation stabilization time can be checked up to the time set using OSTC.
OSTS can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets OSTS to 05H.

Figure 6-11. Format of Oscillation Stabilization Time Select Register (OSTS)

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set OSTS before executing the STOP instruction.
2. Do not change the value of the OSTS register during the X 1 clock oscillation stabilization time.
3. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS
Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

4. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

6.4 System Clock Oscillator

6.4.1 X1 oscillator

The X1 oscillator oscillates with a crystal resonator or ceramic resonator (1 to 20 MHz) connected to the X 1 and X 2 pins.

An external clock can also be input. In this case, input the clock signal to the EXCLK pin.
Figure 6-12 shows an example of the external circuit of the X1 oscillator.

Figure 6-12. Example of External Circuit of X1 Oscillator
(a) Crystal or ceramic oscillation

(b) External clock

Cautions are listed on the next page.

6.4.2 XT1 oscillator

The XT1 oscillator ${ }^{\text {Note }}$ oscillates with a crystal resonator (standard: 32.768 kHz) connected to the XT1 and XT2 pins.
An external clock can also be input. In this case, input the clock signal to the EXCLKS pin.
Figure 6-13 shows an example of the external circuit of the XT1 oscillator.

Note The $78 \mathrm{K0} / \mathrm{KB} 2$ is not provided with an XT 1 oscillator.

Figure 6-13. Example of External Circuit of XT1 Oscillator
(a) Crystal oscillation

(b) External clock

Cautions are listed on the next page.

Caution 1. When using the X1 oscillator and XT1 oscillator, wire as follows in the area enclosed by the broken lines in the Figures 6-12 and 6-13 to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Note that the XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption.

Figure 6-14 shows examples of incorrect resonator connection.

Figure 6-14. Examples of Incorrect Resonator Connection (1/2)

(a) Too long wiring

Remark When using the subsystem clock, replace X 1 and X 2 with XT 1 and XT 2 , respectively. Also, insert resistors in series on the XT2 side.

Figure 6-14. Examples of Incorrect Resonator Connection (2/2)
(c) Wiring near high alternating current

(e) Signals are fetched

(d) Current flowing through ground line of oscillator (potential at points A, B, and C fluctuates)

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

Caution 2. When $X 2$ and $X T 1$ are wired in parallel, the crosstalk noise of $X 2$ may increase with $X T 1$, resulting in malfunctioning.

6.4.3 When subsystem clock is not used

If it is not necessary to use the subsystem clock ${ }^{\text {Note }}$ for low power consumption operations, or if not using the subsystem clock as an I/O port, set the XT1 and XT2 pins to I/O mode (OSCSELS = 0) and connect them as follows.

Note The 78K0/KB2 is not provided with a subsystem clock.

Input (PM123/PM124 = 1): Independently connect to VDD or Vss via a resistor.
Output (PM123/PM124 = 0): Leave open.

Remark OSCSELS: Bit 4 of clock operation mode select register (OSCCTL) PM123, PM124: Bits 3 and 4 of port mode register 12 (PM12)

6.4.4 Internal high-speed oscillator

The internal high-speed oscillator is incorporated in the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers. Oscillation can be controlled by the internal oscillation mode register (RCM).

After a reset release, the internal high-speed oscillator automatically starts oscillation (8 MHz (TYP.)).

6.4.5 Internal low-speed oscillator

The internal low-speed oscillator is incorporated in the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers.
The internal low-speed oscillation clock is only used as the watchdog timer and the clock of 8-bit timer H1. The internal low-speed oscillation clock cannot be used as the CPU clock.
"Can be stopped by software" or "Cannot be stopped" can be selected by the option byte. When "Can be stopped by software" is set, oscillation can be controlled by the internal oscillation mode register (RCM).

After a reset release, the internal low-speed oscillator automatically starts oscillation, and the watchdog timer is driven (240 kHz (TYP.)) if the watchdog timer operation is enabled using the option byte.

6.4.6 Prescaler

The prescaler generates the CPU clock by dividing the main system clock when the main system clock is selected as the clock to be supplied to the CPU.

6.5 Clock Generator Operation

The clock generator generates the following clocks and controls the operation modes of the CPU, such as standby mode (see Figure 6-1 and 6-2).

- Main system clock fxp
- High-speed system clock fxh

X1 clock fx
External main system clock fexclk

- Internal high-speed oscillation clock frh
- Subsystem clock fsub ${ }^{\text {Note }}$
- XT1 clock fxt
- External subsystem clock fexclks
- Internal low-speed oscillation clock fRL
- CPU clock fcPu
- Peripheral hardware clock fPRS

Note The 78K0/KB2 is not provided with a subsystem clock.

The CPU starts operation when the internal high-speed oscillator starts outputting after a reset release in the 78K0/Kx2 microcontrollers, thus enabling the following.

(1) Enhancement of security function

When the X 1 clock is set as the CPU clock by the default setting, the device cannot operate if the X 1 clock is damaged or badly connected and therefore does not operate after reset is released. However, the start clock of the CPU is the internal high-speed oscillation clock, so the device can be started by the internal high-speed oscillation clock after a reset release. Consequently, the system can be safely shut down by performing a minimum operation, such as acknowledging a reset source by software or performing safety processing when there is a malfunction.

(2) Improvement of performance

Because the CPU can be started without waiting for the X1 clock oscillation stabilization time, the total performance can be improved.

When the power supply voltage is turned on, the clock generator operation is shown in Figure 6-15.

Figure 6-15. Clock Generator Operation When Power Supply Voltage Is Turned On (When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0))

<1> When the power is turned on, an internal reset signal is generated by the power-on-clear (POC) circuit.
<2> When the power supply voltage exceeds 1.59 V (TYP.), the reset is released and the internal high-speed oscillator automatically starts oscillation.
<3> When the power supply voltage rises with a slope of $0.5 \mathrm{~V} / \mathrm{ms}$ (MIN.), the CPU starts operation on the internal high-speed oscillation clock after the reset is released and after the stabilization times for the voltage of the power supply and regulator have elapsed, and then reset processing is performed.
$<4>$ Set the start of oscillation of the X1 or XT1 clock via software (see (1) in 6.6.1 Example of controlling highspeed system clock and (1) in 6.6.3 Example of controlling subsystem clock).
$<5>$ When switching the CPU clock to the X1 or XT1 clock, wait for the clock oscillation to stabilize, and then set switching via software (see (3) in 6.6.1 Example of controlling high-speed system clock and (3) in 6.6.3 Example of controlling subsystem clock).

Notes 1. With standard and (A) grade products, if the voltage rises with a slope of less than $0.5 \mathrm{~V} / \mathrm{ms}$ (MIN.) from power application until the voltage reaches 1.8 V , input a low level to the RESET pin from power application until the voltage reaches 1.8 V , or set the $2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ POC mode by using the option byte (POCMODE $=1$) (see Figure 6-16). When a low level has been input to the RESET pin until the voltage reaches 1.8 V , the CPU operates with the same timing as <2> and thereafter in Figure 6-15, after the reset has been released by the RESET pin.
2. With (A2) grade products, if the voltage rises with a slope of less than $0.75 \mathrm{~V} / \mathrm{ms}$ (MIN.) from power application until the voltage reaches 2.7 V , input a low level to the $\overline{\text { RESET }}$ pin from power application until the voltage reaches 2.7 V . When a low level has been input to the RESET pin until the voltage reaches 2.7 V , the CPU operates with the same timing as <2> and thereafter in Figure 6-15, after the reset has been released by the $\overline{\text { RESET }}$ pin.
3. The internal voltage stabilization time includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.

Notes 4. When releasing a reset (above figure) or releasing STOP mode while the CPU is operating on the internal high-speed oscillation clock, confirm the oscillation stabilization time for the X1 clock using the oscillation stabilization time counter status register (OSTC). If the CPU operates on the high-speed system clock (X1 oscillation), set the oscillation stabilization time when releasing STOP mode using the oscillation stabilization time select register (OSTS).
5. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.

Caution It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK and EXCLKS pins is used.

Remark While the microcontroller is operating, a clock that is not used as the CPU clock can be stopped via software settings. The internal high-speed oscillation clock and high-speed system clock can be stopped by executing the STOP instruction (see (4) in 6.6.1 Example of controlling high-speed system clock, (3) in 6.6.2 Example of controlling internal high-speed oscillation clock, and (4) in 6.6.3 Example of controlling subsystem clock).

Figure 6-16. Clock Generator Operation When Power Supply Voltage Is Turned On (When 2.7 V/1.59 V POC Mode Is Set (Option Byte: POCMODE = 1))

<1> When the power is turned on, an internal reset signal is generated by the power-on-clear (POC) circuit.
<2> When the power supply voltage exceeds 2.7 V (TYP.), the reset is released and the internal high-speed oscillator automatically starts oscillation.
$<3>$ After the reset is released and reset processing is performed, the CPU starts operation on the internal high-speed oscillation clock.
$<4>$ Set the start of oscillation of the X1 or XT1 clock via software (see (1) in 6.6.1 Example of controlling highspeed system clock and (1) in 6.6.3 Example of controlling subsystem clock).
$<5>$ When switching the CPU clock to the X1 or XT1 clock, wait for the clock oscillation to stabilize, and then set switching via software (see (3) in 6.6.1 Example of controlling high-speed system clock and (3) in 6.6.3 Example of controlling subsystem clock).

Notes 1. When releasing a reset (above figure) or releasing STOP mode while the CPU is operating on the internal high-speed oscillation clock, confirm the oscillation stabilization time for the X1 clock using the oscillation stabilization time counter status register (OSTC). If the CPU operates on the high-speed system clock (X1 oscillation), set the oscillation stabilization time when releasing STOP mode using the oscillation stabilization time select register (OSTS).
2. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.

Cautions 1. A voltage oscillation stabilization time of 1.93 to 5.39 ms is required after the supply voltage reaches 1.59 V (TYP.). If the supply voltage rises from 1.59 V (TYP.) to 2.7 V (TYP.) within 1.93 ms , the power supply oscillation stabilization time of 0 to 5.39 ms is automatically generated before reset processing.
2. It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK and EXCLKS pins is used.

Remark While the microcontroller is operating, a clock that is not used as the CPU clock can be stopped via software settings. The internal high-speed oscillation clock and high-speed system clock can be stopped by executing the STOP instruction (see (4) in 6.6.1 Example of controlling high-speed system clock, (3) in 6.6.2 Example of controlling internal high-speed oscillation clock, and (4) in 6.6.3 Example of controlling subsystem clock).

6.6 Controlling Clock

6.6.1 Example of controlling high-speed system clock

The following two types of high-speed system clocks are available.

- X1 clock: Crystal/ceramic resonator is connected across the X1 and X2 pins.
- External main system clock: External clock is input to the EXCLK pin.

When the high-speed system clock is not used, the X1/P121 and X2/EXCLK/P122 pins can be used as I/O port pins.

Caution The X1/P121 and X2/EXCLK/P122 pins are in the I/O port mode after a reset release.

The following describes examples of setting procedures for the following cases.
(1) When oscillating X1 clock
(2) When using external main system clock
(3) When using high-speed system clock as CPU clock and peripheral hardware clock
(4) When stopping high-speed system clock
(1) Example of setting procedure when oscillating the $\mathbf{X 1}$ clock
<1> Setting frequency (OSCCTL register)
Using AMPH, set the gain of the on-chip oscillator according to the frequency to be used.

AMPH $^{\text {Note }}$	Operating Frequency Control	
0	$1 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{xH}} \leq 10 \mathrm{MHz}$	
1	$10 \mathrm{MHz}<\mathrm{f}_{\mathrm{xH}} \leq 20 \mathrm{MHz}$	

Note Set AMPH before setting the peripheral functions after a reset release. The value of AMPH can be changed only once after a reset release. When AMPH is set to 1 , the clock supply to the CPU is stopped for 4.06 to $16.12 \mu \mathrm{~s}$.

Remark fxh: High-speed system clock oscillation frequency
<2> Setting P121/X1 and P122/X2/EXCLK pins and selecting X1 clock or external clock (OSCCTL register)
When EXCLK is cleared to 0 and OSCSEL is set to 1 , the mode is switched from port mode to X1 oscillation mode.

EXCLK	OSCSEL	Operation Mode of High- Speed System Clock Pin	P121/X1 Pin	P122/X2/EXCLK Pin
0	1	X1 oscillation mode	Crystal/ceramic resonator connection	

<3> Controlling oscillation of X1 clock (MOC register)
If MSTOP is cleared to 0 , the X 1 oscillator starts oscillating.
<4> Waiting for the stabilization of the oscillation of X1 clock
Check the OSTC register and wait for the necessary time.
During the wait time, other software processing can be executed with the internal high-speed oscillation clock.

Cautions 1. Do not change the value of EXCLK and OSCSEL while the X1 clock is operating.
2. Set the X1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\left.\mathbf{+ 1 2 5}{ }^{\circ} \mathrm{C}\right)$).
(2) Example of setting procedure when using the external main system clock
<1> Setting frequency (OSCCTL register)
Using AMPH, set the frequency to be used.

AMPH $^{\text {Note }}$	Operating Frequency Control	
0	$1 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{xH}} \leq 10 \mathrm{MHz}$	
1	$10 \mathrm{MHz}<\mathrm{f}_{\mathrm{xH}} \leq 20 \mathrm{MHz}$	

Note Set AMPH before setting the peripheral functions after a reset release. The value of AMPH can be changed only once after a reset release. The clock supply to the CPU is stopped for the duration of 160 external clocks after AMPH is set to 1 .

Remark fxh: High-speed system clock oscillation frequency
<2> Setting P121/X1 and P122/X2/EXCLK pins and selecting operation mode (OSCCTL register)
When EXCLK and OSCSEL are set to 1 , the mode is switched from port mode to external clock input mode.

EXCLK	OSCSEL	Operation Mode of High- Speed System Clock Pin	P121/X1 Pin	P122/X2/EXCLK Pin
1	1	External clock input mode	I/O port	External clock input

<3> Controlling external main system clock input (MOC register)
When MSTOP is cleared to 0 , the input of the external main system clock is enabled.

Cautions 1. Do not change the value of EXCLK and OSCSEL while the external main system clock is operating.
2. Set the $\mathbf{X 1}$ clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to

(3) Example of setting procedure when using high-speed system clock as CPU clock and peripheral hardware clock
<1> Setting high-speed system clock oscillation Note
(See 6.6.1 (1) Example of setting procedure when oscillating the X1 clock and (2) Example of setting procedure when using the external main system clock.)

Note The setting of $<1>$ is not necessary when high-speed system clock is already operating.
<2> Setting the high-speed system clock as the main system clock (MCM register)
When XSEL and MCMO are set to 1 , the high-speed system clock is supplied as the main system clock and peripheral hardware clock.

XSEL	MCM0	Selection of Main System Clock and Clock Supplied to Peripheral Hardware		
		Main System Clock (f_{xP})	Peripheral Hardware Clock ($\mathrm{f}_{\mathrm{fRs}}$)	
1	1	High-speed system clock (f_{xH})	High-speed system clock (f_{xH})	

Caution If the high-speed system clock is selected as the main system clock, a clock other than the high-speed system clock cannot be set as the peripheral hardware clock.
$<3>$ Setting the main system clock as the CPU clock and selecting the division ratio (PCC register) When CSS is cleared to 0 , the main system clock is supplied to the CPU. To select the CPU clock division ratio, use PCC0, PCC1, and PCC2.

CSS	PCC2	PCC1	PCC0	CPU Clock (fcru) Selection		
0	0	0	0	$f_{x P}$		
	0	0	1	$f_{x P} / 2$ (default)		
	0	1	0	$f_{x P} / 2^{2}$		
	0	1	1	$f_{x P} / 2^{3}$		
	1	0	0	$f_{x P} / 2^{4}$		
	Other than above					Setting prohibited

(4) Example of setting procedure when stopping the high-speed system clock

The high-speed system clock can be stopped in the following two ways.

- Executing the STOP instruction and stopping the X1 oscillation (disabling clock input if the external clock is used)
- Setting MSTOP to 1 and stopping the X1 oscillation (disabling clock input if the external clock is used)
(a) To execute a STOP instruction
<1> Setting to stop peripheral hardware
Stop peripheral hardware that cannot be used in the STOP mode (for peripheral hardware that cannot be used in STOP mode, see CHAPTER 22 STANDBY FUNCTION).
<2> Setting the X1 clock oscillation stabilization time after standby release
When the CPU is operating on the X1 clock, set the value of the OSTS register before the STOP instruction is executed.
$<3>$ Executing the STOP instruction
When the STOP instruction is executed, the system is placed in the STOP mode and X1 oscillation is stopped (the input of the external clock is disabled).
(b) To stop X1 oscillation (disabling external clock input) by setting MSTOP to 1
<1> Confirming the CPU clock status (PCC and MCM registers)
Confirm with CLS and MCS that the CPU is operating on a clock other than the high-speed system clock. When CLS = 0 and MCS = 1, the high-speed system clock is supplied to the CPU, so change the CPU clock to a clock other than the high-speed system clock.
- 78K0/KB2

MCS	CPU Clock Status
0	Internal high-speed oscillation clock
1	High-speed system clock

- $78 \mathrm{KO} / \mathrm{KC2} 2,78 \mathrm{~K} 0 / \mathrm{KD} 2,78 \mathrm{~K} 0 / \mathrm{KE} 2$, and 78K0/KF2

CLS	MCS	
0	0	Internal high-speed oscillation clock Clock Status
0	1	High-speed system clock
1	\times	Subsystem clock

<2> Stopping the high-speed system clock (MOC register)
When MSTOP is set to $1, \mathrm{X} 1$ oscillation is stopped (the input of the external clock is disabled).

Caution Be sure to confirm that MCS $=0$ or CLS $=1$ when setting MSTOP to 1 . In addition, stop peripheral hardware that is operating on the high-speed system clock.

6.6.2 Example of controlling internal high-speed oscillation clock

The following describes examples of clock setting procedures for the following cases.
(1) When restarting oscillation of the internal high-speed oscillation clock
(2) When using internal high-speed oscillation clock as CPU clock, and internal high-speed oscillation clock or highspeed system clock as peripheral hardware clock
(3) When stopping the internal high-speed oscillation clock
(1) Example of setting procedure when restarting oscillation of the internal high-speed oscillation clock ${ }^{\text {Note } 1}$
<1> Setting restart of oscillation of the internal high-speed oscillation clock (RCM register)
When RSTOP is cleared to 0 , the internal high-speed oscillation clock starts operating.
<2> Waiting for the oscillation accuracy stabilization time of internal high-speed oscillation clock (RCM register) Wait until RSTS is set to $1^{\text {Note } 2}$.

Notes 1. After a reset release, the internal high-speed oscillator automatically starts oscillating and the internal high-speed oscillation clock is selected as the CPU clock.
2. This wait time is not necessary if high accuracy is not necessary for the CPU clock and peripheral hardware clock.
(2) Example of setting procedure when using internal high-speed oscillation clock as CPU clock, and internal high-speed oscillation clock or high-speed system clock as peripheral hardware clock
<1> - Restarting oscillation of the internal high-speed oscillation clock ${ }^{\text {Note }}$
(See 6.6.2 (1) Example of setting procedure when restarting oscillation of the internal high-speed oscillation clock).

- Oscillating the high-speed system clock ${ }^{\text {Note }}$
(This setting is required when using the high-speed system clock as the peripheral hardware clock. See 6.6.1 (1) Example of setting procedure when oscillating the X1 clock and (2) Example of setting procedure when using the external main system clock.)

Note The setting of <1> is not necessary when the internal high-speed oscillation clock or high-speed system clock is already operating.
<2> Selecting the clock supplied as the main system clock and peripheral hardware clock (MCM register)
Set the main system clock and peripheral hardware clock using XSEL and MCMO.

XSEL	MCMO	Selection of Main System Clock and Clock Supplied to Peripheral Hardware	
		Main System Clock (fxp)	Peripheral Hardware Clock (fPrs)
0	0	Internal high-speed oscillation clock (fRH)	Internal high-speed oscillation clock (fвн)
0	1		
1	0		High-speed system clock (fxH)

<3> Selecting the CPU clock division ratio (PCC register)
When CSS is cleared to 0 , the main system clock is supplied to the CPU. To select the CPU clock division ratio, use PCC0, PCC1, and PCC2.

CSS	PCC2	PCC1	PCCO	CPU Clock (fcpu) Selection
0	0	0	0	fxp
	0	0	1	fxp/2 (default)
	0	1	0	$\mathrm{fxp}^{2} / 2^{2}$
	0	1	1	$\mathrm{fxp} / 2^{3}$
	1	0	0	fxp/2 ${ }^{4}$
	Other than above			Setting prohibited

(3) Example of setting procedure when stopping the internal high-speed oscillation clock

The internal high-speed oscillation clock can be stopped in the following two ways.

- Executing the STOP instruction to set the STOP mode
- Setting RSTOP to 1 and stopping the internal high-speed oscillation clock
(a) To execute a STOP instruction
<1> Setting of peripheral hardware
Stop peripheral hardware that cannot be used in the STOP mode (for peripheral hardware that cannot be used in STOP mode, see CHAPTER 22 STANDBY FUNCTION).
<2> Setting the X1 clock oscillation stabilization time after standby release
When the CPU is operating on the X1 clock, set the value of the OSTS register before the STOP instruction is executed. To operate the CPU immediately after the STOP mode has been released, set MCMO to 0 , switch the CPU clock to the internal high-speed oscillation clock, and check that RSTS is 1 .

Executing the STOP instruction
When the STOP instruction is executed, the system is placed in the STOP mode and internal high-speed oscillation clock is stopped.
(b) To stop internal high-speed oscillation clock by setting RSTOP to 1
<1> Confirming the CPU clock status (PCC and MCM registers)
Confirm with CLS and MCS that the CPU is operating on a clock other than the internal high-speed oscillation clock.
When CLS $=0$ and MCS $=0$, the internal high-speed oscillation clock is supplied to the CPU, so change the CPU clock to a clock other than the internal high-speed oscillation clock.

- 78K0/KB2

MCS	CPU Clock Status
0	Internal high-speed oscillation clock
1	High-speed system clock

- 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2

CLS	MCS	
0	0	Internal high-speed oscillation clock
0	1	High-speed system clock
1	\times	Subsystem clock

When RSTOP is set to 1 , internal high-speed oscillation clock is stopped.

Caution Be sure to confirm that MCS = 1 or CLS = 1 when setting RSTOP to 1. In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock.

6.6.3 Example of controlling subsystem clock

The following two types of subsystem clocks ${ }^{\text {Note }}$ are available.

- XT1 clock: Crystal/ceramic resonator is connected across the XT1 and XT2 pins.
- External subsystem clock: External clock is input to the EXCLKS pin.

When the subsystem clock is not used, the XT1/P123 and XT2/EXCLKS/P124 pins can be used as I/O port pins.

Note The 78K0/KB2 is not provided with a subsystem clock.
Cautions 1. The XT1/P123 and XT2/EXCLKS/P124 pins are in the I/O port mode after a reset release.
2. Do not start the peripheral hardware operation with the external clock from peripheral hardware pins when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

The following describes examples of setting procedures for the following cases.
(1) When oscillating XT1 clock
(2) When using external subsystem clock
(3) When using subsystem clock as CPU clock
(4) When stopping subsystem clock
(1) Example of setting procedure when oscillating the XT 1 clock
<1> Setting XT1 and XT2 pins and selecting operation mode (PCC and OSCCTL registers)
When XTSTART, EXCLKS, and OSCSELS are set as any of the following, the mode is switched from port mode to XT1 oscillation mode.

XTSTART	EXCLKS	OSCSELS	Operation Mode of Subsystem Clock Pin	P123/XT1 Pin	P124/XT2/ EXCLKS Pin
0	0	1	XT1 oscillation mode	Crystal/ceramic resonator connection	
1	\times	\times			

Remark \times : don't care
<2> Waiting for the stabilization of the subsystem clock oscillation
Wait for the oscillation stabilization time of the subsystem clock by software, using a timer function.

Caution Do not change the value of XTSTART, EXCLKS, and OSCSELS while the subsystem clock is operating.
(2) Example of setting procedure when using the external subsystem clock
<1> Setting XT1 and XT2 pins, selecting XT1 clock/external clock and controlling oscillation (PCC and OSCCTL registers)
When XTSTART is cleared to 0 and EXCLKS and OSCSELS are set to 1 , the mode is switched from port mode to external clock input mode. In this case, input the external clock to the EXCLKS/XT2/P124 pins.

XTSTART	EXCLKS	OSCSELS	Operation Mode of Subsystem Clock Pin	P123/XT1 Pin	P124/XT2/ EXCLKS Pin
0	1	1	External clock input mode	I/O port	External clock input

Caution Do not change the value of XTSTART, EXCLKS, and OSCSELS while the subsystem clock is operating.
(3) Example of setting procedure when using the subsystem clock as the CPU clock
<1> Setting subsystem clock oscillation ${ }^{\text {Note }}$
(See 6.6.3 (1) Example of setting procedure when oscillating the XT1 clock and (2) Example of setting procedure when using the external subsystem clock.)

Note The setting of $<1>$ is not necessary when while the subsystem clock is operating.
<2> Switching the CPU clock (PCC register)
When CSS is set to 1 , the subsystem clock is supplied to the CPU.

CSS	PCC2	PCC1	PCC0	CPU Clock (fcpu) Selection
1	0	0	0	fsub/2
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	Other than above			

(4) Example of setting procedure when stopping the subsystem clock
<1> Confirming the CPU clock status (PCC and MCM registers)
Confirm with CLS and MCS that the CPU is operating on a clock other than the subsystem clock.
When CLS $=1$, the subsystem clock is supplied to the CPU, so change the CPU clock to a clock other than the subsystem clock.

CLS	MCS	
0	0	Internal high-speed oscillation clock
0	1	High-speed system clock
1	\times	Subsystem clock

<2> Stopping the subsystem clock (OSCCTL register)
When OSCSELS is cleared to $0, \mathrm{XT} 1$ oscillation is stopped (the input of the external clock is disabled).

Cautions1. Be sure to confirm that CLS $=0$ when clearing OSCSELS to 0 . In addition, stop the watch timer if it is operating on the subsystem clock.
2. The subsystem clock oscillation cannot be stopped using the STOP instruction.

6.6.4 Example of controlling internal low-speed oscillation clock

The internal low-speed oscillation clock cannot be used as the CPU clock.
Only the following peripheral hardware can operate with this clock.

- Watchdog timer
- 8-bit timer H1 (if frL is selected as the count clock)

In addition, the following operation modes can be selected by the option byte.

- Internal low-speed oscillator cannot be stopped
- Internal low-speed oscillator can be stopped by software

The internal low-speed oscillator automatically starts oscillation after a reset release, and the watchdog timer is driven (240 kHz (TYP.)) if the watchdog timer operation has been enabled by the option byte.
(1) Example of setting procedure when stopping the internal low-speed oscillation clock
$<1>$ Setting LSRSTOP to 1 (RCM register)
When LSRSTOP is set to 1 , the internal low-speed oscillation clock is stopped.
(2) Example of setting procedure when restarting oscillation of the internal low-speed oscillation clock
<1> Clearing LSRSTOP to 0 (RCM register)
When LSRSTOP is cleared to 0 , the internal low-speed oscillation clock is restarted.

Caution If "Internal low-speed oscillator cannot be stopped" is selected by the option byte, oscillation of the internal low-speed oscillation clock cannot be controlled.

6.6.5 Clocks supplied to CPU and peripheral hardware

The following table shows the relation among the clocks supplied to the CPU and peripheral hardware, and setting of registers.

Table 6-4. Clocks Supplied to CPU and Peripheral Hardware, and Register Setting (78K0/KB2)

Supplied Clock		XSEL	MCMO	EXCLK
Clock Supplied to CPU	Clock Supplied to Peripheral Hardware			
Internal high-speed oscillation clock		0	\times	\times
Internal high-speed oscillation clock	X1 clock	1	0	0
	External main system clock	1	0	1
	1	1	0	
External main system clock	1	1	1	

Remarks 1. The 78K0/KB2 is not provided with a subsystem clock.
2. XSEL: Bit 2 of the main clock mode register (MCM)

MCMO: Bit 0 of MCM
EXCLK: Bit 7 of the clock operation mode select register (OSCCTL)
\times : don't care

Table 6-5. Clocks Supplied to CPU and Peripheral Hardware, and Register Setting (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Supplied Clock		XSEL	CSS	MCM0	EXCLK
Clock Supplied to CPU	Clock Supplied to Peripheral Hardware				
Internal high-speed oscillation clock		0	0	\times	\times
Internal high-speed oscillation clock	X1 clock	1	0	0	0
	External main system clock	1	0	0	1
X1 clock		1	0	1	0
External main system clock		1	0	1	1
Subsystem clock	Internal high-speed oscillation clock	0	1	\times	\times
	X1 clock	1	1	0	0
		1	1	1	0
	External main system clock	1	1	0	1
		1	1	1	1

Remark XSEL: Bit 2 of the main clock mode register (MCM)
CSS: Bit 4 of the processor clock control register (PCC)
MCM0: Bit 0 of MCM
EXCLK: Bit 7 of the clock operation mode select register (OSCCTL)
\times : don't care

6.6.6 CPU clock status transition diagram

Figure 6-17 and 6-18 shows the CPU clock status transition diagram of this product.

Figure 6-17. CPU Clock Status Transition Diagram
(When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0), 78K0/KB2)

Note Standard and (A) grade products: 1.8 V , (A2) grade products: 2.7 V

Remark In the 2.7 V/1.59 V POC mode (option byte: POCMODE = 1), the CPU clock status changes to (A) in the above figure when the supply voltage exceeds 2.7 V (TYP.), and to (B) after reset processing (11 to $45 \mu \mathrm{~s}$).

Figure 6-18. CPU Clock Status Transition Diagram (When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0), 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Note Standard and (A) grade products: 1.8 V , (A2) grade products: 2.7 V

Remark In the 2.7 V/1.59 V POC mode (option byte: POCMODE = 1), the CPU clock status changes to (A) in the above figure when the supply voltage exceeds 2.7 V (TYP.), and to (B) after reset processing (11 to $45 \mu \mathrm{~s})$.

Table 6-6 shows transition of the CPU clock and examples of setting the SFR registers.

Table 6-6. CPU Clock Transition and SFR Register Setting Examples (1/5)
(1) CPU operating with internal high-speed oscillation clock (B) after reset release (A)

Status Transition	SFR Register Setting
$(A) \rightarrow(B)$	SFR registers do not have to be set (default status after reset release).

(2) CPU operating with high-speed system clock (C) after reset release (A)
(The CPU operates with the internal high-speed oscillation clock immediately after a reset release (B).)
(Setting sequence of SFR registers)

Setting Flag of SFR Register	AMPH	EXCLK	OSCSEL	MSTOP	OSTC Register	XSEL	MCM0
Status Transition	0	0	1	0	Must be checked	1	1
$(A) \rightarrow(B) \rightarrow(C)(X 1$ clock: $1 \mathrm{MHz} \leq \mathrm{fxH} \leq$ $10 \mathrm{MHz})$	0	1	1	0	Must not be checked	1	1
$(\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow(\mathrm{C})($ external main clock: $1 \mathrm{MHz} \leq$ $\mathrm{fxH} \leq 10 \mathrm{MHz})$	1	0	1	0	Must be checked	1	1
$(\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow(\mathrm{C})(\mathrm{X} 1$ clock: $10 \mathrm{MHz}<\mathrm{fxH} \leq$ $20 \mathrm{MHz})$	1	1	1	0	Must not be checked	1	1
(A) $\rightarrow(\mathrm{B}) \rightarrow(\mathrm{C})($ external main clock: $10 \mathrm{MHz}<$ $\mathrm{fxH} \leq 20 \mathrm{MHz})$	1	1					

Caution Set the X1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{T}_{\mathrm{A}}=-40$ to $\left.+125^{\circ} \mathrm{C}\right)$).
(3) CPU operating with subsystem clock (D) after reset release (A) Note
(The CPU operates with the internal high-speed oscillation clock immediately after a reset release (B).)

Note The 78K0/KB2 is not provided with a subsystem clock.

Setting Flag of SFR Register Status Transition	XTSTART	EXCLKS	OSCSELS	Waiting for Oscillation Stabilization	CSS
$(\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow$ (D) (XT1 clock)	0	0	1	Necessary	1
	1	\times	\times		
$(\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow$ (D) (external subsystem clock)	0	1	1	Unnecessary	1

Remarks 1. (A) to (I) in Table 6-6 correspond to (A) to (I) in Figure 6-17 and 6-18.
2. EXCLK, OSCSEL, EXCLKS, OSCSELS, AMPH:

Bits 7 to 4 and 0 of the clock operation mode select register (OSCCTL)
MSTOP: \quad Bit 7 of the main OSC control register (MOC)
XSEL, MCMO: Bits 2 and 0 of the main clock mode register (MCM)
XTSTART, CSS: Bits 6 and 4 of the processor clock control register (PCC)
x : Don't care

Table 6-6. CPU Clock Transition and SFR Register Setting Examples (2/5)
(4) CPU clock changing from internal high-speed oscillation clock (B) to high-speed system clock (C)

Setting Flag of SFR Register Status Transition	AMPH ${ }^{\text {Note }}$	EXCLK	OSCSEL	MSTOP	OSTC Register	XSEL ${ }^{\text {Note }}$	MCMO
$(\mathrm{B}) \rightarrow$ (C) (X 1 clock: $1 \mathrm{MHz} \leq \mathrm{fxH} \leq 10 \mathrm{MHz}$)	0	0	1	0	Must be checked	1	1
(B) \rightarrow (C) (external main clock: $1 \mathrm{MHz} \leq \mathrm{fxH}_{\mathrm{x}} \leq$ 10 MHz)	0	1	1	0	Must not be checked	1	1
(B) \rightarrow (C) (X1 clock: $10 \mathrm{MHz}<\mathrm{fxH}^{\text {S }} 20 \mathrm{MHz}$)	1	0	1	0	Must be checked	1	1
(B) \rightarrow (C) (external main clock: $10 \mathrm{MHz}<\mathrm{fxh} \leq$ 20 MHz)	1	1	1	0	Must not be checked	1	1
	Unnecessary if these registers are already set Unnecessary if the CPU is operating with the high-speed system clock						

Note The value of this flag can be changed only once after a reset release. This setting is not necessary if it has already been set.

Caution Set the X1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{TA}_{\mathrm{A}}=-40$ to $\left.+125^{\circ} \mathrm{C}\right)$).
(5) CPU clock changing from internal high-speed oscillation clock (B) to subsystem clock (D) ${ }^{\text {Note }}$

Note The 78K0/KB2 is not provided with a subsystem clock.

Setting Flag of SFR Register Status Transition	XTSTART	EXCLKS	OSCSELS	Waiting for Oscillation Stabilization	CSS
$(\mathrm{B}) \rightarrow(\mathrm{D})$ (XT1 clock)	0	0	1	Necessary	1
	1	\times	\times		
(B) \rightarrow (D) (external subsystem clock)	0	1	1	Unnecessary	1

Unnecessary if the CPU is operating
with the subsystem clock
Remarks 1. (A) to (I) in Table 6-6 correspond to (A) to (I) in Figure 6-17 and 6-18.
2. EXCLK, OSCSEL, EXCLKS, OSCSELS, AMPH:

Bits 7 to 4 and 0 of the clock operation mode select register (OSCCTL)
MSTOP: \quad Bit 7 of the main OSC control register (MOC)
XSEL, MCMO: Bits 2 and 0 of the main clock mode register (MCM)
XTSTART, CSS: Bits 6 and 4 of the processor clock control register (PCC)
x : Don't care

Table 6-6. CPU Clock Transition and SFR Register Setting Examples (3/5)
(6) CPU clock changing from high-speed system clock (C) to internal high-speed oscillation clock (B)

(7) CPU clock changing from high-speed system clock (C) to subsystem clock (D) ${ }^{\text {Note }}$

Note The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.

Setting Flag of SFR Register Status Transition	XTSTART	EXCLKS	OSCSELS	Waiting for Oscillation Stabilization	CSS
$(\mathrm{C}) \rightarrow(\mathrm{D})(\mathrm{XT} 1$ clock)	0	0	1	Necessary	1
	1	\times	\times		
$(\mathrm{C}) \rightarrow(\mathrm{D})$ (external subsystem clock)	0	1	1	Unnecessary	1

Unnecessary if the CPU is operating with the subsystem clock
(8) CPU clock changing from subsystem clock (D) to internal high-speed oscillation clock (B)

Note The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.

Setting Flag of SFR Register Status Transition	RSTOP	RSTS	MCM0	CSS
$(\mathrm{D}) \rightarrow(\mathrm{B})$	0	Confirm this flag is 1 .	0	0
	Unnecessary if the CPU is operating with the internal high-speed oscillation clock Unnecessary if XSEL is 0			

Remarks 1. (A) to (I) in Table 6-6 correspond to (A) to (I) in Figure 6-17 and 6-18.
2. MCMO: \quad Bit 0 of the main clock mode register (MCM)

EXCLKS, OSCSELS: Bits 5 and 4 of the clock operation mode select register (OSCCTL)
RSTS, RSTOP: \quad Bits 7 and 0 of the internal oscillation mode register (RCM)
XTSTART, CSS: Bits 6 and 4 of the processor clock control register (PCC)
\times : Don't care

Table 6-6. CPU Clock Transition and SFR Register Setting Examples (4/5)
(9) CPU clock changing from subsystem clock (D) to high-speed system clock (C) ${ }^{\text {Note }}$

Note The 78K0/KB2 is not provided with a subsystem clock.

Note The value of this flag can be changed only once after a reset release. This setting is not necessary if it has already been set.

Caution Set the X1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{T}_{\mathrm{A}}=-40$ to $\left.+125^{\circ} \mathrm{C}\right)$).
(10) • HALT mode (E) set while CPU is operating with internal high-speed oscillation clock (B)

- HALT mode (F) set while CPU is operating with high-speed system clock (C)
- HALT mode (G) set while CPU is operating with subsystem clock (D) ${ }^{\text {Note }}$

Status Transition	
$(B) \rightarrow$ (E) Execting $(C) \rightarrow$ (F) $(D) \rightarrow(G)^{\text {Note }}$	

Note The 78K0/KB2 is not provided with a subsystem clock.

Remarks 1. (A) to (I) in Table 6-6 correspond to (A) to (I) in Figure 6-17 and 6-18.
2. EXCLK, OSCSEL, AMPH: Bits 7, 6, and 0 of the clock operation mode select register (OSCCTL) MSTOP: \quad Bit 7 of the main OSC control register (MOC) XSEL, MCMO: \quad Bits 2 and 0 of the main clock mode register (MCM) CSS: Bit 4 of the processor clock control register (PCC)

Table 6-6. CPU Clock Transition and SFR Register Setting Examples (5/5)
(11) • STOP mode (H) set while CPU is operating with internal high-speed oscillation clock (B)

- STOP mode (I) set while CPU is operating with high-speed system clock (C)

(Setting sequence)		Setting	
Status Transition	Stopping peripheral functions that cannot operate in STOP mode	Executing STOP instruction	
$(B) \rightarrow(H)$ $(C) \rightarrow(I)$			

Remarks 1. (A) to (I) in Table 6-6 correspond to (A) to (I) in Figure 6-17 and 6-18.
2. EXCLK, OSCSEL, AMPH: Bits 7,6 and 0 of the clock operation mode select register (OSCCTL) MSTOP: \quad Bit 7 of the main OSC control register (MOC)
XSEL, MCMO: \quad Bits 2 and 0 of the main clock mode register (MCM)
CSS: Bit 4 of the processor clock control register (PCC)

6.6.7 Condition before changing CPU clock and processing after changing CPU clock

Condition before changing the CPU clock and processing after changing the CPU clock are shown below.

Table 6-7. Changing CPU Clock

	CPU Clock		Condition Before Change	Processing After Change
	Before Change	After Change		
KB2, KC2, KD2, KE2, KF2	Internal high- speed oscillation clock	X1 clock	Stabilization of X1 oscillation - $\mathrm{MSTOP}=0, \mathrm{OSCSEL}=1$, EXCLK $=0$ - After elapse of oscillation stabilization time	- Internal high-speed oscillator can be stopped (RSTOP = 1). - Clock supply to CPU is stopped for 4.06 to $16.12 \mu \mathrm{~s}$ after AMPH has been set to 1 .
		External main system clock	Enabling input of external clock from EXCLK pin - $\mathrm{MSTOP}=0, \mathrm{OSCSEL}=1, \mathrm{EXCLK}=1$	- Internal high-speed oscillator can be stopped (RSTOP = 1). - Clock supply to CPU is stopped for the duration of 160 external clocks from the EXCLK pin after AMPH has been set to 1 .
	X1 clock	Internal high- speed oscillation clock	Oscillation of internal high-speed oscillator - RSTOP = 0	X1 oscillation can be stopped (MSTOP = 1).
	External main system clock			External main system clock input can be disabled (MSTOP = 1).
KC2, KD2, KE2, KF2 (other than KB2)	Internal high- speed oscillation clock	XT1 clock	Stabilization of XT1 oscillation - XTSTART = 0, EXCLKS = 0, OSCSELS $=1$, or $\operatorname{XTSTART~}=1$ - After elapse of oscillation stabilization time	Operating current can be reduced by stopping internal high-speed oscillator (RSTOP = 1).
	X1 clock			X1 oscillation can be stopped (MSTOP = 1).
	External main system clock			External main system clock input can be disabled (MSTOP = 1).
	Internal high- speed oscillation clock	External subsystem clock	Enabling input of external clock from EXCLKS pin - XTSTART = 0, EXCLKS = 1, OSCSELS = 1	Operating current can be reduced by stopping internal high-speed oscillator (RSTOP = 1).
	X1 clock			X1 oscillation can be stopped (MSTOP = 1).
	External main system clock			External main system clock input can be disabled (MSTOP = 1).
	XT1 clock, external subsystem clock	Internal high- speed oscillation clock	Oscillation of internal high-speed oscillator and selection of internal high-speed oscillation clock as main system clock - RSTOP = 0, MCS = 0	XT1 oscillation can be stopped or external subsystem clock input can be disabled (OSCSELS = 0).
		X1 clock	Stabilization of X1 oscillation and selection of high-speed system clock as main system clock - $M S T O P=0, O S C S E L=1$, EXCLK $=0$ - After elapse of oscillation stabilization time - $\mathrm{MCS}=1$	- XT1 oscillation can be stopped or external subsystem clock input can be disabled (OSCSELS = 0). - Clock supply to CPU is stopped for 4.06 to 16.12μ stter AMPH has been set to 1 .
		External main system clock	Enabling input of external clock from EXCLK pin and selection of high-speed system clock as main system clock - MSTOP $=0$, OSCSEL $=1$, EXCLK $=1$ - MCS = 1	- XT1 oscillation can be stopped or external subsystem clock input can be disabled (OSCSELS = 0). - Clock supply to CPU is stopped for the duration of 160 external clocks from the EXCLK pin after AMPH has been set to 1 .

Remark The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.

6.6.8 Time required for switchover of CPU clock and main system clock

By setting bits 0 to 2 (PCC0 to PCC2) and bit 4 (CSS) of the processor clock control register (PCC), the CPU clock can be switched (between the main system clock and the subsystem clock) and the division ratio of the main system clock can be changed.

The actual switchover operation is not performed immediately after rewriting to PCC; operation continues on the preswitchover clock for several clocks (see Table 6-8 and 6-9).

Whether the CPU is operating on the main system clock or the subsystem clock ${ }^{\text {Note }}$ can be ascertained using bit 5 (CLS) of the PCC register.

Note The 78K0/KB2 is not provided with a subsystem clock.

Table 6-8. Time Required for Switchover of CPU Clock and Main System Clock Cycle Division Factor (78K0/KB2)

Remark The number of clocks listed in Table 6-8 is the number of CPU clocks before switchover.

Table 6-9. Time Required for Switchover of CPU Clock and Main System Clock Cycle Division Factor (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Set Value Before Switchover				Set Value After Switchover																							
CSS	PCC2	PCC1	PCCO	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCCO												
				0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	1	\times	\times	\times
0	0	0	0						16 cl	ocks			16 cl	ocks			16 clo	ocks			16 cl	locks			xp/fsue	cloc	
	0	0	1		8 clo	cks							8 clo	cks			8 clo	cks			8 clo	ocks			/fsub	clock	
	0	1	0		4 clo	cks			4 clo	cks							4 clo	cks			4 clo	ocks			/2fsub	cloc	
	0	1	1		2 clo	cks			2 clo	cks			2 clo	cks							2 clo	ocks			/4fsub	cloc	
	1	0	0		1 clo	ock			1 cl	ock			1 cl	ock			1 clo	ock							/8fsub	cloc	
1	\times	\times	\times		2 clo	cks			2 clo	ocks																	

Caution Selection of the main system clock cycle division factor (PCCO to PCC2) and switchover from the main system clock to the subsystem clock (changing CSS from 0 to 1) should not be set simultaneously.
Simultaneous setting is possible, however, for selection of the main system clock cycle division factor (PCC0 to PCC2) and switchover from the subsystem clock to the main system clock (changing CSS from 1 to 0).

Remark 1. The number of clocks listed in Table 6-9 is the number of CPU clocks before switchover.

Remark 2. When switching the CPU clock from the main system clock to the subsystem clock, calculate the number of clocks by rounding up to the next clock and discarding the decimal portion, as shown below.
Example When switching CPU clock from fxp/2 to fsub/2 (@ oscillation with fxp $=10 \mathrm{MHz}$, fsub $=32.768$ kHz)

$$
\mathrm{fxP} / \mathrm{fsuB}=10000 / 32.768 \cong 305.1 \rightarrow 306 \text { clocks }
$$

By setting bit 0 (MCMO) of the main clock mode register (MCM), the main system clock can be switched (between the internal high-speed oscillation clock and the high-speed system clock).

The actual switchover operation is not performed immediately after rewriting to MCMO; operation continues on the preswitchover clock for several clocks (see Table 6-10).

Whether the CPU is operating on the internal high-speed oscillation clock or the high-speed system clock can be ascertained using bit 1 (MCS) of MCM.

Table 6-10. Maximum Time Required for Main System Clock Switchover

Set Value Before Switchover	Set Value After Switchover	
MCM0	MCM0	
	0	1
0		$1+2 \mathrm{ffr}_{\mathrm{RH}} / \mathrm{fxH}$ clock
1	$1+2 \mathrm{fxh}^{2} / \mathrm{fRH}$ clock	

Cautions 1. When switching the internal high-speed oscillation clock to the high-speed system clock, bit 2 (XSEL) of MCM must be set to 1 in advance. The value of XSEL can be changed only once after a reset release.
2. Do not rewrite MCMO when the CPU clock operates with the subsystem clock.

Remarks 1. The number of clocks listed in Table 6-10 is the number of main system clocks before switchover.
2. Calculate the number of clocks in Table 6-10 by removing the decimal portion.

Example When switching the main system clock from the internal high-speed oscillation clock to the high-speed system clock (@ oscillation with fry $=8 \mathrm{MHz}, \mathrm{fxH}=10 \mathrm{MHz}$)

$$
1+2 f_{\text {вн }} / f_{\text {x }}=1+2 \times 8 / 10=1+2 \times 0.8=1+1.6=2.6 \rightarrow 2 \text { clocks }
$$

6.6.9 Conditions before clock oscillation is stopped

The following lists the register flag settings for stopping the clock oscillation (disabling external clock input) and conditions before the clock oscillation is stopped.

Table 6-11. Conditions Before the Clock Oscillation Is Stopped and Flag Settings (78K0/KB2)

Clock $^{\text {Note }}$	Conditions Before Clock Oscillation Is Stopped (External Clock Input Disabled)	Flag Settings of SFR Register
Internal high-speed oscillation clock	MCS $=1$ (The CPU is operating on the high-speed system clock)	RSTOP =1
X1 clock	MCS $=0$ (The CPU is operating on the internal high-speed oscillation clock)	MSTOP =1
External main system clock		

Note The 78K0/KB2 is not provided with a subsystem clock.

Table 6-12. Conditions Before the Clock Oscillation Is Stopped and Flag Settings
(78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Clock	Conditions Before Clock Oscillation Is Stopped (External Clock Input Disabled)	Flag Settings of SFR Register
Internal high-speed oscillation clock	MCS $=1$ or CLS $=1$ $($ The CPU is operating on a clock other than the internal high-speed oscillation clock)	MCS $=0$ or CLS $=1$ (The CPU is operating on a clock other than the high-speed system clock)
X1 clock	CLS $=0$ (The CPU is operating on a clock other than the subsystem clock)	MSTOP =1
External main system clock	OSCSELS =0	
XT1 clock		

6.6.10 Peripheral hardware and source clocks

The following lists peripheral hardware and source clocks incorporated in the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers.

Remark The peripheral hardware depends on the product. See 1.7 Block Diagram and 1.8 Outline of Functions.
Table 6-13. Peripheral Hardware and Source Clocks

		Peripheral Hardware Clock (fPRS)	Subsystem Clock $(\text { fsub })^{\text {Note } 1}$	Internal LowSpeed Oscillation Clock (frl)	TM50 Output	External Clock from Peripheral Hardware Pins
16-bit timer/ event counter	00	Y	N	N	N	$\mathrm{Y}\left(\right.$ TIO00 pin) ${ }^{\text {Note } 2}$
	01	Y	N	N	N	$\mathrm{Y}\left(\right.$ Tl001 pin) ${ }^{\text {Note } 2}$
8-bit timer/ event counter	50	Y	N	N	N	Y (TI50 pin) ${ }^{\text {Note } 2}$
	51	Y	N	N	N	$\mathrm{Y}\left(\right.$ TI51 pin) ${ }^{\text {Note } 2}$
8-Bit timer	H0	Y	N	N	Y	N
	H1	Y	N	Y	N	N
Watch timer		Y	Y	N	N	N
Watchdog timer		N	N	Y	N	N
Buzzer output		Y	N	N	N	N
Clock output		Y	Y	N	N	N
A/D converter		Y	N	N	N	N
Serial interface	UART0	Y	N	N	Y	N
	UART6	Y	N	N	Y	N
	CSI10	Y	N	N	N	$\mathrm{Y}(\overline{\text { SCK10 }} \mathrm{pin})^{\text {Note } 2}$
	CSI11	Y	N	N	N	$\mathrm{Y}(\overline{\text { SCK11 }} \mathrm{pin})^{\text {Note } 2}$
	CSIAO	Y	N	N	N	$\mathrm{Y}(\overline{\text { SCKAO }} \mathrm{pin})^{\text {Note } 2}$
	IIC0	Y	N	N	N	$\begin{aligned} & \text { Y (EXSCLO, } \\ & \text { SCLO pin) }{ }^{\text {Note } 2} \end{aligned}$

Notes 1. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.
2. Do not start the peripheral hardware operation with the external clock from peripheral hardware pins when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Remark Y: Can be selected, N: Cannot be selected

CHAPTER 7 16-BIT TIMER/EVENT COUNTERS 00 AND 01

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
16-bit timer/event counters 00	$\sqrt{ }$					
16-bit timer/event counters 00	-				\checkmark	

Remark V : Mounted, -: Not mounted

7.1 Functions of 16-Bit Timer/Event Counters 00 and 01

16-bit timer/event counters 00 and 01 have the following functions.
(1) Interval timer

16-bit timer/event counters 00 and 01 generate an interrupt request at the preset time interval.
(2) Square-wave output

16-bit timer/event counters 00 and 01 can output a square wave with any selected frequency.
(3) External event counter

16-bit timer/event counters 00 and 01 can measure the number of pulses of an externally input signal.
(4) One-shot pulse output

16 -bit timer event counters 00 and 01 can output a one-shot pulse whose output pulse width can be set freely.
(5) PPG output

16-bit timer/event counters 00 and 01 can output a rectangular wave whose frequency and output pulse width can be set freely.
(6) Pulse width measurement

16-bit timer/event counters 00 and 01 can measure the pulse width of an externally input signal.

7.2 Configuration of 16-Bit Timer/Event Counters 00 and 01

16-bit timer/event counters 00 and 01 include the following hardware.

Table 7-1. Configuration of 16-Bit Timer/Event Counters 00 and 01

Item	Configuration
Time/counter	16-bit timer counter On (TMOn)
Register	16-bit timer capture/compare registers 00n, 01n (CR00n, CR01n)
Timer input	Tl00n, TIO1n pins
Timer output	TOOn pin, output controller
Control registers	16-bit timer mode control register On (TMCOn) 16-bit timer capture/compare control register On (CRCOn) 16-bit timer output control register On (TOCOn) Prescaler mode register On (PRMOn) Port mode register 0 (PMO) Port register 0 (P0)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

Figures 7-1 and 7-2 show the block diagrams.

Figure 7-1. Block Diagram of 16-Bit Timer/Event Counter 00

(Cautions 1 to 3 are listed on the next page.)

Figure 7-2. Block Diagram of 16-Bit Timer/Event Counter 01

Cautions 1. The valid edge of TIO10 and timer output (TOOO) cannot be used for the P01 pin at the same time, and the valid edge of T1011 and timer output (TO01) cannot be used for the P06 pin at the same time. Select either of the functions.
2. If clearing of bits 3 and 2 (TMCOn3 and TMCOn2) of 16-bit timer mode control register On (TMCOn) to 00 and input of the capture trigger conflict, then the captured data is undefined.
3. To change the mode from the capture mode to the comparison mode, first clear the TMCOn3 and TMCOn2 bits to 00 , and then change the setting.
A value that has been once captured remains stored in CROOn unless the device is reset. If the mode has been changed to the comparison mode, be sure to set a comparison value.
(1) 16-bit timer counter $0 n$ (TMOn)

TMOn is a 16-bit read-only register that counts count pulses.
The counter is incremented in synchronization with the rising edge of the count clock.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-3. Format of 16-Bit Timer Counter On (TMOn)

The count value of TMOn can be read by reading TMOn when the value of bits 3 and 2 (TMCOn3 and TMCOn2) of 16bit timer mode control register On (TMCOn) is other than 00 . The value of TMOn is 0000 H if it is read when TMCOn3 and $\mathrm{TMCOn2}=00$.
The count value is reset to 0000 H in the following cases.

- At reset signal generation
- If TMCOn3 and TMCOn2 are cleared to 00
- If the valid edge of the TIOOn pin is input in the mode in which the clear \& start occurs when inputting the valid edge to the TIOOn pin
- If TMOn and CROOn match in the mode in which the clear \& start occurs when TMOn and CROOn match
- OSPTOn is set to 1 in one-shot pulse output mode or the valid edge is input to the TIOOn pin

Caution Even if TMOn is read, the value is not captured by CRO1n.

(2) 16-bit timer capture/compare register 00n (CR00n), 16-bit timer capture/compare register 01n (CR01n)

CROOn and CR01n are 16-bit registers that are used with a capture function or comparison function selected by using CRCOn.
Change the value of CROOn while the timer is stopped (TMCOn3 and TMCOn2 $=00$).
The value of CR01n can be changed during operation if the value has been set in a specific way. For details, see
7.5.1 Rewriting CRO1n during TMOn operation.

These registers can be read or written in 16-bit units.
Reset signal generation clears these registers to 0000 H .

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

Figure 7-4. Format of 16-Bit Timer Capture/Compare Register 00n (CR00n)

Address:	FF12H, FF13H (CR000), FFB2H, FFB3H (CR001)									After reset: 0000H				R/W		
	FF13H (CR000), FFB3H (CR001)									FF12H (CR000), FFB2H (CR001)						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CROOn $(\mathrm{n}=0,1)$																

(i) When CROOn is used as a compare register

The value set in CROOn is constantly compared with the TMOn count value, and an interrupt request signal (INTTMOOn) is generated if they match. The value is held until CROOn is rewritten.

Caution CR00n does not perform the capture operation when it is set in the comparison mode, even if a capture trigger is input to it.
(ii) When CROOn is used as a capture register

The count value of TMOn is captured to CROOn when a capture trigger is input.
As the capture trigger, an edge of a phase reverse to that of the TIOOn pin or the valid edge of the TIO1n pin can be selected by using CRCOn or PRMOn.

Figure 7-5. Format of 16-Bit Timer Capture/Compare Register 01n (CR01n)

Address:	FF14H, FF15H (CR010), FFB4H, FFB5H (CR011)									After reset: 0000 H				R/W		
	FF15H (CR010), FFB5H (CR011)									FF14H (CR010), FFB4H (CR011)						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CR01n $(\mathrm{n}=0,1)$																

(i) When CR01n is used as a compare register

The value set in CRO1n is constantly compared with the TMOn count value, and an interrupt request signal (INTTM01n) is generated if they match.

Caution CR01n does not perform the capture operation when it is set in the comparison mode, even if a capture trigger is input to it.
(ii) When CR01n is used as a capture register

The count value of TMOn is captured to CRO1n when a capture trigger is input.
It is possible to select the valid edge of the TIOOn pin as the capture trigger. The TIOOn pin valid edge is set by PRMOn.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
(iii) Setting range when CR00n or CR01n is used as a compare register

When CR00n or CR01n is used as a compare register, set it as shown below.

| Operation | CR00n Register Setting Range | CR01n Register Setting Range |
| :--- | :--- | :--- |\(\left.| \begin{array}{l}0000 \mathrm{H}^{Note} \leq \mathrm{M} \leq FFFFH

Normally, this setting is not used. Mask the

match interrupt signal (INTTM01n).\end{array}\right\}\)

Note When 0000 H is set, a match interrupt immediately after the timer operation does not occur and timer output is not changed, and the first match timing is as follows. A match interrupt occurs at the timing when the timer counter (TMOn register) is changed from 0000 H to 0001 H .

- When the timer counter is cleared due to overflow
- When the timer counter is cleared due to TIOOn pin valid edge (when clear \& start mode is entered by TIOOn pin valid edge input)
- When the timer counter is cleared due to compare match (when clear \& start mode is entered by match between TMOn and CR00n (CR00n = other than 0000H, CR01n $=0000 \mathrm{H}$))

Remarks 1. N: CR00n register set value, M: CR01n register set value
2. For details of TMCOn3 and TMCOn2, see 7.3 (1) 16-bit timer mode control register On (TMCOn).
3. $\mathrm{n}=0$: $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

Table 7-2. Capture Operation of CR00n and CR01n

	TIOOn Pin Input			
Capture operation of CROOn	CRCOn1 = 1 TIOOn pin input (reverse phase)	Set values of ESOn1 and ESOn0 Position of edge to be captured	CRCOn1 bit $=0$ TIO1n pin input	Set values of ES1n1 and ES1n0 Position of edge to be captured
				01: Rising
				00: Falling
		11: Both edges (cannot be captured)		11: Both edges
	Interrupt signal	INTTM00n signal is not generated even if value is captured.		INTTM00n signal is generated each time value is captured.
Capture operation of CR01n	TIOOn pin input ${ }^{\text {Note }}$	Set values of ESOn1 and ESOn0 Position of edge to be captured		
		01: Rising		
		00: Falling		
		11: Both edges		
	Interrupt signal	INTTM01n signal is generated each time value is captured.		

Note The capture operation of CRO1n is not affected by the setting of the CRCOn1 bit.

Caution To capture the count value of the TMOn register to the CROOn register by using the phase reverse to that input to the TIOOn pin, the interrupt request signal (INTTMOOn) is not generated after the value has been captured. If the valid edge is detected on the TIO1n pin during this operation, the capture operation is not performed but the INTTMOOn signal is generated as an external interrupt signal. To not use the external interrupt, mask the INTTMOOn signal.

Remarks 1. CRCOn1: See 7.3 (2) Capture/compare control register On (CRCOn). ES1n1, ES1n0, ESOn1, ESOn0: See 7.3 (4) Prescaler mode register On (PRMOn).
2. $\mathrm{n}=0: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

7.3 Registers Controlling 16-Bit Timer/Event Counters 00 and 01

Registers used to control 16-bit timer/event counters 00 and 01 are shown below.

- 16-bit timer mode control register On (TMCOn)
- Capture/compare control register On (CRCOn)
- 16-bit timer output control register On (TOCOn)
- Prescaler mode register On (PRMOn)
- Port mode register 0 (PMO)
- Port register 0 (PO)
(1) 16-bit timer mode control register On (TMCOn)

TMCOn is an 8-bit register that sets the 16-bit timer/event counter On operation mode, TMOn clear mode, and output timing, and detects an overflow.
Rewriting TMCOn is prohibited during operation (when TMCOn3 and TMCOn2 $=$ other than 00). However, it can be changed when TMCOn3 and TMCOn2 are cleared to 00 (stopping operation) and when OVFOn is cleared to 0 . TMCOn can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears TMCOn to 00 H .

Caution 16-bit timer/event counter On starts operation at the moment TMCOn2 and TMCOn3 are set to values other than 00 (operation stop mode), respectively. Set TMCOn2 and TMCOn3 to 00 to stop the operation.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-6. Format of 16-Bit Timer Mode Control Register 00 (TMC00)

TMC003	TMC002	Operation enable of 16-bit timer/event counter 00
0	0	Disables 16-bit timer/event counter 00 operation. Stops supplying operating clock. Clears 16-bit timer counter 00 (TM00).
0	1	Free-running timer mode
1	0	Clear \& start mode entered by TIO00 pin valid edge input ${ }^{\text {Note }}$
1	1	Clear \& start mode entered upon a match between TM00 and CR000

TMC001	Condition to reverse timer output (TO00)
0	\bullet Match between TM00 and CR000 or match between TM00 and CR010
1	$\bullet$$\bullet$ Match between TM00 and CR000 or match between TM00 and CR010 \bullet Trigger input of TI000 pin valid edge

OVF00	TM00 overflow flag
Clear (0)	Clears OVF00 to 0 or TMC003 and TMC002 $=00$
Set (1)	Overflow occurs.

OVF00 is set to 1 when the value of TM00 changes from FFFFH to 0000 H in all the operation modes (free-running timer mode, clear \& start mode entered by TIOOO pin valid edge input, and clear \& start mode entered upon a match between TM00 and CR000).
It can also be set to 1 by writing 1 to OVF00.

Note The TIOOO pin valid edge is set by bits 5 and 4 (ES001, ES000) of prescaler mode register 00 (PRM00).

Figure 7-7. Format of 16-Bit Timer Mode Control Register 01 (TMC01)

TMC013	TMC012	Operation enable of 16-bit timer/event counter 01
0	0	Disables 16-bit timer/event counter 01 operation. Stops supplying operating clock. Clears 16-bit timer counter 01 (TM01).
0	1	Free-running timer mode
1	0	Clear \& start mode entered by TI001 pin valid edge input ${ }^{\text {Note }}$
1	1	Clear \& start mode entered upon a match between TM01 and CR001

TMC011	Condition to reverse timer output (TO01)
0	\bullet Match between TM01 and CR001 or match between TM01 and CR011
1	\bullet• Match between TM01 and CR001 or match between TM01 and CR011 \bullet Trigger input of TI001 pin valid edge

OVF01	TM01 overflow flag
Clear (0)	Clears OVF01 to 0 or TMC013 and TMC012 $=00$
Set (1)	Overflow occurs.

OVF01 is set to 1 when the value of TM01 changes from FFFFH to 0000 H in all the operation modes (free-running timer mode, clear \& start mode entered by TI001 pin valid edge input, and clear \& start mode entered upon a match between TM01 and CR001)
It can also be set to 1 by writing 1 to OVF01.

Note The TI001 pin valid edge is set by bits 5 and 4 (ES011, ES010) of prescaler mode register 01 (PRM01).
(2) Capture/compare control register On (CRCOn)

CRCOn is the register that controls the operation of CR00n and CR01n.
Changing the value of CRCOn is prohibited during operation (when TMCOn3 and TMCOn2 = other than 00). CRCOn can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears CRCOn to 00H.

Figure 7-8. Format of Capture/Compare Control Register 00 (CRC00)

Address:	After reset: 00 H		R/W					
Symbol	7	6	5	4	3	2	1	0
CRCOO	0	0	0	0	0	CRC002	CRC001	CRC000

CRC002	CR010 operating mode selection
0	Operates as compare register
1	Operates as capture register

CRC001	CR000 capture trigger selection
0	Captures on valid edge of TIO10 pin
1	Captures on valid edge of TIOOO pin by reverse phase ${ }^{\text {Note }}$
The valid edge of the TIO10 and TIOOO pin is set by PRM00. If ES001 and ES000 are set to 11 (both edges) when CRC001 is 1, the valid edge of the TIO00 pin cannot be detected.	

CRC000	CR000 operating mode selection
0	Operates as compare register
1	Operates as capture register
If TMC003 and TMC002 are set to 11 (clear \& start mode entered upon a match between TM00 and CR000), be sure to set CRC000 to 0.	

Note When the valid edge is detected from the TIO10 pin, the capture operation is not performed but the INTTM000 signal is generated as an external interrupt signal.

Caution To ensure that the capture operation is performed properly, the capture trigger requires a pulse two cycles longer than the count clock selected by prescaler mode register 00 (PRMOO).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-9. Example of CR01n Capture Operation (When Rising Edge Is Specified)

Figure 7-10. Format of Capture/Compare Control Register 01 (CRC01)

CRC012	CR011 operating mode selection
0	Operates as compare register
1	Operates as capture register

CRC011	CR001 capture trigger selection
0	Captures on valid edge of TIO11 pin
1	Captures on valid edge of TIO01 pin by reverse phase ${ }^{\text {Note }}$
The valid edge of the TIO11 and TIO01 pin is set by PRM01. If ES011 and ES010 are set to 11 (both edges) when CRC011 is 1, the valid edge of the TIO01 pin cannot be detected.	

CRC010	CR001 operating mode selection
0	Operates as compare register
1	Operates as capture register
If TMC013 and TMC012 are set to 11 (clear \& start mode entered upon a match between TM01 and CR001), be sure to set CRC010 to 0.	

Note When the valid edge is detected from the T1011 pin, the capture operation is not performed but the INTTM001 signal is generated as an external interrupt signal.

Caution To ensure that the capture operation is performed properly, the capture trigger requires a pulse two cycles longer than the count clock selected by prescaler mode register 01 (PRM01) (see Figure 7-9 Example of CR01n Capture Operation (When Rising Edge Is Specified)).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
(3) 16-bit timer output control register On (TOCOn)

TOCOn is an 8-bit register that controls the TOOn output.
TOCOn can be rewritten while only OSPTOn is operating (when TMCOn3 and TMCOn2 = other than 00). Rewriting the other bits is prohibited during operation.
However, TOCOn4 can be rewritten during timer operation as a means to rewrite CR01n (see 7.5.1 Rewriting CRO1n during TMOn operation).
TOCOn can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears TOCOn to 00H.

Caution Be sure to set TOCOn using the following procedure.
$<1>$ Set TOCOn4 and TOCOn1 to 1.
<2> Set only TOEOn to 1.
<3> Set either of LVSOn or LVROn to 1.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-11. Format of 16-Bit Timer Output Control Register 00 (TOC00)
Address: FFBDH After reset: 00 H R/W

Symbol	7	<6>	<5>	4	<3>	<2>	1	<0>
TOC00	0	OSPT00	OSPE00	TOC004	LVS00	LVR00	TOC001	TOE00

OSPT00	One-shot pulse output trigger via software	
0		
1	One-shot pulse output	
The value of this bit is always " 0 " when it is read. Do not set this bit to 1 in a mode other than the one- shot pulse output mode. If it is set to 1, TM00 is cleared and started.		

OSPE00	One-shot pulse output operation control
0	Successive pulse output
1	One-shot pulse output
One-shot pulse output operates correctly in the free-running timer mode or clear \& start mode entered by TIOOO pin valid edge input. The one-shot pulse cannot be output in the clear \& start mode entered upon a match between TM00 and CR000.	

TOC004	TO00 output control on match between CR010 and TM00
0	Disables inversion operation
1	Enables inversion operation
The interrupt signal (INTTM010) is generated even when TOC004 $=0$	

LVS00	LVR00	Setting of TO00 output status
0	0	No change
0	1	Initial value of TO00 output is low level (TOOO output is cleared to 0).
1	0	Initial value of TO00 output is high level (TO00 output is set to 1).
1	1	Setting prohibited

- LVS00 and LVR00 can be used to set the initial value of the TO00 output level. If the initial value does not have to be set, leave LVS00 and LVR00 as 00.
- Be sure to set LVS00 and LVR00 when TOEOO = 1 . LVS00, LVR00, and TOE00 being simultaneously set to 1 is prohibited.
- LVS00 and LVR00 are trigger bits. By setting these bits to 1, the initial value of the TOOO output level can be set. Even if these bits are cleared to 0 , TOOO output is not affected.
- The values of LVS00 and LVR00 are always 0 when they are read.
- For how to set LVS00 and LVR00, see 7.5.2 Setting LVSOn and LVROn.
- The actual TO00/TI010/P01 pin output is determined depending on PM01 and P01, besides TO00 output.

TOC001	TO00 output control on match between CR000 and TM00
0	Disables inversion operation
1	Enables inversion operation
The interrupt signal (INTTM000) is generated even when TOC001 $=0$.	

TOE00	TO00 output control
0	Disables output (TO00 output fixed to low level)
1	Enables output

Figure 7-12. Format of 16-Bit Timer Output Control Register 01 (TOC01)

OSPE01	One-shot pulse output operation control
0	Successive pulse output
1	One-shot pulse output
One-shot pulse output operates correctly in the free-running timer mode or clear \& start mode entered by TIO01 pin valid edge input. The one-shot pulse cannot be output in the clear \& start mode entered upon a match between TM01 and CR001.	

TOC014	TO01 output control on match between CR011 and TM01
0	Disables inversion operation
1	Enables inversion operation
The interrupt signal (INTTM011) is generated even when TOC014 $=0$	

LVS01	LVR01	Setting of TO01 output status
0	0	No change
0	1	Initial value of TO01 output is low level (TO01 output is cleared to 0).
1	0	Initial value of TO01 output is high level (TO01 output is set to 1).
1	1	Setting prohibited

- LVS01 and LVR01 can be used to set the initial value of the TO01 output level. If the initial value does not have to be set, leave LVS01 and LVR01 as 00.
- Be sure to set LVS01 and LVR01 when TOE01 = 1 . LVS01, LVR01, and TOE01 being simultaneously set to 1 is prohibited.
- LVS01 and LVR01 are trigger bits. By setting these bits to 1, the initial value of the TO01 output level can be set. Even if these bits are cleared to 0 , TO01 output is not affected.
- The values of LVS01 and LVR01 are always 0 when they are read.
- For how to set LVS01 and LVR01, see 7.5.2 Setting LVSOn and LVROn.
- The actual TO01/TI011/P06 pin output is determined depending on PM06 and P06, besides TO01 output.

TOC011	TO01 output control on match between CR001 and TM01
0	Disables inversion operation
1	Enables inversion operation
The interrupt signal (INTTM001) is generated even when TOC011 $=0$.	

TOE01	
0	Disables output (TO01 output is fixed to low level)
1	Enables output

(4) Prescaler mode register On (PRMOn)

PRMOn is the register that sets the TMOn count clock and TIOOn and TIO1n pin input valid edges.
Rewriting PRMOn is prohibited during operation (when TMCOn3 and TMCOn2 = other than 00).
PRMOn can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears PRMOn to 00 H .

Cautions 1. Do not apply the following setting when setting the PRMOn1 and PRMOn0 bits to 11 (to specify the valid edge of the TIOOn pin as a count clock).

- Clear \& start mode entered by the TIOOn pin valid edge
- Setting the TIOOn pin as a capture trigger

2. If the operation of the 16-bit timer/event counter On is enabled when the TIOOn or TIO1n pin is at high level and when the valid edge of the TIOOn or TIO1n pin is specified to be the rising edge or both edges, the high level of the TIOOn or TIO1n pin is detected as a rising edge. Note this when the TIOOn or TIO1n pin is pulled up. However, the rising edge is not detected when the timer operation has been once stopped and then is enabled again.
3. The valid edge of TIO10 and timer output (TO00) cannot be used for the P01 pin at the same time, and the valid edge of TIO11 and timer output (TO01) cannot be used for the P06 pin at the same time. Select either of the functions.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-13. Format of Prescaler Mode Register 00 (PRM00)

ES001	ESO00	
0	0	Talling edge
0	1	Rising edge
1	0	Setting prohibited valid edge selection
1	1	Both falling and rising edges

PRM001	PRM000	Count clock selection ${ }^{\text {Note } 1}$				
			$\mathrm{fPRS}^{\text {a }}$ 2 MHz	$\mathrm{fPRS}=5 \mathrm{MHz}$	$\mathrm{fPRS}=10 \mathrm{MHz}$	fPRS $=20 \mathrm{MHz}$
0	0	$\mathrm{fPRS}^{\text {Note }} 2$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 3}$
0	1	frrs $/ 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
1	0	frrs/ $2{ }^{8}$	7.81 kHz	19.53 kHz	39.06 kHz	78.12 kHz
1	1	TIOOO valid edge ${ }^{\text {Notes 4,5 }}$				

Notes 1. The frequency that can be used for the peripheral hardware clock (fpRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD)	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	fras $\leq 20 \mathrm{MHz}$	f fris $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	fPRS $\leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fxH}(\mathrm{XSEL}=1)$.)
2. If the peripheral hardware clock (fpRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of $\mathrm{PRM} 001=\mathrm{PRM} 000=0$ (count clock: fpRs) is prohibited.
3. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.
4. The external clock from the TIOOO pin requires a pulse longer than twice the cycle of the peripheral hardware clock (fpRs).
5. Do not start timer operation with the external clock from the TIOOO pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Remark fprs: Peripheral hardware clock frequency

Figure 7-14. Format of Prescaler Mode Register 01 (PRM01)

Address: FFB7H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0	
	PRM01	ES111	ES110	ES011	ES010	0	0	PRM011	PRM010

ES111	ES110	TI011 pin valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

ES011	ES010	TIO01 pin valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

PRM011	PRM010	Count clock selection ${ }^{\text {Note } 1}$				
			$\mathrm{f}_{\text {PRS }}=2 \mathrm{MHz}$	$\mathrm{f}_{\text {PRS }}=5 \mathrm{MHz}$	frRs $=10 \mathrm{MHz}$	$\mathrm{fPRS}=20 \mathrm{MHz}$
0	0	fras ${ }^{\text {Note } 2}$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 3}$
0	1	fprs $/ 2{ }^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz
1	0	fprs $/ 2{ }^{6}$	31.25 kHz	78.125 kHz	156.25 kHz	312.5 kHz
1	1	TI001 valid edge ${ }^{\text {Notes 4, } 5}$				

Notes 1. The frequency that can be used for the peripheral hardware clock (fpRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD)	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	frRS $\leq 20 \mathrm{MHz}$	f fras $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	fPRS $\leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=f \times H$ (XSEL = 1).)
2. If the peripheral hardware clock (fpRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of PRM011 $=$ PRM010 $=0$ (count clock: fpRs) is prohibited.
3. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.
4. The external clock from the TIOO1 pin requires a pulse longer than twice the cycle of the peripheral hardware clock (fpRs).
5. Do not start timer operation with the external clock from the TIOO1 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Remark fPRs: Peripheral hardware clock frequency

(5) Port mode register 0 (PMO)

This register sets port 0 input/output in 1-bit units.
When using the P01/TO00/TI010 and P06/TO01/TI011 pins for timer output, set PM01 and PM06 and the output latches of P01 and P06 to 0.
When using the P00/TI000, P01/TO00/TI010, P05/TI001/SSI11, and P06/TO01/TI011 pins for timer input, set PM00, PM01, PM05, and PM06 to 1. At this time, the output latches of P00, P01, P05, and P06 may be 0 or 1.
PM0 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets PMO to FFH.

Figure 7-15. Format of Port Mode Register 0 (PMO)
Address: FF20H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00

PMOn	POn pin I/O mode selection ($\mathrm{n}=0$ to 6)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Remark The figure shown above presents the format of port mode register 0 of 78K0/KF2 products. For the format of port mode register 0 of other products, see (1) Port mode registers (PMxx) in 5.3 Registers Controlling Port Function.

7.4 Operation of 16-Bit Timer/Event Counters 00 and 01

7.4.1 Interval timer operation

If bits 3 and 2 (TMCOn3 and TMCOn2) of the 16-bit timer mode control register (TMCOn) are set to 11 (clear \& start mode entered upon a match between TMOn and CROOn), the count operation is started in synchronization with the count clock.

When the value of TMOn later matches the value of CROOn, TMOn is cleared to 0000 H and a match interrupt signal (INTTMOOn) is generated. This INTTMOOn signal enables TMOn to operate as an interval timer.

Remarks 1. For the setting of I/O pins, see 7.3 (5) Port mode register 0 (PMO).
2. For how to enable the INTTM00n interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

Figure 7-16. Block Diagram of Interval Timer Operation

Figure 7-17. Basic Timing Example of Interval Timer Operation

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-18. Example of Register Settings for Interval Timer Operation
(a) 16-bit timer mode control register On (TMCOn)

TMC0n3				TMCOn2	TMCOn1	OVFOn	
0	0	0	0	1	1	0	0

Clears and starts on match between TMOn and CROOn.
(b) Capture/compare control register On (CRCOn)

CROOn used as compare register
(c) 16-bit timer output control register On (TOCOn)

| | OSPTOn | OSPE0n | TOC0n4 | LVSOn | LVR0n | TOCOn1 | TOE0n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

(d) Prescaler mode register On (PRMOn)

ES1n1	ES1n0	ESOn1	ESOn0	3	2	PRMOn1	
0	0	0	0	0	0	$0 / 1$	$0 / 1$

(e) 16-bit timer counter $0 n$ (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CROOn)

If M is set to CROOn, the interval time is as follows.

- Interval time $=(\mathrm{M}+1) \times$ Count clock cycle

Setting CROOn to 0000 H is prohibited.
(g) 16-bit capture/compare register 01n (CRO1n)

Usually, CR01n is not used for the interval timer function. However, a compare match interrupt (INTTM01n) is generated when the set value of CR01n matches the value of TMOn.
Therefore, mask the interrupt request by using the interrupt mask flag (TMMK01n).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-19. Example of Software Processing for Interval Timer Function

<1> Count operation start flow

Initial setting of these registers is performed before setting the TMCOn3 and TMCOn2 bits to 11.

Starts count operation
<2> Count operation stop flow

The counter is initialized and counting is stopped by clearing the TMCOn3 and TMCOn2 bits to 00 .

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.4.2 Square-wave output operation

When 16-bit timer/event counter On operates as an interval timer (see 7.4.1), a square wave can be output from the TOOn pin by setting the 16-bit timer output control register On (TOCOn) to 03H.

When TMCOn3 and TMCOn2 are set to 11 (count clear \& start mode entered upon a match between TMOn and CR00n), the counting operation is started in synchronization with the count clock.

When the value of TMOn later matches the value of CROOn, TMOn is cleared to 0000 H , an interrupt signal (INTTMOOn) is generated, and TOOn output is inverted. This TOOn output that is inverted at fixed intervals enables TOOn to output a square wave.

Remarks 1. For the setting of I/O pins, see 7.3 (5) Port mode register 0 (PMO).
2. For how to enable the INTTM00n signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

Figure 7-20. Block Diagram of Square-Wave Output Operation

Figure 7-21. Basic Timing Example of Square-Wave Output Operation

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-22. Example of Register Settings for Square-Wave Output Operation
(a) 16-bit timer mode control register On (TMCOn)

(b) Capture/compare control register On (CRCOn)

CR00n used as compare register
(c) 16-bit timer output control register On (TOCOn)

| | OSPTOn | OSPE0n | TOC0n4 | LVS0n | LVR0n | TOC0n1 | TOE0n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $0 / 1$ | $0 / 1$ | 1 | 1 |

- Enables TOOn output.
inverts TOOn output on match between TMOn and CROOn.

Specifies initial value of TOOn output F/F
(d) Prescaler mode register On (PRMOn)

ES1n1	ES1n0	ESOn1	ESOn0	3	2	PRMOn1	PRMOn0
0	0	0	0	0	0	$0 / 1$	$0 / 1$

(e) 16-bit timer counter 0 n (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CR00n)

If M is set to CROOn, the interval time is as follows.

- Square wave frequency $=1$ / $[2 \times(M+1) \times$ Count clock cycle $]$

Setting CROOn to 0000H is prohibited.
(g) 16-bit capture/compare register 01n (CR01n)

Usually, CR01n is not used for the square-wave output function. However, a compare match interrupt (INTTMO1n) is generated when the set value of CR01n matches the value of TMOn.
Therefore, mask the interrupt request by using the interrupt mask flag (TMMK01n).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-23. Example of Software Processing for Square-Wave Output Function

<1> Count operation start flow

<2> Count operation stop flow

The counter is initialized and counting is stopped by clearing the TMCOn3 and TMCOn2 bits to 00 .

Note Care must be exercised when setting TOCOn. For details, see 7.3 (3) 16-bit timer output control register On (TOCOn).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.4.3 External event counter operation

When bits 1 and 0 (PRMOn1 and PRMOn0) of the prescaler mode register On (PRMOn) are set to 11 (for counting up with the valid edge of the TIOOn pin) and bits 3 and 2 (TMCOn3 and TMCOn2) of 16-bit timer mode control register On (TMCOn) are set to 11, the valid edge of an external event input is counted, and a match interrupt signal indicating matching between TMOn and CROOn (INTTMOOn) is generated.

To input the external event, the TIOOn pin is used. Therefore, the timer/event counter cannot be used as an external event counter in the clear \& start mode entered by the TIOOn pin valid edge input (when TMCOn3 and TMCOn2 = 10).

The INTTMOOn signal is generated with the following timing.

- Timing of generation of INTTMOOn signal (second time or later)
$=$ Number of times of detection of valid edge of external event \times (Set value of CR00n +1)

However, the first match interrupt immediately after the timer/event counter has started operating is generated with the following timing.

- Timing of generation of INTTMOOn signal (first time only)
$=$ Number of times of detection of valid edge of external event input $\times($ Set value of CR00n +2)

To detect the valid edge, the signal input to the TIOOn pin is sampled during the clock cycle of fprs. The valid edge is not detected until it is detected two times in a row. Therefore, a noise with a short pulse width can be eliminated.

Remarks 1. For the setting of I/O pins, see $\mathbf{7 . 3}$ (5) Port mode register 0 (PMO).
2. For how to enable the INTTMOOn signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

Figure 7-24. Block Diagram of External Event Counter Operation

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-25. Example of Register Settings in External Event Counter Mode (1/2)
(a) 16-bit timer mode control register On (TMCOn)

(b) Capture/compare control register On (CRCOn)

					CRCOn2	CRCOn1	CRCOnO
0	0	0	0	0	0	0	0

CROOn used as compare register
(c) 16-bit timer output control register On (TOCOn)

	OSPTOn	OSPEOn	TOCOn4	LVSOn	LVR0n	TOC0n1	TOE0n
0	0	0	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$

0: Disables TOOn output
1: Enables TOOn output
Specifies initial value of
TOOn output F/F

00: Does not invert TOOn output on match between TMOn and CR00n/CR01n.
01: Inverts TOOn output on match between TMOn and CROOn.
10: Inverts TOOn output on match between TMOn and CR01n
11: Inverts TOOn output on match between TMOn and CR00n/CR01n
(d) Prescaler mode register On (PRMOn)

ES1n	ES1n0	ESOn1	ESOn0	3	2	PRMOn1	0	
0	0	0/1	0/1	0	0	1	1	

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-25. Example of Register Settings in External Event Counter Mode (2/2)
(e) 16-bit timer counter On (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CROOn)

If M is set to CROOn, the interrupt signal (INTTMOOn) is generated when the number of external events reaches ($M+1$).

Setting CROOn to 0000H is prohibited.
(g) 16-bit capture/compare register 01n (CR01n)

Usually, CR01n is not used in the external event counter mode. However, a compare match interrupt (INTTMO1n) is generated when the set value of CR01n matches the value of TMOn.
Therefore, mask the interrupt request by using the interrupt mask flag (TMMK01n).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-26. Example of Software Processing in External Event Counter Mode

<1> Count operation start flow

Initial setting of these registers is performed before setting the TMCOn3 and TMCOn2 bits to 11.

Starts count operation
<2> Count operation stop flow

The counter is initialized and counting is stopped by clearing the TMCOn3 and TMCOn2 bits to 00.

Note Care must be exercised when setting TOCOn. For details, see 7.3 (3) 16-bit timer output control register On (TOCOn).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.4.4 Operation in clear \& start mode entered by TIOOn pin valid edge input

When bits 3 and 2 (TMCOn3 and TMCOn2) of 16-bit timer mode control register On (TMCOn) are set to 10 (clear \& start mode entered by the TIOOn pin valid edge input) and the count clock (set by PRMOn) is supplied to the timer/event counter, TMOn starts counting up. When the valid edge of the TIOOn pin is detected during the counting operation, TMOn is cleared to 0000 H and starts counting up again. If the valid edge of the TIOOn pin is not detected, TMOn overflows and continues counting.

The valid edge of the TIOOn pin is a cause to clear TMOn. Starting the counter is not controlled immediately after the start of the operation.

CR00n and CR01n are used as compare registers and capture registers.
(a) When CROOn and CRO1n are used as compare registers

Signals INTTM00n and INTTM01n are generated when the value of TMOn matches the value of CROOn and CR01n.
(b) When CR00n and CR01n are used as capture registers

The count value of TMOn is captured to CROOn and the INTTMOOn signal is generated when the valid edge is input to the TIO1n pin (or when the phase reverse to that of the valid edge is input to the TIOOn pin).
When the valid edge is input to the TIOOn pin, the count value of TMOn is captured to CR01n and the INTTM01n signal is generated. As soon as the count value has been captured, the counter is cleared to 0000 H .
$<R>\quad$ Caution Do not set the count clock as the valid edge of the TIOOn pin (PRMOn1 and PRMOn0 = 11). When PRMOn1 and PRMOn0 = 11, TMOn may be cleared.

Remarks 1. For the setting of the I/O pins, see 7.3 (5) Port mode register 0 (PMO).
2. For how to enable the INTTMOOn signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.
(1) Operation in clear \& start mode entered by TIOOn pin valid edge input (CROOn: compare register, CRO1n: compare register)

Figure 7-27. Block Diagram of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Compare Register, CR01n: Compare Register)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-28. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Compare Register, CR01n: Compare Register)
(a) TOCOn $=13 \mathrm{H}$, PRMOn $=10 \mathrm{H}$, CRCOn, $=00 \mathrm{H}$, TMCOn $=08 \mathrm{H}$

(b) TOCOn $=13 \mathrm{H}$, PRMOn $=10 \mathrm{H}, \mathrm{CRCOn},=00 \mathrm{H}$, TMCOn $=0 \mathrm{AH}$

(a) and (b) differ as follows depending on the setting of bit 1 (TMCOn1) of the 16-bit timer mode control register On (TMCOn).
(a) The TOOn output level is inverted when TMOn matches a compare register.
(b) The TOOn output level is inverted when TMOn matches a compare register or when the valid edge of the TIOOn pin is detected.

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
(2) Operation in clear \& start mode entered by TIOOn pin valid edge input (CR00n: compare register, CR01n: capture register)

Figure 7-29. Block Diagram of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Compare Register, CR01n: Capture Register)

Figure 7-30. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Compare Register, CR01n: Capture Register) (1/2)
(a) TOCOn = 13H, PRMOn $=10 \mathrm{H}, C R C O n,=04 \mathrm{H}, \mathrm{TMCOn}=08 \mathrm{H}, C R 00 \mathrm{n}=0001 \mathrm{H}$

This is an application example where the TOOn output level is inverted when the count value has been captured \& cleared.
The count value is captured to CR01n and TMOn is cleared (to 0000 H) when the valid edge of the TIOOn pin is detected. When the count value of TMOn is 0001 H , a compare match interrupt signal (INTTMOOn) is generated, and the TOOn output level is inverted.

Remark $\mathrm{n}=0: \quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC2}$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

Figure 7-30. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Compare Register, CR01n: Capture Register) (2/2)
(b) TOCOn $=13 \mathrm{H}$, PRMOn $=10 \mathrm{H}, C R C O n,=04 \mathrm{H}, \mathrm{TMCOn}=0 \mathrm{AH}, C R 00 \mathrm{n}=0003 \mathrm{H}$

This is an application example where the width set to CROOn (4 clocks in this example) is to be output from the TOOn pin when the count value has been captured \& cleared.
The count value is captured to CRO1n, a capture interrupt signal (INTTMO1n) is generated, TMOn is cleared (to 0000 H), and the TOOn output level is inverted when the valid edge of the TIOOn pin is detected. When the count value of TMOn is 0003H (four clocks have been counted), a compare match interrupt signal (INTTMOOn) is generated and the TOOn output level is inverted.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
(3) Operation in clear \& start mode by entered TIOOn pin valid edge input (CR00n: capture register, CR01n: compare register)

Figure 7-31. Block Diagram of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Capture Register, CR01n: Compare Register)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-32. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Capture Register, CR01n: Compare Register) (1/2)
(a) TOCOn $=13 \mathrm{H}$, PRMOn $=10 \mathrm{H}$, CRCOn, $=03 \mathrm{H}$, TMCOn $=08 \mathrm{H}, C R 01 \mathrm{n}=0001 \mathrm{H}$

This is an application example where the TOOn output level is to be inverted when the count value has been captured \& cleared.
TMOn is cleared at the rising edge detection of the TIOOn pin and it is captured to CROOn at the falling edge detection of the TIOOn pin.
When bit 1 (CRCOn1) of capture/compare control register On (CRCOn) is set to 1 , the count value of TMOn is captured to CROOn in the phase reverse to that of the signal input to the TIOOn pin, but the capture interrupt signal (INTTMOOn) is not generated. However, the INTTMOOn signal is generated when the valid edge of the TIO1n pin is detected. Mask the INTTMOOn signal when it is not used.

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

Figure 7-32. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Capture Register, CR01n: Compare Register) (2/2)
(b) TOCOn $=13 \mathrm{H}$, PRMOn $=10 \mathrm{H}$, CRCOn,$=03 \mathrm{H}$, TMCOn $=0 \mathrm{AH}$, CRO1 $^{\mathrm{n}}=0003 \mathrm{H}$

This is an application example where the width set to CR01n (4 clocks in this example) is to be output from the TOOn pin when the count value has been captured \& cleared.
TMOn is cleared (to 0000 H) at the rising edge detection of the TIOOn pin and captured to CROOn at the falling edge detection of the TIOOn pin. The TOOn output level is inverted when TMOn is cleared (to 0000H) because the rising edge of the TIOOn pin has been detected or when the value of TMOn matches that of a compare register (CR01n).
When bit 1 (CRCOn1) of capture/compare control register On (CRCOn) is 1 , the count value of TMOn is captured to CROOn in the phase reverse to that of the input signal of the TIOOn pin, but the capture interrupt signal (INTTMOOn) is not generated. However, the INTTMOOn interrupt is generated when the valid edge of the TIO1n pin is detected. Mask the INTTM00n signal when it is not used.

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products
(4) Operation in clear \& start mode entered by TIOOn pin valid edge input (CR00n: capture register, CR01n: capture register)

Figure 7-33. Block Diagram of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Capture Register, CR01n: Capture Register)

Note The timer output (TOOn) cannot be used when detecting the valid edge of the TIO1n pin is used.

Figure 7-34. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Capture Register, CR01n: Capture Register) (1/3)
(a) TOCOn $=13 \mathrm{H}$, PRMOn $=30 \mathrm{H}$, CRCOn $=05 \mathrm{H}$, TMCOn $=0 \mathrm{AH}$

This is an application example where the count value is captured to CRO1n, TMOn is cleared, and the TOOn output is inverted when the rising or falling edge of the TIOOn pin is detected.
When the edge of the TIO1n pin is detected, an interrupt signal (INTTMOOn) is generated. Mask the INTTM00n signal when it is not used.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-34. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Capture Register, CR01n: Capture Register) (2/3)
(b) TOCOn $=13 \mathrm{H}$, PRMOn $=\mathrm{COH}, \mathrm{CRCOn}=05 \mathrm{H}$, TMCOn $=0 \mathrm{AH}$

This is a timing example where an edge is not input to the TIOOn pin, in an application where the count value is captured to CR00n when the rising or falling edge of the TIO1n pin is detected.

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC2}$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-34. Timing Example of Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (CR00n: Capture Register, CR01n: Capture Register) (3/3)
(c) TOCOn $=13 \mathrm{H}$, PRMOn $=00 \mathrm{H}, \mathrm{CRCOn}=07 \mathrm{H}, \mathrm{TMCOn}=0 \mathrm{AH}$

This is an application example where the pulse width of the signal input to the TIOOn pin is measured.
By setting CRCOn, the count value can be captured to CROOn in the phase reverse to the falling edge of the TIOOn pin (i.e., rising edge) and to CRO1n at the falling edge of the TIOOn pin.

The high- and low-level widths of the input pulse can be calculated by the following expressions.

- High-level width $=$ [CR01n value] - [CR00n value] \times [Count clock cycle]
- Low-level width $=$ [CROOn value] \times [Count clock cycle]

If the reverse phase of the TIOOn pin is selected as a trigger to capture the count value to CROOn, the INTTMOOn signal is not generated. Read the values of CR00n and CR01n to measure the pulse width immediately after the INTTM01n signal is generated.
However, if the valid edge specified by bits 6 and 5 (ES1n1 and ES1n0) of prescaler mode register On (PRMOn) is input to the TIO1n pin, the count value is not captured but the INTTMOOn signal is generated. To measure the pulse width of the TIOOn pin, mask the INTTMOOn signal when it is not used.

Remark $\mathrm{n}=0: \quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC2}$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

Figure 7-35. Example of Register Settings in Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (1/2)
(a) 16-bit timer mode control register On (TMCOn)

(b) Capture/compare control register On (CRCOn)

0: CR00n used as compare register
1: CR00n used as capture register
0 : TIO1n pin is used as capture trigger of CROOn.
1: Reverse phase of TIOOn pin is used as capture trigger of CROOn.

0: CR01n used as compare register
1: CR01n used as capture register
(c) 16-bit timer output control register On (TOCOn)

	OSPTOn	OSPE0n	TOC0n4	LVSOn	LVR0n	TOCOn1	TOE0n
0	0	0	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$

Remark $\mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-35. Example of Register Settings in Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input (2/2)
(d) Prescaler mode register On (PRMOn)

ES1n1	ES1n0	ESOn1	ESOn0	3	2	PRMOn1	PRMOn0
0/1	0/1	0/1	0/1	0	0	0/1	0/1
\square							
							- Count clock selection (setting TIOOn valid edge is prohibited) 00: Falling edge detection 01: Rising edge detection 10: Setting prohibited 11: Both edges detection (setting prohibited when CRC0n1 = 1)
							00: Falling edge detection 01: Rising edge detection 10: Setting prohibited 11: Both edges detection

(e) 16-bit timer counter 0 n (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CROOn)

When this register is used as a compare register and when its value matches the count value of TMOn, an interrupt signal (INTTMOOn) is generated. The count value of TMOn is not cleared.
To use this register as a capture register, select either the TIOOn or TIO1n pin ${ }^{\text {Note }}$ input as a capture trigger. When the valid edge of the capture trigger is detected, the count value of TMOn is stored in CROOn.

Note The timer output (TOOn) cannot be used when detection of the valid edge of the TIO1n pin is used.
(g) 16-bit capture/compare register 01n (CR01n)

When this register is used as a compare register and when its value matches the count value of TMOn, an interrupt signal (INTTM01n) is generated. The count value of TMOn is not cleared.
When this register is used as a capture register, the TIOOn pin input is used as a capture trigger. When the valid edge of the capture trigger is detected, the count value of TMOn is stored in CRO1n.

Remark $\mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-36. Example of Software Processing in Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input

<1> Count operation start flow

Initial setting of these registers is performed before setting the TMCOn3 and TMCOn2 PRMOn register, CRCOn register, TOCOn registerNote, CR00n, CR01n registers, TMCOn.TMCOn1 bit, port setting

TMCOn3, TMCOn2 bits = 10

Starts count operation
<3> Count operation stop flow

<2> TMOn register clear \& start flow

Note Care must be exercised when setting TOCOn. For details, see 7.3 (3) 16-bit timer output control register On (TOCOn).

Remark $\quad \mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.4.5 Free-running timer operation

When bits 3 and 2 (TMCOn3 and TMCOn2) of 16-bit timer mode control register On (TMCOn) are set to 01 (free-running timer mode), 16-bit timer/event counter On continues counting up in synchronization with the count clock. When it has counted up to FFFFH, the overflow flag (OVFOn) is set to 1 at the next clock, and TMOn is cleared (to 0000 H) and continues counting. Clear OVFOn to 0 by executing the CLR instruction via software.

The following three types of free-running timer operations are available.

- Both CR00n and CR01n are used as compare registers.
- One of CROOn or CRO1n is used as a compare register and the other is used as a capture register.
- Both CR00n and CR01n are used as capture registers.

Remarks 1. For the setting of the $1 / O$ pins, see 7.3 (5) Port mode register 0 (PMO).
2. For how to enable the INTTMOOn signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.
(1) Free-running timer mode operation
(CR00n: compare register, CRO1n: compare register)

Figure 7-37. Block Diagram of Free-Running Timer Mode (CR00n: Compare Register, CR01n: Compare Register)

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC2}$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-38. Timing Example of Free-Running Timer Mode (CR00n: Compare Register, CR01n: Compare Register)

This is an application example where two compare registers are used in the free-running timer mode.
The TOOn output level is reversed each time the count value of TMOn matches the set value of CROOn or CRO1n. When the count value matches the register value, the INTTMOOn or INTTM01n signal is generated.
(2) Free-running timer mode operation
(CR00n: compare register, CR01n: capture register)

Figure 7-39. Block Diagram of Free-Running Timer Mode
(CR00n: Compare Register, CR01n: Capture Register)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-40. Timing Example of Free-Running Timer Mode (CR00n: Compare Register, CR01n: Capture Register)

- TOCOn $=13 \mathrm{H}$, PRMOn $^{2}=10 \mathrm{H}$, CRCOn $=04 \mathrm{H}$, TMCOn $=04 \mathrm{H}$

This is an application example where a compare register and a capture register are used at the same time in the freerunning timer mode.
In this example, the INTTMOOn signal is generated and the TOOn output level is reversed each time the count value of TMOn matches the set value of CROOn (compare register). In addition, the INTTMO1n signal is generated and the count value of TMOn is captured to CRO1n each time the valid edge of the TIOOn pin is detected.

Remark $\mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products
(3) Free-running timer mode operation (CR00n: capture register, CR01n: capture register)

Figure 7-41. Block Diagram of Free-Running Timer Mode (CR00n: Capture Register, CR01n: Capture Register)

Remarks 1. If both CROOn and CRO1n are used as capture registers in the free-running timer mode, the TOOn output level is not inverted

However, it can be inverted each time the valid edge of the TIOOn pin is detected if bit 1 (TMCOn1) of 16bit timer mode control register $0 n$ (TMCOn) is set to 1 .
2. $\mathrm{n}=0$: $\quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-42. Timing Example of Free-Running Timer Mode (CR00n: Capture Register, CR01n: Capture Register) (1/2)
(a) TOCOn $=13 \mathrm{H}, \mathrm{PRMOn}^{2}=50 \mathrm{H}, \mathrm{CRCOn}=05 \mathrm{H}, \mathrm{TMCOn}=04 \mathrm{H}$

This is an application example where the count values that have been captured at the valid edges of separate capture trigger signals are stored in separate capture registers in the free-running timer mode.

The count value is captured to CR01n when the valid edge of the TIOOn pin input is detected and to CR00n when the valid edge of the TIO1n pin input is detected.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-42. Timing Example of Free-Running Timer Mode (CR00n: Capture Register, CR01n: Capture Register) (2/2)
(b) TOCOn $=13 \mathrm{H}, \mathrm{PRMOn}=\mathrm{COH}, \mathrm{CRCOn}=05 \mathrm{H}, \mathrm{TMCOn}=04 \mathrm{H}$

This is an application example where both the edges of the TIO1n pin are detected and the count value is captured to CROOn in the free-running timer mode.
When both CR00n and CR01n are used as capture registers and when the valid edge of only the TIO1n pin is to be detected, the count value cannot be captured to CR01n.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-43. Example of Register Settings in Free-Running Timer Mode (1/2)
(a) 16-bit timer mode control register On (TMCOn)

(b) Capture/compare control register On (CRCOn)

0	0	0	0	0	0/1	0/1	0/1

(c) 16-bit timer output control register On (TOCOn)

| | OSPTOn | OSPE0n | TOCOn4 | LVSOn | LVROn | | TOC0n1 | TOE0n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $0 / 1$ | $0 / 1$ | $0 / 1$ | $0 / 1$ | $0 / 1$ | |

0: Disables TOOn output
1: Enables TOOn output
Specifies initial value of TOOn output F/F

00: Does not invert TOOn output on match between TMOn and CR00n/CR01n.
01: Inverts TOOn output on match between TMOn and CROOn.
10: Inverts TOOn output on match between TMOn and CR01n
11: Inverts TOOn output on match between TMOn and CR00n/CR01n.

Remark $n=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-43. Example of Register Settings in Free-Running Timer Mode (2/2)
(d) Prescaler mode register On (PRMOn)

(e) 16-bit timer counter 0 n (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CROOn)

When this register is used as a compare register and when its value matches the count value of TMOn, an interrupt signal (INTTMOOn) is generated. The count value of TMOn is not cleared.

To use this register as a capture register, select either the TIOOn or TIO1n pin input as a capture trigger. When the valid edge of the capture trigger is detected, the count value of TMOn is stored in CROOn.
(g) 16-bit capture/compare register 01n (CR01n)

When this register is used as a compare register and when its value matches the count value of TMOn, an interrupt signal (INTTMO1n) is generated. The count value of TMOn is not cleared.

When this register is used as a capture register, the TIOOn pin input is used as a capture trigger. When the valid edge of the capture trigger is detected, the count value of TMOn is stored in CRO1n.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-44. Example of Software Processing in Free-Running Timer Mode

<1> Count operation start flow

<2> Count operation stop flow

Note Care must be exercised when setting TOCOn. For details, see 7.3 (3) 16-bit timer output control register On (TOCOn).

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.4.6 PPG output operation

A square wave having a pulse width set in advance by CR01n is output from the TOOn pin as a PPG (Programmable Pulse Generator) signal during a cycle set by CROOn when bits 3 and 2 (TMCOn3 and TMCOn2) of 16-bit timer mode control register On (TMCOn) are set to 11 (clear \& start upon a match between TMOn and CR00n).

The pulse cycle and duty factor of the pulse generated as the PPG output are as follows.

- Pulse cycle $=($ Set value of CROOn +1$) \times$ Count clock cycle
- Duty $=($ Set value of CR01n +1$) /($ Set value of CROOn +1$)$

Caution To change the duty factor (value of CR01n) during operation, see 7.5.1 Rewriting CR01n during TMOn operation.

Remarks 1. For the setting of I/O pins, see 7.3 (5) Port mode register 0 (PMO).
2. For how to enable the INTTMOOn signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

Figure 7-45. Block Diagram of PPG Output Operation

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-46. Example of Register Settings for PPG Output Operation (1/2)
(a) 16-bit timer mode control register On (TMCOn)

(b) Capture/compare control register On (CRCOn)

(c) 16-bit timer output control register On (TOCOn)

(d) Prescaler mode register On (PRMOn)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-46. Example of Register Settings for PPG Output Operation (2/2)
(e) 16-bit timer counter On (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CROOn)

An interrupt signal (INTTMOOn) is generated when the value of this register matches the count value of TMOn.
The count value of TMOn is cleared.
(g) 16-bit capture/compare register 01n (CR01n)

An interrupt signal (INTTM01n) is generated when the value of this register matches the count value of TMOn. The count value of TMOn is not cleared.

Caution Set values to CROOn and CRO1n such that the condition $0000 \mathrm{H} \leq \mathrm{CRO1n}<\mathrm{CROOn} \leq \mathrm{FFFFH}$ is satisfied.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-47. Example of Software Processing for PPG Output Operation

<1> Count operation start flow
<2> Count operation stop flow

Note Care must be exercised when setting TOCOn. For details, see 7.3 (3) 16-bit timer output control register On (TOCOn).

Remarks 1. PPG pulse cycle $=(M+1) \times$ Count clock cycle
PPG duty $=(N+1) /(M+1)$
2. $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.4.7 One-shot pulse output operation

A one-shot pulse can be output by setting bits 3 and 2 (TMCOn3 and TMCOn2) of the 16-bit timer mode control register On (TMCOn) to 01 (free-running timer mode) or to 10 (clear \& start mode entered by the TIOOn pin valid edge) and setting bit 5 (OSPEOn) of 16-bit timer output control register On (TOCOn) to 1 .

When bit 6 (OSPTOn) of TOCOn is set to 1 or when the valid edge is input to the TIOOn pin during timer operation, clearing \& starting of TMOn is triggered, and a pulse of the difference between the values of CROOn and CRO1n is output only once from the TOOn pin.

Cautions 1. Do not input the trigger again (setting OSPTOn to 1 or detecting the valid edge of the TIOOn pin)

 while the one-shot pulse is output. To output the one-shot pulse again, generate the trigger after the current one-shot pulse output has completed.2. To use only the setting of OSPTOn to 1 as the trigger of one-shot pulse output, do not change the level of the TIOOn pin or its alternate function port pin. Otherwise, the pulse will be unexpectedly output.

Remarks 1. For the setting of the I / O pins, see 7.3 (5) Port mode register 0 (PMO).
2. For how to enable the INTTM00n signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

Figure 7-48. Block Diagram of One-Shot Pulse Output Operation

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-49. Example of Register Settings for One-Shot Pulse Output Operation (1/2)
(a) 16-bit timer mode control register On (TMCOn)

				隹	,	TMCOn1	OVFOn
0	0	0	0	0/1	0/1	0	0

01: Free running timer mode
10: Clear and start mode by valid edge of TIOOn pin.
(b) Capture/compare control register On (CRCOn)

(c) 16-bit timer output control register On (TOCOn)

(d) Prescaler mode register On (PRMOn)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-49. Example of Register Settings for One-Shot Pulse Output Operation (2/2)
(e) 16-bit timer counter On (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CROOn)

This register is used as a compare register when a one-shot pulse is output. When the value of TMOn matches that of CROOn, an interrupt signal (INTTMOOn) is generated and the TOOn output level is inverted.
(g) 16-bit capture/compare register 01n (CR01n)

This register is used as a compare register when a one-shot pulse is output. When the value of TMOn matches that of CR01n, an interrupt signal (INTTM01n) is generated and the TOOn output level is inverted.

Caution Do not set the same value to CROOn and CR01n.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-50. Example of Software Processing for One-Shot Pulse Output Operation (1/2)

- Time from when the one-shot pulse trigger is input until the one-shot pulse is output
$=(M+1) \times$ Count clock cycle
- One-shot pulse output active level width
$=(\mathrm{N}-\mathrm{M}) \times$ Count clock cycle

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$,] 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-50. Example of Software Processing for One-Shot Pulse Output Operation (2/2)

<2> One-shot trigger input flow

<3> Count operation stop flow

Note Care must be exercised when setting TOCOn. For details, see 7.3 (3) 16-bit timer output control register On (TOCOn).

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC2}$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.4.8 Pulse width measurement operation

TMOn can be used to measure the pulse width of the signal input to the TIOOn and TIO1n pins.
Measurement can be accomplished by operating the 16-bit timer/event counter On in the free-running timer mode or by restarting the timer in synchronization with the signal input to the TIOOn pin.

When an interrupt is generated, read the value of the valid capture register and measure the pulse width. Check bit 0 (OVFOn) of 16-bit timer mode control register On (TMCOn). If it is set (to 1), clear it to 0 by software.

Figure 7-51. Block Diagram of Pulse Width Measurement (Free-Running Timer Mode)

Figure 7-52. Block Diagram of Pulse Width Measurement (Clear \& Start Mode Entered by TIOOn Pin Valid Edge Input)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

A pulse width can be measured in the following three ways.

- Measuring the pulse width by using two input signals of the TIOOn and TIO1n pins (free-running timer mode)
- Measuring the pulse width by using one input signal of the TIOOn pin (free-running timer mode)
- Measuring the pulse width by using one input signal of the TIOOn pin (clear \& start mode entered by the TIOOn pin valid edge input)

Remarks 1. For the setting of the I / O pins, see 7.3 (5) Port mode register 0 (PMO).

2. For how to enable the INTTM00n signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

(1) Measuring the pulse width by using two input signals of the TIOOn and TIO1n pins (free-running timer mode)

Set the free-running timer mode (TMCOn3 and TMCOn2 $=01$). When the valid edge of the TIOOn pin is detected, the count value of TMOn is captured to CRO1n. When the valid edge of the TIO1n pin is detected, the count value of TMOn is captured to CROOn. Specify detection of both the edges of the TIOOn and TIO1n pins.
By this measurement method, the previous count value is subtracted from the count value captured by the edge of each input signal. Therefore, save the previously captured value to a separate register in advance.

If an overflow occurs, the value becomes negative if the previously captured value is simply subtracted from the current captured value and, therefore, a borrow occurs (bit $0(\mathrm{CY})$ of the program status word (PSW) is set to 1). If this happens, ignore CY and take the calculated value as the pulse width. In addition, clear bit 0 (OVFOn) of 16-bit timer mode control register On (TMCOn) to 0.

Figure 7-53. Timing Example of Pulse Width Measurement (1)

(2) Measuring the pulse width by using one input signal of the TIOOn pin (free-running timer mode)

Set the free-running timer mode (TMCOn3 and TMCOn2 = 01). The count value of TMOn is captured to CROOn in the phase reverse to the valid edge detected on the TIOOn pin. When the valid edge of the TIOOn pin is detected, the count value of TMOn is captured to CR01n.
By this measurement method, values are stored in separate capture registers when a width from one edge to another is measured. Therefore, the capture values do not have to be saved. By subtracting the value of one capture register from that of another, a high-level width, low-level width, and cycle are calculated.

If an overflow occurs, the value becomes negative if one captured value is simply subtracted from another and, therefore, a borrow occurs (bit 0 (CY) of the program status word (PSW) is set to 1). If this happens, ignore CY and take the calculated value as the pulse width. In addition, clear bit 0 (OVFOn) of 16-bit timer mode control register On (TMCOn) to 0.

Figure 7-54. Timing Example of Pulse Width Measurement (2)

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
(3) Measuring the pulse width by using one input signal of the TIOOn pin (clear \& start mode entered by the TIOOn pin valid edge input)
Set the clear \& start mode entered by the TIOOn pin valid edge (TMCOn3 and TMCOn2 = 10). The count value of TMOn is captured to CROOn in the phase reverse to the valid edge of the TIOOn pin, and the count value of TMOn is captured to CRO1n and TMOn is cleared $(0000 \mathrm{H})$ when the valid edge of the TIOOn pin is detected. Therefore, a cycle is stored in CR01n if TMOn does not overflow.
If an overflow occurs, take the value that results from adding 10000H to the value stored in CR01n as a cycle. Clear bit 0 (OVFOn) of 16 -bit timer mode control register On (TMCOn) to 0.

Figure 7-55. Timing Example of Pulse Width Measurement (3)

Remark $\mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-56. Example of Register Settings for Pulse Width Measurement (1/2)
(a) 16-bit timer mode control register On (TMCOn)

0	0	0	0	0/1	0/1	0	0

01: Free running timer mode
10: Clear and start mode entered by valid edge of TIOOn pin.
(b) Capture/compare control register On (CRCOn)

(c) 16-bit timer output control register On (TOCOn)

| | OSPTOn | OSPE0n | TOC0n4 | LVS0n | LVR0n | TOC0n1 | TOE0n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

(d) Prescaler mode register On (PRMOn)

Remark $\quad \mathrm{n}=0: \quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-56. Example of Register Settings for Pulse Width Measurement (2/2)
(e) 16-bit timer counter On (TMOn)

By reading TMOn, the count value can be read.
(f) 16-bit capture/compare register 00n (CROOn)

This register is used as a capture register. Either the TIOOn or TIO1n pin is selected as a capture trigger. When a specified edge of the capture trigger is detected, the count value of TMOn is stored in CROOn.
(g) 16-bit capture/compare register 01n (CR01n)

This register is used as a capture register. The signal input to the TIOOn pin is used as a capture trigger. When the capture trigger is detected, the count value of TMOn is stored in CRO1n.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-57. Example of Software Processing for Pulse Width Measurement (1/2)

(b) Example of clear \& start mode entered by TIOOn pin valid edge

Remark $\mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 7-57. Example of Software Processing for Pulse Width Measurement (2/2)
<1> Count operation start flow

<2> Capture trigger input flow

CR00n, CR01n registers Generates capture interruptNote

<3> Count operation stop flow

Note The capture interrupt signal (INTTMOOn) is not generated when the reverse-phase edge of the TIOOn pin input is selected to the valid edge of CROOn.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.5 Special Use of TMOn

7.5.1 Rewriting CR01n during TMOn operation

In principle, rewriting CROOn and CR01n of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers when they are used as compare registers is prohibited while TMOn is operating (TMCOn3 and TMCOn2 $=$ other than 00).

However, the value of CR01n can be changed, even while TMOn is operating, using the following procedure if CRO1n is used for PPG output and the duty factor is changed. (When changing the value of CR01n to a smaller value than the current one, rewrite it immediately after its value matches the value of TMOn. When changing the value of CR01n to a larger value than the current one, rewrite it immediately after the values of CROOn and TMOn match. If the value of CRO1n is rewritten immediately before a match between CR01n and TMOn, or between CROOn and TMOn, an unexpected operation may be performed.).

Procedure for changing value of CR01n

<1> Disable interrupt INTTM01n (TMMK01n = 1).
<2> Disable reversal of the timer output when the value of TMOn matches that of CRO1n (TOCOn4 = 0).
<3> Change the value of CR01n.
<4> Wait for one cycle of the count clock of TMOn.
$<5>$ Enable reversal of the timer output when the value of TMOn matches that of CR01n (TOCOn4 $=1$).
<6> Clear the interrupt flag of INTTM01n (TMIF01n $=0$) to 0 .
<7> Enable interrupt INTTM01n (TMMK01n = 0).

Remark For TMIF01n and TMMK01n, see CHAPTER 20 INTERRUPT FUNCTIONS.

7.5.2 Setting LVSOn and LVROn

(1) Usage of LVSOn and LVROn

LVSOn and LVROn are used to set the default value of the TOOn output and to invert the timer output without enabling the timer operation (TMCOn3 and TMCOn2 = 00). Clear LVSOn and LVROn to 00 (default value: low-level output) when software control is unnecessary.

LVSOn	LVROn	Timer Output Status
0	0	Not changed (low-level output)
0	1	Cleared (low-level output)
1	0	Set (high-level output)
1	1	Setting prohibited

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

(2) Setting LVSOn and LVROn

Set LVSOn and LVROn using the following procedure.

Figure 7-58. Example of Flow for Setting LVSOn and LVROn Bits

Caution Be sure to set LVSOn and LVROn following steps <1>, <2>, and <3> above. Step <2> can be performed after <1> and before <3>.

Figure 7-59. Timing Example of LVROn and LVSOn

<1> The TOOn output goes high when LVSOn and LVROn $=10$.
<2> The TOOn output goes low when LVSOn and LVROn = 01 (the pin output remains unchanged from the high level even if LVSOn and LVROn are cleared to 00).
$<3>$ The timer starts operating when TMCOn3 and TMCOn2 are set to 01, 10, or 11. Because LVSOn and LVROn were set to 10 before the operation was started, the TOOn output starts from the high level. After the timer starts operating, setting LVSOn and LVROn is prohibited until TMCOn3 and TMCOn2 $=00$ (disabling the timer operation).
$<4>$ The TOOn output level is inverted each time an interrupt signal (INTTMOOn) is generated.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

7.6 Cautions for 16-Bit Timer/Event Counters 00 and 01

(1) Restrictions for each channel of 16-bit timer/event counter On

Table 7-3 shows the restrictions for each channel.

Table 7-3. Restrictions for Each Channel of 16-Bit Timer/Event Counter On

Operation	Restriction
As interval timer	-
As square-wave output	
As external event counter	
As clear \& start mode entered by TIOOn pin valid edge input	Using timer output (TOOn) is prohibited when detection of the valid edge of the TIO1n pin is used. (TOCOn $=00 \mathrm{H}$)
As free-running timer	-
As PPG output	0000H \leq CP01n $<$ CR00n \leq FFFFH
As one-shot pulse output	Setting the same value to CR00n and CP01n is prohibited.
As pulse width measurement	Using timer output (TOOn) is prohibited (TOCOn $=00 \mathrm{H}$)

(2) Timer start errors

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because counting TMOn is started asynchronously to the count pulse.

Figure 7-60. Start Timing of TMOn Count

(3) Setting of CR00n and CR01n (clear \& start mode entered upon a match between TMOn and CR00n)

Set a value other than 0000 H to CROOn and CRO1n (TMOn cannot count one pulse when it is used as an external event counter).

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

(4) Timing of holding data by capture register

(a) When the valid edge is input to the TIOOn/TIO1n pin and the reverse phase of the TIOOn pin is detected while CR00n/CR01n is read, CR01n performs a capture operation but the read value of CR00n/CR01n is not guaranteed. At this time, an interrupt signal (INTTMOOn/INTTMO1n) is generated when the valid edge of the TIOOn/TIO1n pin is detected (the interrupt signal is not generated when the reverse-phase edge of the TIOOn pin is detected).
When the count value is captured because the valid edge of the TIOOn/TIO1n pin was detected, read the value of CR00n/CR01n after INTTM00n/INTTM01n is generated.

Figure 7-61. Timing of Holding Data by Capture Register

(b) The values of CR00n and CR01n are not guaranteed after 16-bit timer/event counter On stops.

(5) Setting valid edge

Set the valid edge of the TIOOn pin while the timer operation is stopped (TMCOn3 and TMCOn2 $=00$). Set the valid edge by using ESOn0 and ESOn1.
(6) Re-triggering one-shot pulse

Make sure that the trigger is not generated while an active level is being output in the one-shot pulse output mode. Be sure to input the next trigger after the current active level is output.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC2}$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

(7) Operation of OVFOn flag

(a) Setting OVFOn flag (1)

The OVFOn flag is set to 1 in the following case, as well as when TMOn overflows.

Select the clear \& start mode entered upon a match between TMOn and CROOn.
\downarrow
Set CR00n to FFFFH.
\downarrow
When TMOn matches CROOn and TMOn is cleared from FFFFH to 0000 H

Figure 7-62. Operation Timing of OVFOn Flag

(b) Clearing OVFOn flag

Even if the OVFOn flag is cleared to 0 after TMOn overflows and before the next count clock is counted (before the value of TMOn becomes 0001 H), it is set to 1 again and clearing is invalid.
(8) One-shot pulse output

One-shot pulse output operates correctly in the free-running timer mode or the clear \& start mode entered by the TIOOn pin valid edge. The one-shot pulse cannot be output in the clear \& start mode entered upon a match between TMOn and CROOn.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

(9) Capture operation

(a) When valid edge of TIOOn is specified as count clock

When the valid edge of TIOOn is specified as the count clock, the capture register for which TIOOn is specified as a trigger does not operate correctly.
(b) Pulse width to accurately capture value by signals input to TIO1n and TIOOn pins

To accurately capture the count value, the pulse input to the TIOOn and TIO1n pins as a capture trigger must be wider than two count clocks selected by PRMOn (see Figure 7-9).
(c) Generation of interrupt signal

The capture operation is performed at the falling edge of the count clock but the interrupt signals (INTTMOOn and INTTM01n) are generated at the rising edge of the next count clock (see Figure 7-9).
(d) Note when CRCOn1 (bit 1 of capture/compare control register On (CRCOn)) is set to 1

When the count value of the TMOn register is captured to the CROOn register in the phase reverse to the signal input to the TIOOn pin, the interrupt signal (INTTMOOn) is not generated after the count value is captured. If the valid edge is detected on the TIO1n pin during this operation, the capture operation is not performed but the INTTMOOn signal is generated as an external interrupt signal. Mask the INTTMOOn signal when the external interrupt is not used.

(10) Edge detection

(a) Specifying valid edge after reset

If the operation of the 16-bit timer/event counter On is enabled after reset and while the TIOOn or TIO1n pin is at high level and when the rising edge or both the edges are specified as the valid edge of the TIOOn or TIO1n pin, then the high level of the TIOOn or TIO1n pin is detected as the rising edge. Note this when the TIOOn or TIO1n pin is pulled up. However, the rising edge is not detected when the operation is once stopped and then enabled again.
(b) Sampling clock for eliminating noise

The sampling clock for eliminating noise differs depending on whether the valid edge of TIOOn is used as the count clock or capture trigger. In the former case, the sampling clock is fixed to frrs. In the latter, the count clock selected by PRMOn is used for sampling.
When the signal input to the TIOOn pin is sampled and the valid level is detected two times in a row, the valid edge is detected. Therefore, noise having a short pulse width can be eliminated (see Figure 7-9).
(11) Timer operation

The signal input to the TIOOn/TIO1n pin is not acknowledged while the timer is stopped, regardless of the operation mode of the CPU.

Remarks 1. fprs: Peripheral hardware clock frequency
2. $\mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
(12) Reading of 16-bit timer counter On (TMOn)

TMOn can be read without stopping the actual counter, because the count values captured to the buffer are fixed when it is read. The buffer, however, may not be updated when it is read immediately before the counter counts up, because the buffer is updated at the timing the counter counts up.

Figure 7-63. 16-bit Timer Counter On (TMOn) Read Timing

Remark $n=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

CHAPTER 8 8-BIT TIMER/EVENT COUNTERS 50 AND 51

8.1 Functions of 8-Bit Timer/Event Counters 50 and 51

8 -bit timer/event counters 50 and 51 are mounted onto all $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontroller products.
8 -bit timer/event counters 50 and 51 have the following functions.

- Interval timer
- External event counter
- Square-wave output
- PWM output

8.2 Configuration of 8-Bit Timer/Event Counters 50 and 51

8-bit timer/event counters 50 and 51 include the following hardware.

Table 8-1. Configuration of 8-Bit Timer/Event Counters 50 and 51

Item	Configuration
Timer register	8-bit timer counter 5n (TM5n)
Register	8-bit timer compare register 5n (CR5n)
Timer input	TI5n
Timer output	TO5n
Control registers	Timer clock selection register 5n (TCL5n) 8-bit timer mode control register 5n (TMC5n) Port mode register 1 (PM1) or port mode register 3 (PM3) Port register 1 (P1) or port register 3 (P3)

Figures 8-1 and 8-2 show the block diagrams of 8-bit timer/event counters 50 and 51 .

Figure 8-1. Block Diagram of 8-Bit Timer/Event Counter 50

Figure 8-2. Block Diagram of 8-Bit Timer/Event Counter 51

Notes 1. Timer output F/F
2. PWM output F/F

(1) 8-bit timer counter $5 n$ (TM5n)

TM5n is an 8-bit register that counts the count pulses and is read-only.
The counter is incremented in synchronization with the rising edge of the count clock.

Figure 8-3. Format of 8-Bit Timer Counter 5n (TM5n)

In the following situations, the count value is cleared to 00 H .
<1> Reset signal generation
<2> When TCE5n is cleared
$<3>$ When TM5n and CR5n match in the mode in which clear \& start occurs upon a match of the TM5n and CR5n.
(2) 8-bit timer compare register 5 n (CR5n)

CR5n can be read and written by an 8-bit memory manipulation instruction.
Except in PWM mode, the value set in CR5n is constantly compared with the 8 -bit timer counter 5 n (TM5n) count value, and an interrupt request (INTTM5n) is generated if they match.
In the PWM mode, TO5n output becomes inactive when the values of TM5n and CR5n match, but no interrupt is generated.
The value of CR5n can be set within 00 H to FFH .
Reset signal generation clears CR 5 n to 00 H .

Figure 8-4. Format of 8-Bit Timer Compare Register 5n (CR5n)
Address: FF17H (CR50), FF41H (CR51) After reset: 00 H R/W

Cautions 1. In the mode in which clear \& start occurs on a match of TM5n and CR5n (TMC5n6 = 0), do not write other values to CR5n during operation.
2. In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock selected by TCL5n) or more.

Remark $\mathrm{n}=0,1$

8.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51

The following four registers are used to control 8-bit timer/event counters 50 and 51.

- Timer clock selection register 5n (TCL5n)
- 8-bit timer mode control register 5n (TMC5n)
- Port mode register 1 (PM1) or port mode register 3 (PM3)
- Port register 1 (P1) or port register 3 (P3)
(1) Timer clock selection register $5 n$ (TCL5n)

This register sets the count clock of 8-bit timer/event counter 5 n and the valid edge of the TI 5 n pin input. TCL5n can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears TCL5n to 00 H .

Remark $\mathrm{n}=0,1$

Figure 8-5. Format of Timer Clock Selection Register 50 (TCL50)

Address: FF6AH After reset: 00H R/W
Symbol
TCL50

7	6	5	4	3	2	1	0
0	0	0	0	0	TCL502	TCL501	TCL500

TCL502	TCL501	TCL500	Count clock selection ${ }^{\text {Note } 1}$				
				$\begin{aligned} & \text { fPRS }= \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS }= \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { fPRS }= \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fPRS }= \\ 20 \mathrm{MHz} \end{gathered}$
0	0	0	TI50 pin falling edge ${ }^{\text {Note } 2}$				
0	0	1	TI50 pin rising edge ${ }^{\text {Note } 2}$				
0	1	0	$\mathrm{fPRS}^{\text {Note }} 3$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 4}$
0	1	1	frrs/2	1 MHz	2.5 MHz	5 MHz	10 MHz
1	0	0	$\mathrm{fPRS} / 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
1	0	1	$\mathrm{fPRS} / 2^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz
1	1	0	$\mathrm{fPRS} / 2^{8}$	7.81 kHz	19.53 kHz	39.06 kHz	78.13 kHz
1	1	1	$\mathrm{fPRS} / 2^{13}$	0.24 kHz	0.61 kHz	1.22 kHz	2.44 kHz

Notes 1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA $)$
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	fPRS $\leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ $($ Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS = fxH (XSEL = 1).)
2. Do not start timer operation with the external clock from the TI50 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.
3. If the peripheral hardware clock (fprs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of TCL502, TCL501, TCL500 $=0,1,0$ (count clock: fPRs) is prohibited.
4. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.

Cautions 1. When rewriting TCL50 to other data, stop the timer operation beforehand.
2. Be sure to clear bits $\mathbf{3}$ to 7 to " 0 ".

Remark fpRs: Peripheral hardware clock frequency

Figure 8-6. Format of Timer Clock Selection Register 51 (TCL51)

Address: FF8CH After reset: 00 H R/W
Symbol
TCL51

7	6	5	4	3	2	1	0
0	0	0	0	0	TCL512	TCL511	TCL510

TCL512	TCL511	TCL510	Count clock selection ${ }^{\text {Note } 1}$				
				$\begin{aligned} & \text { fPRS }= \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS }= \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { fPRS }= \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fPRS }= \\ 20 \mathrm{MHz} \end{gathered}$
0	0	0	TI51 pin falling edge ${ }^{\text {Note } 2}$				
0	0	1	TI51 pin rising edge ${ }^{\text {Note } 2}$				
0	1	0	$\mathrm{fPRS}^{\text {Note }} 3$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 4}$
0	1	1	frrs/2	1 MHz	2.5 MHz	5 MHz	10 MHz
1	0	0	$\mathrm{fPRS} / 2^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz
1	0	1	$\mathrm{fPRS} / 2^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz
1	1	0	$\mathrm{fPRS} / 2^{8}$	7.81 kHz	19.53 kHz	39.06 kHz	78.13 kHz
1	1	1	$\mathrm{fPRS} / 2^{12}$	0.49 kHz	1.22 kHz	2.44 kHz	4.88 kHz

Notes 1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA $)$
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	fPRS $\leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ $($ Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS = fxH (XSEL = 1).)
2. Do not start timer operation with the external clock from the TI51 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.
3. If the peripheral hardware clock (fprs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of TCL512, TCL511, TCL510 $=0,1,0$ (count clock: fPRs) is prohibited.
4. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.

Cautions 1. When rewriting TCL51 to other data, stop the timer operation beforehand.
2. Be sure to clear bits $\mathbf{3}$ to 7 to " 0 ".

Remark fpRs: Peripheral hardware clock frequency
(2) 8-bit timer mode control register 5n (TMC5n)

TMC5n is a register that performs the following five types of settings.
<1> 8-bit timer counter 5 n (TM5n) count operation control
<2> 8-bit timer counter 5 n (TM5n) operating mode selection
<3> Timer output F/F (flip flop) status setting
<4> Active level selection in timer F/F control or PWM (free-running) mode.
<5> Timer output control

TMC5n can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Remark $\mathrm{n}=0,1$

Figure 8-7. Format of 8-Bit Timer Mode Control Register 50 (TMC50)

Address:	After reset: 00 H		$\mathrm{R} / \mathrm{W}^{\text {Note }}$					
Symbol	<7>	6	5	4	<3>	<2>	1	<0>
TMC50	TCE50	TMC506	0	0	LVS50	LVR50	TMC501	TOE50

TCE50	TM50 count operation control
0	After clearing to 0, count operation disabled (counter stopped)
1	Count operation start

TMC506	TM50 operating mode selection
0	Mode in which clear \& start occurs on a match between TM50 and CR50
1	PWM (free-running) mode

LVS50	LVR50	Timer output F/F status setting
0	0	No change
0	1	Timer output F/F clear (0) (default value of TO50 output: low level)
1	0	Timer output F/F set (1) (default value of TO50 output: high level)
1	1	Setting prohibited

TMC501	In other modes (TMC506 = 0)	In PWM mode (TMC506 = 1)
	Timer F/F control	Active level selection
0	Inversion operation disabled	Active-high
1	Inversion operation enabled	Active-low

TOE50	Timer output control
0	Output disabled (TO50 output is low level)
1	Output enabled

Note Bits 2 and 3 are write-only.
(Cautions and Remarks are listed on the next page.)

Figure 8-8. Format of 8-Bit Timer Mode Control Register 51 (TMC51)

TCE51	TM51 count operation control
0	After clearing to 0, count operation disabled (counter stopped)
1	Count operation start

TMC516	TM51 operating mode selection
0	Mode in which clear \& start occurs on a match between TM51 and CR51
1	PWM (free-running) mode

LVS51	LVR51	Timer output F/F status setting
0	0	No change
0	1	Timer output F/F clear (0) (default value of TO51 output: low)
1	0	Timer output F/F set (1) (default value of TO51 output: high)
1	1	Setting prohibited

TMC511	In other modes (TMC516 $=0)$	In PWM mode (TMC516 = 1)
	Timer F/F control	Active level selection
0	Inversion operation disabled	Active-high
1	Inversion operation enabled	Active-low

TOE51	
0	Output disabled (TO51 output is low level)
1	Output enabled

Note Bits 2 and 3 are write-only.

Cautions 1. The settings of LVS5n and LVR5n are valid in other than PWM mode.
2. Perform $\langle 1\rangle$ to $<4>$ below in the following order, not at the same time.
<1> Set TMC5n1, TMC5n6: Operation mode setting
<2> Set TOE5n to enable output: Timer output enable
<3> Set LVS5n, LVR5n (see Caution 1): Timer F/F setting
<4> Set TCE5n
3. When TCE $5 n=1$, setting the other bits of TMC5n is prohibited.
4. The actual TO50/TI50/P17 and TO51/TI51/P33/INTP4 pin outputs are determined depending on PM17 and P17, and PM33 and P33, besides TO5n output.

Remarks 1. In PWM mode, PWM output is made inactive by clearing TCE5n to 0.
2. If LVS5n and LVR5n are read, the value is 0 .
3. The values of the TMC5n6, LVS5n, LVR5n, TMC5n1, and TOE5n bits are reflected at the TO5n output regardless of the value of TCE5n.
4. $n=0,1$
(3) Port mode registers 1 and 3 (PM1, PM3)

These registers set port 1 and 3 input/output in 1-bit units.
When using the P17/TO50/TI50 and P33/TO51/TI51/INTP4 pins for timer output, clear PM17 and PM33 and the output latches of P17 and P33 to 0 .
When using the P17/TO50/TI50 and P33/TO51/TI51/INTP4 pins for timer input, set PM17 and PM33 to 1. The output latches of P17 and P33 at this time may be 0 or 1 .
PM1 and PM3 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Figure 8-9. Format of Port Mode Register 1 (PM1)

Figure 8-10. Format of Port Mode Register 3 (PM3)

Address: FF23H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
	7	1	1	1	PM33	PM32	PM31	PM30

PM3n	P3n pin I/O mode selection ($\mathrm{n}=0$ to 3)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

8.4 Operations of 8-Bit Timer/Event Counters 50 and 51

8.4.1 Operation as interval timer

8-bit timer/event counter 5n operates as an interval timer that generates interrupt requests repeatedly at intervals of the count value preset to 8 -bit timer compare register 5 n (CR5n).

When the count value of 8 -bit timer counter 5 n (TM5n) matches the value set to CR5n, counting continues with the TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.

The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register $5 n$ (TCL5n).

Setting

<1> Set the registers.

- TCL5n: Select the count clock.
- CR5n: Compare value
- TMC5n: Stop the count operation, select the mode in which clear \& start occurs on a match of TM5n and CR5n.
(TMC5n $=0000 \times \times \times 0 \mathrm{~B} \times=$ Don't care)
<2> After TCE5n = 1 is set, the count operation starts.
$<3>$ If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
<4> INTTM5n is generated repeatedly at the same interval.
Set TCE5n to 0 to stop the count operation.

Caution Do not write other values to CR5n during operation.

Remarks 1. For how to enable the INTTM5n signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.
2. $n=0,1$

Figure 8-11. Interval Timer Operation Timing (1/2)

Remark Interval time $=(\mathrm{N}+1) \times \mathrm{t}$

$$
\begin{aligned}
& \mathrm{N}=01 \mathrm{H} \text { to } \mathrm{FFH} \\
& \mathrm{n}=0,1
\end{aligned}
$$

Figure 8-11. Interval Timer Operation Timing (2/2)
(b) When $\mathrm{CR} 5 \mathrm{n}=\mathbf{0 0 H}$

(c) When CR5n = FFH

Remark $\mathrm{n}=0,1$

8.4.2 Operation as external event counter

The external event counter counts the number of external clock pulses to be input to the TI5n pin by 8-bit timer counter $5 n$ (TM5n).

TM5n is incremented each time the valid edge specified by timer clock selection register $5 n$ (TCL5n) is input. Either the rising or falling edge can be selected.

When the TM5n count value matches the value of 8 -bit timer compare register $5 n$ (CR5n), TM5n is cleared to 0 and an interrupt request signal (INTTM5n) is generated.

Whenever the TM5n value matches the value of CR5n, INTTM5n is generated.

Setting

<1> Set each register.

- Set the port mode register (PM17 or PM33) ${ }^{\text {Note }}$ to 1.
- TCL5n: Select TI5n pin input edge.

TI5n pin falling edge \rightarrow TCL5n $=00 \mathrm{H}$
TI5n pin rising edge \rightarrow TCL5n $=01 \mathrm{H}$

- CR5n: Compare value
- TMC5n: Stop the count operation, select the mode in which clear \& start occurs on match of TM5n and CR5n, disable the timer F/F inversion operation, disable timer output.
(TMC5n = 00000000B)
<2> When TCE5n = 1 is set, the number of pulses input from the TI5n pin is counted.
$<3>$ When the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
$<4>$ After these settings, INTTM5n is generated each time the values of TM5n and CR5n match.

Note 8-bit timer/event counter 50: PM17
8-bit timer/event counter 51: PM33

Remark For how to enable the INTTM5n signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

Figure 8-12. External Event Counter Operation Timing (with Rising Edge Specified)

Remark $\mathrm{N}=00 \mathrm{H}$ to FFH

$$
\mathrm{n}=0,1
$$

8.4.3 Square-wave output operation

A square wave with any selected frequency is output at intervals determined by the value preset to 8 -bit timer compare register 5n (CR5n).

The TO5n pin output status is inverted at intervals determined by the count value preset to CR5n by setting bit 0 (TOE5n) of 8 -bit timer mode control register $5 n(T M C 5 n$) to 1 . This enables a square wave with any selected frequency to be output (duty $=50 \%$).

Setting

<1> Set each register.

- Clear the port output latch (P17 or P33) $)^{\text {Note }}$ and port mode register (PM17 or PM33) $)^{\text {Note }}$ to 0 .
- TCL5n: Select the count clock.
- CR5n: Compare value
- TMC5n: Stop the count operation, select the mode in which clear \& start occurs on a match of TM5n and CR5n.

LVS5n	LVR5n	Timer Output F/F Status Setting
0	1	Timer output F/F clear (0) (default value of TO5n output: low level)
1	0	Timer output F/F set (1) (default value of TO5n output: high level)

Timer output enabled
(TMC5n $=00001011 \mathrm{~B}$ or 00000111 B)
<2> After TCE5n = 1 is set, the count operation starts.
<3> The timer output F/F is inverted by a match of TM5n and CR5n. After INTTM5n is generated, TM5n is cleared to 00 H .
<4> After these settings, the timer output F/F is inverted at the same interval and a square wave is output from TO5n. The frequency is as follows.

- Frequency $=1 / 2 t(N+1)$
($\mathrm{N}: \mathbf{0 O H}$ to FFH)

Note 8-bit timer/event counter 50: P17, PM17
8-bit timer/event counter 51: P33, PM33

Caution Do not write other values to CR5n during operation.

Remarks 1. For how to enable the INTTM5n signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.
2. $n=0,1$

Figure 8-13. Square-Wave Output Operation Timing

Note The initial value of TO5n output can be set by bits 2 and 3 (LVR5n, LVS5n) of 8-bit timer mode control register $5 n$ (TMC5n).

8.4.4 PWM output operation

8 -bit timer/event counter 5 n operates as a PWM output when bit 6 (TMC5n6) of 8-bit timer mode control register 5 n (TMC5n) is set to 1.

The duty pulse determined by the value set to 8-bit timer compare register 5 n (CR5n) is output from TO5n.
Set the active level width of the PWM pulse to CR5n; the active level can be selected with bit 1 (TMC5n1) of TMC5n.
The count clock can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5 n (TCL5n).
PWM output can be enabled/disabled with bit 0 (TOE5n) of TMC5n.

Caution In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock selected by TCL5n) or more.

Remark $\mathrm{n}=0,1$

(1)
 PWM output basic operation

Setting

<1> Set each register.

- Clear the port output latch (P17 or P33) ${ }^{\text {Note }}$ and port mode register (PM17 or PM33) ${ }^{\text {Note }}$ to 0.
- TCL5n: Select the count clock.
- CR5n: Compare value
- TMC5n: Stop the count operation, select PWM mode.

The timer output F/F is not changed.

TMC5n1	Active Level Selection	
0	Active-high	
1	Active-low	

Timer output enabled
(TMC5n = 01000001B or 01000011B)
<2> The count operation starts when TCE5n=1.
Clear TCE5n to 0 to stop the count operation.

Note 8-bit timer/event counter 50: P17, PM17
8-bit timer/event counter 51: P33, PM33

PWM output operation

<1> PWM output (TO5n output) outputs an inactive level until an overflow occurs.
<2> When an overflow occurs, the active level is output. The active level is output until CR5n matches the count value of 8 -bit timer counter 5 n (TM5n).
$<3>$ After the CR5n matches the count value, the inactive level is output until an overflow occurs again.
<4> Operations <2> and <3> are repeated until the count operation stops.
$<5>$ When the count operation is stopped with TCE5n $=0$, PWM output becomes inactive.
For details of timing, see Figures 8-14 and 8-15.
The cycle, active-level width, and duty are as follows.

- $\mathrm{Cycle}=2^{8} \mathrm{t}$
- Active-level width $=\mathrm{Nt}$
- Duty $=\mathrm{N} / 2^{8}$ ($\mathrm{N}=00 \mathrm{H}$ to FFH)

Remark $\mathrm{n}=0,1$

Figure 8-14. PWM Output Operation Timing
(a) Basic operation (active level = H)

(b) $\mathrm{CR} 5 \mathrm{n}=\mathbf{0 0 H}$

(c) CR5n = FFH

Remarks 1. $<1>$ to $<3>$ and $<5>$ in Figure 8-14 (a) and (c) correspond to $<1>$ to $<3>$ and $<5>$ in PWM output operation in 8.4.4 (1) PWM output basic operation.
2. $n=0,1$
(2) Operation with CR5n changed

Figure 8-15. Timing of Operation with CR5n Changed
(a) CR5n value is changed from N to M before clock rising edge of FFH
\rightarrow Value is transferred to CR5n at overflow immediately after change.

(b) CR5n value is changed from N to M after clock rising edge of FFH \rightarrow Value is transferred to CR5n at second overflow.

Caution When reading from CR5n between <1> and <2> in Figure 8-15, the value read differs from the actual value (read value: M, actual value of $C R 5 n$: N).

8.5 Cautions for 8-Bit Timer/Event Counters 50 and 51

(1) Timer start error

An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 8-bit timer counters 50 and 51 (TM50, TM51) are started asynchronously to the count clock.

Figure 8-16. 8-Bit Timer Counter 5n (TM5n) Start Timing

(2) Reading of 8-bit timer counter 5 n (TM5n)

TM5n can be read without stopping the actual counter, because the count values captured to the buffer are fixed when it is read. The buffer, however, may not be updated when it is read immediately before the counter counts up, because the buffer is updated at the timing the counter counts up.

Figure 8-17. 8-bit Timer Counter 5n (TM5n) Read Timing

Remark $\mathrm{n}=0,1$

CHAPTER 9 8-BIT TIMERS HO AND H1

9.1 Functions of 8-Bit Timers H 0 and H 1

8 -bit timers H 0 and H 1 are mounted onto all $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontroller products.
8 -bit timers HO and H 1 have the following functions.

- Interval timer
- Square-wave output
- PWM output
- Carrier generator (8-bit timer H1 only)

9.2 Configuration of 8-Bit Timers H 0 and H 1

8-bit timers H 0 and H 1 include the following hardware.

Table 9-1. Configuration of 8-Bit Timers $\mathbf{H 0}$ and $\mathbf{H 1}$

Item	Configuration
Timer register	8-bit timer counter Hn
Registers	8-bit timer H compare register On (CMPOn) 8-bit timer H compare register 1n (CMP1n)
Timer output	TOHn, output controller
Control registers	8-bit timer H mode register n (TMHMDn) 8-bit timer H carrier control register 1 (TMCYC1) Pote Port mode register 1 (PM1) Pogister 1 (P1)

Note 8-bit timer H1 only

Remark $\mathrm{n}=0,1$

Figures 9-1 and 9-2 show the block diagrams.

Figure 9-1. Block Diagram of 8-Bit Timer H0

Figure 9-2. Block Diagram of 8-Bit Timer H1

(1) 8-bit timer H compare register On (CMPOn)

This register can be read or written by an 8 -bit memory manipulation instruction. This register is used in all of the timer operation modes.
This register constantly compares the value set to CMPOn with the count value of the 8-bit timer counter Hn and, when the two values match, generates an interrupt request signal (INTTMHn) and inverts the output level of TOHn.
Rewrite the value of CMPOn while the timer is stopped ($\mathrm{TMHEn}=0$).
A reset signal generation clears this register to 00 H .

Figure 9-3. Format of 8-Bit Timer H Compare Register On (CMPOn)

Caution CMPOn cannot be rewritten during timer count operation. CMPOn can be refreshed (the same value is written) during timer count operation.
(2) 8-bit timer H compare register 1 n (CMP1n)

This register can be read or written by an 8-bit memory manipulation instruction. This register is used in the PWM output mode and carrier generator mode.
In the PWM output mode, this register constantly compares the value set to CMP1n with the count value of the 8-bit timer counter Hn and, when the two values match, inverts the output level of TOHn . No interrupt request signal is generated.
In the carrier generator mode, the CMP1n register always compares the value set to CMP1n with the count value of the 8 -bit timer counter Hn and, when the two values match, generates an interrupt request signal (INTTMHn). At the same time, the count value is cleared.

CMP1n can be refreshed (the same value is written) and rewritten during timer count operation.
If the value of CMP1n is rewritten while the timer is operating, the new value is latched and transferred to CMP1n when the count value of the timer matches the old value of CMP1n, and then the value of CMP1n is changed to the new value. If matching of the count value and the CMP1n value and writing a value to CMP1n conflict, the value of CMP1n is not changed.
A reset signal generation clears this register to 00 H .

Figure 9-4. Format of 8-Bit Timer H Compare Register 1n (CMP1n)
Address: FF19H (CMP10), FF1BH (CMP11) After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
$\begin{aligned} & \text { CMP1n } \\ & (\mathrm{n}=0,1) \end{aligned}$								

Caution In the PWM output mode and carrier generator mode, be sure to set CMP1n when starting the timer count operation (TMHEn $=1$) after the timer count operation was stopped (TMHEn $=0$) (be sure to set again even if setting the same value to CMP1n).

Remark $\mathrm{n}=0,1$

9.3 Registers Controlling 8-Bit Timers H0 and H1

The following four registers are used to control 8-bit timers H 0 and H 1 .

- 8-bit timer H mode register n (TMHMDn)
- 8-bit timer H carrier control register 1 (TMCYC1) ${ }^{\text {Note }}$
- Port mode register 1 (PM1)
- Port register 1 (P1)

Note 8-bit timer H1 only
(1) 8-bit timer H mode register n (TMHMDn)

This register controls the mode of timer H .
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Remark $\mathrm{n}=0,1$

Figure 9-5. Format of 8-Bit Timer H Mode Register 0 (TMHMDO)

Address: FF69H After reset: 00 H R/W

	<7>	6	5	4	3	2	<1>	<0>
TMHMDO	TMHEO	CKS02	CKS01	CKS00	TMMD01	TMMD00	TOLEV0	TOEN0

TMHE0	Timer operation enable
0	Stops timer count operation (counter is cleared to 0)
1	Enables timer count operation (count operation started by inputting clock)

CKS02	CKS01	CKS00	Count clock selection ${ }^{\text {Note } 1}$				
				$\begin{aligned} & \text { fPRS }= \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS }= \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRs = } \\ & 10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS = } \\ & 20 \mathrm{MHz} \end{aligned}$
0	0	0	$\mathrm{fPRS}^{\text {Note }} 2$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 3}$
0	0	1	fPRS/2	1 MHz	2.5 MHz	5 MHz	10 MHz
0	1	0	fprs $/ 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
0	1	1	fprs $/ 2^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz
1	0	0	frrs $/ 2^{10}$	1.95 kHz	4.88 kHz	9.77 kHz	19.54 kHz
1	0	1	TM50 output ${ }^{\text {Note } 4}$				
Other than above			Setting prohibited				

TMMD01	TMMD00	Timer operation mode
0	0	Interval timer mode
1	0	PWM output mode
Other than above		Setting prohibited

TOLEVO		Timer output level control (in default mode)
0	Low level	
1	High level	

TOENO		Timer output control
0	Disables output	
1	Enables output	

Notes 1. The frequency that can be used for the peripheral hardware clock (fpRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD)	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fXH}(\mathrm{XSEL}=1)$.)

Notes 2. If the peripheral hardware clock (fprs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of CKS02 = CKS01 = CKS00 $=0$ (count clock: fPrs) is prohibited.
3. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$.
4. Note the following points when selecting the TM50 output as the count clock.

- Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0) Start the operation of 8 -bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).
- PWM mode (TMC506 = 1)

Start the operation of 8 -bit timer/event counter 50 first and then set the count clock to make the duty $=$ 50\%.
It is not necessary to enable (TOE50 $=1$) TO50 output in any mode.

Cautions 1. When TMHEO = 1, setting the other bits of TMHMDO is prohibited. However, TMHMDO can be refreshed (the same value is written).
2. In the PWM output mode, be sure to set the 8 -bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHEO $=1$) after the timer count operation was stopped (TMHE $=0$) (be sure to set again even if setting the same value to CMP10).
3. The actual TOH0/P15 pin output is determined depending on PM15 and P15, besides TOH0 output.

Remarks 1. fprs: Peripheral hardware clock frequency
2. TMC506: Bit 6 of 8 -bit timer mode control register 50 (TMC50)

TMC501: Bit 1 of TMC50

Figure 9-6. Format of 8-Bit Timer H Mode Register 1 (TMHMD1)
Address: FF6CH After reset: 00 H R/W

TMHMD1

$<7>$	6	5	4	3	2	$<1>$	$<0>$
TMHE1	CKS12	CKS11	CKS10	TMMD11	TMMD10	TOLEV1	TOEN1

TMHE1	Timer operation enable
0	Stops timer count operation (counter is cleared to 0)
1	Enables timer count operation (count operation started by inputting clock)

CKS12	CKS11	CKS10	Count clock selection ${ }^{\text {Note } 1}$				
				$\begin{aligned} & \text { fPRS }= \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS }= \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRs = } \\ & 10 \mathrm{MHz} \end{aligned}$	$\begin{array}{\|l} \text { fPRS }= \\ 20 \mathrm{MHz} \end{array}$
0	0	0	$\mathrm{fPRS}^{\text {Note } 2}$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 3}$
0	0	1	frrs $/ 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
0	1	0	frRs/2 ${ }^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz
0	1	1	fPRS $/ 2{ }^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz
1	0	0	fprs $/ 2^{12}$	0.49 kHz	1.22 kHz	2.44 kHz	4.88 kHz
1	0	1	$\mathrm{frL}^{2} / 2^{7}$	1.88 kHz (TYP.)			
1	1	0	$\mathrm{frLL}^{2} 2^{9}$	0.47 kHz (TYP.)			
1	1	1	frLL	240 kHz (TYP.)			

TMMD11	TMMD10	Timer operation mode
0	0	Interval timer mode
0	1	Carrier generator mode
1	0	PWM output mode
1	1	Setting prohibited

TOLEV1	Timer output level control (in default mode)	
0	Low level	
1	High level	

TOEN1		Timer output control
0	Disables output	
1	Enables output	

Notes 1. The frequency that can be used for the peripheral hardware clock (fpRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA $)$
$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	fPRs $\leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<4.0 \mathrm{~V}$	fPRs $\leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	fPRs $\leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fxH}(\mathrm{XSEL}=1)$.)

Notes 2. If the peripheral hardware clock (fprs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$, the setting of CKS12 = CKS11 = CKS10 $=0$ (count clock: fPrs) is prohibited.
3. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$.

Cautions 1. When TMHE1 = 1, setting the other bits of TMHMD1 is prohibited. However, TMHMD1 can be refreshed (the same value is written).
2. In the PWM output mode and carrier generator mode, be sure to set the 8 -bit timer \mathbf{H} compare register 11 (CMP11) when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 $=0$) (be sure to set again even if setting the same value to CMP11).
3. When the carrier generator mode is used, set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.
4. The actual TOH1/INTP5/P16 pin output is determined depending on PM16 and P16, besides TOH1 output.

Remarks 1. fprs: Peripheral hardware clock frequency
2. frL: Internal low-speed oscillation clock frequency
(2) 8-bit timer H carrier control register 1 (TMCYC1)

This register controls the remote control output and carrier pulse output status of 8-bit timer H 1 .
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 9-7. Format of 8-Bit Timer H Carrier Control Register 1 (TMCYC1)
Address: FF6DH After reset: 00 H R/W ${ }^{\text {Note }}$

TMCYC1

7	6	5	4	3	2	1	$<0>$
0	0	0	0	0	RMC1	NRZB1	NRZ1

RMC1	NRZB1	Remote control output
0	0	Low-level output
0	1	High-level output at rising edge of INTTM51 signal input
1	0	Low-level output
1	1	Carrier pulse output at rising edge of INTTM51 signal input

NRZ1	Carrier pulse output status flag
0	Carrier output disabled status (low-level status)
1	Carrier output enabled status (RMC1 = 1: Carrier pulse output, RMC1 $=0$: High-level status)

Note Bit 0 is read-only.

Caution Do not rewrite RMC1 when TMHE = 1. However, TMCYC1 can be refreshed (the same value is written).

(3) Port mode register 1 (PM1)

This register sets port 1 input/output in 1-bit units.
When using the P15/TOH0 and P16/TOH1/INTP5 pins for timer output, clear PM15 and PM16 and the output latches of P15 and P16 to 0 .
PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Figure 9-8. Format of Port Mode Register 1 (PM1)

Address: FF21H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

PM1n	P1n pin I/O mode selection ($\mathrm{n}=0$ to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

9.4 Operation of 8-Bit Timers H 0 and H 1

9.4.1 Operation as interval timer/square-wave output

When the 8-bit timer counter Hn and compare register On (CMPOn) match, an interrupt request signal (INTTMHn) is generated and the 8 -bit timer counter Hn is cleared to 00 H .

Compare register $1 \mathrm{n}(\mathrm{CMP1n})$ is not used in interval timer mode. Since a match of the 8 -bit timer counter Hn and the CMP1n register is not detected even if the CMP1n register is set, timer output is not affected.

By setting bit 0 (TOENn) of timer H mode register n (TMHMDn) to 1 , a square wave of any frequency (duty $=50 \%$) is output from TOHn.

Setting

<1> Set each register.

Figure 9-9. Register Setting During Interval Timer/Square-Wave Output Operation
(i) Setting timer H mode register n (TMHMDn)

(ii) CMPOn register setting

The interval time is as follows if N is set as a comparison value.

- Interval time $=(\mathrm{N}+1) / \mathrm{fcnt}$
$<2>$ Count operation starts when TMHEn $=1$.
$<3>$ When the values of the 8 -bit timer counter Hn and the CMPOn register match, the INTTMHn signal is generated and the 8 -bit timer counter Hn is cleared to 00 H .
<4> Subsequently, the INTTMHn signal is generated at the same interval. To stop the count operation, clear TMHEn to 0 .

Remarks 1. For the setting of the output pin, see 9.3 (3) Port mode register 1 (PM1).
2. For how to enable the INTTMHn signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.
3. $n=0,1$

Figure 9-10. Timing of Interval Timer/Square-Wave Output Operation (1/2)
(a) Basic operation (Operation When $01 \mathrm{H} \leq \mathrm{CMPOn} \leq \mathrm{FEH}$)

$<1>$ The count operation is enabled by setting the TMHEn bit to 1 . The count clock starts counting no more than 1 clock after the operation is enabled.
<2> When the value of the 8 -bit timer counter Hn matches the value of the CMPOn register, the value of the timer counter is cleared, and the level of the TOHn output is inverted. In addition, the INTTMHn signal is output at the rising edge of the count clock.
$<3>$ If the TMHEn bit is cleared to 0 while timer H is operating, the INTTMHn signal and TOHn output are set to the default level. If they are already at the default level before the TMHEn bit is cleared to 0 , then that level is maintained.

Remark $\mathrm{n}=0,1$
$01 \mathrm{H} \leq \mathrm{N} \leq \mathrm{FEH}$

Figure 9-10. Timing of Interval Timer/Square-Wave Output Operation (2/2)

Remark $\mathrm{n}=0,1$

9.4.2 Operation as PWM output

In PWM output mode, a pulse with an arbitrary duty and arbitrary cycle can be output.
The 8-bit timer compare register On (CMPOn) controls the cycle of timer output (TOHn). Rewriting the CMPOn register during timer operation is prohibited.

The 8-bit timer compare register 1n (CMP1n) controls the duty of timer output (TOHn). Rewriting the CMP1n register during timer operation is possible.

The operation in PWM output mode is as follows.
PWM output (TOHn output) outputs an active level and 8 -bit timer counter Hn is cleared to 0 when 8 -bit timer counter Hn and the CMPOn register match after the timer count is started. PWM output (TOHn output) outputs an inactive level when 8-bit timer counter Hn and the CMP1n register match.

```
Setting
<1> Set each register.
```

Figure 9-11. Register Setting in PWM Output Mode
(i) Setting timer H mode register n (TMHMDn)

(ii) Setting CMPOn register

- Compare value (N): Cycle setting

(iii) Setting CMP1n register

- Compare value (M): Duty setting

Remarks 1. $\mathrm{n}=0,1$
2. $00 \mathrm{H} \leq \mathrm{CMP} 1 \mathrm{n}(\mathrm{M})<\mathrm{CMPOn}(\mathrm{N}) \leq \mathrm{FFH}$
$<2>$ The count operation starts when TMHEn = 1 .
$<3>$ The CMPOn register is the compare register that is to be compared first after counter operation is enabled. When the values of the 8 -bit timer counter Hn and the CMPOn register match, the 8 -bit timer counter Hn is cleared, an interrupt request signal (INTTMHn) is generated, and an active level is output. At the same time, the compare register to be compared with the 8 -bit timer counter Hn is changed from the CMPOn register to the CMP1n register.
<4> When the 8 -bit timer counter Hn and the CMP1n register match, an inactive level is output and the compare register to be compared with the 8-bit timer counter Hn is changed from the CMP1n register to the CMPOn register. At this time, the 8 -bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
<5> By performing procedures <3> and <4> repeatedly, a pulse with an arbitrary duty can be obtained.
<6> To stop the count operation, set TMHEn $=0$.
If the setting value of the CMPOn register is N , the setting value of the CMP1n register is M, and the count clock frequency is fcnt, the PWM pulse output cycle and duty are as follows.

- PWM pulse output cycle $=(\mathrm{N}+1) / \mathrm{fcnt}$
- Duty $=(M+1) /(N+1)$

Cautions 1. The set value of the CMP1n register can be changed while the timer counter is operating. However, this takes a duration of three operating clocks (signal selected by the CKSn2 to CKSn0 bits of the TMHMDn register) from when the value of the CMP1n register is changed until the value is transferred to the register.
2. Be sure to set the CMP1n register when starting the timer count operation (TMHEn $=1$) after the timer count operation was stopped $(T M H E n=0)$ (be sure to set again even if setting the same value to the CMP1n register).
3. Make sure that the CMP1n register setting value (M) and CMPOn register setting value (N) are within the following range.
$\mathbf{0 0 H} \leq$ CMP1n $(M)<$ CMPOn (N) \leq FFH

Remarks 1. For the setting of the output pin, see 9.3 (3) Port mode register 1 (PM1).
2. For details on how to enable the INTTMHn signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.
3. $\mathrm{n}=0,1$

Figure 9-12. Operation Timing in PWM Output Mode (1/4)

$<1>$ The count operation is enabled by setting the TMHEn bit to 1 . Start the 8 -bit timer counter Hn by masking one count clock to count up. At this time, PWM output outputs an inactive level.
$<2>$ When the values of the 8 -bit timer counter Hn and the CMPOn register match, an active level is output. At this time, the value of the 8 -bit timer counter Hn is cleared, and the INTTMHn signal is output.
$<3>$ When the values of the 8 -bit timer counter Hn and the CMP1n register match, an inactive level is output. At this time, the 8-bit timer counter value is not cleared and the INTTMHn signal is not output.
<4> Clearing the TMHEn bit to 0 during timer Hn operation sets the INTTMHn signal to the default and PWM output to an inactive level.

Remark $\mathrm{n}=0,1$

Figure 9-12. Operation Timing in PWM Output Mode (2/4)
(b) Operation when CMPOn $=\mathrm{FFH}, \mathrm{CMP} 1 \mathrm{n}=00 \mathrm{H}$

(c) Operation when CMPOn $=$ FFH, CMP1n $=$ FEH

Remark $\mathrm{n}=0,1$

Figure 9-12. Operation Timing in PWM Output Mode (3/4)
(d) Operation when CMPOn $=01 \mathrm{H}, \mathrm{CMP} 1 \mathrm{n}=00 \mathrm{H}$

Remark $\mathrm{n}=0,1$

Figure 9-12. Operation Timing in PWM Output Mode (4/4)
(e) Operation by changing CMP1n (CMP1n $=02 \mathrm{H} \rightarrow 03 \mathrm{H}, \mathrm{CMPOn}=\mathrm{A} 5 \mathrm{H})$

$<1>$ The count operation is enabled by setting TMHEn $=1$. Start the 8 -bit timer counter Hn by masking one count clock to count up. At this time, PWM output outputs an inactive level.
<2> The CMP1n register value can be changed during timer counter operation. This operation is asynchronous to the count clock.
$<3>$ When the values of the 8 -bit timer counter Hn and the CMPOn register match, the value of the 8 -bit timer counter Hn is cleared, an active level is output, and the INTTMHn signal is output.
$<4>$ If the CMP1n register value is changed, the value is latched and not transferred to the register. When the values of the 8 -bit timer counter Hn and the CMP1n register before the change match, the value is transferred to the CMP1n register and the CMP1n register value is changed (<2>').
However, three count clocks or more are required from when the CMP1n register value is changed to when the value is transferred to the register. If a match signal is generated within three count clocks, the changed value cannot be transferred to the register.
$<5>$ When the values of the 8 -bit timer counter Hn and the CMP1n register after the change match, an inactive level is output. The 8 -bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
<6> Clearing the TMHEn bit to 0 during timer Hn operation sets the INTTMHn signal to the default and PWM output to an inactive level.

Remark $\mathrm{n}=0,1$

9.4.3 Carrier generator operation (8-bit timer H1 only)

In the carrier generator mode, the 8 -bit timer H 1 is used to generate the carrier signal of an infrared remote controller, and the 8 -bit timer/event counter 51 is used to generate an infrared remote control signal (time count).

The carrier clock generated by the 8 -bit timer H 1 is output in the cycle set by the 8 -bit timer/event counter 51 .
In carrier generator mode, the output of the 8 -bit timer H 1 carrier pulse is controlled by the 8 -bit timer/event counter 51, and the carrier pulse is output from the TOH 1 output.

(1) Carrier generation

In carrier generator mode, the 8-bit timer H compare register 01 (CMP01) generates a low-level width carrier pulse waveform and the 8 -bit timer H compare register 11 (CMP11) generates a high-level width carrier pulse waveform.
Rewriting the CMP11 register during the 8 -bit timer H 1 operation is possible but rewriting the CMP01 register is prohibited.

(2) Carrier output control

Carrier output is controlled by the interrupt request signal (INTTM51) of the 8 -bit timer/event counter 51 and the NRZB1 and RMC1 bits of the 8 -bit timer H carrier control register (TMCYC1). The relationship between the outputs is shown below.

RMC1 Bit	NRZB1 Bit	Output
0	0	Low-level output
0	1	High-level output at rising edge of INTTM51 signal input
1	0	Low-level output
1	1	Carrier pulse output at rising edge of INTTM51 signal input

To control the carrier pulse output during a count operation, the NRZ1 and NRZB1 bits of the TMCYC1 register have a master and slave bit configuration. The NRZ1 bit is read-only but the NRZB1 bit can be read and written. The INTTM51 signal is synchronized with the 8 -bit timer H 1 count clock and is output as the INTTM5H1 signal. The INTTM5H1 signal becomes the data transfer signal of the NRZ1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit. The timing for transfer from the NRZB1 bit to the NRZ1 bit is as shown below.

Figure 9-13. Transfer Timing

<1> The INTTM51 signal is synchronized with the count clock of the 8 -bit timer H 1 and is output as the INTTM5H1 signal.
<2> The value of the NRZB1 bit is transferred to the NRZ1 bit at the second clock from the rising edge of the INTTM5H1 signal.
<3> Write the next value to the NRZB1 bit in the interrupt servicing program that has been started by the INTTM5H1 interrupt or after timing has been checked by polling the interrupt request flag. Write data to count the next time to the CR51 register.

Cautions 1. Do not rewrite the NRZB1 bit again until at least the second clock after it has been rewritten, or else the transfer from the NRZB1 bit to the NRZ1 bit is not guaranteed.
 2. When the 8 -bit timer/event counter 51 is used in the carrier generator mode, an interrupt is generated at the timing of $\langle 1\rangle$. When the 8 -bit timer/event counter 51 is used in a mode other than the carrier generator mode, the timing of the interrupt generation differs.

Remark INTTM5H1 is an internal signal and not an interrupt source.

Setting

<1> Set each register.

Figure 9-14. Register Setting in Carrier Generator Mode
(i) Setting 8-bit timer H mode register 1 (TMHMD1)

(ii) CMP01 register setting

- Compare value
(iii) CMP11 register setting
- Compare value

(iv) TMCYC1 register setting

- RMC1 = 1 ... Remote control output enable bit
- NRZB1 = 0/1 ... carrier output enable bit
(v) TCL51 and TMC51 register setting
- See 8.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51.
<2> When TMHE1 = 1 , the 8 -bit timer H 1 starts counting.
$<3>$ When TCE51 of the 8 -bit timer mode control register 51 (TMC51) is set to 1 , the 8 -bit timer/event counter 51 starts counting.
<4> After the count operation is enabled, the first compare register to be compared is the CMP01 register. When the count value of the 8 -bit timer counter H 1 and the CMP01 register value match, the INTTMH1 signal is generated, the 8 -bit timer counter H 1 is cleared. At the same time, the compare register to be compared with the 8-bit timer counter H 1 is switched from the CMP01 register to the CMP11 register.
$<5>$ When the count value of the 8 -bit timer counter H 1 and the CMP11 register value match, the INTTMH1 signal is generated, the 8 -bit timer counter H 1 is cleared. At the same time, the compare register to be compared with the 8-bit timer counter H 1 is switched from the CMP11 register to the CMP01 register.
<6> By performing procedures <4> and <5> repeatedly, a carrier clock is generated.
$<7>$ The INTTM51 signal is synchronized with count clock of the 8 -bit timer H 1 and output as the INTTM5H1 signal. The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
<8> Write the next value to the NRZB1 bit in the interrupt servicing program that has been started by the INTTM5H1 interrupt or after timing has been checked by polling the interrupt request flag. Write data to count the next time to the CR51 register.
<9> When the NRZ1 bit is high level, a carrier clock is output by TOH1 output.
<10> By performing the procedures above, an arbitrary carrier clock is obtained. To stop the count operation, clear TMHE1 to 0 .

If the setting value of the CMP01 register is N, the setting value of the CMP11 register is M, and the count clock frequency is fcnt, the carrier clock output cycle and duty are as follows.

- Carrier clock output cycle $=(\mathrm{N}+\mathrm{M}+2) / \mathrm{fcnt}$
- Duty $=$ High-level width/carrier clock output width $=(M+1) /(N+M+2)$

Cautions 1. Be sure to set the CMP11 register when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 $=0$) (be sure to set again even if setting the same value to the CMP11 register).
2. Set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.
3. Set the values of the CMP01 and CMP11 registers in a range of 01H to FFH.
4. The set value of the CMP11 register can be changed while the timer counter is operating. However, it takes the duration of three operating clocks (signal selected by the CKS12 to CKS10 bits of the TMHMD1 register) since the value of the CMP11 register has been changed until the value is transferred to the register.
5. Be sure to set the RMC1 bit before the count operation is started.

Remarks 1. For the setting of the output pin, see 9.3 (3) Port mode register 1 (PM1).
2. For how to enable the INTTMH1 signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

Figure 9-15. Carrier Generator Mode Operation Timing (1/3)

<1> When TMHE1 $=0$ and TCE51 = 0 , the 8 -bit timer counter H1 operation is stopped.
<2> When TMHE1 = 1 is set, the 8 -bit timer counter H1 starts a count operation. At that time, the carrier clock remains default.
<3> When the count value of the 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with the 8 -bit timer counter H 1 is switched from the CMP01 register to the CMP11 register. The 8 -bit timer counter H 1 is cleared to 00 H .
<4> When the count value of the 8 -bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with the 8 -bit timer counter H 1 is switched from the CMP11 register to the CMP01 register. The 8 -bit timer counter H 1 is cleared to 00 H . By performing procedures $<3>$ and $<4>$ repeatedly, a carrier clock with duty fixed to 50% is generated.
<5> When the INTTM51 signal is generated, it is synchronized with the 8-bit timer H 1 count clock and is output as the INTTM5H1 signal.
<6> The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
$<7>$ When NRZ1 $=0$ is set, the TOH1 output becomes low level.
Remark INTTM5H1 is an internal signal and not an interrupt source.

Figure 9-15. Carrier Generator Mode Operation Timing (2/3)

<1> When TMHE1 $=0$ and TCE51 $=0$, the 8 -bit timer counter H 1 operation is stopped.
<2> When TMHE1 = 1 is set, the 8 -bit timer counter H1 starts a count operation. At that time, the carrier clock remains default.
$<3>$ When the count value of the 8 -bit timer counter H 1 matches the CMP01 register value, the first INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with the 8 -bit timer counter H 1 is switched from the CMP01 register to the CMP11 register. The 8 -bit timer counter H 1 is cleared to 00 H .
<4> When the count value of the 8 -bit timer counter H 1 matches the CMP11 register value, the INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with the 8 -bit timer counter H 1 is switched from the CMP11 register to the CMP01 register. The 8 -bit timer counter H 1 is cleared to 00 H . By performing procedures <3> and <4> repeatedly, a carrier clock with duty fixed to other than 50% is generated.
<5> When the INTTM51 signal is generated, it is synchronized with the 8-bit timer H 1 count clock and is output as the INTTM5H1 signal.
<6> A carrier signal is output at the first rising edge of the carrier clock if NRZ1 is set to 1 .
$<7>$ When NRZ1 = 0 , the TOH1 output is held at the high level and is not changed to low level while the carrier clock is high level (from <6> and <7>, the high-level width of the carrier clock waveform is guaranteed).

Remark INTTM5H1 is an internal signal and not an interrupt source.

Figure 9-15. Carrier Generator Mode Operation Timing (3/3)
(c) Operation when CMP11 is changed

$<1>$ When TMHE1 $=1$ is set, the 8 -bit timer H 1 starts a count operation. At that time, the carrier clock remains default. signal is output, the carrier signal is inverted, and the timer counter is cleared to 00 H . At the same time, the compare register whose value is to be compared with that of the 8 -bit timer counter H 1 is changed from the CMP01 register to the CMP11 register.
$<3>$ The CMP11 register is asynchronous to the count clock, and its value can be changed while the 8 -bit timer H 1 is operating. The new value (L) to which the value of the register is to be changed is latched. When the count value of the 8 -bit timer counter H 1 matches the value (M) of the CMP11 register before the change, the CMP11 register is changed (<3>').
However, it takes three count clocks or more since the value of the CMP11 register has been changed until the value is transferred to the register. Even if a match signal is generated before the duration of three count clocks elapses, the new value is not transferred to the register.
<4> When the count value of 8-bit timer counter H1 matches the value (M) of the CMP1 register before the change, the INTTMH1 signal is output, the carrier signal is inverted, and the timer counter is cleared to 00 H . At the same time, the compare register whose value is to be compared with that of the 8 -bit timer counter H 1 is changed from the CMP11 register to the CMP01 register.
$<5>$ The timing at which the count value of the 8 -bit timer counter H 1 and the CMP11 register value match again is indicated by the value after the change (L).

CHAPTER 10 WATCH TIMER

	$78 \mathrm{KO} / \mathrm{KB} 2$	$78 \mathrm{~K} 0 / \mathrm{KC} 2$	$78 \mathrm{~K} 0 / \mathrm{KD} 2$	$78 \mathrm{~K} 0 / \mathrm{KE} 2$	78K0/KF2
Watch timer	-	$\sqrt{ }$			

Remark $\sqrt{ }$: Mounted, -: Not mounted

10.1 Functions of Watch Timer

The watch timer has the following functions.

- Watch timer
- Interval timer

The watch timer and the interval timer can be used simultaneously.
Figure $10-1$ shows the watch timer block diagram.

Figure 10-1. Block Diagram of Watch Timer

Remark fprs: Peripheral hardware clock frequency
fsub: Subsystem clock frequency
fw: Watch timer clock frequency (fprs $/ 2^{7}$ or fsub)
fwx: fw or fw/2 ${ }^{9}$

(1) Watch timer

When the peripheral hardware clock or subsystem clock is used, interrupt request signals (INTWT) are generated at preset intervals.

Table 10-1. Watch Timer Interrupt Time

Interrupt Time	When Operated at fsub $=32.768 \mathrm{kHz}$	When Operated at fPRs $=2 \mathrm{MHz}$	When Operated at fPRs $=5 \mathrm{MHz}$	When Operated at fprs $=10 \mathrm{MHz}$	When Operated at fprs $=20 \mathrm{MHz}$
$2^{4} / \mathrm{fw}$	$488 \mu \mathrm{~s}$	1.02 ms	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$	$102 \mu \mathrm{~s}$
$2^{5} / \mathrm{fw}$	$977 \mu \mathrm{~s}$	2.05 ms	$819 \mu \mathrm{~s}$	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$
$2^{13} / \mathrm{fw}$	0.25 s	0.52 s	0.210 s	0.105 s	52.5 ms
$2^{14} / \mathrm{fw}$	0.5 s	1.05 s	0.419 s	0.210 s	0.105 s

Remark fPRs: Peripheral hardware clock frequency
fsub: Subsystem clock frequency
fw: Watch timer clock frequency (fprs $/ 2^{7}$ or fsub)
(2) Interval timer

Interrupt request signals (INTWTI) are generated at preset time intervals.

Table 10-2. Interval Timer Interval Time

Interval Time	When Operated at fsub $=32.768 \mathrm{kHz}$	When Operated at fprs $=2 \mathrm{MHz}$	When Operated at $\mathrm{fPRs}=5 \mathrm{MHz}$	When Operated at $\mathrm{fPRs}=10 \mathrm{MHz}$	When Operated at fpRs $=20 \mathrm{MHz}$
$2^{4} / \mathrm{fw}$	$488 \mu \mathrm{~s}$	1.02 ms	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$	$102 \mu \mathrm{~s}$
$2^{5} / \mathrm{fw}$	$977 \mu \mathrm{~s}$	2.05 ms	$820 \mu \mathrm{~s}$	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$
$2^{6} / \mathrm{fw}$	1.95 ms	4.10 ms	1.64 ms	$820 \mu \mathrm{~s}$	$410 \mu \mathrm{~s}$
$2^{7} / \mathrm{fw}$	3.91 ms	8.20 ms	3.28 ms	1.64 ms	$820 \mu \mathrm{~s}$
$2^{8} / \mathrm{fw}$	7.81 ms	6.55 ms	3.28 ms	1.64 ms	
$2^{9} / \mathrm{fw}$	15.6 ms	32.8 ms	13.1 ms	6.55 ms	3.28 ms
$2^{10} / \mathrm{fw}$	31.3 ms	65.5 ms	13.1 ms	6.55 ms	
$2^{11 / f w}$	62.5 ms	131.1 ms	52.4 ms	26.2 ms	13.1 ms

Remark fPRS: Peripheral hardware clock frequency
fsub: Subsystem clock frequency
fw : Watch timer clock frequency (fprs $/ 2^{7}$ or fsuB)

10.2 Configuration of Watch Timer

The watch timer includes the following hardware.

Table 10-3. Watch Timer Configuration

Item	Configuration
Counter	5 bits $\times 1$
Prescaler	11 bits $\times 1$
Control register	Watch timer operation mode register (WTM)

10.3 Register Controlling Watch Timer

The watch timer is controlled by the watch timer operation mode register (WTM).

- Watch timer operation mode register (WTM)

This register sets the watch timer count clock, enables/disables operation, prescaler interval time, and 5-bit counter operation control.
WTM is set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears WTM to 00 H .

Figure 10-2. Format of Watch Timer Operation Mode Register (WTM)

Address: FF6FH After reset: 00 H			R/W					
Symbol	7	6	5	4	3	2	<1>	<0>
WTM	WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTMO

WTM7	Watch timer count clock selection (fw) ${ }^{\text {Note }}$					
		fsub $=32.768 \mathrm{kHz}$	fPRS $=2 \mathrm{MHz}$	fPRS $=5 \mathrm{MHz}$	fPRS $=10 \mathrm{MHz}$	fPRS $=20 \mathrm{MHz}$
0	fPRs $/ 2^{7}$	-	15.625 kHz	39.062 kHz	78.125 kHz	156.25 kHz
1	fsub	32.768 kHz	-			

WTM6	WTM5	WTM4	Prescaler interval time selection
0	0	0	$2^{4} / f w$
0	0	1	$2^{5} / \mathrm{fw}$
0	1	0	$2^{6} / \mathrm{fw}$
0	1	1	$2^{7} / \mathrm{fw}$
1	0	0	$2^{8} / \mathrm{fw}$
1	0	1	$2^{9} / \mathrm{fw}$
1	1	0	$2^{10} / \mathrm{fw}$
1	1	1	$2^{11 / f w}$

WTM3	WTM2	Selection of watch timer interrupt time
0	0	$2^{14} / \mathrm{fw}$
0	1	$2^{13} / \mathrm{fw}$
1	0	$2^{5} / \mathrm{fw}$
1	1	$2^{4} / \mathrm{fw}$

WTM1		5-bit counter operation control
0	Clear after operation stop	
1	Start	

WTM0	
0	Operation stop (clear both prescaler and 5-bit counter)
1	Operation enable

Note The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xXDA $)$
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	fPRS $\leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	fPRs $\leq 10 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	fPRs $\leq 5 \mathrm{MHz}$	

(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)

Caution Do not change the count clock and interval time (by setting bits 4 to 7 (WTM4 to WTM7) of WTM) during watch timer operation.

Remarks 1. fw: Watch timer clock frequency (fprs $/ 2^{7}$ or fsub)
2. fPRS: Peripheral hardware clock frequency
3. fsub: Subsystem clock frequency

10.4 Watch Timer Operations

10.4.1 Watch timer operation

The watch timer generates an interrupt request signal (INTWT) at a specific time interval by using the peripheral hardware clock or subsystem clock.

When bit 0 (WTMO) and bit 1 (WTM1) of the watch timer operation mode register (WTM) are set to 1, the count operation starts. When these bits are cleared to 0 , the 5 -bit counter is cleared and the count operation stops.

When the interval timer is simultaneously operated, zero-second start can be achieved only for the watch timer by clearing WTM1 to 0 . In this case, however, the 11 -bit prescaler is not cleared. Therefore, an error up to $2^{9} \times 1 / \mathrm{fw}$ seconds occurs in the first overflow (INTWT) after zero-second start.

The interrupt request is generated at the following time intervals.

Table 10-4. Watch Timer Interrupt Time

WTM3	WTM2	Interrupt Time Selection	When Operated at fsub $=32.768 \mathrm{kHz}$ (WTM7 = 1)	When Operated at fPRS $=2 \mathrm{MHz}$ (WTM7 = 0)	When Operated at fprs $=5 \mathrm{MHz}$ (WTM7 = 0)	When Operated at fprs $=10 \mathrm{MHz}$ (WTM7 = 0)	When Operated at $\mathrm{f}_{\text {PRS }}=20 \mathrm{MHz}$ (WTM7 = 0)
0	0	$2^{14} / \mathrm{fw}$	0.5 s	1.05 s	0.419 s	0.210 s	0.105 s
0	1	$2^{13} / \mathrm{fw}$	0.25 s	0.52 s	0.210 s	0.105 s	52.5 ms
1	0	25/fw	977 /s	2.05 ms	$819 \mu \mathrm{~s}$	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$
1	1	24/fw	$488 \mu \mathrm{~s}$	1.02 ms	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$	$102 \mu \mathrm{~s}$

Remarks 1. fw: Watch timer clock frequency (fprs $/ 2^{7}$ or fsub)
2. fprs: Peripheral hardware clock frequency
3. fsub: Subsystem clock frequency

10.4.2 Interval timer operation

The watch timer operates as interval timer which generates interrupt request signals (INTWTI) repeatedly at an interval of the preset count value.

The interval time can be selected with bits 4 to 6 (WTM4 to WTM6) of the watch timer operation mode register (WTM).
When bit 0 (WTMO) of the WTM is set to 1 , the count operation starts. When this bit is set to 0 , the count operation stops.

Table 10-5. Interval Timer Interval Time

WTM6	WTM5	WTM4	Interval Time	When Operated at fsub $=32.768$ kHz (WTM7 = 1)	When Operated at fpRs $=2 \mathrm{MHz}$ (WTM7 = 0)	When Operated at fpRs $=5 \mathrm{MHz}$ $(\mathrm{WTM} 7=0)$	When Operated at fprs $=10 \mathrm{MHz}$ $(W T M 7=0)$	When Operated at fPRs $=20 \mathrm{MHz}$ (WTM7 = 0)
0	0	0	2/ffw	$488 \mu \mathrm{~s}$	1.02 ms	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$	$102 \mu \mathrm{~s}$
0	0	1	2/fw	$977 \mu \mathrm{~s}$	2.05 ms	$820 \mu \mathrm{~s}$	$410 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$
0	1	0	$2^{6} / \mathrm{fw}$	1.95 ms	4.10 ms	1.64 ms	$820 \mu \mathrm{~s}$	$410 \mu \mathrm{~s}$
0	1	1	$2^{7} / \mathrm{fw}$	3.91 ms	8.20 ms	3.28 ms	1.64 ms	$820 \mu \mathrm{~s}$
1	0	0	$2^{8} / \mathrm{fw}$	7.81 ms	16.4 ms	6.55 ms	3.28 ms	1.64 ms
1	0	1	2/fw	15.6 ms	32.8 ms	13.1 ms	6.55 ms	3.28 ms
1	1	0	$2^{10} / \mathrm{fw}$	31.3 ms	65.5 ms	26.2 ms	13.1 ms	6.55 ms
1	1	1	$2^{11 / f w}$	62.5 ms	131.1 ms	52.4 ms	26.2 ms	13.1 ms

Remarks 1. fw: Watch timer clock frequency (fprs $/ 2^{7}$ or fsub)
2. fprs: Peripheral hardware clock frequency
3. fsub: Subsystem clock frequency

Figure 10-3. Operation Timing of Watch Timer/Interval Timer

(T)

Remark fw: Watch timer clock frequency
Figures in parentheses are for operation with $\mathrm{fw}=32.768 \mathrm{kHz}(\mathrm{WTM} 7=1, \mathrm{WTM} 3, \mathrm{WTM} 2=0,0)$

10.5 Cautions for Watch Timer

When operation of the watch timer and 5 -bit counter is enabled by the watch timer mode control register (WTM) (by setting bits 0 (WTM0) and 1 (WTM1) of WTM to 1), the interval until the first interrupt request signal (INTWT) is generated after the register is set does not exactly match the specification made with bits 2 and 3 (WTM2, WTM3) of WTM. Subsequently, however, the INTWT signal is generated at the specified intervals.

Figure 10-4. Example of Generation of Watch Timer Interrupt Request Signal (INTWT)
(When Interrupt Period = 0.5 s)

It takes 0.515625 seconds for the first INTWT to be generated $\left(2^{9} \times 1 / 32768=0.015625 \mathrm{~s}\right.$ longer $)$. INTWT is then generated every 0.5 seconds.

CHAPTER 11 WATCHDOG TIMER

11.1 Functions of Watchdog Timer

The watchdog timer is mounted onto all $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontroller products.
The watchdog timer operates on the internal low-speed oscillation clock.
The watchdog timer is used to detect an inadvertent program loop. If a program loop is detected, an internal reset signal is generated.

Program loop is detected in the following cases.

- If the watchdog timer counter overflows
- If a 1-bit manipulation instruction is executed on the watchdog timer enable register (WDTE)
- If data other than "ACH" is written to WDTE
- If data is written to WDTE during a window close period
- If the instruction is fetched from an area not set by the IMS and IXS registers (detection of an invalid check while the CPU hangs up)
- If the CPU accesses an area that is not set by the IMS and IXS registers (excluding FBOOH to FFCFH and FFEOH to FFFFH) by executing a read/write instruction (detection of an abnormal access during a CPU program loop)

When a reset occurs due to the watchdog timer, bit 4 (WDTRF) of the reset control flag register (RESF) is set to 1 . For details of RESF, see CHAPTER 23 RESET FUNCTION.

11.2 Configuration of Watchdog Timer

The watchdog timer includes the following hardware.

Table 11-1. Configuration of Watchdog Timer

Item	Configuration
Control register	Watchdog timer enable register (WDTE)

How the counter operation is controlled, overflow time, and window open period are set by the option byte.

Table 11-2. Setting of Option Bytes and Watchdog Timer

Setting of Watchdog Timer	Option Byte (0080H)
Window open period	Bits 6 and 5 (WINDOW1, WINDOW0)
Controlling counter operation of watchdog timer	Bit 4 (WDTON)
Overflow time of watchdog timer	Bits 3 to 1 (WDCS2 to WDCS0)

Remark For the option byte, see CHAPTER 26 OPTION BYTE.

Figure 11-1. Block Diagram of Watchdog Timer

11.3 Register Controlling Watchdog Timer

The watchdog timer is controlled by the watchdog timer enable register (WDTE).

(1) Watchdog timer enable register (WDTE)

Writing ACH to WDTE clears the watchdog timer counter and starts counting again.
This register can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 9 AH or $1 \mathrm{AH}^{\text {Note }}$.

Figure 11-2. Format of Watchdog Timer Enable Register (WDTE)

Note The WDTE reset value differs depending on the WDTON setting value of the option byte (0080H). To operate watchdog timer, set WDTON to 1.

WDTON Setting Value	WDTE Reset Value	
0 (watchdog timer count operation disabled)	1 AH	
1 (watchdog timer count operation enabled)	9 AH	

Cautions 1. If a value other than ACH is written to WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
2. If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
3. The value read from WDTE is $9 \mathrm{AH} / 1 \mathrm{AH}$ (this differs from the written value (ACH)).

11.4 Operation of Watchdog Timer

11.4.1 Controlling operation of watchdog timer

1. When the watchdog timer is used, its operation is specified by the option byte $(0080 \mathrm{H})$.

- Enable counting operation of the watchdog timer by setting bit 4 (WDTON) of the option byte (0080H) to 1 (the counter starts operating after a reset release) (for details, see CHAPTER 26).

WDTON	Operation Control of Watchdog Timer Counter/Illegal Access Detection
0	Counter operation disabled (counting stopped after reset), illegal access detection operation disabled
1	Counter operation enabled (counting started after reset), illegal access detection operation enabled

- Set an overflow time by using bits 3 to 1 (WDCS2 to WDCS0) of the option byte (0080 H) (for details, see 11.4.2 and CHAPTER 26).
- Set a window open period by using bits 6 and 5 (WINDOW1 and WINDOWO) of the option byte (0080H) (for details, see 11.4.3 and CHAPTER 26).

2. After a reset release, the watchdog timer starts counting.
3. By writing "ACH" to WDTE after the watchdog timer starts counting and before the overflow time set by the option byte, the watchdog timer is cleared and starts counting again.
4. After that, write WDTE the second time or later after a reset release during the window open period. If WDTE is written during a window close period, an internal reset signal is generated.
5. If the overflow time expires without "ACH" written to WDTE, an internal reset signal is generated.

A internal reset signal is generated in the following cases.

- If a 1-bit manipulation instruction is executed on the watchdog timer enable register (WDTE)
- If data other than "ACH" is written to WDTE
- If the instruction is fetched from an area not set by the IMS and IXS registers (detection of an invalid check during a CPU program loop)
- If the CPU accesses an area not set by the IMS and IXS registers (excluding FBOOH to FFCFH and FFEOH to FFFFH) by executing a read/write instruction (detection of an abnormal access during a CPU program loop)

Cautions 1. The first writing to WDTE after a reset release clears the watchdog timer, if it is made before the overflow time regardless of the timing of the writing, and the watchdog timer starts counting again.
2. If the watchdog timer is cleared by writing "ACH" to WDTE, the actual overflow time may be different from the overflow time set by the option byte by up to $2 /$ frl seconds.
3. The watchdog timer can be cleared immediately before the count value overflows (FFFFH).

Cautions 4. The operation of the watchdog timer in the HALT and STOP modes differs as follows depending on the set value of bit 0 (LSROSC) of the option byte.

	LSROSC $=0$ (Internal Low-Speed Oscillator Can Be Stopped by Software)	LSROSC $=1$ (Internal Low-Speed Oscillator Cannot Be Stopped)
In HALT mode	Watchdog timer operation stops.	Watchdog timer operation continues.
In STOP mode		

If LSROSC $=0$, the watchdog timer resumes counting after the HALT or STOP mode is released. At this time, the counter is not cleared to 0 but starts counting from the value at which it was stopped.
If oscillation of the internal low-speed oscillator is stopped by setting LSRSTOP (bit 1 of the internal oscillation mode register $($ RCM $)=1$) when LSROSC $=0$, the watchdog timer stops operating. At this time, the counter is not cleared to 0 .
5. The watchdog timer continues its operation during self-programming and EEPROM emulation of the flash memory. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.

11.4.2 Setting overflow time of watchdog timer

Set the overflow time of the watchdog timer by using bits 3 to 1 (WDCS2 to WDCS0) of the option byte (0080H).
If an overflow occurs, an internal reset signal is generated. The present count is cleared and the watchdog timer starts counting again by writing "ACH" to WDTE during the window open period before the overflow time.

The following overflow time is set.

Table 11-3. Setting of Overflow Time of Watchdog Timer

WDCS2	WDCS1	WDCS0	Overflow Time of Watchdog Timer
0	0	0	$2^{10} / \mathrm{fRL}$ (3.88 ms)
0	0	1	$2^{11} / \mathrm{fRL}$ (7.76 ms)
0	1	0	$2^{12} / \mathrm{ffL}_{\text {(}}(15.52 \mathrm{~ms})$
0	1	1	$2^{13} / \mathrm{frL}$ (31.03 ms)
1	0	0	$2^{14 / f \mathrm{fRL}}$ (62.06 ms)
1	0	1	$2^{15} / \mathrm{fRL}$ (124.12 ms)
1	1	0	$2^{16} / \mathrm{fRL}$ (248.24 ms)
1	1	1	$2^{17} / \mathrm{fRL}$ (496.48 ms)

Cautions 1. The combination of WDCS2 $=$ WDCS1 $=$ WDCS0 $=0$ and WINDOW1 $=$ WINDOW0 $=0$ is prohibited.
2. The watchdog timer continues its operation during self-programming and EEPROM emulation of the flash memory. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.

Remarks 1. frL: Internal low-speed oscillation clock frequency
2. (): frL $=264 \mathrm{kHz}(\mathrm{MAX}$.)

11.4.3 Setting window open period of watchdog timer

Set the window open period of the watchdog timer by using bits 6 and 5 (WINDOW1, WINDOW0) of the option byte $(0080 \mathrm{H})$. The outline of the window is as follows.

- If "ACH" is written to WDTE during the window open period, the watchdog timer is cleared and starts counting again.
- Even if "ACH" is written to WDTE during the window close period, an abnormality is detected and an internal reset signal is generated.

Example: If the window open period is 25%

Caution The first writing to WDTE after a reset release clears the watchdog timer, if it is made before the overflow time regardless of the timing of the writing, and the watchdog timer starts counting again.

The window open period to be set is as follows.

Table 11-4. Setting Window Open Period of Watchdog Timer

WINDOW1	WINDOW0	Window Open Period of Watchdog Timer
0	0	25%
0	1	50%
1	0	75%
1	1	100%

Cautions 1. The combination of WDCS2 $=$ WDCS1 $=$ WDCS $0=0$ and WINDOW1 $=$ WINDOW0 $=0$ is prohibited.
2. Setting WINDOW1 $=$ WINDOW0 $=0$ is prohibited when using the watchdog timer at 1.8 V $\leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$.
3. The watchdog timer continues its operation during self-programming and EEPROM emulation of the flash memory. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.

Remark If the overflow time is set to $2^{11} /$ frL, the window close time and open time are as follows.
(when 2.7 $\mathrm{V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$)

	Setting of Window Open Period			
	25%			
50%	75%	100%		
Window close time	0 to 7.11 ms	0 to 4.74 ms	0 to 2.37 ms	None
Window open time	7.11 to 7.76 ms	4.74 to 7.76 ms	2.37 to 7.76 ms	0 to 7.76 ms

<When window open period is 25% >

- Overflow time:
$2^{11} /$ frl (MAX.) $=2^{11} / 264 \mathrm{kHz}($ MAX. $)=7.76 \mathrm{~ms}$
- Window close time:

0 to $2^{11 / f R L}(\mathrm{MIN}) \times.(1-0.25)=0$ to $2^{11} / 216 \mathrm{kHz}(\mathrm{MIN}) \times 0.75=$.0 to 7.11 ms

- Window open time:
$2^{11} /$ frL $($ MIN. $) \times(1-0.25)$ to $2^{11} /$ fri $(M A X)=.2^{11} / 216 \mathrm{kHz}(\mathrm{MIN}) \times$.0.75 to $2^{11} / 264 \mathrm{kHz}($ MAX.) $=7.11$ to 7.76 ms

CHAPTER 12 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2	78K0/KF2
Clock output	-	38/44 pins: 48 pins:	\checkmark		
Buzzer output	-			\checkmark	

Remark V : Mounted, -: Not mounted

12.1 Functions of Clock Output/Buzzer Output Controller

The clock output controller is intended for carrier output during remote controlled transmission and clock output for supply to peripheral ICs. The clock selected with the clock output selection register (CKS) is output.

In addition, the buzzer output is intended for square-wave output of buzzer frequency selected with CKS.
Figure 12-1 and 12-2 show the block diagram of clock output/buzzer output controller.

Figure 12-1. Block Diagram of Clock Output/Buzzer Output Controller
(78K0/KD2, 48-pin Products of 78K0/KC2)

Figure 12-2. Block Diagram of Clock Output/Buzzer Output Controller (78K0/KE2, 78K0/KF2)

12.2 Configuration of Clock Output/Buzzer Output Controller

The clock output/buzzer output controller includes the following hardware.

Table 12-1. Configuration of Clock Output/Buzzer Output Controller

Item	Configuration
Control registers	Clock output selection register (CKS) Port mode register 14 (PM14) Port register 14 (P14)

12.3 Registers Controlling Clock Output/Buzzer Output Controller

The following two registers are used to control the clock output/buzzer output controller.

- Clock output selection register (CKS)
- Port mode register 14 (PM14)
(1) Clock output selection register (CKS)

This register sets output enable/disable for clock output (PCL) and for the buzzer frequency output (BUZ), and sets the output clock.
CKS is set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears CKS to 00H.

Figure 12-3. Format of Clock Output Selection Register (CKS) (78K0/KD2, 48-pin Products of 78K0/KC2)
Address: FF40H

After reset: 00 H
Symbol

R/W
7

CLOE	PCL output enable/disable specification
0	Clock division circuit operation stopped. PCL fixed to low level.
1	Clock division circuit operation enabled. PCL output enabled.

CCS3	CCS2	CCS1	CCSO	PCL output clock selection ${ }^{\text {Note } 1}$			
					$\begin{gathered} \text { fsub }= \\ 32.768 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{fPRS}= \\ 10 \mathrm{MHz} \end{gathered}$	fPRS $=$ 20 MHz
0	0	0	0	fPRS ${ }^{\text {Note } 2}$	-	10 MHz	Setting prohibited ${ }^{\text {Note } 3}$
0	0	0	1	fPRS/2		5 MHz	10 MHz
0	0	1	0	frrs $/ 2^{2}$		2.5 MHz	5 MHz
0	0	1	1	frrs $/ 22^{3}$		1.25 MHz	2.5 MHz
0	1	0	0	fPRS $/ 2^{4}$		625 kHz	1.25 MHz
0	1	0	1	fPRS $/ 2{ }^{5}$		312.5 kHz	625 kHz
0	1	1	0	fPRS $/ 2{ }^{6}$		156.25 kHz	312.5 kHz
0	1	1	1	fPRS $/ 2{ }^{7}$		78.125 kHz	156.25 kHz
1	0	0	0	fsub	32.768 kHz		
Other than above				Setting prohibited			

Notes 1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA $)$
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	fPRS $\leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	fPRS $\leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	fPRS $\leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=$ fXH (XSEL = 1).)
2. If the peripheral hardware clock operates on the internal high-speed oscillation clock when $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<$ 2.7 V , setting CCS3 $=\mathrm{CCS} 2=\mathrm{CCS} 1=\mathrm{CCS} 0=0$ (output clock of PCL: fPRS) is prohibited.
3. The PCL output clock prohibits settings if they exceed 10 MHz .

Caution Set CCS3 to CCSO while the clock output operation is stopped (CLOE $=0$).

Remarks 1. fprs: Peripheral hardware clock frequency
2. fsub: Subsystem clock frequency

Figure 12-4. Format of Clock Output Selection Register (CKS) (78K0/KE2, 78K0/KF2)

Address:		t: 00 H						
Symbol	<7>	6	5	<4>	3	2	1	0
CKS	BZOE	BCS1	BCSO	CLOE	CCS3	CCS2	CCS1	CCSO

BZOE	BUZ output enable/disable specification
0	Clock division circuit operation stopped. BUZ fixed to low level.
1	Clock division circuit operation enabled. BUZ output enabled.

BCS1	BCSO	BUZ output clock selection ${ }^{\text {Note } 1}$		
			frRs $=10 \mathrm{MHz}$	fras $=20 \mathrm{MHz}$
0	0	ffrs/ $/ 2^{10}$	9.77 kHz	19.54 kHz
0	1	fprs/ $/ 2^{11}$	4.88 kHz	9.77 kHz
1	0	$\mathrm{ffrs} / 2^{12}$	2.44 kHz	4.88 kHz
1	1	ffrs $/ 2^{13}$	1.22 kHz	2.44 kHz

CLOE	PCL output enable/disable specification
0	Clock division circuit operation stopped. PCL fixed to low level.
1	Clock division circuit operation enabled. PCL output enabled.

CCS3	CCS2	CCS1	ccso	PCL output clock selection ${ }^{\text {Note } 1}$			
					$\begin{gathered} \text { fsub }= \\ 32.768 \mathrm{kHz} \end{gathered}$	$\begin{gathered} \text { fPRS }= \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fPRS }= \\ 20 \mathrm{MHz} \end{gathered}$
0	0	0	0	$\mathrm{ffRS}^{\text {Note } 2}$	-	10 MHz	Setting prohibited ${ }^{\text {Note } 3}$
0	0	0	1	fPRS/2		5 MHz	10 MHz
0	0	1	0	frrs/ 2^{2}		2.5 MHz	5 MHz
0	0	1	1	frps/ $/{ }^{3}$		1.25 MHz	2.5 MHz
0	1	0	0	frrs $/ 2^{4}$		625 kHz	1.25 MHz
0	1	0	1	frps/ $/{ }^{5}$		312.5 kHz	625 kHz
0	1	1	0	frps/ $/ 2^{6}$		156.25 kHz	312.5 kHz
0	1	1	1	frrs/ 2^{7}		78.125 kHz	156.25 kHz
1	0	0	0	fsub	32.768 kHz	-	
Other than above				Setting prohibited			

Notes 1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD)	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$	fras $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$\mathrm{fPRSS}^{5} 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	$\mathrm{ffRS} \leq 5 \mathrm{MHz}$	f frs $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fXH}(\mathrm{XSEL}=1)$.)

Notes 2. If the peripheral hardware clock (fprs) operates on the internal high-speed oscillation clock (XSEL $=0$) when $1.8 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$, setting $\mathrm{CCS} 3=\mathrm{CCS} 2=\mathrm{CCS} 1=\mathrm{CCS} 0=0$ (output clock of PCL: fPRs) is prohibited.
3. The PCL output clock prohibits settings if they exceed 10 MHz .

Cautions 1. Set BCS1 and BCS0 when the buzzer output operation is stopped ($B Z O E=0$).
2. Set CCS3 to CCSO while the clock output operation is stopped ($C L O E=0$).

Remarks 1. fprs: Peripheral hardware clock frequency
2. fsub: Subsystem clock frequency

(2) Port mode register 14 (PM14)

This register sets port 14 input/output in 1-bit units.
When using the P140/INTP6/PCL pin for clock output and the P141/INTP7/BUSY0/BUZ pin for buzzer output, clear PM140 and PM141 and the output latches of P140 and P141 to 0.
PM14 is set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets PM14 to FFH.

Figure 12-5. Format of Port Mode Register 14 (PM14)

Remark The figure shown above presents the format of port mode register 14 of 78K0/KF2 products. For the format of port mode register 14 of other products, see (1) Port mode registers (PMxx) in 5.3 Registers Controlling Port Function.

12.4 Operations of Clock Output/Buzzer Output Controller

12.4.1 Operation as clock output

The clock pulse is output as the following procedure.
$<1>$ Select the clock pulse output frequency with bits 0 to 3 (CCSO to CCS3) of the clock output selection register (CKS) (clock pulse output in disabled status).
<2> Set bit 4 (CLOE) of CKS to 1 to enable clock output.

Remark The clock output controller is designed not to output pulses with a small width during output enable/disable switching of the clock output. As shown in Figure 12-6, be sure to start output from the low period of the clock (marked with * in the figure). When stopping output, do so after the high-level period of the clock.

Figure 12-6. Remote Control Output Application Example

12.4.2 Operation as buzzer output

The buzzer frequency is output as the following procedure.
$<1>$ Select the buzzer output frequency with bits 5 and 6 (BCS0, BCS1) of the clock output selection register (CKS) (buzzer output in disabled status).
<2> Set bit 7 (BZOE) of CKS to 1 to enable buzzer output.

CHAPTER 13 A/D CONVERTER

	$78 K 0 / \mathrm{KB2}$	$78 \mathrm{~K} 0 / \mathrm{KC} 2$	$78 \mathrm{~K} 0 / \mathrm{KD} 2$	$78 \mathrm{KO} / \mathrm{KE} 2$	$78 \mathrm{K0} / \mathrm{KF} 2$
$10-$ bit A/D converter	4 ch	38 pins: 6 ch $44 / 48$ pins: 8 ch		8 ch	

13.1 Function of A/D Converter

The A/D converter converts an analog input signal into a digital value, and consists of up to eight channels (ANIO to ANI7) with a resolution of 10 bits.

The A/D converter has the following function.

- 10-bit resolution A/D conversion

10-bit resolution A/D conversion is carried out repeatedly for one analog input channel selected from ANIO to ANI7.
Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated.

Figure 13-1. Block Diagram of A/D Converter

Remark ANIO to ANI3: 78KO/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

13.2 Configuration of A/D Converter

The A / D converter includes the following hardware.

(1) ANIO to ANI7 pins

These are the analog input pins of the 8 -channel A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin can be used as $1 / \mathrm{O}$ port pins.

Remark ANIO to ANI3: 78K0/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above
(2) Sample \& hold circuit

The sample \& hold circuit samples the input voltage of the analog input pin selected by the selector when A/D conversion is started, and holds the sampled voltage value during A/D conversion.

(3) Series resistor string

The series resistor string is connected between $A V_{\text {ref }}$ and $A V s s$, and generates a voltage to be compared with the sampled voltage value.

Figure 13-2. Circuit Configuration of Series Resistor String

(4) Voltage comparator

The voltage comparator compares the sampled voltage value and the output voltage of the series resistor string.
(5) Successive approximation register (SAR)

This register converts the result of comparison by the voltage comparator, starting from the most significant bit (MSB).
When the voltage value is converted into a digital value down to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR register are transferred to the A/D conversion result register (ADCR).
(6) 10-bit A/D conversion result register (ADCR)

The A / D conversion result is loaded from the successive approximation register to this register each time A / D conversion is completed, and the ADCR register holds the A/D conversion result in its higher 10 bits (the lower 6 bits are fixed to 0).
(7) 8-bit A/D conversion result register (ADCRH)

The A / D conversion result is loaded from the successive approximation register to this register each time A / D conversion is completed, and the ADCRH register stores the higher 8 bits of the A/D conversion result.

Caution When data is read from ADCR and ADCRH, a wait cycle is generated. Do not read data from ADCR and ADCRH when the peripheral hardware clock (fPRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.
(8) Controller

This circuit controls the conversion time of an input analog signal that is to be converted into a digital signal, as well as starting and stopping of the conversion operation. When A / D conversion has been completed, this controller generates INTAD.
(9) AVref pin

This pin inputs an analog power/reference voltage to the A/D converter. Make this pin the same potential as the VDD pin when port 2 is used as a digital port.

The signal input to ANIO to ANI7 is converted into a digital signal, based on the voltage applied across AVref and AVss.

(10) AVss pin

This is the ground potential pin of the A/D converter. Always use this pin at the same potential as that of the Vss pin even when the A / D converter is not used.
(11) A/D converter mode register (ADM)

This register is used to set the conversion time of the analog input signal to be converted, and to start or stop the conversion operation.
(12) A/D port configuration register (ADPC)

This register switches the ANIO/P20 to ANI7/P27 pins to analog input of A/D converter or digital I/O of port.
(13) Analog input channel specification register (ADS)

This register is used to specify the port that inputs the analog voltage to be converted into a digital signal.
(14) Port mode register 2 (PM2)

This register switches the ANI0/P20 to ANI7/P27 pins to input or output.

Remark ANIO to ANI3: 78K0/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

13.3 Registers Used in A/D Converter

The A/D converter uses the following six registers.

- A/D converter mode register (ADM)
- A/D port configuration register (ADPC)
- Analog input channel specification register (ADS)
- Port mode register 2 (PM2)
- 10-bit A/D conversion result register (ADCR)
- 8-bit A/D conversion result register (ADCRH)

(1) A/D converter mode register (ADM)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion.
ADM can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 13-3. Format of A/D Converter Mode Register (ADM)

ADCS	A/D conversion operation control
0	Stops conversion operation
1	Enables conversion operation

ADCE	Comparator operation control ${ }^{\text {Note } 2}$
0	Stops comparator operation
1	Enables comparator operation

Notes 1. For details of FR2 to FRO, LV1, LV0, and A/D conversion, see Table 13-2 A/D Conversion Time Selection (Conventional-specification Products (μ PD78F05xx and 78F05xxD)), and Table 13-3 A/D Conversion Time Selection (Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)).
2. The operation of the comparator is controlled by ADCS and ADCE, and it takes $1 \mu \mathrm{~s}$ from operation start to operation stabilization. Therefore, when ADCS is set to 1 after $1 \mu \mathrm{~s}$ or more has elapsed from the time ADCE is set to 1 , the conversion result at that time has priority over the first conversion result. Otherwise, ignore data of the first conversion.

Table 13-1. Settings of ADCS and ADCE

ADCS	ADCE	A/D Conversion Operation
0	0	Stop status (DC power consumption path does not exist)
0	1	Conversion waiting mode (comparator operation, only comparator consumes power)
1	0	Conversion mode (comparator operation stopped ${ }^{\text {Note }}$)
1	1	Conversion mode (comparator operation)

Note Ignore the first conversion data.

Figure 13-4. Timing Chart When Comparator Is Used

Note To stabilize the internal circuit, the time from the rising of the ADCE bit to the falling of the ADCS bit must be 1 μ s or longer.

Cautions 1. A/D conversion must be stopped before rewriting bits FRO to FR2, LV1, and LVO to values other than the identical data.
2. If data is written to ADM, a wait cycle is generated. Do not write data to ADM when the peripheral hardware clock (fPRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

Table 13-2. A/D Conversion Time Selection (Conventional-specification Products (μ PD78F05xx and 78F05xxD))
(1) $2.7 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{ref}} \leq 5.5 \mathrm{~V}(\mathrm{LVO}=0)$

A/D Converter Mode Register (ADM)					Conversion Time Selection				Conversion Clock (fad)
FR2	FR1	FR0	LV1	LVO		frRs $=2 \mathrm{MHz}$	$\mathrm{fPRS}=10 \mathrm{MHz}$	$\mathrm{fPRS}=20 \mathrm{MHz}{ }^{\text {Note }}$	
0	0	0	0	0	264/fprs	Setting prohibited	$26.4 \mu \mathrm{~s}$	$13.2 \mu \mathrm{~s}^{\text {Note }}$	fPRS/12
0	0	1	0	0	176/fprs		$17.6 \mu \mathrm{~s}$	$8.8 \mu \mathrm{~s}^{\text {Note }}$	fPRs/8
0	1	0	0	0	132/fprs		$13.2 \mu \mathrm{~s}$	$6.6 \mu \mathrm{~s}^{\text {Note }}$	fPRs/6
0	1	1	0	0	88/fprs		$8.8 \mu \mathrm{~S}^{\text {Note }}$	Setting prohibited	fPRS/4
1	0	0	0	0	66/fprs	$33.0 \mu \mathrm{~s}$	$6.6 \mu \mathrm{~s}^{\text {Note }}$		fPRs/3
1	0	1	0	0	44/fprs	$22.0 \mu \mathrm{~s}$	Setting prohibited		fPRs/2
Other than above					Setting prohibited				

Note This can be set only when $4.0 \mathrm{~V} \leq \mathrm{AV}$ Ref $\leq 5.5 \mathrm{~V}$.
(2) $2.3 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{REF}}<2.7 \mathrm{~V}(\mathrm{LVO}=1)$

A/D Converter Mode Register (ADM)					Conversion Time Selection			Conversion Clock (fad)
FR2	FR1	FR0	LV1	LVO		$\mathrm{fPRS}=2 \mathrm{MHz}$	$\mathrm{f}_{\text {PRS }}=5 \mathrm{MHz}$	
0	0	0	0	1	480/fprs	Setting prohibited	Setting prohibited	fPRS/12
0	0	1	0	1	320/fprs		$64.0 \mu \mathrm{~s}$	fprs/8
0	1	0	0	1	240/fprs		$48.0 \mu \mathrm{~s}$	fprs/6
0	1	1	0	1	160/fprs		$32.0 \mu \mathrm{~s}$	fprs/4
1	0	0	0	1	120/fprs	$60.0 \mu \mathrm{~s}$	Setting prohibited	fprs/3
1	0	1	0	1	80/fprs	$40.0 \mu \mathrm{~s}$	Setting prohibited	fprs/2
Other than above					Setting prohibited			

Cautions 1. Set the conversion times with the following conditions.

- $4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$: $\mathrm{f}_{\mathrm{AD}}=0.6$ to 3.6 MHz
- $2.7 \mathrm{~V} \leq A V_{\text {ref }}<4.0 \mathrm{~V}$: fad $=0.6$ to 1.8 MHz
- 2.3 V $\leq A V_{r e f ~}<2.7 \mathrm{~V}$: fad $=0.6$ to 1.48 MHz (Standard products and (A) grade products only)

2. When rewriting FR2 to FRO, LV1, and LV0 to other than the same data, stop A/D conversion once (ADCS = 0) beforehand.
3. Change LVO from the default value, when $2.3 \mathrm{~V} \leq A V_{\text {ref }}<2.7 \mathrm{~V}$.
4. The above conversion time does not include clock frequency errors. Select conversion time, taking clock frequency errors into consideration.

Remark fPRS: Peripheral hardware clock frequency

Table 13-3. A/D Conversion Time Selection (Expanded-specification Products (μ PD78F05xxA and 78F05xxDA))
(1) $2.7 \mathrm{~V} \leq A V_{\text {ref }} \leq 5.5 \mathrm{~V}(\mathrm{LVO}=0)$

A/D Converter Mode Register (ADM)					Conversion Time Selection					Conversion Clock (fad)
FR2	FR1	FR0	LV1	LV0		$\mathrm{f}_{\text {PRS }}=2 \mathrm{MHz}$	$\mathrm{f}_{\text {PRS }}=5 \mathrm{MHz}$	$\mathrm{f}_{\text {PRS }}=10 \mathrm{MHz}$	$\mathrm{fPRS}=20 \mathrm{MHz}$	
0	0	0	0	0	264/fprs	Setting prohibited	$52.8 \mu \mathrm{~s}$	$26.4 \mu \mathrm{~s}$	$13.2 \mu \mathrm{~s}$	frRs/12
0	0	1	0	0	176/fprs		$35.2 \mu \mathrm{~s}$	$17.6 \mu \mathrm{~s}$	$8.8 \mu \mathrm{~s}^{\text {Note }}$	fPRs/8
0	1	0	0	0	132/fprs	$66.0 \mu \mathrm{~s}$	$26.4 \mu \mathrm{~s}$	$13.2 \mu \mathrm{~s}$	$6.6 \mu \mathrm{~s}^{\text {Note }}$	fprs/6
0	1	1	0	0	88/fprs	$44.0 \mu \mathrm{~s}$	$17.6 \mu \mathrm{~s}$	$8.8 \mu \mathrm{~s}^{\text {Note }}$	Setting prohibited	fPrs/4
1	0	0	0	0	66/fprs	$33.0 \mu \mathrm{~s}$	$13.2 \mu \mathrm{~s}$	$6.6 \mu \mathrm{~s}^{\text {Note }}$		fprs/3
1	0	1	0	0	44/fprs	$22.0 \mu \mathrm{~s}$	$8.8 \mu \mathrm{~s}^{\text {Note }}$	Setting prohibited		$\mathrm{fPRS} / 2$
Other than above					Setting prohibited					

Note This can be set only when $4.0 \mathrm{~V} \leq \mathrm{AV}$ REF $\leq 5.5 \mathrm{~V}$.
(2) $2.3 \mathrm{~V} \leq A V_{\text {ref }} \leq 5.5 \mathrm{~V}(\mathrm{LVO}=1)$

A/D Converter Mode Register (ADM)					Conversion Time Selection					Conversion Clock (f_{AD})
FR2	FR1	FR0	LV1	LVo		$\mathrm{fPRS}=2 \mathrm{MHz}$	$f_{\text {PRS }}=5 \mathrm{MHz}$	$\begin{gathered} \text { fPRS }= \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fPRS }= \\ 20 \mathrm{MHz} \end{gathered}$	
0	0	0	0	1	480/fprs	Setting prohibited	Setting prohibited	$48.0 \mu \mathrm{~s}^{\text {Note } 2}$	$24.0 \mu \mathrm{~s}^{\text {Note } 2}$	fPRS/12
0	0	1	0	1	320/fprs		$64.0 \mu \mathrm{~s}$	$32.0 \mu \mathrm{~s}^{\text {Note } 2}$	$16.0 \mu \mathrm{~s}^{\text {Note } 1}$	fPrs/8
0	1	0	0	1	240/fprs		$48.0 \mu \mathrm{~s}$	$24.0 \mu \mathrm{~s}^{\text {Note } 2}$	$12.0 \mu \mathrm{~s}^{\text {Note } 1}$	fPRs/6
0	1	1	0	1	160/fprs		$32.0 \mu \mathrm{~s}$	$16.0 \mu \mathrm{~s}^{\text {Note } 1}$	Setting prohibited	fPRS/4
1	0	0	0	1	120/fprs	$60.0 \mu \mathrm{~s}$	$24.0 \mu \mathrm{~s}^{\text {Note } 2}$	$12.0 \mu \mathrm{~s}^{\text {Note } 1}$		fPRs/3
1	0	1	0	1	80/fprs	$40.0 \mu \mathrm{~s}$	$16.0 \mu \mathrm{~s}^{\text {Note } 1}$	Setting prohibited		fPRs/2
Other than above					Setting prohibited					

Notes 1. This can be set only when $4.0 \mathrm{~V} \leq \mathrm{AV}$ Ref $\leq 5.5 \mathrm{~V}$.
2. This can be set only when $2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$.

Cautions 1. Set the conversion times with the following conditions.
(1) $2.7 \mathrm{~V} \leq A V_{\text {ref }} \leq 5.5 \mathrm{~V}(\mathrm{LVO}=0)$

- 4.0 V $\leq A V_{r e f} \leq 5.5 \mathrm{~V}$: $\mathrm{f}_{\mathrm{AD}}=0.33$ to 3.6 MHz
- 2.7 V $\leq A_{\text {ref }}<4.0 \mathrm{~V}: \mathrm{f}_{\mathrm{AD}}=0.33$ to 1.8 MHz
(2) $2.3 \mathrm{~V} \leq A V_{\text {ref }} \leq 5.5 \mathrm{~V}(\mathrm{LVO}=1)$
- $4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{ref}} \leq 5.5 \mathrm{~V}$: $\mathrm{f}_{\mathrm{AD}}=0.6$ to 3.6 MHz
- $2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$: fad $=0.6$ to 1.8 MHz
- 2.3 V $\leq A_{\text {REF }}<2.7 \mathrm{~V}$: fad = 0.6 to 1.48 MHz (Standard products and (A) grade products only)

2. When rewriting FR2 to FRO, LV1, and LV0 to other than the same data, stop A/D conversion once (ADCS =0) beforehand.
3. Change LVO from the default value, when $2.3 \mathrm{~V} \leq \mathrm{AV}$ ref $<2.7 \mathrm{~V}$.
4. The above conversion time does not include clock frequency errors. Select conversion time, taking clock frequency errors into consideration.

Remark fPRs: Peripheral hardware clock frequency

Figure 13-5. A/D Converter Sampling and A/D Conversion Timing

Note For details of wait period, see CHAPTER 36 CAUTIONS FOR WAIT.
(2) 10-bit A/D conversion result register (ADCR)

This register is a 16 -bit register that stores the A/D conversion result. The lower 6 bits are fixed to 0 . Each time A/D conversion ends, the conversion result is loaded from the successive approximation register. The higher 8 bits of the conversion result are stored in FF09H and the lower 2 bits are stored in the higher 2 bits of FF08H.
ADCR can be read by a 16 -bit memory manipulation instruction.
Reset signal generation clears this register to 0000 H .

Figure 13-6. Format of 10-Bit A/D Conversion Result Register (ADCR)
Address: FF08H, FF09H After reset: 0000 H R

Cautions 1. When writing to the A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.
2. If data is read from ADCR, a wait cycle is generated. Do not read data from ADCR when the peripheral hardware clock (fPRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.
(3) 8-bit A/D conversion result register (ADCRH)

This register is an 8-bit register that stores the A/D conversion result. The higher 8 bits of 10-bit resolution are stored. ADCRH can be read by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 13-7. Format of 8-Bit A/D Conversion Result Register (ADCRH)

Address:		After reset: 00 H	R					
Symbol	7	6	5	4	3	2	1	0
ADCRH								

Cautions 1. When writing to the A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.
2. If data is read from ADCRH, a wait cycle is generated. Do not read data from ADCRH when the peripheral hardware clock (fPRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.
(4) Analog input channel specification register (ADS)

This register specifies the input channel of the analog voltage to be A/D converted.
ADS can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Remark ANIO to ANI3: 78K0/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

Figure 13-8. Format of Analog Input Channel Specification Register (ADS)

Notes 1. Setting permitted
2. Setting prohibited

Cautions 1. Be sure to clear bits 3 to 7 to " 0 ".
2 Set a channel to be used for A/D conversion in the input mode by using port mode register 2 (PM2).
3. If data is written to ADS, a wait cycle is generated. Do not write data to ADS when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

(5) A/D port configuration register (ADPC)

This register switches the ANIO/P20 to ANI7/P27 pins to analog input of A/D converter or digital I/O of port. ADPC can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Remark ANIO to ANI3: $78 \mathrm{KO} / \mathrm{KB} 2$
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

Figure 13-9. Format of A/D Port Configuration Register (ADPC)

Address: FF2FH		After reset: 00 H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	0	ADPC3	ADPC2	ADPC1	ADPC0

Products 38-pin other than products the right of KC2	ADPC3	ADPC2	ADPC1	ADPC0	Digital I/O (D)/analog input (A) switching							
					$\begin{array}{\|l\|} \hline \text { P27/ } \\ \text { ANI7 } \end{array}$	$\begin{aligned} & \text { P26/ } \\ & \text { ANI6 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P25/ } \\ \text { AN15 } \end{array}$	P24/ ANI4	$\begin{aligned} & \hline \text { P23/ } \\ & \text { ANI3 } \end{aligned}$	$\begin{aligned} & \text { P22/ } \\ & \text { ANI2 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 21 / \\ & \text { ANI1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P20/ } \\ & \text { ANIO } \\ & \hline \end{aligned}$
$\underbrace{}_{\text {Note 1 }}$	0	0	0	0	A	A	A	A	A	A	A	A
	0	0	0	1	A	A	A	A	A	A	A	D
	0	0	1	0	A	A	A	A	A	A	D	D
	0	0	1	1	A	A	A	A	A	D	D	D
	0	1	0	0	A	A	A	A	D	D	D	D
	0	1	0	1	A	A	A	D	D	D	D	D
	0	1	1	0	A	A	D	D	D	D	D	D
	0	1	1	1	A	D	D	D	D	D	D	D
	1	0	0	0	D	D	D	D	D	D	D	D
Other than above					Setting prohibited							

Notes 1. Setting permitted
2. Setting prohibited

Cautions 1. Set a channel to be used for A/D conversion in the input mode by using port mode register 2 (PM2).
2. If data is written to ADPC, a wait cycle is generated. Do not write data to ADPC when the peripheral hardware clock (fPRS) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.
(6) Port mode register 2 (PM2)

When using the ANIO/P20 to ANI7/P27 pins for analog input port, set PM20 to PM27 to 1. The output latches of P20 to P27 at this time may be 0 or 1 .
If PM20 to PM27 are set to 0, they cannot be used as analog input port pins.
PM2 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Remark ANIO to ANI3: 78K0/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

Figure 13-10. Format of Port Mode Register 2 (PM2)

Address:	F22H	After reset: FFH R/W						
Symbol	7	6	5	4	3	2	1	0
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20

PM2n	P2n pin I/O mode selection ($\mathrm{n}=0$ to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Caution For the 38 -pin products of $78 \mathrm{KO} / \mathrm{KC2}$, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 6 and 7 of P 2 to " 0 ".

Remark The format of port mode register 2 of $78 \mathrm{KO} / \mathrm{KB} 2$ products is different from the above format. See 5.3 Registers Controlling Port Function (1) Port mode registers (PMxx).

ANIO/P20 to ANI7/P27 pins are as shown below depending on the settings of ADPC, ADS, and PM2.

Table 13-4. Setting Functions of ANIO/P20 to ANI7/P27 Pins

ADPC	PM2	ADS	ANIO/P20 to ANI7/P27 Pins
Analog input selection	Input mode	Selects ANI.	Analog input (to be converted)
		Does not select ANI.	Analog input (not to be converted)
	Output mode	Selects ANI.	Setting prohibited
		Does not select ANI.	
Digital I/O selection	Input mode	-	Digital input
	Output mode	-	Digital output

13.4 A/D Converter Operations

13.4.1 Basic operations of A/D converter

$<1>$ Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1 to start the operation of the comparator.
<2> Set channels for A/D conversion to analog input by using the A/D port configuration register (ADPC) and set to input mode by using port mode register 2 (PM2).
$<3>$ Set A/D conversion time by using bits 5 to 1 (FR2 to FR0, LV1, and LV0) of ADM.
$<4>$ Select one channel for A/D conversion using the analog input channel specification register (ADS).
$<5>$ Start the conversion operation by setting bit 7 (ADCS) of ADM to 1 . (<6> to <12> are operations performed by hardware.)
$<6>$ The voltage input to the selected analog input channel is sampled by the sample \& hold circuit.
$<7>$ When sampling has been done for a certain time, the sample \& hold circuit is placed in the hold state and the sampled voltage is held until the A/D conversion operation has ended.
<8> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) $A V_{\text {ref }}$ by the tap selector.
<9> The voltage difference between the series resistor string voltage tap and sampled voltage is compared by the voltage comparator. If the analog input is greater than (1/2) AVref, the MSB of SAR remains set to 1 . If the analog input is smaller than (1/2) AVref, the MSB is reset to 0 .
$<10>$ Next, bit 8 of SAR is automatically set to 1 , and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9 , as described below.

- Bit $9=1$: (3/4) AVref
- Bit $9=0$: (1/4) AVref

The voltage tap and sampled voltage are compared and bit 8 of SAR is manipulated as follows.

- Analog input voltage \geq Voltage tap: Bit $8=1$
- Analog input voltage < Voltage tap: Bit $8=0$
$<11>$ Comparison is continued in this way up to bit 0 of SAR.
$<12>$ Upon completion of the comparison of 10 bits, an effective digital result value remains in SAR, and the result value is transferred to the A/D conversion result register (ADCR, ADCRH) and then latched.
At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.
$<13>$ Repeat steps $<6>$ to $<12>$, until ADCS is cleared to 0 .
To stop the A/D converter, clear ADCS to 0 .
To restart A/D conversion from the status of $\operatorname{ADCE}=1$, start from <5. To start A / D conversion again when ADCE $=0$, set ADCE to 1 , wait for 1μ s or longer, and start $<5>$. To change a channel of A/D conversion, start from <4>.

Caution Make sure the period of $\langle 1>$ to $<5>$ is 1μ s or more.

Remark Two types of A/D conversion result registers are available.

- ADCR (16 bits): Store 10-bit A/D conversion value
- ADCRH (8 bits): Store 8-bit A/D conversion value

Figure 13-11. Basic Operation of A/D Converter

A/D conversion operations are performed continuously until bit 7 (ADCS) of the A/D converter mode register (ADM) is reset (0) by software.

If a write operation is performed to the analog input channel specification register (ADS) during an A/D conversion operation, the conversion operation is initialized, and if the ADCS bit is set (1), conversion starts again from the beginning.

Reset signal generation clears the A/D conversion result register (ADCR, ADCRH) to 0000H or 00H.

13.4.2 Input voltage and conversion results

The relationship between the analog input voltage input to the analog input pins (ANIO to ANI7) and the theoretical A/D conversion result (stored in the 10-bit A/D conversion result register (ADCR)) is shown by the following expression.

$$
\begin{aligned}
& \text { SAR }=\operatorname{INT}\left(\frac{V_{\text {AIN }}}{A V_{\text {REF }}} \times 1024+0.5\right) \\
& A D C R=S A R \times 64
\end{aligned}
$$

or

$$
\left(\frac{A D C R}{64}-0.5\right) \times \frac{A_{\text {REF }}}{1024} \leq \mathrm{V}_{\text {AIN }}<\left(\frac{\text { ADCR }}{64}+0.5\right) \times \frac{A V_{\text {REF }}}{1024}
$$

where, INT(): Function which returns integer part of value in parentheses
VAIN: Analog input voltage
AVref: AVref pin voltage
ADCR: A/D conversion result register (ADCR) value
SAR: Successive approximation register

Remark ANIO to ANI3: 78K0/KB2
ANIO to ANI5: 38-pin products of the 78K0/KC2
ANIO to ANI7: Products other than above

Figure 13-12 shows the relationship between the analog input voltage and the A/D conversion result.

Figure 13-12. Relationship Between Analog Input Voltage and A/D Conversion Result

13.4.3 A/D converter operation mode

The operation mode of the A/D converter is the select mode. One channel of analog input is selected from ANIO to ANI7 by the analog input channel specification register (ADS) and A/D conversion is executed.

Remark ANIO to ANI3: 78KO/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

(1) A / D conversion operation

By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1, the A/D conversion operation of the voltage, which is applied to the analog input pin specified by the analog input channel specification register (ADS), is started When A / D conversion has been completed, the result of the A / D conversion is stored in the A / D conversion result register (ADCR), and an interrupt request signal (INTAD) is generated. When one A/D conversion has been completed, the next A / D conversion operation is immediately started.
If $A D S$ is rewritten during A / D conversion, the A / D conversion operation under execution is stopped and restarted from the beginning.

If 0 is written to ADCS during A/D conversion, A/D conversion is immediately stopped. At this time, the conversion result immediately before is retained.

Figure 13-13. A/D Conversion Operation

Remarks 1. $78 \mathrm{KO} / \mathrm{KB} 2: \mathrm{n}=0$ to 3,38 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2: \mathrm{n}=0$ to 5 , other products: $\mathrm{n}=0$ to 7
2. $78 \mathrm{KO} / \mathrm{KB2}: \mathrm{m}=0$ to 3 , 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC2}: \mathrm{m}=0$ to 5 , other products: $\mathrm{m}=0$ to 7

The setting methods are described below.
<1> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1 .
<2> Set the channel to be used in the analog input mode by using bits 3 to 0 (ADPC3 to ADPC0) of the A/D port configuration register (ADPC) and bits 7 to 0 (PM27 to PM20) of port mode register 2 (PM2)
$<3>$ Select conversion time by using bits 5 to 1 (FR2 to FR0, LV1, and LV0) of ADM.
$<4>$ Select a channel to be used by using bits 2 to 0 (ADS2 to ADSO) of the analog input channel specification register (ADS).
$<5>$ Set bit 7 (ADCS) of ADM to 1 to start A/D conversion.
<6> When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.
$<7>$ Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).
<Change the channel>
<8> Change the channel using bits 2 to 0 (ADS2 to ADSO) of ADS to start A/D conversion
$<9>$ When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.
<10> Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).
<Complete A/D conversion>
<11> Clear ADCS to 0.
<12> Clear ADCE to 0 .
Cautions 1. Make sure the period of $\langle 1\rangle$ to $<5>$ is $1 \mu s$ or more.
2. <1> may be done between <2> and <4>.
3. <1> can be omitted. However, ignore data of the first conversion after $<5>$ in this case.
4. The period from <6> to <9> differs from the conversion time set using bits 5 to 1 (FR2 to FR0, LV1, LV0) of ADM. The period from <8> to <9> is the conversion time set using FR2 to FR0, LV1, and LVO.

13.5 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A / D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by \%FSR (Full Scale Range).

1 LSB is as follows when the resolution is 10 bits.

$$
\begin{aligned}
1 \mathrm{LSB} & =1 / 2^{10}=1 / 1024 \\
& =0.098 \% \mathrm{FSR}
\end{aligned}
$$

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value.
Zero-scale error, full-scale error, integral linearity error, and differential linearity errors that are combinations of these express the overall error.
Note that the quantization error is not included in the overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, $a \pm 1 / 2 \mathrm{LSB}$ error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1 / 2$ LSB is converted to the same digital code, so a quantization error cannot be avoided. Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

Figure 13-14. Overall Error

Figure 13-15. Quantization Error

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0000 to 0001.
If the actual measurement value is greater than the theoretical value, it shows the difference between the actual measurement value of the analog input voltage and the theoretical value ($3 / 2 \mathrm{LSB}$) when the digital output changes from 0 001 to 0. \qquad 010.

(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (Full-scale - 3/2LSB) when the digital output changes from 1...... 110 to 1...... 111.
(6) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zeroscale error and full-scale error are 0.

(7) Differential linearity error

While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

Figure 13-16. Zero-Scale Error

Figure 13-18. Integral Linearity Error

Figure 13-17. Full-Scale Error

Figure 13-19. Differential Linearity Error

(8) Conversion time

This expresses the time from the start of sampling to when the digital output is obtained.
The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample \& hold circuit.

13.6 Cautions for A/D Converter

(1) Operating current in STOP mode

The A/D converter stops operating in the STOP mode. At this time, the operating current can be reduced by clearing bit 7 (ADCS) and bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 .
To restart from the standby status, clear bit 0 (ADIF) of interrupt request flag register 1 L (IF1L) to 0 and start operation.
(2) Input range of ANIO to ANI7

Observe the rated range of the ANIO to ANI7 input voltage. If a voltage of $A V_{\text {ref }}$ or higher and $A V$ ss or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.

(3) Conflicting operations

$<1>$ Conflict between A/D conversion result register (ADCR, ADCRH) write and ADCR or ADCRH read by instruction upon the end of conversion ADCR or ADCRH read has priority. After the read operation, the new conversion result is written to ADCR or ADCRH.
<2> Conflict between ADCR or ADCRH write and A/D converter mode register (ADM) write, analog input channel specification register (ADS), or A/D port configuration register (ADPC) write upon the end of conversion ADM, ADS, or ADPC write has priority. ADCR or ADCRH write is not performed, nor is the conversion end interrupt signal (INTAD) generated.
(4) Noise countermeasures

To maintain the 10-bit resolution, attention must be paid to noise input to the AVref pin and pins ANIO to ANI7.
<1> Connect a capacitor with a low equivalent resistance and a good frequency response to the power supply.
$<2>$ The higher the output impedance of the analog input source, the greater the influence. To reduce the noise, connecting external C as shown in Figure 13-20 is recommended.
$<3>$ Do not switch these pins with other pins during conversion.
<4> The accuracy is improved if the HALT mode is set immediately after the start of conversion.

Remark ANIO to ANI3: 78K0/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

Figure 13-20. Analog Input Pin Connection

(5) ANIO/P20 to ANI7/P27

<1> The analog input pins (ANIO to ANI7) are also used as I/O port pins (P20 to P27). When A/D conversion is performed with any of ANIO to ANI7 selected, do not access P20 to P27 while conversion is in progress; otherwise the conversion resolution may be degraded. It is recommended to select pins used as P20 to P27 starting with the ANIO/P20 that is the furthest from AVref.
<2> If a digital pulse is applied to the pins adjacent to the pins currently used for A / D conversion, the expected value of the A/D conversion may not be obtained due to coupling noise. Therefore, do not apply a pulse to the pins adjacent to the pin undergoing A / D conversion.
(6) Input impedance of ANIO to ANI7 pins

This A/D converter charges a sampling capacitor for sampling during sampling time.
Therefore, only a leakage current flows when sampling is not in progress, and a current that charges the capacitor flows during sampling. Consequently, the input impedance fluctuates depending on whether sampling is in progress, and on the other states.
To make sure that sampling is effective, however, it is recommended to keep the output impedance of the analog input source to within $10 \mathrm{k} \Omega$, and to connect a capacitor of about 100 pF to the ANIO to ANI7 pins (see Figure 13-20).

(7) AVref pin input impedance

A series resistor string of several tens of $k \Omega$ is connected between the $A V_{r e f ~ a n d ~}^{A V s s}$ pins.
Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to the series resistor string between the $A V_{\text {REF }}$ and $A V$ ss pins, resulting in a large reference voltage error.

Remark ANIO to ANI3: 78K0/KB2
ANIO to ANI5: 38-pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$
ANIO to ANI7: Products other than above

(8) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed.
Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and ADIF for the prechange analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time, when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-change analog input has not ended.
When A/D conversion is stopped and then resumed, clear ADIF before the A/D conversion operation is resumed.

Figure 13-21. Timing of A/D Conversion End Interrupt Request Generation

Remarks 1. $78 K 0 / K B 2: \mathrm{n}=0$ to 3,38 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2: \mathrm{n}=0$ to 5 , other products: $\mathrm{n}=0$ to 7
2. $78 \mathrm{KO} / \mathrm{KB} 2: \mathrm{m}=0$ to 3,38 -pin products of the $78 \mathrm{KO} / \mathrm{KC2}: \mathrm{m}=0$ to 5 , other products: $\mathrm{m}=0$ to 7
(9) Conversion results just after A/D conversion start

The first A/D conversion value immediately after A/D conversion starts may not fall within the rating range if the ADCS bit is set to 1 within 1μ s after the ADCE bit was set to 1 , or if the ADCS bit is set to 1 with the ADCE bit = 0 . Take measures such as polling the A/D conversion end interrupt request (INTAD) and removing the first conversion result.
(10) A/D conversion result register (ADCR, ADCRH) read operation

When a write operation is performed to the A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR and ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using a timing other than the above may cause an incorrect conversion result to be read.

(11) Internal equivalent circuit

The equivalent circuit of the analog input block is shown below.

Figure 13-22. Internal Equivalent Circuit of ANIn Pin

Table 13-5. Resistance and Capacitance Values of Equivalent Circuit (Reference Values)

AV	ref	R 1	C 1
C 2			
$4.0 \mathrm{~V} \leq A V_{\text {Ref }} \leq 5.5 \mathrm{~V}$	$8.1 \mathrm{k} \Omega$	8 pF	5 pF
$2.7 \mathrm{~V} \leq A V_{\text {ref }}<4.0 \mathrm{~V}$	$31 \mathrm{k} \Omega$	8 pF	5 pF
$2.3 \mathrm{~V} \leq \mathrm{AV} \mathrm{V}_{\text {ref }}<2.7 \mathrm{~V}$	$381 \mathrm{k} \Omega$	8 pF	5 pF

Remarks 1. The resistance and capacitance values shown in Table 13-5 are not guaranteed values.
2. $78 \mathrm{KO} / \mathrm{KB} 2: \mathrm{n}=0$ to 3 , 38 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$: $\mathrm{n}=0$ to 5 , other products: $\mathrm{n}=0$ to 7

CHAPTER 14 SERIAL INTERFACE UARTO

14.1 Functions of Serial Interface UARTO

Serial interface UARTO are mounted onto all $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontroller products.
Serial interface UART0 has the following two modes.

(1) Operation stop mode

This mode is used when serial communication is not executed and can enable a reduction in the power consumption.
For details, see 14.4.1 Operation stop mode.
(2) Asynchronous serial interface (UART) mode

The functions of this mode are outlined below.
For details, see 14.4.2 Asynchronous serial interface (UART) mode and 14.4.3 Dedicated baud rate generator.

- Maximum transfer rate: 625 kbps
- Two-pin configuration TxD0: Transmit data output pin

RxD0: Receive data input pin

- Length of communication data can be selected from 7 or 8 bits.
- Dedicated on-chip 5-bit baud rate generator allowing any baud rate to be set
- Transmission and reception can be performed independently (full-duplex operation).
- Fixed to LSB-first communication

Cautions 1. If clock supply to serial interface UARTO is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UARTO is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD0 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWERO $=0$, RXE $=0$, and TXEO $=0$.
2. Set POWERO = 1 and then set TXEO = 1 (transmission) or RXEO = 1 (reception) to start communication.
3. TXEO and RXEO are synchronized by the base clock (fxclko) set by BRGCO. To enable transmission or reception again, set TXEO or RXEO to 1 at least two clocks of base clock after TXEO or RXEO has been cleared to 0 . If TXEO or RXEO is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.
4. Set transmit data to TXSO at least one base clock (fxcLko) after setting TXEO = 1 .

14.2 Configuration of Serial Interface UARTO

Serial interface UARTO includes the following hardware.

Table 14-1. Configuration of Serial Interface UARTO

Item	
Registers	Receive buffer register 0 (RXBO) Receive shift register 0 (RXSO) Transmit shift register 0 (TXSO)
Control registers	Asynchronous serial interface operation mode register 0 (ASIM0) Asynchronous serial interface reception error status register 0 (ASIS0) Baud rate generator control register 0 (BRGC0) Port mode register 1 (PM1) Port register 1 (P1)

Figure 14-1. Block Diagram of Serial Interface UARTO

(1) Receive buffer register 0 (RXB0)

This 8-bit register stores parallel data converted by receive shift register 0 (RXSO).
Each time 1 byte of data has been received, new receive data is transferred to this register from receive shift register 0 (RXSO).
If the data length is set to 7 bits the receive data is transferred to bits 0 to 6 of RXBO and the MSB of RXBO is always 0.

If an overrun error (OVEO) occurs, the receive data is not transferred to RXB0.
RXBO can be read by an 8-bit memory manipulation instruction. No data can be written to this register.
Reset signal generation and POWERO $=0$ set this register to FFH.
(2) Receive shift register 0 (RXSO)

This register converts the serial data input to the RxD0 pin into parallel data.
RXS0 cannot be directly manipulated by a program.
(3) Transmit shift register 0 (TXSO)

This register is used to set transmit data. Transmission is started when data is written to TXSO, and serial data is transmitted from the TxD0 pins.

TXS0 can be written by an 8-bit memory manipulation instruction. This register cannot be read.
Reset signal generation, POWERO $=0$, and TXE0 $=0$ set this register to FFH.

Cautions 1. Set transmit data to TXSO at least one base clock (fxcLкo) after setting TXEO = 1 .
2. Do not write the next transmit data to TXSO before the transmission completion interrupt signal (INTSTO) is generated.

14.3 Registers Controlling Serial Interface UARTO

Serial interface UARTO is controlled by the following five registers.

- Asynchronous serial interface operation mode register 0 (ASIMO)
- Asynchronous serial interface reception error status register 0 (ASISO)
- Baud rate generator control register 0 (BRGCO)
- Port mode register 1 (PM1)
- Port register 1 (P1)
(1) Asynchronous serial interface operation mode register 0 (ASIMO)

This 8-bit register controls the serial communication operations of serial interface UARTO.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to 01 H .

Figure 14-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (1/2)

Address: FF70H After reset: 01H R/W

| Symbol | $<7>$ | $<6>$ | $<5>$ | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASIM0 | POWER0 | TXEO | RXE0 | PS01 | PS00 | CLO | SLO | 1 |
| | | | | | | | | |

POWER0	Enables/disables operation of internal operation clock
$0^{\text {Note } 1}$	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ${ }^{\text {Note } 2}$.
1	Enables operation of the internal operation clock.

TXE0	Enables/disables transmission
0	Disables transmission (synchronously resets the transmission circuit).
1	Enables transmission.

RXE0	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).
1	Enables reception.

Notes 1. The input from the RxD0 pin is fixed to high level when POWERO $=0$.
2. Asynchronous serial interface reception error status register 0 (ASISO), transmit shift register 0 (TXSO), and receive buffer register 0 (RXBO) are reset.

Figure 14-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIMO) (2/2)

PS01	PS00	Transmission operation	Reception operation
0	0	Does not output parity bit.	Reception without parity
0	1	Outputs 0 parity.	Reception as 0 parity ${ }^{\text {Note }}$
1	0	Outputs odd parity.	Judges as odd parity.
1	1	Outputs even parity.	Judges as even parity.

CLO	Specifies character length of transmit/receive data
0	Character length of data $=7$ bits
1	Character length of data $=8$ bits

SLO		Specifies number of stop bits of transmit data
0	Number of stop bits $=1$	
1	Number of stop bits $=2$	

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PEO) of asynchronous serial interface reception error status register 0 (ASISO) is not set and the error interrupt does not occur.

Cautions 1. To start the transmission, set POWERO to 1 and then set TXEO to 1. To stop the transmission, clear TXEO to 0, and then clear POWERO to 0.
2. To start the reception, set POWERO to 1 and then set RXEO to 1. To stop the reception, clear RXEO to 0, and then clear POWERO to 0.
3. Set POWERO to 1 and then set RXEO to 1 while a high level is input to the RxDO pin. If POWERO is set to 1 and RXEO is set to 1 while a low level is input, reception is started.
4. TXEO and RXEO are synchronized by the base clock (fxclko) set by BRGCO. To enable transmission or reception again, set TXEO or RXEO to 1 at least two clocks of base clock after TXEO or RXEO has been cleared to 0 . If TXEO or RXEO is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.
5. Set transmit data to TXSO at least one base clock (fxclкo) after setting TXEO=1.
6. Clear the TXEO and RXEO bits to 0 before rewriting the PS01, PS00, and CLO bits.
7. Make sure that $T X E O=0$ when rewriting the SLO bit. Reception is always performed with "number of stop bits = 1", and therefore, is not affected by the set value of the SL0 bit.
8. Be sure to set bit 0 to 1 .
(2) Asynchronous serial interface reception error status register 0 (ASISO)

This register indicates an error status on completion of reception by serial interface UARTO. It includes three error flag bits (PEO, FEO, OVEO).
This register is read-only by an 8-bit memory manipulation instruction.
Reset signal generation, or clearing bit 7 (POWERO) or bit 5 (RXEO) of ASIMO to 0 clears this register to 00 H . 00 H is read when this register is read. If a reception error occurs, read ASISO and then read receive buffer register 0 (RXB0) to clear the error flag.

Figure 14-3. Format of Asynchronous Serial Interface Reception Error Status Register 0 (ASISO)

Address: FF73H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASISO	0	0	0	0	0	PE0	FEO	OVEO

PE0	Status flag indicating parity error
0	If POWERO $=0$ or RXEO $=0$, or if ASISO register is read.
1	If the parity of transmit data does not match the parity bit on completion of reception.

FEO	Status flag indicating framing error
0	If POWER0 $=0$ or RXEO $=0$, or if ASISO register is read.
1	If the stop bit is not detected on completion of reception.

OVEO	Status flag indicating overrun error
0	If POWER0 $=0$ and RXEO $=0$, or if ASISO register is read.
1	If receive data is set to the RXBO register and the next reception operation is completed before the data is read.

Cautions 1. The operation of the PE0 bit differs depending on the set values of the PS01 and PS00 bits of asynchronous serial interface operation mode register 0 (ASIMO).
2. Only the first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.
3. If an overrun error occurs, the next receive data is not written to receive buffer register $\mathbf{0}$ (RXBO) but discarded.
4. If data is read from ASISO, a wait cycle is generated. Do not read data from ASISO when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

(3) Baud rate generator control register 0 (BRGCO)

This register selects the base clock of serial interface UARTO and the division value of the 5 -bit counter. BRGCO can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 1 FH .

Figure 14-4. Format of Baud Rate Generator Control Register 0 (BRGC0)

Address: FF71H After reset: 1FH R/W

MDL04	MDL03	MDL02	MDL01	MDL00	k	Selection of 5-bit counter output clock
0	0	\times	\times	\times	\times	Setting prohibited
0	1	0	0	0	8	fx<Lк0/8
0	1	0	0	1	9	fxclko/9
0	1	0	1	0	10	fxcLko/10
			-			\bullet
1	1	0	1	0	26	fxcıko/26
1	1	0	1	1	27	fxCLko/27
1	1	1	0	0	28	fxcLko/28
1	1	1	0	1	29	fxcıko/29
1	1	1	1	0	30	fxcıко/30
1	1	1	1	1	31	fxClko/31

Note1. The frequency that can be used for the peripheral hardware clock (fpRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD)	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V}$ D $<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	$\mathrm{ffRS} \leq 5 \mathrm{MHz}$	$\mathrm{ffRS} \leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fXH}(\mathrm{XSEL}=1)$.)

Note 2. Note the following points when selecting the TM50 output as the base clock.

- Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0)

Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

- PWM mode (TMC506 = 1)

Start the operation of 8-bit timer/event counter 50 first and then set the count clock to make the duty $=50 \%$. It is not necessary to enable (TOE50 $=1$) TO50 output in any mode.

Cautions 1. Make sure that bit 6 (TXEO) and bit 5 (RXEO) of the ASIMO register $=0$ when rewriting the MDL04 to MDL00 bits.
2. Make sure that bit 7 (POWERO) of the ASIM0 register $=0$ when rewriting the TPS01 and TPS00 bits.
3. The baud rate value is the output clock of the 5 -bit counter divided by 2.

Remarks 1. fxcLko: Frequency of base clock selected by the TPS 01 and TPS 00 bits
2. fPRs: Peripheral hardware clock frequency
3. k : Value set by the MDL04 to MDL00 bits $(k=8,9,10, \ldots, 31)$
4. \times : Don't care
5. TMC506: Bit 6 of 8 -bit timer mode control register 50 (TMC50)

TMC501: Bit 1 of TMC50

(4) Port mode register 1 (PM1)

This register sets port 1 input/output in 1 -bit units.
When using the P10/TxD0/SCK10 pin for serial interface data output, clear PM10 to 0 and set the output latch of P10 to 1 .
When using the P11/RxD0/SI10 pin for serial interface data input, set PM11 to 1. The output latch of P11 at this time may be 0 or 1 .
PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Figure 14-5. Format of Port Mode Register 1 (PM1)

Address:	FF21H	After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

PM1n	P1n pin I/O mode selection ($\mathrm{n}=0$ to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

14.4 Operation of Serial Interface UARTO

Serial interface UART0 has the following two modes.

- Operation stop mode
- Asynchronous serial interface (UART) mode

14.4.1 Operation stop mode

In this mode, serial communication cannot be executed, thus reducing the power consumption. In addition, the pins can be used as ordinary port pins in this mode. To set the operation stop mode, clear bits 7, 6, and 5 (POWERO, TXE0, and RXEO) of ASIMO to 0 .

(1) Register used

The operation stop mode is set by asynchronous serial interface operation mode register 0 (ASIMO). ASIM0 can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation sets this register to 01 H .

Address: FF70H After reset: 01H R/W

Symbol	$<7>$	$<6>$	$<5>$	4	3	2	1	0
ASIM0	POWERO	TXEO	RXEO	PS01	PS00	CLO	SLO	1

POWERO	Enables/disables operation of internal operation clock
$0^{\text {Note 1 }}$	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ${ }^{\text {Note } 2}$.

TXE0	Enables/disables transmission
0	Disables transmission (synchronously resets the transmission circuit).

RXEO	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).

Notes 1. The input from the RxD0 pin is fixed to high level when POWERO $=0$.
2. Asynchronous serial interface reception error status register 0 (ASISO), transmit shift register 0 (TXSO), and receive buffer register 0 (RXB0) are reset.

Caution Clear POWERO to 0 after clearing TXEO and RXEO to 0 to set the operation stop mode.
To start the communication, set POWERO to 1, and then set TXEO or RXEO to 1.

Remark To use the RxD0/SI10/P11 and TxD0/ $\overline{\operatorname{SCK} 10 / P 10 ~ p i n s ~ a s ~ g e n e r a l-p u r p o s e ~ p o r t ~ p i n s, ~ s e e ~ C H A P T E R ~} 5$ PORT FUNCTIONS.

14.4.2 Asynchronous serial interface (UART) mode

In this mode, 1-byte data is transmitted/received following a start bit, and a full-duplex operation can be performed.
A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of baud rates.

(1) Registers used

- Asynchronous serial interface operation mode register 0 (ASIMO)
- Asynchronous serial interface reception error status register 0 (ASISO)
- Baud rate generator control register 0 (BRGC0)
- Port mode register 1 (PM1)
- Port register 1 (P1)

The basic procedure of setting an operation in the UART mode is as follows.
<1> Set the BRGC0 register (see Figure 14-4).
<2> Set bits 1 to 4 (SLO, CLO, PS00, and PS01) of the ASIMO register (see Figure 14-2).
$<3>$ Set bit 7 (POWERO) of the ASIM0 register to 1 .
$<4>$ Set bit 6 (TXEO) of the ASIMO register to 1 . \rightarrow Transmission is enabled.
Set bit 5 (RXEO) of the ASIMO register to $1 . \rightarrow$ Reception is enabled.
$<5>$ Write data to the TXSO register. \rightarrow Data transmission is started.

Caution Take relationship with the other party of communication when setting the port mode register and port register.

The relationship between the register settings and pins is shown below.

Table 14-2. Relationship Between Register Settings and Pins

POWERO	TXEO	RXEO	PM10	P10	PM11	P11	UART0 Operation	Pin Function	
								TxD0/SCK10/P10	RxD0/SI10/P11
0	0	0	$\times{ }^{\text {Note }}$	$x^{\text {Note }}$	$\times{ }^{\text {Note }}$	$\times^{\text {Note }}$	Stop	$\overline{\text { SCK10/P10 }}$	SI10/P11
1	0	1	$\times{ }^{\text {Note }}$	$\times^{\text {Note }}$	1	\times	Reception	$\overline{\text { SCK10/P10 }}$	RxD0
	1	0	0	1	$\times^{\text {Note }}$	$\times^{\text {Note }}$	Transmission	TxD0	SI10/P11
	1	1	0	1	1	\times	Transmission/ reception	TxD0	RxD0

Note Can be set as port function or serial interface CSI10.

Remark \times : don't care
POWERO: Bit 7 of asynchronous serial interface operation mode register 0 (ASIMO)
TXEO: Bit 6 of ASIMO
RXEO: Bit 5 of ASIMO
PM1×: Port mode register
P1×: Port output latch

(2) Communication operation

(a) Format and waveform example of normal transmit/receive data

Figures 14-6 and 14-7 show the format and waveform example of the normal transmit/receive data.

Figure 14-6. Format of Normal UART Transmit/Receive Data

One data frame consists of the following bits.

- Start bit ... 1 bit
- Character bits ... 7 or 8 bits (LSB first)
- Parity bit ... Even parity, odd parity, 0 parity, or no parity
- Stop bit ... 1 or 2 bits

The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial interface operation mode register 0 (ASIMO).

Figure 14-7. Example of Normal UART Transmit/Receive Data Waveform

1. Data length: 8 bits, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H

2. Data length: $\mathbf{7}$ bits, Parity: Odd parity, Stop bit: $\mathbf{2}$ bits, Communication data: 36H

3. Data length: 8 bits, Parity: None, Stop bit: 1 bit, Communication data: 87H

(b) Parity types and operation

The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error can be detected. With zero parity and no parity, an error cannot be detected.

(i) Even parity

- Transmission

Transmit data, including the parity bit, is controlled so that the number of bits that are " 1 " is even. The value of the parity bit is as follows.

If transmit data has an odd number of bits that are " 1 ": 1
If transmit data has an even number of bits that are " 1 ": 0

- Reception

The number of bits that are " 1 " in the receive data, including the parity bit, is counted. If it is odd, a parity error occurs.
(ii) Odd parity

- Transmission

Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that are " 1 " is odd.

If transmit data has an odd number of bits that are "1": 0
If transmit data has an even number of bits that are " 1 ": 1

- Reception

The number of bits that are " 1 " in the receive data, including the parity bit, is counted. If it is even, a parity error occurs.
(iii) 0 parity

The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.
The parity bit is not detected when the data is received. Therefore, a parity error does not occur regardless of whether the parity bit is " 0 " or " 1 ".
(iv) No parity

No parity bit is appended to the transmit data.
Reception is performed assuming that there is no parity bit when data is received. Because there is no parity bit, a parity error does not occur.
(c) Transmission

If bit 7 (POWERO) of asynchronous serial interface operation mode register 0 (ASIMO) is set to 1 and bit 6 (TXEO) of ASIMO is then set to 1, transmission is enabled. Transmission can be started by writing transmit data to transmit shift register 0 (TXSO). The start bit, parity bit, and stop bit are automatically appended to the data.
When transmission is started, the start bit is output from the TxDO pin, and the transmit data is output followed by the rest of the data in order starting from the LSB. When transmission is completed, the parity and stop bits set by ASIMO are appended and a transmission completion interrupt request (INTSTO) is generated.
Transmission is stopped until the data to be transmitted next is written to TXSO.
Figure $14-8$ shows the timing of the transmission completion interrupt request (INTSTO). This interrupt occurs as soon as the last stop bit has been output.

Caution After transmit data is written to TXSO, do not write the next transmit data before the transmission completion interrupt signal (INTSTO) is generated.

Figure 14-8. Transmission Completion Interrupt Request Timing

1. Stop bit length: 1

2. Stop bit length: 2

(d) Reception

Reception is enabled and the RxDO pin input is sampled when bit 7 (POWERO) of asynchronous serial interface operation mode register 0 (ASIM0) is set to 1 and then bit 5 (RXEO) of ASIM0 is set to 1 .
The 5 -bit counter of the baud rate generator starts counting when the falling edge of the RxDO pin input is detected. When the set value of baud rate generator control register 0 (BRGC0) has been counted, the RxD0 pin input is sampled again (in Figurē14-9). If the RxD0 pin is low level at this time, it is recognized as a start bit. When the start bit is detected, reception is started, and serial data is sequentially stored in receive shift register 0 (RXSO) at the set baud rate. When the stop bit has been received, the reception completion interrupt (INTSRO) is generated and the data of RXSO is written to receive buffer register 0 (RXBO). If an overrun error (OVEO) occurs, however, the receive data is not written to RXBO.

Even if a parity error (PEO) occurs while reception is in progress, reception continues to the reception position of the stop bit, and an reception error interrupt (INTSRO) is generated after completion of reception.
INTSRO occurs upon completion of reception and in case of a reception error.

Figure 14-9. Reception Completion Interrupt Request Timing

Cautions 1. If a reception error occurs, read asynchronous serial interface reception error status register 0 (ASISO) and then read receive buffer register 0 (RXBO) to clear the error flag. Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.
2. Reception is always performed with the "number of stop bits $=1$ ". The second stop bit is ignored.
(e) Reception error

Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error flag of asynchronous serial interface reception error status register 0 (ASISO) is set as a result of data reception, a reception error interrupt (INTSRO) is generated.
Which error has occurred during reception can be identified by reading the contents of ASISO in the reception error interrupt (INTSRO) servicing (see Figure 14-3).
The contents of ASIS0 are cleared to 0 when ASIS0 is read.

Table 14-3. Cause of Reception Error

Reception Error	Cause
Parity error	The parity specified for transmission does not match the parity of the receive data.
Framing error	Stop bit is not detected.
Overrun error	Reception of the next data is completed before data is read from receive buffer register 0 (RXBO).

(f) Noise filter of receive data

The RxDO signal is sampled using the base clock output by the prescaler block.
If two sampled values are the same, the output of the match detector changes, and the data is sampled as input data.
Because the circuit is configured as shown in Figure 14-10, the internal processing of the reception operation is delayed by two clocks from the external signal status.

Figure 14-10. Noise Filter Circuit

14.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and a 5-bit programmable counter, and generates a serial clock for transmission/reception of UARTO.

Separate 5-bit counters are provided for transmission and reception.

(1) Configuration of baud rate generator

- Base clock

The clock selected by bits 7 and 6 (TPS01 and TPSO0) of baud rate generator control register 0 (BRGC0) is supplied to each module when bit 7 (POWERO) of asynchronous serial interface operation mode register 0 (ASIMO) is 1 . This clock is called the base clock and its frequency is called fxclko. The base clock is fixed to low level when POWERO $=0$.

- Transmission counter

This counter stops operation, cleared to 0 , when bit 7 (POWERO) or bit 6 (TXEO) of asynchronous serial interface operation mode register 0 (ASIMO) is 0 .
It starts counting when POWERO $=1$ and TXE $=1$.
The counter is cleared to 0 when the first data transmitted is written to transmit shift register 0 (TXSO).

- Reception counter

This counter stops operation, cleared to 0 , when bit 7 (POWERO) or bit 5 (RXEO) of asynchronous serial interface operation mode register 0 (ASIMO) is 0 .
It starts counting when the start bit has been detected.
The counter stops operation after one frame has been received, until the next start bit is detected.

Figure 14-11. Configuration of Baud Rate Generator

Remark POWERO: Bit 7 of asynchronous serial interface operation mode register 0 (ASIMO)
TXEO: Bit 6 of ASIMO
RXEO: Bit 5 of ASIMO
BRGCO: Baud rate generator control register 0

(2) Generation of serial clock

A serial clock to be generated can be specified by using baud rate generator control register 0 (BRGC0).
Select the clock to be input to the 5 -bit counter by using bits 7 and 6 (TPS01 and TPS00) of BRGC0.
Bits 4 to 0 (MDLO4 to MDLOO) of BRGC0 can be used to select the division value (fxcLко/8 to fxclко/31) of the 5 -bit counter.

14.4.4 Calculation of baud rate

(1) Baud rate calculation expression

The baud rate can be calculated by the following expression.

- Baud rate $=\frac{\mathrm{fxCLKo} 0}{2 \times \mathrm{k}}[\mathrm{bps}]$
fxcLko: Frequency of base clock selected by the TPS01 and TPS00 bits of the BRGC0 register
k: Value set by the MDL04 to MDL00 bits of the BRGC0 register ($k=8,9,10, \ldots, 31$)

Table 14-4. Set Value of TPS01 and TPS00

TPS01	TPS00	Base clock (fxclko) selection ${ }^{\text {Note } 1}$				
			$\mathrm{fPRS}=2 \mathrm{MHz}$	$\mathrm{fPRS}=5 \mathrm{MHz}$	fPRS $=10 \mathrm{MHz}$	frRs $=20 \mathrm{MHz}$
0	0	TM50 output ${ }^{\text {Note } 2}$				
0	1	fprs/2	1 MHz	2.5 MHz	5 MHz	10 MHz
1	0	fprs $/ 2^{3}$	250 kHz	625 kHz	1.25 MHz	2.5 MHz
1	1	fprs $/ 2{ }^{5}$	62.5 kHz	156.25 kHz	312.5 kHz	625 kHz

Notes 1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ $($ Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)
2. Note the following points when selecting the TM50 output as the base clock.

- Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0)

Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

- PWM mode (TMC506 = 1)

Start the operation of 8 -bit timer/event counter 50 first and then set the count clock to make the duty $=$ 50\%.

It is not necessary to enable $($ TOE50 $=1)$ TO50 output in any mode.

(2) Error of baud rate

The baud rate error can be calculated by the following expression.

- Error $(\%)=\left(\frac{\text { Actual baud rate (baud rate with error) }}{\text { Desired baud rate (correct baud rate) }}-1\right] \times 100[\%]$

Cautions 1. Keep the baud rate error during transmission to within the permissible error range at the reception destination.
2. Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.

Example: Frequency of base clock $=2.5 \mathrm{MHz}=2,500,000 \mathrm{~Hz}$
Set value of MDL04 to MDL00 bits of BRGC0 register $=10000 \mathrm{~B}(\mathrm{k}=16)$
Target baud rate $=76,800 \mathrm{bps}$

$$
\begin{aligned}
\text { Baud rate } & =2.5 \mathrm{M} /(2 \times 16) \\
& =2,500,000 /(2 \times 16)=78,125[\mathrm{bps}]
\end{aligned}
$$

Error $=(78,125 / 76,800-1) \times 100$

$$
=1.725[\%]
$$

(3) Example of setting baud rate

Table 14-5. Set Data of Baud Rate Generator

Baud	$\mathrm{f}_{\text {PRS }}=2.0 \mathrm{MHz}$				$\mathrm{f}_{\text {PRS }}=5.0 \mathrm{MHz}$				$\mathrm{fPRS}=10.0 \mathrm{MHz}$				fPRS $=20.0 \mathrm{MHz}$			
Rate [bps]	$\begin{aligned} & \text { TPSO1, } \\ & \text { TPS00 } \end{aligned}$	k	Calculated Value	ERR [\%]	$\begin{aligned} & \text { TPSO1, } \\ & \text { TPS00 } \end{aligned}$	k	Calculated Value	ERR [\%]	$\begin{aligned} & \text { TPS01, } \\ & \text { TPS00 } \end{aligned}$	k	Calculated Value	ERR [\%]	$\begin{aligned} & \text { TPSO1, } \\ & \text { TPS00 } \end{aligned}$	k	Calculated Value	ERR [\%]
4800	2 H	26	4808	0.16	3H	16	4883	1.73	-	-	-	-	-	-	-	-
9600	2 H	13	9615	0.16	3H	8	9766	1.73	3H	16	9766	1.73	-	-	-	-
10400	2 H	12	10417	0.16	2 H	30	10417	0.16	3H	15	10417	0.16	3H	30	10417	0.16
19200	1H	26	19231	0.16	2 H	16	19531	1.73	3H	8	19531	1.73	3H	16	19531	1.73
24000	1H	21	23810	-0.79	2 H	13	24038	0.16	2 H	26	24038	0.16	3H	13	24038	0.16
31250	1H	16	31250	0	2 H	10	31250	0	2 H	20	31250	0	3H	10	31250	0
33600	1H	15	33333	-0.79	2H	9	34722	3.34	2 H	19	32895	-2.1	3H	9	34722	3.34
38400	1H	13	38462	0.16	2 H	8	39063	1.73	2 H	16	39063	1.73	3H	8	39063	1.73
56000	1H	9	55556	-0.79	1H	22	56818	1.46	2 H	11	56818	1.46	2 H	22	56818	1.46
62500	1H	8	62500	0	1H	20	62500	0	2 H	10	62500	0	2 H	20	62500	0
76800	-	-	-	-	1H	16	78125	1.73	2 H	8	78125	1.73	2 H	16	78125	1.73
115200	-	-	-	-	1H	11	113636	-1.36	1H	22	113636	-1.36	2 H	11	113636	-1.36
153600	-	-	-	-	1H	8	156250	1.73	1H	16	156250	1.73	2 H	8	156250	1.73
312500	-	-	-	-	-	-	-	-	1H	8	312500	0	1H	16	312500	0
625000	-	-	-	-	-	-	-	-	-	-	-	-	1H	8	625000	0

Remark TPS01, TPS00: Bits 7 and 6 of baud rate generator control register 0 (BRGCO) (setting of base clock (fxclко))
k: \quad Value set by the MDL04 to MDL00 bits of BRGC0 $(k=8,9,10, \ldots, 31)$
fprs: Peripheral hardware clock frequency
ERR: Baud rate error

(4) Permissible baud rate range during reception

The permissible error from the baud rate at the transmission destination during reception is shown below.

Caution Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.

Figure 14-12. Permissible Baud Rate Range During Reception

As shown in Figure 14-12, the latch timing of the receive data is determined by the counter set by baud rate generator control register 0 (BRGCO) after the start bit has been detected. If the last data (stop bit) meets this latch timing, the data can be correctly received.
Assuming that 11-bit data is received, the theoretical values can be calculated as follows.

$$
\mathrm{FL}=(\text { Brate })^{-1}
$$

Brate: Baud rate of UART0
k: Set value of BRGC0
FL: 1-bit data length
Margin of latch timing: 2 clocks

Minimum permissible data frame length: $F L \min =11 \times F L-\frac{k-2}{2 k} \times F L=\frac{21 k+2}{2 k} F L$
Therefore, the maximum receivable baud rate at the transmission destination is as follows.

$$
\text { BRmax }=(F L m i n / 11)^{-1}=\frac{22 \mathrm{k}}{21 \mathrm{k}+2} \text { Brate }
$$

Similarly, the maximum permissible data frame length can be calculated as follows.

$$
\begin{aligned}
\frac{10}{11} \times F L \max & =11 \times F L-\frac{\mathrm{k}+2}{2 \times \mathrm{k}} \times \mathrm{FL}=\frac{21 \mathrm{k}-2}{2 \times \mathrm{k}} \mathrm{FL} \\
\mathrm{FLmax} & =\frac{21 \mathrm{k}-2}{20 \mathrm{k}} \mathrm{FL} \times 11
\end{aligned}
$$

Therefore, the minimum receivable baud rate at the transmission destination is as follows.

$$
\mathrm{BRmin}=(\mathrm{FLmax} / 11)^{-1}=\frac{20 \mathrm{k}}{21 \mathrm{k}-2} \text { Brate }
$$

The permissible baud rate error between UARTO and the transmission destination can be calculated from the above minimum and maximum baud rate expressions, as follows.

Table 14-6. Maximum/Minimum Permissible Baud Rate Error

Division Ratio (k)	Maximum Permissible Baud Rate Error	Minimum Permissible Baud Rate Error
8	$+3.53 \%$	-3.61%
16	$+4.14 \%$	-4.19%
24	$+4.34 \%$	-4.38%
31	$+4.44 \%$	-4.47%

Remarks 1. The permissible error of reception depends on the number of bits in one frame, input clock frequency, and division ratio (k). The higher the input clock frequency and the higher the division ratio (k), the higher the permissible error.
2. k : Set value of BRGCO

CHAPTER 15 SERIAL INTERFACE UART6

15.1 Functions of Serial Interface UART6

Serial interface UART6 are mounted onto all $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontroller products.
Serial interface UART6 has the following two modes.
(1) Operation stop mode

This mode is used when serial communication is not executed and can enable a reduction in the power consumption.
For details, see 15.4.1 Operation stop mode.
(2) Asynchronous serial interface (UART) mode

This mode supports the LIN (Local Interconnect Network)-bus. The functions of this mode are outlined below.
For details, see 15.4.2 Asynchronous serial interface (UART) mode and 15.4.3 Dedicated baud rate generator.

- Maximum transfer rate: 625 kbps
- Two-pin configuration TxD6: Transmit data output pin

RxD6: Receive data input pin

- Data length of communication data can be selected from 7 or 8 bits.
- Dedicated internal 8-bit baud rate generator allowing any baud rate to be set
- Transmission and reception can be performed independently (full duplex operation).
- MSB- or LSB-first communication selectable
- Inverted transmission operation
- Sync break field transmission from 13 to 20 bits
- More than 11 bits can be identified for sync break field reception (SBF reception flag provided).

Cautions 1. The TxD6 output inversion function inverts only the transmission side and not the reception side. To use this function, the reception side must be ready for reception of inverted data.
2. If clock supply to serial interface UART6 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART6 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD6 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER6 $=0$, RXE $6=0$, and TXE6 $=0$.
3. Set POWER6 = 1 and then set TXE6 = 1 (transmission) or RXE6 = 1 (reception) to start communication.
4. TXE6 and RXE6 are synchronized by the base clock (fxcLK6) set by CKSR6. To enable transmission or reception again, set TXE6 or RXE6 to 1 at least two clocks of the base clock after TXE6 or RXE6 has been cleared to 0 . If TXE6 or RXE6 is set within two clocks of the base clock, the transmission circuit or reception circuit may not be initialized.
5. Set transmit data to TXB6 at least one base clock (fxcLk6) after setting TXE6 = 1 .
6. If data is continuously transmitted, the communication timing from the stop bit to the next start bit is extended two operating clocks of the macro. However, this does not affect the result of communication because the reception side initializes the timing when it has detected a start bit. Do not use the continuous transmission function if the interface is used in LIN communication operation.

Remark LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol intended to aid the cost reduction of an automotive network.
LIN communication is single-master communication, and up to 15 slaves can be connected to one master.
The LIN slaves are used to control the switches, actuators, and sensors, and these are connected to the LIN master via the LIN network.
Normally, the LIN master is connected to a network such as CAN (Controller Area Network).
In addition, the LIN bus uses a single-wire method and is connected to the nodes via a transceiver that complies with ISO9141.
In the LIN protocol, the master transmits a frame with baud rate information and the slave receives it and corrects the baud rate error. Therefore, communication is possible when the baud rate error in the slave is $\pm 15 \%$ or less.

Figures 15-1 and 15-2 outline the transmission and reception operations of LIN.

Figure 15-1. LIN Transmission Operation

Notes 1. The wakeup signal frame is substituted by 80 H transmission in the 8 -bit mode.
2. The sync break field is output by hardware. The output width is the bit length set by bits 4 to 2 (SBL62 to SBL60) of asynchronous serial interface control register 6 (ASICL6) (see 15.4.2 (2) (h) SBF transmission).
3. INTST6 is output on completion of each transmission. It is also output when SBF is transmitted.

Remark The interval between each field is controlled by software.

Figure 15-2. LIN Reception Operation

Reception processing is as follows.
$<1>$ The wakeup signal is detected at the edge of the pin, and enables UART6 and sets the SBF reception mode.
<2> Reception continues until the STOP bit is detected. When an SBF with low-level data of 11 bits or more has been detected, it is assumed that SBF reception has been completed correctly, and an interrupt signal is output. If an SBF with low-level data of less than 11 bits has been detected, it is assumed that an SBF reception error has occurred. The interrupt signal is not output and the SBF reception mode is restored.
<3> If SBF reception has been completed correctly, an interrupt signal is output. Start 16-bit timer/event counter 00 by the SBF reception end interrupt servicing and measure the bit interval (pulse width) of the sync field (see 7.4.8 Pulse width measurement operation). Detection of errors OVE6, PE6, and FE6 is suppressed, and error detection processing of UART communication and data transfer of the shift register and RXB6 is not performed. The shift register holds the reset value FFH.
<4> Calculate the baud rate error from the bit interval of the sync field, disable UART6 after SF reception, and then re-set baud rate generator control register 6 (BRGC6).
$<5>$ Distinguish the checksum field by software. Also perform processing by software to initialize UART6 after reception of the checksum field and to set the SBF reception mode again.

Figure 15-3 shows the port configuration for LIN reception operation.
The wakeup signal transmitted from the LIN master is received by detecting the edge of the external interrupt (INTPO). The length of the sync field transmitted from the LIN master can be measured using the external event capture operation of 16 -bit timer/event counter 00 , and the baud rate error can be calculated.

The input source of the reception port input (RxD6) can be input to the external interrupt (INTPO) and 16-bit timer/event counter 00 by port input switch control (ISCO/ISC1), without connecting RxD6 and INTPO/TIO00 externally.

Figure 15-3. Port Configuration for LIN Reception Operation

Remark ISC0, ISC1: Bits 0 and 1 of the input switch control register (ISC) (see Figure 15-11)

The peripheral functions used in the LIN communication operation are shown below.
<Peripheral functions used>

- External interrupt (INTPO); wakeup signal detection

Use: Detects the wakeup signal edges and detects start of communication.

- 16-bit timer/event counter 00 (TIOOO); baud rate error detection

Use: Detects the baud rate error (measures the TIOOO input edge interval in the capture mode) by detecting the sync field (SF) length and divides it by the number of bits.

- Serial interface UART6

15.2 Configuration of Serial Interface UART6

Serial interface UART6 includes the following hardware.

Table 15-1. Configuration of Serial Interface UART6

Item	
Registers	Receive buffer register 6 (RXB6) Receive shift register 6 (RXS6) Transmit buffer register 6 (TXB6) Transmit shift register 6 (TXS6)
Control registers	Asynchronous serial interface operation mode register 6 (ASIM6) Asynchronous serial interface reception error status register 6 (ASIS6) Asynchronous serial interface transmission status register 6 (ASIF6) Clock selection register 6 (CKSR6) Baud rate generator control register 6 (BRGC6) Asynchronous serial interface control register 6 (ASICL6) Input switch control register (ISC) Port mode register 1 (PM1) Port register 1 (P1)

Figure 15-4. Block Diagram of Serial Interface UART6

Note Selectable with input switch control register (ISC).

(1) Receive buffer register 6 (RXB6)

This 8-bit register stores parallel data converted by receive shift register 6 (RXS6).
Each time 1 byte of data has been received, new receive data is transferred to this register from RXS6. If the data length is set to 7 bits, data is transferred as follows.

- In LSB-first reception, the receive data is transferred to bits 0 to 6 of RXB6 and the MSB of RXB6 is always 0 .
- In MSB-first reception, the receive data is transferred to bits 1 to 7 of RXB6 and the LSB of RXB6 is always 0 .

If an overrun error (OVE6) occurs, the receive data is not transferred to RXB6.
RXB6 can be read by an 8-bit memory manipulation instruction. No data can be written to this register.
Reset signal generation sets this register to FFH.
(2) Receive shift register 6 (RXS6)

This register converts the serial data input to the RxD6 pin into parallel data.
RXS6 cannot be directly manipulated by a program.
(3) Transmit buffer register 6 (TXB6)

This buffer register is used to set transmit data. Transmission is started when data is written to TXB6.
This register can be read or written by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Cautions 1. Do not write data to TXB6 when bit 1 (TXBF6) of asynchronous serial interface transmission status register 6 (ASIF6) is 1.
2. Do not refresh (write the same value to) TXB6 by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) are 1 or when bits 7 and 5 (POWER6, RXE6) of ASIM6 are 1).
3. Set transmit data to TXB6 at least one base clock (fxclk6) after setting TXE6 = 1 .

(4) Transmit shift register 6 (TXS6)

This register transmits the data transferred from TXB6 from the TxD6 pin as serial data. Data is transferred from TXB6 immediately after TXB6 is written for the first transmission, or immediately before INTST6 occurs after one frame was transmitted for continuous transmission. Data is transferred from TXB6 and transmitted from the TxD6 pin at the falling edge of the base clock.
TXS6 cannot be directly manipulated by a program.

15.3 Registers Controlling Serial Interface UART6

Serial interface UART6 is controlled by the following nine registers.

- Asynchronous serial interface operation mode register 6 (ASIM6)
- Asynchronous serial interface reception error status register 6 (ASIS6)
- Asynchronous serial interface transmission status register 6 (ASIF6)
- Clock selection register 6 (CKSR6)
- Baud rate generator control register 6 (BRGC6)
- Asynchronous serial interface control register 6 (ASICL6)
- Input switch control register (ISC)
- Port mode register 1 (PM1)
- Port register 1 (P1)
(1) Asynchronous serial interface operation mode register 6 (ASIM6)

This 8-bit register controls the serial communication operations of serial interface UART6.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to 01 H .

Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 $=1$ or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1).

Figure 15-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (1/2)

Address: FF50H After reset: 01H R/W

POWER6	Enables/disables operation of internal operation clock
$0^{\text {Note 1 }}$	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ${ }^{\text {Note } 2}$.
1	Enables operation of the internal operation clock

TXE6	Enables/disables transmission
0	Disables transmission (synchronously resets the transmission circuit).
1	Enables transmission

RXE6	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).
1	Enables reception

Notes 1. If POWER6 $=0$ is set while transmitting data, the output of the TxD6 pin will be fixed to high level (if TXDLV6 = 0). Furthermore, the input from the RxD6 pin will be fixed to high level.
2. Asynchronous serial interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6 (ASIF6), bit 7 (SBRF6) and bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6), and receive buffer register 6 (RXB6) are reset.

Figure 15-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (2/2)

PS61	PS60	Transmission operation	Reception operation
0	0	Does not output parity bit.	Reception without parity
0	1	Outputs 0 parity.	Reception as 0 parity ${ }^{\text {Note }}$
1	0	Outputs odd parity.	Judges as odd parity.
1	1	Outputs even parity.	Judges as even parity.

CL6	Specifies character length of transmit/receive data
0	Character length of data $=7$ bits
1	Character length of data $=8$ bits

SL6	Specifies number of stop bits of transmit data	
0	Number of stop bits $=1$	
1	Number of stop bits $=2$	

ISRM6	Enables/disables occurrence of reception completion interrupt in case of error
0	"INTSRE6" occurs in case of error (at this time, INTSR6 does not occur).
1	"INTSR6" occurs in case of error (at this time, INTSRE6 does not occur).

Note If "reception as 0 parity" is selected, the parity is not judged. Therefore, bit 2 (PE6) of asynchronous serial interface reception error status register 6 (ASIS6) is not set and the error interrupt does not occur.

Cautions 1. To start the transmission, set POWER6 to 1 and then set TXE6 to 1. To stop the transmission, clear TXE6 to 0 , and then clear POWER6 to 0.
2. To start the reception, set POWER6 to 1 and then set RXE6 to 1 . To stop the reception, clear RXE6 to 0, and then clear POWER6 to 0.
3. Set POWER6 to 1 and then set RXE6 to 1 while a high level is input to the RxD6 pin. If POWER6 is set to 1 and RXE6 is set to 1 while a low level is input, reception is started.
4. TXE6 and RXE6 are synchronized by the base clock (fxcLK6) set by CKSR6. To enable transmission or reception again, set TXE6 or RXE6 to 1 at least two clocks of the base clock after TXE6 or RXE6 has been cleared to 0 . If TXE6 or RXE6 is set within two clocks of the base clock, the transmission circuit or reception circuit may not be initialized.
5. Set transmit data to TXB6 at least one base clock (fxcLk6) after setting TXE6 = 1 .
6. Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.
7. Fix the PS61 and PS60 bits to 0 when used in LIN communication operation.
8. Clear TXE6 to 0 before rewriting the SL6 bit. Reception is always performed with "the number of stop bits = 1 ", and therefore, is not affected by the set value of the SL6 bit.
9. Make sure that RXE6 $=0$ when rewriting the ISRM6 bit.
(2) Asynchronous serial interface reception error status register 6 (ASIS6)

This register indicates an error status on completion of reception by serial interface UART6. It includes three error flag bits (PE6, FE6, OVE6).
This register is read-only by an 8-bit memory manipulation instruction.
Reset signal generation, or clearing bit 7 (POWER6) or bit 5 (RXE6) of ASIM6 to 0 clears this register to 00H. 00H is read when this register is read. If a reception error occurs, read ASIS6 and then read receive buffer register 6 (RXB6) to clear the error flag.

Figure 15-6. Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6)

Address: FF53H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ASIS6	0	0	0	0	0	PE6	FE6	OVE6

PE6	Status flag indicating parity error
0	If POWER6 $=0$ or RXE6 $=0$, or if ASIS6 register is read
1	If the parity of transmit data does not match the parity bit on completion of reception

FE6	Status flag indicating framing error
0	If POWER6 $=0$ or RXE6 $=0$, or if ASIS6 register is read
1	If the stop bit is not detected on completion of reception

OVE6	Status flag indicating overrun error
0	If POWER6 $=0$ or RXE6 $=0$, or if ASIS6 register is read
1	If receive data is set to the RXB6 register and the next reception operation is completed before the data is read.

Cautions 1. The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of asynchronous serial interface operation mode register 6 (ASIM6).
2. For the stop bit of the receive data, only the first stop bit is checked regardless of the number of stop bits.
3. If an overrun error occurs, the next receive data is not written to receive buffer register 6 (RXB6) but discarded.
4. If data is read from ASIS6, a wait cycle is generated. Do not read data from ASIS6 when the peripheral hardware clock (fPRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

(3) Asynchronous serial interface transmission status register 6 (ASIF6)

This register indicates the status of transmission by serial interface UART6. It includes two status flag bits (TXBF6 and TXSF6).
Transmission can be continued without disruption even during an interrupt period, by writing the next data to the TXB6 register after data has been transferred from the TXB6 register to the TXS6 register.
This register is read-only by an 8-bit memory manipulation instruction.
Reset signal generation, or clearing bit 7 (POWER6) or bit 6 (TXE6) of ASIM6 to 0 clears this register to 00 H .

Figure 15-7. Format of Asynchronous Serial Interface Transmission Status Register 6 (ASIF6)

Address: FF55H After reset: 00 H R

Symbol ASIF6	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	TXBF6	TXSF6

TXBF6	Transmit buffer data flag
0	If POWER6 $=0$ or TXE6 $=0$, or if data is transferred to transmit shift register 6 (TXS6)
1	If data is written to transmit buffer register 6 (TXB6) (if data exists in TXB6)

TXSF6	Transmit shift register data flag
0	If POWER6 $=0$ or TXE6 $=0$, or if the next data is not transferred from transmit buffer register 6 (TXB6) after completion of transfer
1	If data is transferred from transmit buffer register 6 (TXB6) (if data transmission is in progress)

Cautions 1. To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. Be sure to check that the TXBF6 flag is " 0 ". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the TXB6 register while the TXBF6 flag is " 1 ", the transmit data cannot be guaranteed.
2. To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is " 0 " after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is " 1 ", the transmit data cannot be guaranteed.
(4) Clock selection register 6 (CKSR6)

This register selects the base clock of serial interface UART6.
CKSR6 can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 00 H .

Remark CKSR6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 $=1$ or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1).

Figure 15-8. Format of Clock Selection Register 6 (CKSR6)

Address: FF56H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
CKSR6	0	0	0	0	TPS63	TPS62	TPS61	TPS60

TPS63	TPS62	TPS61	TPS60	Base clock (fxcLk6) selection ${ }^{\text {Note } 1}$				
					$\begin{aligned} & \text { fPRS = } \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS }= \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \mathrm{fPRS}= \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fPRS }= \\ 20 \mathrm{MHz} \end{gathered}$
0	0	0	0	$\mathrm{fPRS}^{\text {Note } 2}$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 3}$
0	0	0	1	frrs/2	1 MHz	2.5 MHz	5 MHz	10 MHz
0	0	1	0	$\mathrm{fPRS} / 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
0	0	1	1	frRs $/ 2{ }^{3}$	250 kHz	625 kHz	1.25 MHz	2.5 MHz
0	1	0	0	$\mathrm{fPRS} / 2^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz
0	1	0	1	$\mathrm{fPRS} / 2^{5}$	62.5 kHz	156.25 kHz	312.5 kHz	625 kHz
0	1	1	0	frRs $/ 2^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz
0	1	1	1	$\mathrm{fPRS} / 2^{7}$	15.625 kHz	39.06 kHz	78.13 kHz	156.25 kHz
1	0	0	0	$\mathrm{fPRS} / 2^{8}$	7.813 kHz	19.53 kHz	39.06 kHz	78.13 kHz
1	0	0	1	$\mathrm{fPRS} / 2{ }^{9}$	3.906 kHz	9.77 kHz	19.53 kHz	39.06 kHz
1	0	1	0	$\mathrm{fPRS} / 2{ }^{10}$	1.953 kHz	4.88 kHz	9.77 kHz	19.53 kHz
1	0	1	1	TM50 output ${ }^{\text {Note } 4}$				
Other than above				Setting prohibited				

Notes 1. The frequency that can be used for the peripheral hardware clock (fpRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD)	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	fPRs $\leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ $($ Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS = fxh (XSEL =1).)
2. If the peripheral hardware clock (fpRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of TPS63 $=$ TPS $62=$ TPS $61=\mathrm{TPS} 60=0$ (base clock: fPRs) is prohibited.
3. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.
4. Note the following points when selecting the TM50 output as the base clock.

- Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0)

Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

- PWM mode (TMC506 = 1)

Start the operation of 8 -bit timer/event counter 50 first and then set the count clock to make the duty $=$ 50\%.
It is not necessary to enable (TOE50 $=1$) TO50 output in any mode.

Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.

Remarks 1. fPRs: Peripheral hardware clock frequency
2. TMC506: Bit 6 of 8 -bit timer mode control register 50 (TMC50) TMC501: Bit 1 of TMC50
(5) Baud rate generator control register 6 (BRGC6)

This register sets the division value of the 8-bit counter of serial interface UART6.
BRGC6 can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 = 1 or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1).

Figure 15-9. Format of Baud Rate Generator Control Register 6 (BRGC6)

Address: FF57H After reset: FFH R/W

Symbol BRGC6

7	6	5	4	3	2	1	0
MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60

MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60	k	Output clock selection of 8 -bit counter
0	0	0	0	0	0	\times	\times	\times	Setting prohibited
0	0	0	0	0	1	0	0	4	fxCLK6/4
0	0	0	0	0	1	0	1	5	fxCLK6/5
0	0	0	0	0	1	1	0	6	fxCLK6/6
-	$\stackrel{-}{\bullet}$	-					-	-	-
1	1	1	1	1	1	0	0	252	fxсLк6/252
1	1	1	1	1	1	0	1	253	fxcLк6/253
1	1	1	1	1	1	1	0	254	fxCLк6/254
1	1	1	1	1	1	1	1	255	fxСLк6/255

Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register $=0$ when rewriting the MDL67 to MDL60 bits.
2. The baud rate is the output clock of the 8-bit counter divided by 2.

Remarks 1. fxcLk6: Frequency of base clock selected by the TPS 63 to TPS 60 bits of CKSR6 register
2. k : Value set by MDL67 to MDL60 bits ($k=4,5,6, \ldots, 255$)
3. x : Don't care
(6) Asynchronous serial interface control register 6 (ASICL6)

This register controls the serial communication operations of serial interface UART6.
ASICL6 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to 16 H .

Caution ASICL6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 = 1 or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1). However, do not set both SBRT6 and SBTT6 to 1 by a refresh operation during SBF reception (SBRT6 = 1) or SBF transmission (until INTST6 occurs since SBTT6 has been set (1)), because it may re-trigger SBF reception or SBF transmission.

Figure 15-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (1/2)

Symbol	<7>	<6>	5	4	3	2	1	0
ASICL6	SBRF6	SBRT6	SBTT6	SBL62	SBL61	SBL60	DIR6	TXDLV6
	SBRF6	SBF reception status flag						
	0	If POWER6 $=0$ and RXE6 $=0$ or if SBF reception has been completed correctly						
	1	SBF reception in progress						
	SBRT6	SBF reception trigger						
	0	-						
	1	SBF reception trigger						
	SBTT6	SBF transmission trigger						
	0	-						
	1	SBF transmission trigger						

Note Bit 7 is read-only.

Figure 15-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (2/2)

SBL62	SBL61	SBL60	SBF transmission output width control
1	0	1	SBF is output with 13-bit length.
1	1	0	SBF is output with 14-bit length.
1	1	1	SBF is output with 15-bit length.
0	0	0	SBF is output with 16-bit length.
0	0	1	SBF is output with 17-bit length.
0	1	0	SBF is output with 18-bit length.
0	1	1	SBF is output with 19-bit length.
1	0	0	SBF is output with 20-bit length.

DIR6		First-bit specification
0	MSB	
1	LSB	

TXDLV6		Enables/disables inverting TxD6 output
0	Normal output of TxD6	
1	Inverted output of TxD6	

Cautions 1. In the case of an SBF reception error, the mode returns to the SBF reception mode. The status of the SBRF6 flag is held (1).
2. Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1. After setting the SBRT6 bit to 1 , do not clear it to 0 before SBF reception is completed (before an interrupt request signal is generated).
3. The read value of the SBRT6 bit is always 0 . SBRT6 is automatically cleared to 0 after SBF reception has been correctly completed.
4. Before setting the SBTT6 bit to 1 , make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 . After setting the SBTT6 bit to 1, do not clear it to 0 before SBF transmission is completed (before an interrupt request signal is generated).
5. The read value of the SBTT6 bit is always 0 . SBTT6 is automatically cleared to 0 at the end of SBF transmission.
6. Do not set the SBRT6 bit to 1 during reception, and do not set the SBTT6 bit to 1 during transmission.
7. Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.
8. When the TXDLV6 bit is set to 1 (inverted TxD6 output), the TxD6/SCLA0/P60 pin cannot be used as a general-purpose port, regardless of the settings of POWER6 and TXE6. When using the TxD6/SCLA0/P60 pin as a general-purpose port, clear the TXDLV6 bit to 0 (normal TxD6 output).

(7) Input switch control register (ISC)

The input switch control register (ISC) is used to receive a status signal transmitted from the master during LIN (Local Interconnect Network) reception.
The signal input from the P14/RxD6 pin is selected as the input source of INTP0 and TI000 when ISC0 and ISC1 are set to 1 .
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to 00 H .

Figure 15-11. Format of Input Switch Control Register (ISC)

Address: F	After reset: 00 H R/W							
Symbol	7	6	5	4	3	2	1	0
ISC	0	0	0	0	0	0	ISC1	ISC0

ISC1		T1000 input source selection
0	TI000 (P00)	
1	R×D6 (P14)	

ISC0	
0	INTP0 (P120)
1	RxD6 (P14)

(8) Port mode register 1 (PM1)

This register sets port 1 input/output in 1 -bit units.
When using the P13/TxD6 pin for serial interface data output, clear PM13 to 0 and set the output latch of P13 to 1 .
When using the P14/RxD6 pin for serial interface data input, set PM14 to 1. The output latch of P14 at this time may be 0 or 1 .

PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Figure 15-12. Format of Port Mode Register 1 (PM1)

Address: FF21H		After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

PM1n	P1n pin I/O mode selection ($\mathrm{n}=0$ to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

15.4 Operation of Serial Interface UART6

Serial interface UART6 has the following two modes.

- Operation stop mode
- Asynchronous serial interface (UART) mode

15.4.1 Operation stop mode

In this mode, serial communication cannot be executed; therefore, the power consumption can be reduced. In addition, the pins can be used as ordinary port pins in this mode. To set the operation stop mode, clear bits 7, 6, and 5 (POWER6, TXE6, and RXE6) of ASIM6 to 0 .

(1) Register used

The operation stop mode is set by asynchronous serial interface operation mode register 6 (ASIM6).
ASIM6 can be set by a 1-bit or 8 -bit memory manipulation instruction.
Reset signal generation sets this register to 01 H .

Address: FF50H After reset: 01H R/W

Symbol	<7>	<6>	<5>	4	3	2	1	0
ASIM6	POWER6	TXE6	RXE6	PS61	PS60	CL6	SL6	ISRM6

POWER6	Enables/disables operation of internal operation clock
$0^{\text {Note 1 }}$	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously resets the internal circuit ${ }^{\text {Note } 2}$.

TXE6	Enables/disables transmission
0	Disables transmission operation (synchronously resets the transmission circuit).

RXE6	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).

Notes 1. If POWER6 $=0$ is set while transmitting data, the output of the TxD6 pin will be fixed to high level (if TXDLV6 = 0). Furthermore, the input from the RxD6 pin will be fixed to high level.
2. Asynchronous serial interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6 (ASIF6), bit 7 (SBRF6) and bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6), and receive buffer register 6 (RXB6) are reset.

Caution Clear POWER6 to 0 after clearing TXE6 and RXE6 to 0 to stop the operation. To start the communication, set POWER6 to 1, and then set TXE6 or RXE6 to 1.

Remark To use the RxD6/P14 and TxD6/P13 pins as general-purpose port pins, see CHAPTER 5 PORT FUNCTIONS.

15.4.2 Asynchronous serial interface (UART) mode

In this mode, data of 1 byte is transmitted/received following a start bit, and a full-duplex operation can be performed.
A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of baud rates.

(1) Registers used

- Asynchronous serial interface operation mode register 6 (ASIM6)
- Asynchronous serial interface reception error status register 6 (ASIS6)
- Asynchronous serial interface transmission status register 6 (ASIF6)
- Clock selection register 6 (CKSR6)
- Baud rate generator control register 6 (BRGC6)
- Asynchronous serial interface control register 6 (ASICL6)
- Input switch control register (ISC)
- Port mode register 1 (PM1)
- Port register 1 (P1)

The basic procedure of setting an operation in the UART mode is as follows.
<1> Set the CKSR6 register (see Figure 15-8).
<2> Set the BRGC6 register (see Figure 15-9).
$<3>$ Set bits 0 to 4 (ISRM6, SL6, CL6, PS60, PS61) of the ASIM6 register (see Figure 15-5).
<4> Set bits 0 and 1 (TXDLV6, DIR6) of the ASICL6 register (see Figure 15-10).
$<5>$ Set bit 7 (POWER6) of the ASIM6 register to 1.
$<6>$ Set bit 6 (TXE6) of the ASIM6 register to $1 . \rightarrow$ Transmission is enabled.
Set bit 5 (RXE6) of the ASIM6 register to $1 . \rightarrow$ Reception is enabled.
$<7>$ Write data to transmit buffer register 6 (TXB6). \rightarrow Data transmission is started.
Caution Take relationship with the other party of communication when setting the port mode register and port register.

The relationship between the register settings and pins is shown below.
Table 15-2. Relationship Between Register Settings and Pins

POWER6	TXE6	RXE6	PM13	P13	PM14	P14	UART6 Operation	Pin Function	
								TxD6/P13	RxD6/P14
0	0	0	$\times^{\text {Note }}$	$x^{\text {Note }}$	$\times^{\text {Note }}$	$x^{\text {Note }}$	Stop	P13	P14
1	0	1	$\times{ }^{\text {Note }}$	$\times^{\text {Note }}$	1	\times	Reception	P13	R×D6
	1	0	0	1	$\times^{\text {Note }}$	$x^{\text {Note }}$	Transmission	TxD6	P14
	1	1	0	1	1	\times	Transmission/ reception	TxD6	RxD6

Note Can be set as port function.
Remark \times : don't care
POWER6: Bit 7 of asynchronous serial interface operation mode register 6 (ASIM6)
TXE6: Bit 6 of ASIM6
RXE6: Bit 5 of ASIM6
PM1×: Port mode register
P1×: Port output latch

(2) Communication operation

(a) Format and waveform example of normal transmit/receive data

Figures 15-13 and 15-14 show the format and waveform example of the normal transmit/receive data.

Figure 15-13. Format of Normal UART Transmit/Receive Data

1. LSB-first transmission/reception

2. MSB-first transmission/reception

One data frame consists of the following bits.

- Start bit ... 1 bit
- Character bits ... 7 or 8 bits
- Parity bit ... Even parity, odd parity, 0 parity, or no parity
- Stop bit ... 1 or 2 bits

The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial interface operation mode register 6 (ASIM6).
Whether data is communicated with the LSB or MSB first is specified by bit 1 (DIR6) of asynchronous serial interface control register 6 (ASICL6).
Whether the TxD6 pin outputs normal or inverted data is specified by bit 0 (TXDLV6) of ASICL6.

Figure 15-14. Example of Normal UART Transmit/Receive Data Waveform

1. Data length: 8 bits, LSB first, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H

2. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H

3. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Communication data: 55H, TxD6 pin inverted output

4. Data length: $\mathbf{7}$ bits, LSB first, Parity: Odd parity, Stop bit: $\mathbf{2}$ bits, Communication data: 36H

5. Data length: 8 bits, LSB first, Parity: None, Stop bit: 1 bit, Communication data: 87H

(b) Parity types and operation

The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error can be detected. With zero parity and no parity, an error cannot be detected.

Caution Fix the PS61 and PS60 bits to 0 when the device is used in LIN communication operation.

(i) Even parity

- Transmission

Transmit data, including the parity bit, is controlled so that the number of bits that are " 1 " is even. The value of the parity bit is as follows.

If transmit data has an odd number of bits that are " 1 ": 1 If transmit data has an even number of bits that are " 1 ": 0

- Reception

The number of bits that are " 1 " in the receive data, including the parity bit, is counted. If it is odd, a parity error occurs.
(ii) Odd parity

- Transmission

Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that are " 1 " is odd.

If transmit data has an odd number of bits that are "1": 0 If transmit data has an even number of bits that are " 1 ": 1

- Reception

The number of bits that are " 1 " in the receive data, including the parity bit, is counted. If it is even, a parity error occurs.
(iii) $\mathbf{0}$ parity

The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.
The parity bit is not detected when the data is received. Therefore, a parity error does not occur regardless of whether the parity bit is " 0 " or " 1 ".

(iv) No parity

No parity bit is appended to the transmit data.
Reception is performed assuming that there is no parity bit when data is received. Because there is no parity bit, a parity error does not occur.
(c) Normal transmission

When bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1 and bit 6 (TXE6) of ASIM6 is then set to 1, transmission is enabled. Transmission can be started by writing transmit data to transmit buffer register 6 (TXB6). The start bit, parity bit, and stop bit are automatically appended to the data. When transmission is started, the data in TXB6 is transferred to transmit shift register 6 (TXS6). After that, the transmit data is sequentially output from TXS6 to the TxD6 pin. When transmission is completed, the parity and stop bits set by ASIM6 are appended and a transmission completion interrupt request (INTST6) is generated.

Transmission is stopped until the data to be transmitted next is written to TXB6.
Figure 15-15 shows the timing of the transmission completion interrupt request (INTST6). This interrupt occurs as soon as the last stop bit has been output.

Figure 15-15. Normal Transmission Completion Interrupt Request Timing

1. Stop bit length: 1

2. Stop bit length: 2

(d) Continuous transmission

The next transmit data can be written to transmit buffer register 6 (TXB6) as soon as transmit shift register 6 (TXS6) has started its shift operation. Consequently, even while the INTST6 interrupt is being serviced after transmission of one data frame, data can be continuously transmitted and an efficient communication rate can be realized. In addition, the TXB6 register can be efficiently written twice (2 bytes) without having to wait for the transmission time of one data frame, by reading bit 0 (TXSF6) of asynchronous serial interface transmission status register 6 (ASIF6) when the transmission completion interrupt has occurred.
To transmit data continuously, be sure to reference the ASIF6 register to check the transmission status and whether the TXB6 register can be written, and then write the data.

Cautions 1. The TXBF6 and TXSF6 flags of the ASIF6 register change from " 10 " to " 11 ", and to " 01 " during continuous transmission. To check the status, therefore, do not use a combination of the TXBF6 and TXSF6 flags for judgment. Read only the TXBF6 flag when executing continuous transmission.
2. When the device is use in LIN communication operation, the continuous transmission function cannot be used. Make sure that asynchronous serial interface transmission status register 6 (ASIF6) is 00H before writing transmit data to transmit buffer register 6 (TXB6).

TXBF6		Writing to TXB6 Register
0	Writing enabled	
1	Writing disabled	

Caution To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. Be sure to check that the TXBF6 flag is " 0 ". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the TXB6 register while the TXBF6 flag is " 1 ", the transmit data cannot be guaranteed.

The communication status can be checked using the TXSF6 flag.

TXSF6	Transmission Status
0	Transmission is completed.
1	Transmission is in progress.

Cautions 1. To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is " 0 " after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is " 1 ", the transmit data cannot be guaranteed.
2. During continuous transmission, the next transmission may complete before execution of INTST6 interrupt servicing after transmission of one data frame. As a countermeasure, detection can be performed by developing a program that can count the number of transmit data and by referencing the TXSF6 flag.

Figure 15-16 shows an example of the continuous transmission processing flow.

Figure 15-16. Example of Continuous Transmission Processing Flow

Remark TXB6: Transmit buffer register 6
ASIF6: Asynchronous serial interface transmission status register 6
TXBF6: Bit 1 of ASIF6 (transmit buffer data flag)
TXSF6: Bit 0 of ASIF6 (transmit shift register data flag)

Figure $15-17$ shows the timing of starting continuous transmission, and Figure $15-18$ shows the timing of ending continuous transmission.

Figure 15-17. Timing of Starting Continuous Transmission

Note When ASIF6 is read, there is a period in which TXBF6 and TXSF6 = 1, 1. Therefore, judge whether writing is enabled using only the TXBF6 bit.

Remark TxD6: TxD6 pin (output)
INTST6: Interrupt request signal
TXB6: Transmit buffer register 6
TXS6: Transmit shift register 6
ASIF6: Asynchronous serial interface transmission status register 6
TXBF6: Bit 1 of ASIF6
TXSF6: Bit 0 of ASIF6

Figure 15-18. Timing of Ending Continuous Transmission

Remark TxD6: TxD6 pin (output)
INTST6: Interrupt request signal
TXB6: Transmit buffer register 6
TXS6: Transmit shift register 6
ASIF6: Asynchronous serial interface transmission status register 6
TXBF6: Bit 1 of ASIF6
TXSF6: Bit 0 of ASIF6
POWER6: Bit 7 of asynchronous serial interface operation mode register (ASIM6)
TXE6: Bit 6 of asynchronous serial interface operation mode register (ASIM6)
(e) Normal reception

Reception is enabled and the RxD6 pin input is sampled when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1 .
The 8 -bit counter of the baud rate generator starts counting when the falling edge of the RxD6 pin input is detected. When the set value of baud rate generator control register 6 (BRGC6) has been counted, the RxD6 pin input is sampled again (in Figur 15-19). If the RxD6 pin is low level at this time, it is recognized as a start bit. When the start bit is detected, reception is started, and serial data is sequentially stored in the receive shift register (RXS6) at the set baud rate. When the stop bit has been received, the reception completion interrupt (INTSR6) is generated and the data of RXS6 is written to receive buffer register 6 (RXB6). If an overrun error (OVE6) occurs, however, the receive data is not written to RXB6.
Even if a parity error (PE6) occurs while reception is in progress, reception continues to the reception position of the stop bit, and a reception error interrupt (INTSR6/INTSRE6) is generated on completion of reception.

Figure 15-19. Reception Completion Interrupt Request Timing

Cautions 1. If a reception error occurs, read ASIS6 and then RXB6 to clear the error flag. Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.
2. Reception is always performed with the "number of stop bits $=1$ ". The second stop bit is ignored.
3. Be sure to read asynchronous serial interface reception error status register 6 (ASIS6) before reading RXB6.

(f) Reception error

Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error flag of asynchronous serial interface reception error status register 6 (ASIS6) is set as a result of data reception, a reception error interrupt request (INTSR6/INTSRE6) is generated.
Which error has occurred during reception can be identified by reading the contents of ASIS6 in the reception error interrupt (INTSR6/INTSRE6) servicing (see Figure 15-6).
The contents of ASIS6 are cleared to 0 when ASIS6 is read.

Table 15-3. Cause of Reception Error

Reception Error	Cause
Parity error	The parity specified for transmission does not match the parity of the receive data.
Framing error	Stop bit is not detected.
Overrun error	Reception of the next data is completed before data is read from receive buffer register 6 (RXB6).

The reception error interrupt can be separated into reception completion interrupt (INTSR6) and error interrupt (INTSRE6) by clearing bit 0 (ISRM6) of asynchronous serial interface operation mode register 6 (ASIM6) to 0.

Figure 15-20. Reception Error Interrupt

1. If ISRM6 is cleared to 0 (reception completion interrupt (INTSR6) and error interrupt (INTSRE6) are separated)
(a) No error during reception

INTSRE6 \qquad
(b) Error during reception

INTSR6

INTSRE6

2. If ISRM6 is set to $\mathbf{1}$ (error interrupt is included in INTSR6)
(a) No error during reception

INTSR6

INTSRE6
(b) Error during reception

INTSRE6

\qquad
(g) Noise filter of receive data

The RxD6 signal is sampled with the base clock output by the prescaler block.
If two sampled values are the same, the output of the match detector changes, and the data is sampled as input data.
Because the circuit is configured as shown in Figure 15-21, the internal processing of the reception operation is delayed by two clocks from the external signal status.

Figure 15-21. Noise Filter Circuit

(h) SBF transmission

When the device is use in LIN communication operation, the SBF (Synchronous Break Field) transmission control function is used for transmission. For the transmission operation of LIN, see Figure 15-1 LIN Transmission Operation.
When bit 7 (POWER6) of asynchronous serial interface mode register 6 (ASIM6) is set to 1 , the TxD6 pin outputs high level. Next, when bit 6 (TXE6) of ASIM6 is set to 1, the transmission enabled status is entered, and SBF transmission is started by setting bit 5 (SBTT6) of asynchronous serial interface control register 6 (ASICL6) to 1. Thereafter, a low level of bits 13 to 20 (set by bits 4 to 2 (SBL62 to SBL60) of ASICL6) is output. Following the end of SBF transmission, the transmission completion interrupt request (INTST6) is generated and SBTT6 is automatically cleared. Thereafter, the normal transmission mode is restored.
Transmission is suspended until the data to be transmitted next is written to transmit buffer register 6 (TXB6), or until SBTT6 is set to 1 .

Figure 15-22. SBF Transmission

Remark TxD6: TxD6 pin (output)
INTST6: Transmission completion interrupt request
SBTT6: Bit 5 of asynchronous serial interface control register 6 (ASICL6)

(i) SBF reception

When the device is used in LIN communication operation, the SBF (Synchronous Break Field) reception control function is used for reception. For the reception operation of LIN, see Figure 15-2 LIN Reception Operation. Reception is enabled when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1 . SBF reception is enabled when bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6) is set to 1 . In the SBF reception enabled status, the RxD6 pin is sampled and the start bit is detected in the same manner as the normal reception enable status.
When the start bit has been detected, reception is started, and serial data is sequentially stored in the receive shift register 6 (RXS6) at the set baud rate. When the stop bit is received and if the width of SBF is 11 bits or more, a reception completion interrupt request (INTSR6) is generated as normal processing. At this time, the SBRF6 and SBRT6 bits are automatically cleared, and SBF reception ends. Detection of errors, such as OVE6, PE6, and FE6 (bits 0 to 2 of asynchronous serial interface reception error status register 6 (ASIS6)) is suppressed, and error detection processing of UART communication is not performed. In addition, data transfer between receive shift register 6 (RXS6) and receive buffer register 6 (RXB6) is not performed, and the reset value of FFH is retained. If the width of SBF is 10 bits or less, an interrupt does not occur as error processing after the stop bit has been received, and the SBF reception mode is restored. In this case, the SBRF6 and SBRT6 bits are not cleared.

Figure 15-23. SBF Reception

1. Normal SBF reception (stop bit is detected with a width of more than 10.5 bits)

2. SBF reception error (stop bit is detected with a width of 10.5 bits or less)

Remark RxD6: RxD6 pin (input)
SBRT6: Bit 6 of asynchronous serial interface control register 6 (ASICL6)
SBRF6: Bit 7 of ASICL6
INTSR6: Reception completion interrupt request

15.4.3 Dedicated baud rate generator

The dedicated baud rate generator consists of a source clock selector and an 8-bit programmable counter, and generates a serial clock for transmission/reception of UART6.

Separate 8-bit counters are provided for transmission and reception.

(1) Configuration of baud rate generator

- Base clock

The clock selected by bits 3 to 0 (TPS63 to TPS60) of clock selection register 6 (CKSR6) is supplied to each module when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is 1 . This clock is called the base clock and its frequency is called fxclк6. The base clock is fixed to low level when POWER6 $=0$.

- Transmission counter

This counter stops operation, cleared to 0 , when bit 7 (POWER6) or bit 6 (TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0 .
It starts counting when POWER6 $=1$ and TXE6 $=1$.
The counter is cleared to 0 when the first data transmitted is written to transmit buffer register 6 (TXB6).
If data are continuously transmitted, the counter is cleared to 0 again when one frame of data has been completely transmitted. If there is no data to be transmitted next, the counter is not cleared to 0 and continues counting until POWER6 or TXE6 is cleared to 0 .

- Reception counter

This counter stops operation, cleared to 0 , when bit 7 (POWER6) or bit 5 (RXE6) of asynchronous serial interface operation mode register 6 (ASIM6) is 0 .
It starts counting when the start bit has been detected.
The counter stops operation after one frame has been received, until the next start bit is detected.

Figure 15-24. Configuration of Baud Rate Generator

Remark POWER6: Bit 7 of asynchronous serial interface operation mode register 6 (ASIM6)
TXE6: Bit 6 of ASIM6
RXE6: Bit 5 of ASIM6
CKSR6: Clock selection register 6
BRGC6: Baud rate generator control register 6

(2) Generation of serial clock

A serial clock to be generated can be specified by using clock selection register 6 (CKSR6) and baud rate generator control register 6 (BRGC6).
The clock to be input to the 8 -bit counter can be set by bits 3 to 0 (TPS63 to TPS60) of CKSR6 and the division value ($\mathrm{fxcLk} 6 / 4$ to fxcLK6/255) of the 8 -bit counter can be set by bits 7 to 0 (MDL67 to MDL60) of BRGC6.

15.4.4 Calculation of baud rate

(1) Baud rate calculation expression

The baud rate can be calculated by the following expression.

- Baud rate $=\frac{\text { fxCLK6 }}{2 \times \mathrm{k}}[\mathrm{bps}]$
fxclk6: Frequency of base clock selected by TPS63 to TPS60 bits of CKSR6 register
k: Value set by MDL67 to MDL60 bits of BRGC6 register ($k=4,5,6, \ldots, 255$)

Table 15-4. Set Value of TPS63 to TPS60

TPS63	TPS62	TPS61	TPS60	Base Clock (fxclk6) Selection ${ }^{\text {Note } 1}$				
					$\begin{aligned} & \text { fPRS }= \\ & 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS }= \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { fPRS }= \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fPRS }= \\ 20 \mathrm{MHz} \end{gathered}$
0	0	0	0	$\mathrm{fPRS}^{\text {Note }} 2$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}{ }^{\text {Note } 3}$
0	0	0	1	fPrs/2	1 MHz	2.5 MHz	5 MHz	10 MHz
0	0	1	0	fprs $/ 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
0	0	1	1	fprs $/ 2{ }^{3}$	250 kHz	625 kHz	1.25 MHz	2.5 MHz
0	1	0	0	fPRS $/ 2{ }^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz
0	1	0	1	fPRS $/ 2{ }^{5}$	62.5 kHz	156.25 kHz	312.5 kHz	625 kHz
0	1	1	0	fprs $/ 2{ }^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz
0	1	1	1	fprs $/ 2{ }^{7}$	15.625 kHz	39.06 kHz	78.13 kHz	156.25 kHz
1	0	0	0	fprs $/ 2{ }^{8}$	7.813 kHz	19.53 kHz	39.06 kHz	78.13 kHz
1	0	0	1	fprs $/ 2{ }^{9}$	3.906 kHz	9.77 kHz	19.53 kHz	39.06 kHz
1	0	1	0	frrs $/ 2{ }^{10}$	1.953 kHz	4.88 kHz	9.77 kHz	19.53 kHz
1	0	1	1	TM50 output ${ }^{\text {Note } 4}$				
Other than above				Setting prohibited				

Notes 1. The frequency that can be used for the peripheral hardware clock (fPRS) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA $)$
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<2.7 \mathrm{~V}$ $($ Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fxH}(\mathrm{XSEL}=1)$.)
2. If the peripheral hardware clock (fprs) operates on the internal high-speed oscillation clock (fRH) (XSEL $=0$), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of TPS $63=$ TPS $62=$ TPS61 $=$ TPS60 $=0$ (base clock: fPRs) is prohibited.
3. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.
4. Note the following points when selecting the TM50 output as the base clock.

- Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0)

Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

- PWM mode (TMC506 = 1)

Start the operation of 8 -bit timer/event counter 50 first and then set the count clock to make the duty = 50%.
It is not necessary to enable (TOE50 $=1$) TO50 output in any mode.

(2) Error of baud rate

The baud rate error can be calculated by the following expression.

- $\operatorname{Error}(\%)=\left(\frac{\text { Actual baud rate (baud rate with error) }}{\text { Desired baud rate (correct baud rate) }}-1\right) \times 100$ [\%]

Cautions 1. Keep the baud rate error during transmission to within the permissible error range at the reception destination.
2. Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.

Example: Frequency of base clock $=10 \mathrm{MHz}=10,000,000 \mathrm{~Hz}$
Set value of MDL67 to MDL60 bits of BRGC6 register $=00100001 \mathrm{~B}(\mathrm{k}=33)$
Target baud rate $=153600 \mathrm{bps}$

Baud rate $=10 \mathrm{M} /(2 \times 33)$

$$
=10000000 /(2 \times 33)=151,515[\mathrm{bps}]
$$

$$
\text { Error }=(151515 / 153600-1) \times 100
$$

= -1.357 [\%]
(3) Example of setting baud rate

Table 15-5. Set Data of Baud Rate Generator

Baud	$\mathrm{f}_{\text {PRS }}=2.0 \mathrm{MHz}$				$\mathrm{fPRS}=5.0 \mathrm{MHz}$				fprs $=10.0 \mathrm{MHz}$				$\mathrm{fPRS}=20.0 \mathrm{MHz}$			
Rate [bps]	$\begin{aligned} & \text { TPS63- } \\ & \text { TPS60 } \end{aligned}$	k	Calculated Value	ERR [\%]	$\left\lvert\, \begin{aligned} & \text { TPS63- } \\ & \text { TPS60 } \end{aligned}\right.$	k	Calculated Value	ERR [\%]	$\left\lvert\, \begin{aligned} & \text { TPS63- } \\ & \text { TPS60 } \end{aligned}\right.$	k	Calculated Value	ERR [\%]	$\begin{array}{\|l\|} \text { TPS63- } \\ \text { TPS60 } \end{array}$	k	Calculated Value	ERR [\%]
300	8H	13	301	0.16	7H	65	301	0.16	8H	65	301	0.16	9H	65	301	0.16
600	7H	13	601	0.16	6H	65	601	0.16	7H	65	601	0.16	8H	65	601	0.16
1200	6H	13	1202	0.16	5H	65	1202	0.16	6H	65	1202	0.16	7H	65	1202	0.16
2400	5H	13	2404	0.16	4H	65	2404	0.16	5H	65	2404	0.16	6 H	65	2404	0.16
4800	4H	13	4808	0.16	3H	65	4808	0.16	4H	65	4808	0.16	5H	65	4808	0.16
9600	3H	13	9615	0.16	2H	65	9615	0.16	3H	65	9615	0.16	4H	65	9615	0.16
19200	2 H	13	19231	0.16	1H	65	19231	0.16	2 H	65	19231	0.16	3H	65	19231	0.16
24000	1H	21	23810	-0.79	3H	13	24038	0.16	4H	13	24038	0.16	5H	13	24038	0.16
31250	1H	16	31250	0	4H	5	31250	0	5H	5	31250	0	6H	5	31250	0
38400	1H	13	38462	0.16	OH	65	38462	0.16	1H	65	38462	0.16	2 H	65	38462	0.16
48000	OH	21	47619	-0.79	2 H	13	48077	0.16	3H	13	48077	0.16	4H	13	48077	0.16
76800	OH	13	76923	0.16	OH	33	75758	-1.36	OH	65	76923	0.16	1H	65	76923	0.16
115200	OH	9	111111	-3.55	1H	11	113636	-1.36	OH	43	116279	0.94	OH	87	114943	-0.22
153600	-	-	-	-	1H	8	156250	1.73	OH	33	151515	-1.36	1H	33	151515	-1.36
312500	-	-	-	-	OH	8	312500	0	1H	8	312500	0	2 H	8	312500	0
625000	-	-	-	-	OH	4	625000	0	1H	4	625000	0	2 H	4	625000	0

Remark TPS63 to TPS60: Bits 3 to 0 of clock selection register 6 (CKSR6) (setting of base clock (fxcLK6))
k : Value set by MDL67 to MDL60 bits of baud rate generator control register 6 (BRGC6) (k $=4,5,6, \ldots, 255$)
fPRS: Peripheral hardware clock frequency
ERR: Baud rate error

(4) Permissible baud rate range during reception

The permissible error from the baud rate at the transmission destination during reception is shown below.

Caution Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.

Figure 15-25. Permissible Baud Rate Range During Reception

As shown in Figure 15-25, the latch timing of the receive data is determined by the counter set by baud rate generator control register 6 (BRGC6) after the start bit has been detected. If the last data (stop bit) meets this latch timing, the data can be correctly received.
Assuming that 11-bit data is received, the theoretical values can be calculated as follows.

$$
\mathrm{FL}=(\text { Brate })^{-1}
$$

Brate: Baud rate of UART6
k: Set value of BRGC6
FL: 1-bit data length
Margin of latch timing: 2 clocks

Minimum permissible data frame length: $F L \min =11 \times F L-\frac{k-2}{2 k} \times F L=\frac{21 k+2}{2 k} F L$
Therefore, the maximum receivable baud rate at the transmission destination is as follows.

$$
\text { BRmax }=(F L m i n / 11)^{-1}=\frac{22 k}{21 \mathrm{k}+2} \text { Brate }
$$

Similarly, the maximum permissible data frame length can be calculated as follows.

$$
\begin{aligned}
\frac{10}{11} \times F L \max & =11 \times F L-\frac{\mathrm{k}+2}{2 \times \mathrm{k}} \times \mathrm{FL}=\frac{21 \mathrm{k}-2}{2 \times \mathrm{k}} \mathrm{FL} \\
\mathrm{FLmax} & =\frac{21 \mathrm{k}-2}{20 \mathrm{k}} \mathrm{FL} \times 11
\end{aligned}
$$

Therefore, the minimum receivable baud rate at the transmission destination is as follows.

$$
\mathrm{BRmin}=(\mathrm{FLmax} / 11)^{-1}=\frac{20 \mathrm{k}}{21 \mathrm{k}-2} \text { Brate }
$$

The permissible baud rate error between UART6 and the transmission destination can be calculated from the above minimum and maximum baud rate expressions, as follows.

Table 15-6. Maximum/Minimum Permissible Baud Rate Error

Division Ratio (k)	Maximum Permissible Baud Rate Error	Minimum Permissible Baud Rate Error
4	$+2.33 \%$	-2.44%
8	$+3.53 \%$	-3.61%
20	$+4.26 \%$	-4.31%
50	$+4.56 \%$	-4.58%
100	$+4.66 \%$	-4.67%
255	$+4.72 \%$	-4.73%

Remarks 1. The permissible error of reception depends on the number of bits in one frame, input clock frequency, and division ratio (k). The higher the input clock frequency and the higher the division ratio (k), the higher the permissible error.
2. k : Set value of BRGC6
(5) Data frame length during continuous transmission

When data is continuously transmitted, the data frame length from a stop bit to the next start bit is extended by two clocks of base clock from the normal value. However, the result of communication is not affected because the timing is initialized on the reception side when the start bit is detected.

Figure 15-26. Data Frame Length During Continuous Transmission

Where the 1-bit data length is FL, the stop bit length is FLstp, and base clock frequency is fxcLк6, the following expression is satisfied.
FLstp = FL + 2/fxcLk6

Therefore, the data frame length during continuous transmission is:

Data frame length $=11 \times F L+2 / f \times c L \kappa 6$

CHAPTER 16 SERIAL INTERFACES CSI10 AND CSI11

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
Serial interface CSI10	\checkmark					
Serial interface CSI11	-				\checkmark	

Remark $\sqrt{ }$: Mounted, -: Not mounted

16.1 Functions of Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 have the following two modes.

(1) Operation stop mode

This mode is used when serial communication is not performed and can enable a reduction in the power consumption.
For details, see 16.4.1 Operation stop mode.
(2) 3-wire serial I/O mode (MSB/LSB-first selectable)

This mode is used to communicate 8 -bit data using three lines: a serial clock line ($\overline{\mathrm{SCK} 1 \mathrm{n}}$) and two serial data lines (SI1n and SO1n).
The processing time of data communication can be shortened in the 3 -wire serial I/O mode because transmission and reception can be simultaneously executed.
In addition, whether 8-bit data is communicated with the MSB or LSB first can be specified, so this interface can be connected to any device.
The 3-wire serial I/O mode is used for connecting peripheral ICs and display controllers with a clocked serial interface.
For details, see 16.4.2 3-wire serial I/O mode.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

16.2 Configuration of Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 include the following hardware.

Table 16-1. Configuration of Serial Interfaces CSI10 and CSI11

Item	Configuration
Controller	Transmit controller Clock start/stop controller \& clock phase controller
Registers	Transmit buffer register 1n (SOTB1n) Serial I/O shift register 1n (SIO1n)
Control registers	Serial operation mode register 1n (CSIM1n) Serial clock selection register 1n (CSIC1n) Port mode register 0 (PM0) or port mode register 1 (PM1) Port register 0 (P0) or port register 1 (P1)

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 16-1. Block Diagram of Serial Interface CSI10

Figure 16-2. Block Diagram of Serial Interface CSI11

(1) Transmit buffer register 1n (SOTB1n)

This register sets the transmit data.
Transmission/reception is started by writing data to SOTB1n when bit 7 (CSIE1n) and bit 6 (TRMD1n) of serial operation mode register 1 n (CSIM1n) is 1 .
The data written to SOTB1n is converted from parallel data into serial data by serial I/O shift register 1 n , and output to the serial output pin (SO1n).
SOTB1n can be written or read by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .
Cautions 1. Do not access SOTB1n when CSOT1n $=1$ (during serial communication).
2. In the slave mode, transmission/reception is started when data is written to SOTB11 with a low level input to the $\overline{\mathrm{SSII1}} \mathrm{pin}$. For details on the transmission/reception operation, see 16.4 .2 (2) Communication operation.
(2) Serial I/O shift register 1 n (SIO1n)

This is an 8-bit register that converts data from parallel data into serial data and vice versa.
This register can be read by an 8 -bit memory manipulation instruction.
Reception is started by reading data from SIO1n if bit 6 (TRMD1n) of serial operation mode register 1 n (CSIM1n) is 0 .
During reception, the data is read from the serial input pin (SI1n) to SIO1n.
Reset signal generation clears this register to 00 H .

Cautions 1. Do not access SIO1n when CSOT1n = 1 (during serial communication).
2. In the slave mode, reception is started when data is read from SIO11 with a low level input to the $\overline{\text { SSI11 }}$ pin. For details on the reception operation, see 16.4.2 (2) Communication operation.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

16.3 Registers Controlling Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 are controlled by the following four registers.

- Serial operation mode register 1n (CSIM1n)
- Serial clock selection register 1n (CSIC1n)
- Port mode register 0 (PM0) or port mode register 1 (PM1)
- Port register 0 (P0) or port register 1 (P1)

(1) Serial operation mode register 1 n (CSIM1n)

CSIM1n is used to select the operation mode and enable or disable operation.
CSIM1n can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

Figure 16-3. Format of Serial Operation Mode Register 10 (CSIM10)
Address: FF80H After reset: 00 H R/W ${ }^{\text {Note } 1}$

| Symbol | $<7>$ | 6 | 5 | 4 | 2 | 1 | 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSIM10 | CSIE10 | TRMD10 | 0 | DIR10 | 0 | 0 | 0 | CSOT10 |
| | | | | | | | | |

CSIE10	Operation control in 3-wire serial I/O mode
0	Disables operation ${ }^{\text {Note } 2}$ and asynchronously resets the internal circuit ${ }^{\text {Note } 3 .}$
1	Enables operation

TRMD10 $0^{\text {Note } 4}$	Transmit/receive mode control
$0^{\text {Note } 5}$	Receive mode (transmission disabled).
1	Transmit/receive mode

DIR10 ${ }^{\text {Note } 6}$		First bit specification
0	MSB	
1	LSB	

CSOT10	Communication status flag	
0	Communication is stopped.	
1	Communication is in progress.	

Notes 1. Bit 0 is a read-only bit.
2. To use P10/SCK10/TxD0 and P12/SO10 as general-purpose ports, set CSIM10 in the default status (00 H).
3. Bit 0 (CSOT10) of CSIM10 and serial I/O shift register 10 (SIO10) are reset.
4. Do not rewrite TRMD10 when CSOT10 $=1$ (during serial communication).
5. The SO10 output (see Figure 16-1) is fixed to the low level when TRMD10 is 0 . Reception is started when data is read from SIO 10 .
6. Do not rewrite DIR10 when CSOT10 $=1$ (during serial communication).

Caution Be sure to clear bit 5 to 0.

Figure 16-4. Format of Serial Operation Mode Register 11 (CSIM11)

Address: FF88H After reset: 00 H R/W ${ }^{\text {Note } 1}$

Symbol	$<7>$	6	5	3	2	1	0	
CSIM11	CSIE11	TRMD11	SSE11	DIR11	0	0	0	CSOT11

CSIE11	Operation control in 3-wire serial I/O mode
0	Disables operation ${ }^{\text {Note 2 }}$ and asynchronously resets the internal circuit ${ }^{\text {Note 3 }}$.
1	Enables operation

TRMD11 $^{\text {Note } 4}$	Transmit/receive mode control
$0^{\text {Note } 5}$	Receive mode (transmission disabled).
1	Transmit/receive mode

SSE11 $^{\text {Notes } 6,7}$	
0	$\overline{\text { SSI11 }}$ pin is not used
1	$\overline{\text { SSI11 }}$ pin use selection

DIR11 ${ }^{\text {Note } 8}$		First bit specification
0	MSB	
1	LSB	

CSOT11		Communication status flag
0	Communication is stopped.	
1	Communication is in progress.	

Notes 1. Bit 0 is a read-only bit.
2. To use P02/SO11, P04/SCK11, and P05/ $\overline{\mathrm{SSI} 11} / \mathrm{TI} 1001$ as general-purpose ports, set CSIM11 in the default status $(00 \mathrm{H})$.
3. Bit 0 (CSOT11) of CSIM11 and serial I/O shift register 11 (SIO11) are reset.
4. Do not rewrite TRMD11 when CSOT11 = 1 (during serial communication).
5. The SO11 output (see Figure 16-2) is fixed to the low level when TRMD11 is 0 . Reception is started when data is read from SIO11.
6. Do not rewrite SSE11 when CSOT11 = 1 (during serial communication).
7. Before setting this bit to 1 , fix the $\overline{\mathrm{SSI} 11}$ pin input level to 0 or 1 .
8. Do not rewrite DIR11 when CSOT11 = 1 (during serial communication).
(2) Serial clock selection register 1n (CSIC1n)

This register specifies the timing of the data transmission/reception and sets the serial clock.
CSIC1n can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .
Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products
Figure 16-5. Format of Serial Clock Selection Register 10 (CSIC10)

Address: FF81H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
CSIC10	0	0	0	CKP10	DAP10	CKS102	CKS101	CKS100

CKP10	DAP10	Specification of data transmission/reception timing	Type
0	0		1
0	1	$\begin{aligned} & \begin{array}{l} \text { SCK10 } \\ \text { SO10 } \\ \text { XD7 } \\ \hline D 6 \end{array} \overline{\mathrm{D} 5} \times \overline{\mathrm{D} 4} \times \overline{\mathrm{D} 3} \times \overline{\mathrm{D} 2} \times \mathrm{D} 1 \times \mathrm{D} 0 \\ & \text { input timing } \\ & \hline \end{aligned}$	2
1	0		3
1	1	$\begin{array}{r} \begin{array}{r} \text { SCK10 } \\ \text { SO10 } \\ \times \mathrm{D} 7 \times \mathrm{D} 6 \times \mathrm{D} 5 \times \mathrm{D} 4 \times \mathrm{D} 3 \times \mathrm{D} 2 \times \mathrm{D} 1 \times \mathrm{D} 0 \\ \hline \end{array} \\ \text { 0 input timing } \\ \hline \end{array}$	4

CKS102	CKS101	CKS100	CSI10 serial clock selection ${ }^{\text {Notes 1,2 }}$					Mode
				$\begin{aligned} & \text { fPRS }= \\ & 2 \mathrm{MHz} \end{aligned}$	$\mathrm{f}_{\mathrm{PRS}}=$ 5 MHz	$\begin{aligned} & \text { fPRS = } \\ & 10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fPRS }= \\ & 20 \mathrm{MHz} \end{aligned}$	
0	0	0	$\mathrm{fPRS} / 2$	1 MHz	2.5 MHz	5 MHz	Setting prohibited	Master mode
0	0	1	frrs $/ 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz	
0	1	0	fprs $/ 2{ }^{3}$	250 kHz	625 kHz	1.25 MHz	2.5 MHz	
0	1	1	${\mathrm{fPRS} / 2{ }^{4}}^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz	
1	0	0	fprs $/ 2{ }^{5}$	62.5 kHz	156.25 kHz	312.5 kHz	625 kHz	
1	0	1	fPRS $/ 2{ }^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz	
1	1	0	fPRS/2 ${ }^{7}$	15.63 kHz	39.06 kHz	78.13 kHz	156.25 kHz	
1	1	1	External clock input from $\overline{\text { SCK10 }}^{\text {Note } 3}$					Slave mode

Notes 1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD)	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	fprs $\leq 20 \mathrm{MHz}$	f frrs $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	frRs $\leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fXH}(\mathrm{XSEL}=1)$.)
2. Set the serial clock to satisfy the following conditions.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD) and Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)		
	Standard Products	(A) Grade Products	(A2) Grade Products
$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	Serial clock $\leq 6.25 \mathrm{MHz}$	Serial clock $\leq 5 \mathrm{MHz}$	Serial clock $\leq 5 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	Serial clock $\leq 4 \mathrm{MHz}$	Serial clock $\leq 2.5 \mathrm{MHz}$	Serial clock $\leq 2.5 \mathrm{MHz}$
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	Serial clock $\leq 2 \mathrm{MHz}$	Serial clock $\leq 1.66 \mathrm{MHz}$	-

3. Do not start communication with the external clock from the SCK10 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Cautions 1. Do not write to CSIC10 while CSIE10 = 1 (operation enabled).
2. To use P10/SCK10/TxD0 and P12/SO10 as general-purpose ports, set CSIC10 in the default status (00H).
3. The phase type of the data clock is type 1 after reset.

Remark fprs: Peripheral hardware clock frequency

Figure 16-6. Format of Serial Clock Selection Register 11 (CSIC11)

Address: FF89H After reset: 00H R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 1 | 0 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSIC11 | 0 | 0 | 0 | CKP11 | DAP11 | CKS112 | CKS111 | CKS110 |
| | | | | | | | | |

CKP11	DAP11	Specification of data transmission/reception timing	Type
0	0		1
0	1		2
1	0		3
1	1		4

CKS112	CKS111	CKS110	CSI11 serial clock selection ${ }^{\text {Notes 1,2 }}$					Mode
				$\begin{aligned} & \text { fPRS }= \\ & 2 \mathrm{MHz} \end{aligned}$	fPRS $=$ 5 MHz	$\begin{gathered} \mathrm{fPRS}= \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fPRs }= \\ 20 \mathrm{MHz} \end{gathered}$	
0	0	0	fprs/ 2	1 MHz	2.5 MHz	5 MHz	Setting prohibited	Master mode
0	0	1	frrs $/ 2{ }^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz	
0	1	0	fPRS $/ 2{ }^{3}$	250 kHz	625 kHz	1.25 MHz	2.5 MHz	
0	1	1	frrs $/ 2{ }^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz	
1	0	0	fPRS $/ 2{ }^{5}$	62.5 kHz	156.25 kHz	312.5 kHz	625 kHz	
1	0	1	frrs $/ 2{ }^{6}$	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz	
1	1	0	fPRS/2 ${ }^{7}$	15.63 kHz	39.06 kHz	78.13 kHz	156.25 kHz	
1	1	1	External clock input from $\overline{\text { SCK11 }}^{\text {Note } 3}$					Slave mode

Note 1. The frequency that can be used for the peripheral hardware clock (fpRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD)	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	fPRs $\leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<4.0 \mathrm{~V}$	fPRs $\leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	fPRs $\leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fxH}(\mathrm{XSEL}=1)$.)

Notes 2. Set the serial clock to satisfy the following conditions.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD) and Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)		
	Standard Products	(A) Grade Products	(A2) Grade Products
	Serial clock $\leq 6.25 \mathrm{MHz}$	Serial clock $\leq 5 \mathrm{MHz}$	Serial clock $\leq 5 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	Serial clock $\leq 4 \mathrm{MHz}$	Serial clock $\leq 2.5 \mathrm{MHz}$	Serial clock $\leq 2.5 \mathrm{MHz}$
$1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{CD}<2.7 \mathrm{~V}$	Serial clock $\leq 2 \mathrm{MHz}$	Serial clock $\leq 1.66 \mathrm{MHz}$	-

3. Do not start communication with the external clock from the SCK11 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Cautions 1. Do not write to CSIC11 while CSIE11 = 1 (operation enabled).

2. To use P02/SO11 and P04/SCK11 as general-purpose ports, set CSIC11 in the default status $(00 \mathrm{H})$.
3. The phase type of the data clock is type 1 after reset.

Remark fPRS: Peripheral hardware clock frequency

(3) Port mode registers 0 and 1 (PMO, PM1)

These registers set port 0 and 1 input/output in 1-bit units.
When using P10/SCK10 and P04/SCK11 as the clock output pins of the serial interface, clear PM10 and PM04 to 0 , and set the output latches of P10 and P04 to 1.
When using P12/SO10 and P02/SO11 as the data output pins of the serial interface, clear PM12, PM02, and the output latches of P12 and P02 to 0 .
When using P10/ $\overline{\mathrm{SCK} 10}$ and P04/SCK11 as the clock input pins of the serial interface, $\mathrm{P} 11 / \mathrm{SI} 10 / \mathrm{RxD0}$ and $\mathrm{P} 03 / \mathrm{SI} 11$ as the data input pins, and P05/SSI11/TI001 as the chip select input pin, set PM10, PM04, PM11, PM03, and PM05 to 1 . At this time, the output latches of P10, P04, P11, P03, and P05 may be 0 or 1.
PM0 and PM1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Figure 16-7. Format of Port Mode Register 0 (PMO)

Remark The figure shown above presents the format of port mode register 0 of 78K0/KF2 products. For the format of port mode register 0 of other products, see (1) Port mode registers (PMxx) in 5.3 Registers Controlling Port Function.

Figure 16-8. Format of Port Mode Register 1 (PM1)

16.4 Operation of Serial Interfaces CSI10 and CSI11

Serial interfaces CSI10 and CSI11 can be used in the following two modes.

- Operation stop mode
- 3-wire serial I/O mode

16.4.1 Operation stop mode

Serial communication is not executed in this mode. Therefore, the power consumption can be reduced. In addition, the P10/SCK10/TxD0, P11/SI10/RxD0, P12/SO10, P02/SO11, P03/SI11, and P04/SCK11 pins can be used as ordinary I/O port pins in this mode.

(1) Register used

The operation stop mode is set by serial operation mode register 1 n (CSIM1n).
To set the operation stop mode, clear bit 7 (CSIE1n) of CSIM1n to 0 .
(a) Serial operation mode register 1 n (CSIM1n)

CSIM1n can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears CSIM1n to 00H.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

- Serial operation mode register 10 (CSIM10)

Address: FF80H After reset: 00 H R/W

	Symbol	<7>	6	5	4	3	2	1
	CSIM10	CSIE10	TRMD10	0	DIR10	0	0	0

CSIE10	Operation control in 3-wire serial I/O mode
0	Disables operation ${ }^{\text {Note } 1}$ and asynchronously resets the internal circuit ${ }^{\text {Note } 2}$.

Notes 1. To use P10/SCK10/TxD0 and P12/SO10 as general-purpose ports, set CSIM10 in the default status (00H).
2. Bit 0 (CSOT10) of CSIM10 and serial I/O shift register 10 (SIO10) are reset.

- Serial operation mode register 11 (CSIM11)

Address: FF88H After reset: 00H R/W

| Symbol | $<7>$ | 6 | 5 | 4 | 2 | 1 | 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSIM11 | CSIE11 | TRMD11 | SSE11 | DIR11 | 0 | 0 | 0 | CSOT11 |
| | | | | | | | | |

CSIE11	Operation control in 3-wire serial I/O mode
0	Disables operation ${ }^{\text {Note } 1}$ and asynchronously resets the internal circuit ${ }^{\text {Note } 2 .}$

Notes 1. To use P02/SO11, P04/ $\overline{\mathrm{SCK} 11}$, and P05/ $\overline{\mathrm{SSI} 11} / \mathrm{TI} 1001$ as general-purpose ports, set CSIM11 in the default status (00H).
2. Bit 0 (CSOT11) of CSIM11 and serial I/O shift register 11 (SIO11) are reset.

16.4.2 3-wire serial I/O mode

The 3-wire serial I/O mode is used for connecting peripheral ICs and display controllers with a clocked serial interface. In this mode, communication is executed by using three lines: the serial clock (SCK1n), serial output (SO1n), and serial input (SI1n) lines.

(1) Registers used

- Serial operation mode register 1n (CSIM1n)
- Serial clock selection register 1n (CSIC1n)
- Port mode register 0 (PM0) or port mode register 1 (PM1)
- Port register 0 (P0) or port register 1 (P1)

The basic procedure of setting an operation in the 3-wire serial I/O mode is as follows.
<1> Set the CSIC1n register (see Figures 16-5 and 16-6).
<2> Set bits 4 to 6 (DIR1n, SSE11 (serial interface CSI11 only), and TRMD1n) of the CSIM1n register (see Figures 16-3 and 16-4).
$<3>$ Set bit 7 (CSIE1n) of the CSIM1n register to $1 . \rightarrow$ Transmission/reception is enabled.
$<4>$ Write data to transmit buffer register 1n (SOTB1n). \rightarrow Data transmission/reception is started.
Read data from serial I/O shift register 1 n (SIO1n). \rightarrow Data reception is started.

Caution Take relationship with the other party of communication when setting the port mode register and port register.

Remark $\mathrm{n}=0: \quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

The relationship between the register settings and pins is shown below.

Table 16-2. Relationship Between Register Settings and Pins (1/2)
(a) Serial interface CSI10

CSIE10	TRMD10	PM11	P11	PM12	P12	PM10	P10	$\begin{aligned} & \text { CSI10 } \\ & \text { Operation } \end{aligned}$	Pin Function		
									SI10/R×D0/ P11	SO10/P12	$\begin{aligned} & \overline{\text { SCK10/ }} \\ & \text { T×D0/P10 } \end{aligned}$
0	0	$\times^{\text {Note } 1}$	$x^{\text {Note } 1}$	$\times^{\text {Note } 1}$	$\times^{\text {Nole } 1}$	$x^{\text {Nole } 1}$	$x^{\text {Note } 1}$	Stop	RxD0/P11	P12 ${ }^{\text {Nole } 2}$	$\begin{gathered} \text { TxD0/ } \\ \text { P10 }{ }^{\text {Note } 3} \end{gathered}$
1	0	1	\times	$x^{\text {Note } 1}$	$\times^{\text {Note } 1}$	1	\times	Slave reception ${ }^{\text {Note } 4}$	SI10	$\mathrm{P} 12^{\text {Nole } 2}$	$\begin{aligned} & \overline{\text { SCK10 }} \\ & \text { (input) }{ }^{\text {Nole } 4} \end{aligned}$
1	1	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	0	0	1	\times	Slave transmission ${ }^{\text {Note } 4}$	RxD0/P11	SO10	$\begin{aligned} & \overline{\text { SCK10 }} \\ & \text { (input) }{ }^{\text {Note } 4} \end{aligned}$
1	1	1	\times	0	0	1	\times	Slave transmission/ reception ${ }^{\text {Nole } 4}$	SI10	SO10	$\begin{aligned} & \overline{\text { SCK10 }} \\ & \text { (input) }{ }^{\text {Note } 4} \end{aligned}$
1	0	1	\times	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	0	1	Master reception	SI10	$\mathrm{P} 12^{\text {Nole } 2}$	$\begin{aligned} & \overline{\text { SCK10 }} \\ & \text { (output) } \end{aligned}$
1	1	$\times^{\text {Note }} 1$	$\times^{\text {Note } 1}$	0	0	0	1	Master transmission	RxD0/P11	SO10	$\begin{aligned} & \overline{\text { SCK10 }} \\ & \text { (output) } \end{aligned}$
1	1	1	\times	0	0	0	1	Master transmission/ reception	SI10	SO10	$\begin{aligned} & \overline{\text { SCK10 }} \\ & \text { (output) } \end{aligned}$

Notes 1. Can be set as port function.
2. To use P12/SO10 as general-purpose port, set the serial clock selection register 10 (CSIC10) in the default status $(00 \mathrm{H})$.
3. To use P10/SCK10/TxD0 as port pins, clear CKP10 to 0 .
4. To use the slave mode, set CKS102, CKS101, and CKS100 to 1, 1, 1.

Remark \times :
CSIE10:
TRMD10:
CKP10:
CKS102, CKS101, CKS100: Bits 2 to 0 of CSIC10
PM1×: Port mode register
P1×:
don't care
Bit 7 of serial operation mode register 10 (CSIM10)
Bit 6 of CSIM10
Bit 4 of serial clock selection register 10 (CSIC10)

Port output latch

Table 16-2. Relationship Between Register Settings and Pins (2/2)
(b) Serial interface CSI11

CSIE11	TRMD11	SSE11	PM03	P03	PM02	P02	PM04	P04	PM05	P05	CSI11		Pin F	unction	
											Operation	$\begin{gathered} \text { SI11/ } \\ \text { P03 } \end{gathered}$	$\begin{gathered} \text { SO11/ } \\ \text { P02 } \end{gathered}$	$\begin{array}{\|c} \hline \text { SCK11/ } \\ \text { P04 } \end{array}$	$\overline{\mathrm{SSI} 11 /}$ $\mathrm{T} 1001 / \mathrm{P} 05$
0	0	\times	$\times^{\text {Note } 1}$	$\times^{\text {Note }} 1$	Stop	P03	P02 ${ }^{\text {Nobe } 2}$	P04 ${ }^{\text {Vote } 3}$	$\begin{gathered} \hline \text { TIO01/ } \\ \text { P05 } \end{gathered}$						
1	0	0	1	\times	$x^{\text {Nole } 1}$	$\times^{\text {Note } 1}$	1	\times	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	Slave reception ${ }^{\text {Note } 4}$	SI11	$\mathrm{P} 02^{\text {Noue2 }}$	$\begin{aligned} & \hline \overline{\text { SCK11 }} \\ & \text { (input) } \end{aligned}$	$\begin{gathered} \text { TI001/ } \\ \text { P05 } \end{gathered}$
		1							1	\times				Note 4	$\overline{\text { SSI11 }}$
1	1	0	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	0	0	1	\times	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	Slave transmission ${ }^{\text {Note } 4}$	P03	SO11	$\begin{aligned} & \hline \overline{\text { SCK11 }} \\ & \text { (input) } \end{aligned}$	$\begin{gathered} \text { T1001/ } \\ \text { P05 } \end{gathered}$
		1							1	\times					$\overline{\text { SSI11 }}$
1	1	0	1	\times	0	0	1	\times	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	Slave transmission/	SI11	SO11	$\begin{aligned} & \hline \text { SCK11 } \\ & \text { (input) } \end{aligned}$	$\begin{gathered} \text { T1001/ } \\ \text { P05 } \end{gathered}$
		1							1	\times	reception ${ }^{\text {Note } 4}$			Note	SSI11
1	0	0	1	\times	$\times^{\text {Note }} 1$	$\times^{\text {Note } 1}$	0	1	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	Master reception	SI11	PO2 ${ }^{\text {Note2 }}$	SCK11 (output)	$\begin{gathered} \text { T1001/ } \\ \text { P05 } \\ \hline \end{gathered}$
1	1	0	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	0	0	0	1	$\times^{\text {Note } 1}$	$\times^{\text {Note }} 1$	Master transmission	P03	SO11	$\overline{\text { SCK11 }}$ (output)	$\begin{gathered} \text { TI001/ } \\ \text { P05 } \end{gathered}$
1	1	0	1	\times	0	0	0	1	$\times^{\text {Note }} 1$	$\times^{\text {Note }} 1$	Master transmission/ reception	SI11	SO11	$\overline{\text { SCK11 }}$ (output)	$\begin{gathered} \text { T1001/ } \\ \text { P05 } \end{gathered}$

Notes 1. Can be set as port function.
2. To use P02/SO11 as general-purpose port, set the serial clock selection register 11 (CSIC11) in the default status (00H).
3 To use P04/SCK11 as port pins, clear CKP11 to 0.
4 To use the slave mode, set CKS112, CKS111, and CKS110 to 1, 1, 1.

Remark \times :
CSIE11:
TRMD11:
CKP11:
CKS112, CKS111, CKS110: Bits 2 to 0 of CSIC11
PM0×: Port mode register
P0×: Port output latch
don't care
Bit 7 of serial operation mode register 11 (CSIM11)
Bit 6 of CSIM11
Bit 4 of serial clock selection register 11 (CSIC11)

(2) Communication operation

In the 3-wire serial I/O mode, data is transmitted or received in 8-bit units. Each bit of the data is transmitted or received in synchronization with the serial clock.
Data can be transmitted or received if bit 6 (TRMD1n) of serial operation mode register 1 n (CSIM1n) is 1 . Transmission/reception is started when a value is written to transmit buffer register 1 n (SOTB1n). In addition, data can be received when bit 6 (TRMD1n) of serial operation mode register 1 n (CSIM1n) is 0 .
Reception is started when data is read from serial I/O shift register 1 n (SIO1n).
However, communication is performed as follows if bit 5 (SSE11) of CSIM11 is 1 when serial interface CSI11 is in the slave mode.
<1> Low level input to the $\overline{\text { SSII1 }}$ pin
\rightarrow Transmission/reception is started when SOTB11 is written, or reception is started when SIO11 is read.
<2> High level input to the $\overline{\text { SSI11 }}$ pin
\rightarrow Transmission/reception or reception is held, therefore, even if SOTB11 is written or SIO11 is read, transmission/reception or reception will not be started.
<3> Data is written to SOTB11 or data is read from SIO11 while a high level is input to the SSI11 pin, then a low level is input to the $\overline{\text { SSI11 }}$ pin
\rightarrow Transmission/reception or reception is started.
<4> A high level is input to the $\overline{\text { SSI11 }}$ pin during transmission/reception or reception
\rightarrow Transmission/reception or reception is suspended.

After communication has been started, bit 0 (CSOT1n) of CSIM1n is set to 1 . When communication of 8 -bit data has been completed, a communication completion interrupt request flag (CSIIF1n) is set, and CSOT1n is cleared to 0 . Then the next communication is enabled.

Cautions 1. Do not access the control register and data register when CSOT1n $=1$ (during serial communication).
2. When using serial interface CSI11, wait for the duration of at least one clock before the clock operation is started to change the level of the $\overline{\mathrm{SSII1}} \mathrm{pin}$ in the slave mode; otherwise, malfunctioning may occur.

Remark $\mathrm{n}=0$: $\quad 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 16-9. Timing in 3-Wire Serial I/O Mode (1/2)
(a) Transmission/reception timing (Type 1: TRMD1n $=1$, DIR1n $=0$, CKP1n $=0$, DAP1n $=0$, SSE11 $=1^{\text {Note }}$)

Note The SSE11 flag and $\overline{\text { SSI11 }}$ pin are available only for serial interface CSI11, and are used in the slave mode.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 16-9. Timing in 3-Wire Serial I/O Mode (2/2)
(b) Transmission/reception timing (Type 2: TRMD1n $=1$, DIR1n $=0$, CKP1n $=0$, DAP1n $=1$, SSE11 $=1^{\text {Note }}$)

Note The SSE11 flag and SSI11 pin are available only for serial interface CSI11, and are used in the slave mode.

Remark $\mathrm{n}=0: \quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{~K} 0 / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 16-10. Timing of Clock/Data Phase
(a) Type 1: CKP1n = 0, DAP1n $=0$, DIR1n $=0$

(b) Type 2: CKP1n = 0, DAP1n = 1, DIR1n = 0

(c) Type 3: CKP1n = 1, DAP1n = 0, DIR1n = 0

(d) Type 4: CKP1n = 1, DAP1n = 1, DIR1n = 0

Remarks 1. $n=0: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
2. The above figure illustrates a communication operation where data is transmitted with the MSB first.

(3) Timing of output to SO1n pin (first bit)

When communication is started, the value of transmit buffer register 1 n (SOTB1n) is output from the SO1n pin. The output operation of the first bit at this time is described below.

Figure 16-11. Output Operation of First Bit (1/2)

(b) Type 3: CKP1n = 1, DAP1n = 0

The first bit is directly latched by the SOTB1n register to the output latch at the falling (or rising) edge of SCK1n, and output from the SO1n pin via an output selector. Then, the value of the SOTB1n register is transferred to the SIO1n register at the next rising (or falling) edge of $\overline{S C K 1 n}$, and shifted one bit. At the same time, the first bit of the receive data is stored in the SIO1n register via the SI1n pin.
The second and subsequent bits are latched by the SIO1n register to the output latch at the next falling (or rising) edge of $\overline{\text { SCK1n }}$, and the data is output from the SO1n pin.

Remark $\quad \mathrm{n}=0: \quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78KO/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 16-11. Output Operation of First Bit (2/2)
(c) Type 2: $\mathrm{CKP1} 1 \mathrm{n}=0$, DAP1n $=1$

(d) Type 4: CKP1n = 1, DAP1n = 1

The first bit is directly latched by the SOTB1n register at the falling edge of the write signal of the SOTB1n register or the read signal of the SIO1n register, and output from the SO1n pin via an output selector. Then, the value of the SOTB1n register is transferred to the SIO1n register at the next falling (or rising) edge of SCK1n, and shifted one bit. At the same time, the first bit of the receive data is stored in the SIO1n register via the SI1n pin.
The second and subsequent bits are latched by the SIO1n register to the output latch at the next rising (or falling) edge of $\overline{\text { SCK1n }}$, and the data is output from the SO1n pin.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

(4) Output value of SO1n pin (last bit)

After communication has been completed, the SO1n pin holds the output value of the last bit.

Figure 16-12. Output Value of SO1n Pin (Last Bit) (1/2)
(a) Type 1: CKP1n $=0$, DAP1n $=0$

(b) Type 3: CKP1n = 1, DAP1n = 0

Remark $\quad \mathrm{n}=0: \quad 78 \mathrm{K0} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{~K} 0 / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products

Figure 16-12. Output Value of SO1n Pin (Last Bit) (2/2)
(c) Type 2: $\mathrm{CKP1n}=0$, DAP1n $=1$

(d) Type 4: CKP1n = 1, DAP1n = 1

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{~K} 0 / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$ products
(5) SO1n output (see Figures 16-1 and 16-2)

The status of the SO1n output is as follows depending on the setting of CSIE1n, TRMD1n, DAP1n, and DIR1n.

Table 16-3. SO1n Output Status

CSIE1n	TRMD1n	DAP1n	DIR1n	SO1n Output ${ }^{\text {Note } 1}$
CSIE1n $=0{ }^{\text {Note } 2}$	TRMD1n $=0^{\text {Notes } 2,3}$	-	-	Low level output ${ }^{\text {Note } 2}$
	TRMD1n = 1	DAP1n $=0$	-	Low level output
		DAP1n = 1	DIR1n $=0$	Value of bit 7 of SOTB1n
			DIR1n $=1$	Value of bit 0 of SOTB1n
CSIE1n $=1$	TRMD1n $=0{ }^{\text {Note } 3}$	-	-	Low level output
	TRMD1n = 1	-	-	Transmission data ${ }^{\text {Note } 4}$

Notes 1. The actual output of the SO10/P12 or SO11/P02 pin is determined according to PM12 and P12 or PM02 and P02, as well as the SO1n output.
2. This is a status after reset.
3. To use the P12/SO10 or P02/SO11 pin as general-purpose port, set the serial clock selection register 1 n (CSIC1n) in the default status $(00 \mathrm{H})$.
4. After transmission has been completed, the SO1n pin holds the output value of the last bit of transmission data.

Caution If a value is written to CSIE1n, TRMD1n, DAP1n, and DIR1n, the output value of SO1n changes.

Remark $\mathrm{n}=0: \quad 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB , and $78 \mathrm{KO} / \mathrm{KB} 2,78 \mathrm{KO} / \mathrm{KC} 2$, 78K0/KD2 products
$\mathrm{n}=0,1: 78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is at least 48 KB , and $78 \mathrm{KO} / \mathrm{KF} 2$ products

CHAPTER 17 SERIAL INTERFACE CSIAO

	78K0/KB2	$78 \mathrm{K0} / \mathrm{KC} 2$	$78 \mathrm{KO} / \mathrm{KD} 2$	$78 \mathrm{K0} / \mathrm{KE} 2$	$78 \mathrm{K0} / \mathrm{KF} 2$
Serial interface CSIA0	-			$\sqrt{ }$	

Remark $\sqrt{ }$: Mounted, -: Not mounted

17.1 Functions of Serial Interface CSIAO

Serial interface CSIAO has the following three modes.

(1) Operation stop mode

This mode is used when serial communication is not performed and can enable a reduction in the power consumption.
For details, see 17.4.1 Operation stop mode.
(2) 3-wire serial I/O mode (MSB/LSB-first selectable)

This mode is to communicate data successively in 8 -bit units, by using three lines: serial clock ($\overline{\mathrm{SCKAO}}$) and serial data (SIAO and SOAO) lines.
The processing time of data communication can be shortened in the 3-wire serial I/O mode because transmission and reception can be simultaneously executed.
In addition, whether 8-bit data is communicated MSB or LSB first can be specified, so this interface can be connected to any device.
For details, see 17.4.2 3-wire serial I/O mode.
(3) 3-wire serial I/O mode with automatic transmit/receive function (MSB/LSB-first selectable)

This mode is used to communicate data continuously in 8 -bit units using three lines: a serial clock line ($\overline{\text { SCKAO }}$) and two serial data lines (SIAO and SOAO).
The processing time of data communication can be shortened in the 3 -wire serial I/O mode with automatic transmit/receive function because transmission and reception can be simultaneously executed.
In addition, whether 8 -bit data is communicated MSB or LSB first can be specified, so this interface can be connected to any device.
Data can be communicated to/from a display driver etc. without using software since a 32-byte transfer buffer RAM is incorporated. Also, the incorporation of handshake pins (STB0, BUSYO) used in the master mode has made connection to peripheral ICs easy.
For details, see 17.4.3 3 -wire serial I/O mode with automatic transmit/receive function.

The features of serial interface CSIAO are as follows.

- Master mode/slave mode selectable
- Communication data length: 8 bits
- MSB/LSB-first selectable for communication data
- Automatic transmit/receive function:

Number of transfer bytes can be specified between 1 and 32
Transfer interval can be specified (0 to 63 clocks)
Single communication/repeat communication selectable
Internal 32-byte buffer RAM

- On-chip dedicated baud rate generator (6/8/16/32 divisions)
- 3-wire SOAO: Serial data output

SIAO: Serial data input
SCKAO: Serial clock I/O

- Handshake function incorporated STBO: Strobe output BUSYO: Busy input
- Detection of bit shift error due to BUSYO signal
- Transmission/reception completion interrupt: INTACSI

17.2 Configuration of Serial Interface CSIAO

Serial interface CSIAO consists of the following hardware.

Table 17-1. Configuration of Serial Interface CSIAO

Item	Configuration
Controller	Serial transfer controller
Registers	Serial I/O shift register 0 (SIOA0)
Control registers	Serial operation mode specification register 0 (CSIMAO) Serial status register 0 (CSIS0) Serial trigger register 0 (CSIT0) Divisor selection register 0 (BRGCA0) Automatic data transfer address point specification register 0 (ADTP0) Automatic data transfer interval specification register 0 (ADTIO) Automatic data transfer address count register 0 (ADTC0) Port mode register 14 (PM14) Port register 14 (P14)

Figure 17-1. Block Diagram of Serial Interface CSIAO

(1) Serial I/O shift register 0 (SIOAO)

This is an 8 -bit register used to store transmit/receive data in 1-byte transfer mode (bit 6 (ATEO) of serial operation mode specification register $0(C S I M A 0)=0)$. Writing transmit data to SIOAO starts the communication. In addition, after a communication completion interrupt request (INTACSI) is output (bit 0 (TSFO) of serial status register $0($ CSISO $)=0)$, data can be received by reading data from SIOAO.
This register can be written or read by an 8 -bit memory manipulation instruction. However, writing to SIOAO is prohibited when bit 0 (TSFO) of serial status register $0($ CSISO $)=1$.
Reset signal generation clears this register to 00 H .

Cautions 1. A communication operation is started by writing to SIOAO. Consequently, when transmission is disabled (bit 3 (TXEAO) of CSIMAO = 0), write dummy data to the SIOAO register to start the communication operation, and then perform a receive operation.
2. Do not write data to SIOAO while the automatic transmit/receive function is operating.

17.3 Registers Controlling Serial Interface CSIAO

Serial interface CSIAO is controlled by the following nine registers.

- Serial operation mode specification register 0 (CSIMAO)
- Serial status register 0 (CSISO)
- Serial trigger register 0 (CSITO)
- Divisor selection register 0 (BRGCAO)
- Automatic data transfer address point specification register 0 (ADTPO)
- Automatic data transfer interval specification register 0 (ADTIO)
- Automatic data transfer address count register 0 (ADTCO)
- Port mode register 14 (PM14)
- Port register 14 (P14)

(1) Serial operation mode specification register 0 (CSIMA0)

This is an 8-bit register used to control the serial communication operation.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 17-2. Format of Serial Operation Mode Specification Register 0 (CSIMA0)
Address: FF90H After reset: 00 H R/W

| | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | $<7>$ | 6 | 5 | 4 | $<3>$ | $<2>$ | 1 | 0 |
| CSIMA0 | CSIAE0 | ATE0 | ATM0 | MASTERO | TXEA0 | RXEA0 | DIR0 | 0 |

CSIAE0	Control of CSIA0 operation enable/disable
0	CSIAO operation disabled (SOA0: Low level, $\overline{\text { SCKA0 }}$: High level) and asynchronously resets the internal circuit ${ }^{\text {Note }} 1$.
1	CSIA0 operation enabled

ATE0	Control of automatic communication operation enable/disable
0	1-byte communication mode
1	Automatic communication mode

ATM0	Automatic communication mode specification
0	Single transfer mode (stops at the address specified by the ADTP0 register)
1	Repeat transfer mode (after transfer is complete, clear the ADTCO register to OOH to resume transfer)

MASTERO	CSIA0 master/slave mode specification
0	Slave mode (synchronous with $\overline{\text { SCKA0 }}$ input clock) ${ }^{\text {Note } 2}$
1	Master mode (synchronous with internal clock)

TXEAO	Control of transmit operation enable/disable
0	Transmit operation disabled (SOAO: Low level)
1	Transmit operation enabled

RXEA0	Control of receive operation enable/disable
0	Receive operation disabled
1	Receive operation enabled

DIR0		First bit specification
0	MSB	
1	LSB	

Notes 1. Automatic data transfer address count register 0 (ADTCO), serial trigger register 0 (CSITO), serial I/O shift register 0 (SIOAO), and bit 0 (TSF0) of serial status register 0 (CSISO) are reset.
2. Do not start communication with the external clock from the $\overline{\text { SCKAO }}$ pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Cautions 1. When CSIAE $0=0$, the buffer RAM cannot be accessed.
2. When CSIAEO is changed from 1 to 0 , the registers and bits mentioned in Note above are asynchronously initialized. To set CSIAEO = 1 again, be sure to re-set the initialized registers.
3. When CSIAEO is re-set to 1 after CSIAEO is changed from 1 to 0 , it is not guaranteed that the value of the buffer RAM will be retained.

(2) Serial status register 0 (CSISO)

This is an 8 -bit register used to select the base clock, control the communication operation, and indicate the status of serial interface CSIAO.

This register can be set by a 1-bit or 8 -bit memory manipulation instruction. However, rewriting CSISO is prohibited when bit 0 (TSFO) is 1 .
Reset signal generation clears this register to 00 H .

Figure 17-3. Format of Serial Status Register 0 (CSISO) (1/2)

Address: FF91H After reset: $00 \mathrm{H} \quad \mathrm{R} / \mathrm{W}^{\text {Note } 1}$

Symbol	7	6	5	4	3	2	1	0
CSISO	0	CKS00 ${ }^{\text {Note } 2}$	STBE0	BUSYE0	BUSYLVO	ERRE0	ERRFO	TSF0

CKS00	Base clock (fw) selection ${ }^{\text {Note } 3}$				
		fPRs $=2 \mathrm{MHz}$	fPRs $=5 \mathrm{MHz}$	fPRs $=10 \mathrm{MHz}$	fPRs $=20 \mathrm{MHz}$
0	fPRS $^{\text {Note } 4}$	2 MHz	5 MHz	10 MHz	$20 \mathrm{MHz}^{\mathrm{Note} 5}$
1	fPRs $/ 2$	1 MHz	2.5 MHz	5 MHz	10 MHz

STBE0 $^{\text {Notes } 6,7}$	
0	Strobe output disabled
1	Strobe output enabled

Notes 1. Bits 0 and 1 are read-only.
2. Make sure that bit 7 (CSIAEO) of the Serial Operation Mode Specification Register 0 (CSIMAO) $=0$ when rewriting the CKSOO bit.
3. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD $)$	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA $)$
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	fPRS $\leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ $($ Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fXH}(\mathrm{XSEL}=1$).)
4. If the peripheral hardware clock (fPRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, the setting of $\mathrm{CKSOO}=0$ (base clock: fprs) is prohibited.
5. This is settable only if $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$.
6. STBEO is valid only in master mode.
7. When STBEO is set to 1 , two transfer clocks are consumed between byte transfers regardless of the setting of automatic data transfer interval specification register 0 (ADTIO). That is, 10 transfer clocks are used for 1-byte transfer if ADTIO $=00 \mathrm{H}$ is set.

Caution Be sure to clear bit 7 to 0 .

Remark fpRs: Peripheral hardware clock frequency

Figure 17-3. Format of Serial Status Register 0 (CSISO) (2/2)

BUSYE0	Busy signal detection enable/disable
0	Busy signal detection disabled (input via BUSY0 pin is ignored)
1	Busy signal detection enabled and communication wait by busy signal is executed

BUSYLV0 ${ }^{\text {Note } 1}$	
0	Low level
1	High level

ERRE0 $^{\text {Note } 2}$		Bit error detection enable/disable
0	Error detection disabled	
1	Error detection enabled	

ERRF0	Bit error detection flag
0	- Bit 7 (CSIAEO) of serial operation mode specification register 0 (CSIMAO) $=0$ - At reset input - When communication is started by setting bit 0 (ATSTAO) of serial trigger register 0 (CSIT0) to 1 or writing to SIOA0.
1	Bit error detected (when ERRE0 $=1$, the level specified by BUSYLVO during the data bit transfer period is detected via BUSY0 pin input).

TSF0	Transfer status detection flag
0	- Bit 7 (CSIAE0) of serial operation mode specification register 0 (CSIMA0) $=0$ - At reset input - At the end of the specified transfer - When transfer is stopped by setting bit 1 (ATSTP0) of serial trigger register 0 (CSIT0) to 1
1	From the transfer start to the end of the specified transfer

Notes 1. In bit error detection by busy input, the active level specified by BUSYLVO is detected.
2. The ERREO setting is valid even when BUSYEO $=0$.

Caution During transfer (TSF0 = 1), rewriting serial operation mode specification register 0 (CSIMA0), serial status register 0 (CSISO), divisor selection register 0 (BRGCAO), automatic data transfer address point specification register 0 (ADTPO), automatic data transfer interval specification register 0 (ADTIO), and serial I/O shift register 0 (SIOAO) are prohibited. However, these registers can be read and re-written to the same value. In addition, the buffer RAM can be rewritten during transfer.
(3) Serial trigger register 0 (CSITO)

This is an 8-bit register used to control execution/stop of automatic data transfer between buffer RAM and serial I/O shift register 0 (SIOAO).
This register can be set by a 1-bit or 8-bit memory manipulation instruction. This register can be set when bit 6 (ATE0) of serial operation mode specification register 0 (CSIMAO) is 1 .
Reset signal generation clears this register to 00 H .

Figure 17-4. Format of Serial Trigger Register 0 (CSIT0)

Address: FF92H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	<1>	<0>
CSITO	0	0	0	0	0	0	ATSTP0	ATSTA0

ATSTP0	
0	
1	Automatic data transfer stop
	-

ATSTA0	
0	Automatic data transfer start
1	Automatic data transfer started

Cautions 1. Even if ATSTPO or ATSTAO is set to 1, automatic transfer cannot be started/stopped until 1-byte transfer is complete.
2. ATSTPO and ATSTAO change to 0 automatically after the interrupt signal INTACSI is generated.
3. After automatic data transfer is stopped, the data address when the transfer stopped is stored in automatic data transfer address count register 0 (ADTCO). However, since no function to restart automatic data transfer is incorporated, when transfer is stopped by setting ATSTPO = 1, start automatic data transfer by setting ATSTAO to 1 after re-setting the registers.

(4) Divisor selection register 0 (BRGCA0)

This is an 8-bit register used to select the base clock divisor of CSIAO.
This register can be set by an 8-bit memory manipulation instruction. However, when bit 0 (TSFO) of serial status register 0 (CSISO) is 1 , rewriting BRGCA0 is prohibited.
Reset signal generation sets this register to 03 H .

Figure 17-5. Format of Divisor Selection Register 0 (BRGCA0)

Address: FF93H After reset: 03H R/W

Symbol	7	6	5	4	3	2	1	0
	7	0	0	0	0	0	BRGCA01	BRGCA00
	0	0						

BRGCA01	BRGCA00	Selection of base clock (fw) divisor of CSIA0 ${ }^{\text {Note }}$						
			$\mathrm{fw}=1 \mathrm{MHz}$	$\mathrm{fw}=2 \mathrm{MHz}$	$\mathrm{fw}=2.5 \mathrm{MHz}$	$\mathrm{fw}=5 \mathrm{MHz}$	$\mathrm{fw}=10 \mathrm{MHz}$	$\mathrm{fw}=20 \mathrm{MHz}$
0	0	fw/6	166.67 kHz	333.3 kHz	416.67 kHz	833.33 kHz	1.67 MHz	Setting prohibited
0	1	$\mathrm{fw} / 2^{3}$	125 kHz	250 kHz	312.5 kHz	625 kHz	1.25 MHz	Setting prohibited
1	0	$\mathrm{fw} / 2^{4}$	62.5 kHz	125 kHz	156.25 kHz	312.5 kHz	625 kHz	1.25 MHz
1	1	$\mathrm{fw} / 2^{5}$	31.25 kHz	62.5 kHz	78.125 kHz	156.25 kHz	312.5 kHz	625 kHz

Note Set the transfer clock so as to satisfy the following conditions.

- When $4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$: transfer clock $\leq 1.67 \mathrm{MHz}$
- When 2.7 V \leq VDD $<4.0 \mathrm{~V}$: transfer clock $\leq 833.33 \mathrm{kHz}$
- When $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$: transfer clock $\leq 555.56 \mathrm{kHz}$ (Standard products and (A) grade products only)

Remark fw: Base clock frequency selected by CKS00 bit of CSIS0 register (fprs or fprs/2)
fPRs: Peripheral hardware clock frequency
(5) Automatic data transfer address point specification register 0 (ADTPO)

This is an 8-bit register used to specify the buffer RAM address that ends transfer during automatic data transfer (bit 6 (ATE0) of serial operation mode specification register $0=1$).
This register can be set by an 8 -bit memory manipulation instruction. However, during transfer (TSF0 = 1), rewriting ADTPO is prohibited.
In the $78 \mathrm{KO} / \mathrm{KF} 2,00 \mathrm{H}$ to 1 FH can be specified because 32 bytes of buffer RAM are incorporated.

Example When ADTPO is set to 07 H
8 bytes of FAOOH to FA 07 H are transferred.

In repeat transfer mode (bit 5 (ATMO) of CSIMAO = 1), transfer is performed repeatedly up to the address specified with ADTPO.

Example When ADTPO is set to 07 H (repeat transfer mode)
Transfer is repeated as FA00H to FA07H, FA00H to FA07H,

Figure 17-6. Format of Automatic Data Transfer Address Point Specification Register 0 (ADTPO)

Address: FF94H After reset: 00 H R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 1 | 0 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADTP0 | 0 | 0 | 0 | ADTP04 | ADTP03 | ADTP02 | ADTP01 | ADTP00 |
| | | | | | | | | |

Caution Be sure to clear bits 7 to 5 to " 0 ".

The relationship between transfer end buffer RAM address values and ADTPO setting values is shown below.

Table 17-2. Relationship Between Transfer End Buffer RAM Address Values and ADTP0 Setting Values

Transfer End Buffer RAM Address Value	ADTPO Setting Value
FAxxH	xxH

Remark xx : 00 to 1 F
(6) Automatic data transfer interval specification register 0 (ADTIO)

This is an 8-bit register used to specify the interval time for byte data transfer during automatic data transfer (bit 6 (ATEO) of serial operation mode specification register $0(C S I M A O)=1)$.
Set this register when in master mode (bit 4 (MASTERO) of CSIMAO =1) (setting is unnecessary in slave mode). Setting in 1-byte communication mode (bit 6 (ATEO) of CSIMAO $=0$) is also valid. When the interval time specified by ADTIO after the end of 1 -byte communication has elapsed, an interrupt request signal (INTACSI) is output. The number of clocks for the interval can be set to between 0 and 63 clocks.
This register can be set by an 8 -bit memory manipulation instruction. However, when bit 0 (TSFO) of serial status register 0 (CSISO) is 1 , rewriting ADTIO is prohibited.

Figure 17-7. Format of Automatic Data Transfer Interval Specification Register 0 (ADTIO)

Address: FF95H After reset: 00 H R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADTIO | 0 | 0 | ADTI05 | ADTIO4 | ADTI03 | ADTI02 | ADTIO1 | ADTIO0 |

Caution Because the setting of bit 5 (STBEO) and bit 4 (BUSYEO) of serial status register 0 (CSISO) takes priority over the ADTIO setting, the interval time based on the setting of STBEO and BUSYEO is generated even when ADTIO is cleared to 00 H .

Example Interval time when ADTIO $=00 \mathrm{H}$ and busy signal is not generated $<1>$ When STBEO $=1$, BUSYE $=0$: Interval time of two serial clocks is generated <2> When STBE $=0$, BUSYEO = 1 : Interval time of one serial clock is generated $<3>$ When STBE0 = 1, BUSYE0 = 1: Interval time of two serial clocks is generated

Therefore, clearing STBEO and BUSYE0 to 0 is required to perform no-wait transfer.

The specified interval time is the serial clock (specified by divisor selection register 0 (BRGCAO)) multiplied by an integer value.

Example When ADTIO $=03 \mathrm{H}$

(7) Automatic data transfer address count register 0 (ADTC0)

This is a register used to indicate buffer RAM addresses during automatic transfer. When automatic transfer is stopped, the data position when transfer stopped can be ascertained by reading ADTC0 register value.
This register can be read by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H . However, reading from ADTC0 is prohibited when bit 0 (TSFO) of serial status register $0(C S I S O)=1$.

Figure 17-8. Format of Automatic Data Transfer Address Count Register 0 (ADTC0)

Address: FF97H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0	
	ADTC0	0	0	0	ADTC04	ADTC03	ADTC02	ADTC01	ADTP00

(8) Port mode register 14 (PM14)

This register sets port 14 input/output in 1-bit units.
When using P142/SCKA0 pin as the clock output of the serial interface, clear PM142 to 0 and set the output latch of P142 to 1 .

When using P144/SOA0 and P145/STB0 pins as the data output or strobe output of the serial interface, clear PM144, PM145, and the output latches of P144 and P145 to 0.
When using P141/BUSY0, P142/SCKA0, and P143/SIA0 pins as the busy input, clock input, or data input of the serial interface, set PM141, PM142, and PM143 to 1. At this time, the output latches of P141, P142, and P143 may be 0 or 1 .

PM14 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Figure 17-9. Format of Port Mode Register 14 (PM14)

PM14n	P14n pin I/O mode selection ($\mathrm{n}=0$ to 5)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

17.4 Operation of Serial Interface CSIAO

Serial interface CSIAO has the following three modes.

- Operation stop mode
- 3-wire serial I/O mode
- 3-wire serial I/O mode with automatic transmit/receive function

17.4.1 Operation stop mode

Serial communication is not executed in this mode. Therefore, the power consumption can be reduced. In addition, the P142/SCKA0, P143/SIA0, and P144/SOA0 pins can be used as ordinary I/O port pins in this mode.

(1) Register used

The operation stop mode is set by serial operation mode specification register 0 (CSIMAO). To set the operation stop mode, clear bit 7 (CSIAEO) of CSIMAO to 0 .
(a) Serial operation mode specification register 0 (CSIMAO)

This is an 8-bit register used to control the serial communication operation.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

```
Address: FF90H After reset: 00H R/W
```

CSIMAO

| $<7>$ | 6 | 5 | 4 | $<3>$ | $<2>$ | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSIAE0 | ATE0 | ATM0 | MASTER0 | TXEA0 | RXEA0 | DIR0 | 0 |

CSIAEO	Control of CSIA0 operation enable/disable
0	CSIAO operation disabled (SOA0: Low level, $\overline{\text { SCKA0: High level) and }}$ asynchronously resets the internal circuit

17.4.2 3-wire serial I/O mode

The one-byte data transmission/reception is executed in the mode in which bit 6 (ATEO) of serial operation mode specification register 0 (CSIMAO) is cleared to 0 .

The 3-wire serial I/O mode is useful for connecting peripheral ICs and display controllers with a clocked serial interface.
In this mode, communication is executed by using three lines: serial clock (SCKAO), serial output (SOAO), and serial input (SIAO) lines.
(1) Registers used

- Serial operation mode specification register 0 (CSIMAO) ${ }^{\text {Note } 1}$
- Serial status register 0 (CSISO) ${ }^{\text {Note } 2}$
- Divisor selection register 0 (BRGCAO)
- Port mode register 14 (PM14)
- Port register 14 (P14)

Notes 1. Bits 7, 6, and 4 to 1 (CSIAEO, ATEO, MASTERO, TXEAO, RXEAO, and DIRO) are used. Setting of bit 5 (ATMO) is invalid.
2. Only bit 0 (TSFO) and bit 6 (CKSOO) are used.

The basic procedure of setting an operation in the 3-wire serial I/O mode is as follows.
<1> Set bit 6 (CKS00) of the CSIS0 register (see Figure 17-3) ${ }^{\text {Note } 1 .}$.
<2> Set the BRGCA0 register (see Figure 17-5) Note 1.
$<3>$ Set bits 4 to 1 (MASTERO, TXEAO, RXEAO, and DIRO) of the CSIMAO register (see Figure 17-2).
$<4>$ Set bit 7 (CSIAEO) of the CSIMAO register to 1 and clear bit 6 (ATE0) to 0.
$<5>$ Write data to serial I/O shift register 0 (SIOAO). \rightarrow Data transmission/reception is started ${ }^{\text {Note } 2}$.

Notes 1. This register does not have to be set when the slave mode is specified (MASTERO $=0$).
2. Write dummy data to SIOAO only for reception.

Caution Take relationship with the other party of communication when setting the port mode register and port register.

The relationship between the register settings and pins is shown below.

Table 17-3. Relationship Between Register Settings and Pins

CSIAEO	ATEO	MASTERO	PM143	P143	PM144	P144	PM142	P142	Serial I/O Shift Register 0 Operation	Serial Clock Counter Operation Control	Pin Function		
											$\begin{aligned} & \text { SIAO/ } \\ & \text { P143 } \end{aligned}$	$\begin{gathered} \text { SOAO/ } \\ \text { P144 } \end{gathered}$	$\begin{gathered} \overline{\text { SCKAO/ }} \\ \text { P142 } \end{gathered}$
0	\times	\times	$x^{\text {Note } 1}$	Operation stopped	Clear	P143	P144	P142					
1	0	0	$1^{\text {Note } 2}$	$x^{\text {Note } 2}$	$0^{\text {Note } 3}$	$0^{\text {Note } 3}$	1	\times	Operation enabled	Count operation	SIA $0^{\text {Nole }}$ 2	SOAO ${ }^{\text {Note } 3}$	$\begin{aligned} & \overline{\text { SCKAO }} \\ & \text { (input) } \end{aligned}$
		1					0	1					$\begin{aligned} & \text { SCKAO } \\ & \text { (output) } \end{aligned}$

Notes 1. Can be set as port function.
2. Can be used as P143 when only transmission is performed. Clear bit 2 (RXEAO) of CSIMAO to 0 .
3. Can be used as P144 when only reception is performed. Clear bit 3 (TXEAO) of CSIMAO to 0 .

Remark	$\times:$	don't care
	CSIAE0:	Bit 7 of serial operation mode specification register 0 (CSIMAO)
	ATE0:	Bit 6 of CSIMAO
	MASTERO:	Bit 4 of CSIMAO
	PM14×:	Port mode register
P14×:	Port output latch	

(2) 1-byte transmission/reception communication operation
(a) 1-byte transmission/reception

When bit 7 (CSIAEO) and bit 6 (ATEO) of serial operation mode specification register 0 (CSIMAO) $=1,0$, respectively, if communication data is written to serial I/O shift register 0 (SIOAO), the data is output via the SOAO pin in synchronization with the $\overline{\text { SCKAO }}$ falling edge, and stored in the SIOAO register in synchronization with the rising edge 1 clock later.
Data transmission and data reception can be performed simultaneously.
If only reception is to be performed, communication can only be started by writing a dummy value to the SIOAO register.
When communication of 1 byte is complete, an interrupt request signal (INTACSI) is generated.
In 1-byte transmission/reception, the setting of bit 5 (ATMO) of CSIMAO is invalid.
Be sure to read data after confirming that bit 0 (TSFO) of serial status register $0(C S I S O)=0$.

Figure 17-10. 3-Wire Serial I/O Mode Timing

Caution The SOAO pin becomes low level by an SIOAO write.
(b) Data format

In the data format, data is changed in synchronization with the SCKAO falling edge as shown below.
The data length is fixed to 8 bits and the data communication direction can be switched by the specification of bit 1 (DIRO) of serial operation mode specification register 0 (CSIMAO).

Figure 17-11. Format of Transmit/Receive Data
(a) MSB-first (DIRO bit $=0$)

(b) LSB-first (DIRO bit = 1)

(c) Switching MSB/LSB as start bit

Figure 17-12 shows the configuration of serial I/O shift register 0 (SIOAO) and the internal bus. As shown in the figure, MSB/LSB can be read/written in reverse form.
Switching MSB/LSB as the start bit can be specified using bit 1 (DIRO) of serial operation mode specification register 0 (CSIMAO).

Figure 17-12. Transfer Bit Order Switching Circuit

Start bit switching is realized by switching the bit order for data written to SIOAO. The SIOAO shift order remains unchanged.
Thus, switching between MSB-first and LSB-first must be performed before writing data to the shift register.
(d) Communication start

Serial communication is started by setting communication data to serial I/O shift register 0 (SIOAO) when the following two conditions are satisfied.

- Serial interface CSIAO operation control bit (CSIAEO) $=1$
- Serial communication is not in progress

Caution If CSIAEO is set to 1 after data is written to SIOAO, communication does not start.

Upon termination of 8-bit communication, serial communication automatically stops and the interrupt request flag (ACSIIF) is set.

17.4.3 3-wire serial I/O mode with automatic transmit/receive function

Up to 32 bytes of data can be transmitted/received without using software in the mode in which bit 6 (ATE0) of serial operation mode specification register 0 (CSIMAO) is set to 1 . After communication is started, only data of the set number of bytes stored in RAM in advance can be transmitted, and only data of the set number of bytes can be received and stored in RAM.

In addition, to transmit/receive data continuously when used as the master, handshake signals (STBO and BUSYO) generated by hardware are supported. Therefore, connection to peripheral ICs such as OSD (On Screen Display) ICs and LCD controller/drivers can be easily realized.

(1) Registers used

- Serial operation mode specification register 0 (CSIMAO)
- Serial status register 0 (CSISO)
- Serial trigger register 0 (CSITO)
- Divisor selection register 0 (BRGCAO)
- Automatic data transfer address point specification register 0 (ADTPO)
- Automatic data transfer interval specification register 0 (ADTIO)
- Port mode register 14 (PM14)
- Port register 14 (P14)

The relationship between the register settings and pins is shown below.

Caution A wait state may be generated when data is written to the buffer RAM. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

Table 17－4．Relationship Between Register Settings and Pins

CSIAEO	ATEO	MASTERO	STBEO	BUSYE0	ERREO	PM143	P143	PM144	P144	PM142	P142	PM145	P145	PM141	P141	Serial I／O Shift Register 0 Operation	Serial Cou Oper
0	\times	\times	\times	$\times^{\text {Note } 1}$	Operation stopped	Clear											
1	1	0	$x^{\text {Note } 1}$	$\times^{\text {Note } 1}$	0／1	1	\times	0	0	1	\times	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	$x^{\text {Note } 1}$	$\times^{\text {Note } 1}$	Operation enabled	Count operatio
		1	0	0	0／1					0	1	$\times^{\text {Note } 1}$	$\times^{\text {Note } 1}$	$x^{\text {Note } 1}$	$\times^{\text {Note } 1}$		
			1	1	0／1							0	0	1	\times		

Notes 1．Can be set as port function．
2．Can be used as P143 when only transmission is performed．Clear bit 2 （RXEAO）of CSIMAO to 0 ．
3．Can be used as P144 when only reception is performed．Clear bit 3 （TXEAO）of CSIMAO to 0 ．

Remark	$\times:$	don＇t care
	CSIAEO：	Bit 7 of serial operation mode specification register 0 （CSIMAO）
ATE0：	Bit 6 of CSIMAO	
MASTERO：	Bit 4 of CSIMAO	
STBEO：	Bit 5 of serial status register 0 （CSISO）	
BUSYE0：	Bit 4 of CSIS0	
ERRE0：	Bit 2 of CSIS0	
PM14×：	Port mode register	
P14×：	Port output latch	

(2) Automatic transmit/receive data setting

Here is an example of the procedure for successively transmitting/receiving data as the master.
<1> Enable CSIAO to operate by setting bit 7 (CSIAEO) of serial operation mode specification register 0 (CSIMAO) to 1 (the buffer RAM can now be accessed).
<2> Select a serial clock by using serial status register 0 (CSISO).
$<3>$ Set the division ratio of the serial clock by using division value selection register 0 (BRGCA0), and specify a communication rate
<4> Sequentially write data to be transmitted to the buffer RAM, starting from the least significant address FA00H, up to FA1FH. Data is transmitted from the lowest address, continuing on to higher addresses.
$<5>$ Set "number of data items to be transmitted - 1" to automatic data transfer address point specification register 0 (ADTPO).
<6> Set bits 6 (ATEO) and 4 (MASTERO) of CSIMAO to select a master operation in the automatic communication mode.
$<7>$ Set bits 3 (TXEAO) and 2 (RXEAO) of CSIMAO to 1 to enable transmission/reception.
<8> Set the transmission interval of data to the automatic data transfer interval specification register (ADTIO).
$<9>$ Automatic transmit/receive processing is started when bit 0 (ATSTA0) of serial trigger register 0 (CSITO) is set to 1 .

Caution Take the relationship with the other communicating party into consideration when setting the port mode register and port register.

Operations <1> to <9> execute the following operation.

- After the buffer RAM data indicated by automatic data transfer address count register 0 (ADTCO) is transferred to SIOAO, transmission is carried out (start of automatic transmission/reception).
- The received data is written to the buffer RAM address indicated by ADTCO.
- ADTC0 is incremented and the next data transmission/reception is carried out. Data transmission/reception continues until the ADTC0 incremental output matches the set value of automatic data transfer address point specification register 0 (ADTPO) (end of automatic transmission/reception). However, if bit 5 (ATMO) of CSIMAO is set to 1 (repeat mode), ADTCO is cleared after a match between ADTPO and ADTC0, and then repeated transmission/reception is started.
- When automatic transmission/reception is terminated, an interrupt request (INTACSI) is generated and bit 0 (TSFO) of CSISO is cleared
- To continue transmitting the next data, set the new data to the buffer RAM, and set "number of data to be transmitted - 1 " to ADTPO. After setting the number of data, set ATSTA0 to 1 .
(3) Automatic transmission/reception communication operation
(a) Automatic transmission/reception mode

Automatic transmission/reception can be performed using buffer RAM.
The data stored in the buffer RAM is output from the SOAO pin via the SIOAO register in synchronization with the $\overline{\text { SCKAO }}$ falling edge by performing (2) Automatic transmit/receive data setting.
The receive data is stored in the buffer RAM via the SIOAO register in synchronization with the $\overline{\text { SCKAO }}$ rising edge.
Data transfer ends if bit 0 (TSFO) of serial status register 0 (CSISO) is set to 1 when any of the following conditions is met.

- Communication stop: Reset by clearing bit 7 (CSIAEO) of the CSIMAO register to 0
- Communication suspension: Transfer of 1 byte is complete by setting bit 1 (ATSTPO) of the CSIT0 register to 1
- Bit shift error: Transfer of 1 byte is complete when bit 1 (ERRFO) of the CSIS0 register becomes 1 while bit 2 (ERREO) $=1$
- Transfer of the range specified by the ADTPO register is complete

At this time, an interrupt request signal (INTACSI) is generated except when the CSIAEO bit $=0$.
If a transfer is terminated in the middle, transfer starting from the remaining data is not possible. Read automatic data transfer address count register 0 (ADTC0) to confirm how much of the data has already been transferred and re-execute transfer by performing (2) Automatic transmit/receive data setting.
In addition, when busy control and strobe control are not performed, the BUSY0/BUZ/INTP7/P141 and STBO/P145 pins can be used as ordinary I/O port pins.
Figure 17-13 shows the example of the operation timing in automatic transmission/reception mode and Figure 17-14 shows the operation flowchart. Figures 17-15 and 17-16 show the operation of internal buffer RAM when 6 bytes of data are transmitted/received.

Figure 17-13. Example of Automatic Transmission/Reception Mode Operation Timings

Cautions 1. Because, in the automatic transmission/reception mode, the automatic transmit/receive function writes/reads data to/from the internal buffer RAM after 1-byte transmission/reception, an interval is inserted until the next transmission/reception. As the buffer RAM write/read is performed at the same time as CPU processing, the interval is dependent upon the value of automatic data transfer interval specification register 0 (ADTIO) and the set values of bits 5 and 4 (STBEO, BUSYEO) of serial status register 0 (CSIS0) (see (5) Automatic transmit/receive interval time).
2. If an access to the buffer RAM by the CPU conflicts with an access to the buffer RAM by serial interface CSIAO during the interval period, the interval time specified by automatic data transfer interval specification register 0 (ADTIO) may be extended.

Remark ACSIIF: Interrupt request flag
TSFO: Bit 0 of serial status register 0 (CSISO)

Figure 17-14. Automatic Transmission/Reception Mode Flowchart

CSIAEO: Bit 7 of serial operation mode specification register 0 (CSIMAO)
ADTPO: Automatic data transfer address point specification register 0
ADTIO: Automatic data transfer interval specification register 0
ATSTA0: Bit 0 of serial trigger register 0 (CSITO)
SIOAO: Serial I/O shift register 0
ADTC0: Automatic data transfer address count register 0
TSFO: Bit 0 of serial status register 0 (CSISO)

Note A wait state may be generated when data is written to the buffer RAM. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

In 6-byte transmission/reception (ATMO = 0, RXEAO = 1, TXEAO = 1, ATEO = 1) in automatic transmission/reception mode, internal buffer RAM operates as follows.
(i) Starting automatic transmission/reception (see Figure 17-15)
<1> When bit 0 (ATSTAO) of serial trigger register 0 (CSITO) is set to 1 , transmit data 1 (T1) is transferred from the internal buffer RAM to SIOAO and transmission/reception is started.
$<2>$ When transmission of the first byte is completed, the receive data 1 (R1) is transferred from SIOAO to the buffer RAM, and automatic data transfer address count register 0 (ADTCO) is incremented.
<3> Next, transmit data 2 (T2) is transferred from the internal buffer to SIOAO.

Figure 17-15. Internal Buffer RAM Operation in Automatic Transmission/Reception Mode (Starting Transmission/Reception) (1/2)

<1> Starting 1st byte transmission/reception

FA1FH	
FA05H	Transmit data 6 (T6)
	Transmit data 5 (T5)
	Transmit data 4 (T4)
	Transmit data 3 (T3)
	Transmit data 2 (T2)
FAOOH	Transmit data 1 (T1)

Figure 17-15. Internal Buffer RAM Operation in Automatic Transmission/Reception Mode (Starting Transmission/Reception) (2/2)

<2> End of 1st byte transmission/reception

<3> Starting of 2nd byte transmission/reception

(ii) Completion of transmission/reception (see Figure 17-16)
<1> When transmission/reception of the sixth byte is completed, receive data 6 (R6) is transferred from SIOAO to the internal buffer RAM and ADTCO is incremented.
<2> When the value of ADPT0 and that of ADTC0 match, the automatic transmission/reception ends, and an interrupt request flag (ACSIIF) is set (INTACSI is generated). ADTC0 and bit 0 (TSFO) of serial status register 0 (CSISO) are cleared to 0 .

Figure 17-16. Internal Buffer RAM Operation in Automatic Transmission/Reception Mode (End of Transmission/Reception)
<1> End of 6th byte transmission/reception

<2> End of automatic transmission/reception

(b) Automatic transmission mode

In this mode, the specified data is transmitted in 8-bit unit.
Serial communication is started when bit 0 (ATSTAO) of serial trigger register 0 (CSITO) is set to 1 while bit 7 (CSIAEO), bit 6 (ATEO), and bit 3 (TXEAO) of serial operation mode specification register 0 (CSIMAO) are set to 1.
When the final byte has been transmitted, an interrupt request flag (ACSIIF) is set. The termination of automatic transmission can also be judged by bit 0 (TSFO) of serial status register 0 (CSIS0).
If a receive operation, busy control and strobe control are not executed, the SIAO/P143, BUSY0/BUZ/INTP7/P141, and STB0/P145 pins can be used as normal I/O port pins.

Figure 17-17 shows the example of the automatic transmission mode operation timing, and Figure 17-18 shows the operation flowchart.

Figure 17-17. Example of Automatic Transmission Mode Operation Timing

Cautions 1. Because, in the automatic transmission mode, the automatic transmit/receive function reads data from the internal buffer RAM after 1-byte transmission, an interval is inserted until the next transmission. As the buffer RAM read is performed at the same time as CPU processing, the interval is dependent upon the value of automatic data transfer interval specification register 0 (ADTIO) and the set values of bits 5 and 4 (STBEO, BUSYEO) of serial status register 0 (CSISO) (see (5) Automatic transmit/receive interval time).
2. If an access to the buffer RAM by the CPU conflicts with an access to the buffer RAM by serial interface CSIAO during the interval period, the interval time specified by automatic data transfer interval specification register 0 (ADTIO) may be extended.

Remark ACSIIF: Interrupt request flag
TSFO: Bit 0 of serial status register 0 (CSISO)

Figure 17-18. Automatic Transmission Mode Flowchart

CSIAEO: Bit 7 of serial operation mode specification register 0 (CSIMAO)
ADTPO: Automatic data transfer address point specification register 0
ADTIO: Automatic data transfer interval specification register 0
ATSTA0: Bit 0 of serial trigger register 0 (CSITO)
SIOAO: Serial I/O shift register 0
ADTC0: Automatic data transfer address count register 0
TSF0: \quad Bit 0 of serial status register 0 (CSISO)

Note A wait state may be generated when data is written to the buffer RAM. For details, see CHAPTER 36 CAUTIONS FOR WAIT.
(c) Repeat transmission mode

In this mode, data stored in the internal buffer RAM is transmitted repeatedly.
Serial communication is started when bit 0 (ATSTAO) of serial trigger register 0 (CSITO) is set to 1 while bit 7 (CSIAEO), bit 6 (ATEO), bit 5 (ATMO), and bit 3 (TXEAO) of serial operation mode specification register 0 (CSIMAO) are set to 1 .
Unlike the automatic transmission mode, after the number of setting bytes has been transmitted, the interrupt request flag (ACSIIF) is not set, automatic data transfer address count register 0 (ADTC0) is reset to 0 , and the internal buffer RAM contents are transmitted again.
When a reception operation, busy control and strobe control are not performed, the SIAO/P143, BUSY0/BUZ/INTP7/P141, and STB0/P145 pins can be used as ordinary I/O port pins.
The example of the repeat transmission mode operation timing is shown in Figure 17-19, and the operation flowchart in Figure 17-20.

Figure 17-19. Example of Repeat Transmission Mode Operation Timing

Cautions 1. Because, in the repeat transmission mode, a read is performed on the buffer RAM after the transmission of one byte, the interval is included in the period up to the next transmission. As the buffer RAM read is performed at the same time as CPU processing, the interval is dependent upon automatic data transfer interval specification register 0 (ADTIO) and the set values of bits 5 and 4 (STBEO, BUSYEO) of serial status register 0 (CSISO) (see (5) Automatic transmit/receive interval time).
2. If an access to the buffer RAM by the CPU conflicts with an access to the buffer RAM by serial interface CSIAO during the interval period, the interval time specified by automatic data transfer interval specification register 0 (ADTIO) may be extended.

Figure 17-20. Repeat Transmission Mode Flowchart

CSIAEO: Bit 7 of serial operation mode specification register 0 (CSIMAO)
ADTPO: Automatic data transfer address point specification register 0
ADTIO: Automatic data transfer interval specification register 0
ATSTAO: Bit 0 of serial trigger register 0 (CSITO)
SIOAO: Serial I/O shift register 0
ADTCO: Automatic data transfer address count register 0

Note A wait state may be generated when data is written to the buffer RAM. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

(d) Data format

Data is changed in synchronization with the SCKA0 falling edge as shown below.
The data length is fixed to 8 bits and the data transfer direction can be switched by the specification of bit 1 (DIRO) of serial operation mode specification register 0 (CSIMAO).

Figure 17-21. Format of CSIA0 Transmit/Receive Data
(a) MSB-first (DIRO bit $=0$)

(b) LSB-first (DIRO bit = 1)

(e) Automatic transmission/reception suspension and restart

Automatic transmission/reception can be temporarily suspended by setting bit 1 (ATSTPO) of serial trigger register 0 (CSITO) to 1.
During 8 -bit data communication, the transmission/reception is not suspended. It is suspended upon completion of 8 -bit data communication.
When suspended, bit 0 (TSFO) of serial status register 0 (CSISO) is cleared to 0 after transfer of the 8 th bit.

Cautions 1. If the HALT instruction is executed during automatic transmission/reception, communication is suspended and the HALT mode is set if during 8-bit data communication. When the HALT mode is cleared, automatic transmission/reception is restarted from the suspended point.
2. When suspending automatic transmission/reception, do not change the operating mode to 3 -wire serial I/O mode while $\mathrm{TSFO}=1$.

Figure 17-22. Automatic Transmission/Reception Suspension and Restart

ATSTP0: Bit 1 of serial trigger register 0 (CSITO)
ATSTAO: Bit 0 of CSITO
(4) Synchronization control

Busy control and strobe control are functions used to synchronize transmission/reception between the master device and a slave device.
By using these functions, a shift in bits being transmitted or received can be detected.
(a) Busy control option

Busy control is a function to keep the serial transmission/reception by the master device waiting while the busy signal output by a slave device to the master is active.
When using this busy control option, the following conditions must be satisfied.

- Bit 6 (ATEO) of serial operation mode specification register 0 (CSIMAO) is set to 1 .
- Bit 4 (BUSYEO) of serial status register 0 (CSISO) is set to 1 .

Figure 17-23 shows the system configuration of the master device and slave device when the busy control option is used.

Figure 17-23. System Configuration When Busy Control Option Is Used

The master device inputs the busy signal output by the slave device to the BUSY0/BUZ/INTP7/P141 pin. The master device samples the input busy signal in synchronization with the falling of the serial clock. Even if the busy signal becomes active while 8-bit data is being transmitted or received, transmission/reception by the master is not kept waiting. If the busy signal is active at the rising edge of the serial clock one clock after completion of transmission/reception of the 8-bit data, the busy input becomes valid. After that, the master transmission/reception is kept waiting while the busy signal is active.
The active level of the busy signal is set by bit 3 (BUSYLVO) of CSISO.

BUSYLV0 = 1: Active-high
BUSYLVO $=0$: Active-low

When using the busy control option, select the master mode. Control with the busy signal cannot be implemented in the slave mode.
Figure 17-24 shows the example of the operation timing when the busy control option is used.

Caution Busy control cannot be used simultaneously with the interval time control function of automatic data transfer interval specification register 0 (ADTIO).

Figure 17-24. Example of Operation Timing When Busy Control Option Is Used (When BUSYLV0 = 1)

Remark ACSIIF: Interrupt request flag
TSFO: Bit 0 of serial status register 0 (CSISO)

When the busy signal becomes inactive, waiting is released. If the sampled busy signal is inactive, transmission/reception of the next 8-bit data is started at the falling edge of the next serial clock.
Because the busy signal is asynchronous with the serial clock, it takes up to 1 clock until the busy signal is sampled, even if made inactive by the slave. It takes 0.5 clock until data transfer is started after the busy signal was sampled.
To accurately release the waiting, keep the busy signal inactive at the slave side, until $\overline{\text { SCKAO }}$ falls.
Figure 17-25 shows the example of the timing of the busy signal and releasing the waiting. This figure shows an example in which the busy signal is active as soon as transmission/reception has been started.

Figure 17-25. Busy Signal and Wait Release (When BUSYLVO = 1)

(b) Busy \& strobe control option

Strobe control is a function used to synchronize data transmission/reception between the master and slave devices. The master device outputs the strobe signal from the STB0/P145 pin when 8-bit transmission/reception has been completed. By this signal, the slave device can determine the timing of the end of data transmission. Therefore, synchronization is established even if a bit shift occurs because noise is superimposed on the serial clock, and transmission of the next byte is not affected by the bit shift.
To use the strobe control option, the following conditions must be satisfied:

- Bit 6 (ATEO) of the serial operation mode specification register 0 (CSIMAO) is set to 1 .
- Bit 5 (STBE0) of serial status register 0 (CSISO) is set to 1 .

Usually, the busy control and strobe control options are simultaneously used as handshake signals. In this case, the strobe signal is output from the STB0/P145 pin, the BUSYO/BUZ/INTP7/P141 pin can be sampled to keep transmission/reception waiting while the busy signal is input.
A high level lasting for one transfer clock is output from the STB0/P145 pin in synchronization with the falling edge of the ninth serial clock as the strobe signal. The busy signal is detected at the rising edge of the serial clock two clocks after 8-bit data transmission/reception completion.
Figure 17-26 shows the example of the operation timing when the busy \& strobe control options are used.
When the strobe control option is used, the interrupt request flag (ACSIIF) that is set on completion of transmission/reception is set after the strobe signal is output.

Figure 17-26. Example of Operation Timing When Busy \& Strobe Control Options Are Used (When BUSYLVO = 1)

Caution When TSFO is cleared, the SOAO pin goes low.

Remark ACSIIF: Interrupt request flag
TSFO: Bit 0 of serial status register 0 (CSISO)
(c) Bit shift detection by busy signal

During automatic transmission/reception, a bit shift of the serial clock of the slave device may occur because noise is superimposed on the serial clock signal output by the master device. Unless the strobe control option is used at this time, the bit shift affects transmission of the next byte. In this case, the master can detect the bit shift by checking the busy signal during transmission by using the busy control option.
A bit shift is detected by using the busy signal as follows:
The slave outputs the busy signal after the rising of the eighth serial clock during data transmission/reception (to not keep transmission/reception waiting by the busy signal at this time, make the busy signal inactive within 2 clocks).
The master samples the busy signal in synchronization with the falling edge of the serial clock if bit 2 (ERREO) of serial status register 0 (CSISO) is set to 1. If a bit shift does not occur, all the eight serial clocks that have been sampled are inactive. If the sampled serial clocks are active, it is assumed that a bit shift has occurred, error processing is executed (by setting bit 1 (ERRFO) of serial status register 0 (CSISO) to 1, and communication is suspended and an interrupt request signal (INTACSI) is output).
Although communication is suspended after completion of 1-byte data communication, slave signal output, wait due to the busy signal, and wait due to the interval time specified by ADTIO are not executed. If ERREO $=0$, ERRFO cannot become 1 even if a bit shift occurs.
Figure 17-27 shows the example of the operation timing of the bit shift detection function by the busy signal.
Figure 17-27. Example of Operation Timing of Bit Shift Detection Function by Busy Signal (When BUSYLV0 = 1)

ACSIIF: Interrupt request flag
CSIAEO: Bit 7 of serial operation mode specification register 0 (CSIMAO)
ERRFO: Bit 1 of serial status register 0 (CSISO)
(5) Automatic transmit/receive interval time

When using the automatic transmit/receive function, the read/write operations from/to the internal buffer RAM are performed after transmitting/receiving one byte. Therefore, an interval is inserted before the next transmit/receive operation.
Since the read/write operations from/to the buffer RAM are performed in parallel with the CPU processing when using the automatic transmit/receive function by the internal clock, the interval depends on the value which is set in automatic data transfer interval specification register 0 (ADTIO) and bits 5 (STBEO) and 4 (BUSYEO) of serial status register 0 (CSISO).
When ADTIO is cleared to 00 H , an interval time based on the to STBEO and BUSYEO settings is inserted. If ADTIO $=00 \mathrm{H}$ and STBEO $=$ BUSYEO $=1$, for example, then an interval time of two clocks is inserted, and the interval time can be further extended by using an external busy signal. If an interval time of two clocks or more is set by using ADTIO, then the interval time set by ADTIO is inserted, regardless of the settings of STBEO and BUSYEO. When BUSYEO $=1$, the interval time can be further extended by an external busy signal.

Example Interval time when ADTIO $=00 \mathrm{H}$ and busy signal is not generated $<1>$ When STBEO $=1$, BUSYE $=0$: Interval time of two serial clocks is generated
$<2>$ When STBEO $=0$, BUSYEO $=1$: Interval time of one serial clock is generated $<3>$ When STBEO = 1, BUSYEO = 1: Interval time of two serial clocks is generated

Figure 17-28. Example of Interval Time for Automatic Transmission/Reception (When ADTIO = 00H, STBE0 = 1, BUSYE0 = 0 (Two Clocks))

ACSIIF: Interrupt request flag

CHAPTER 18 SERIAL INTERFACE IICO

Caution Do not use serial interface IICO and the multiplier/divider simultaneously, because various flags corresponding to interrupt request sources are shared among serial interface IICO and the multiplier/divider.

Remark The multiplier/divider is mounted only onto the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontroller products whose flash memory is at least 48 KB .

18.1 Functions of Serial Interface IIC0

Serial interface IICO are mounted onto all $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontroller products.
Serial interface IICO has the following two modes.
(1) Operation stop mode

This mode is used when serial transfers are not performed. It can therefore be used to reduce power consumption.
(2) $I^{2} \mathrm{C}$ bus mode (multimaster supported)

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock (SCLO) line and a serial data bus (SDAO) line.
This mode complies with the $I^{2} \mathrm{C}$ bus format and the master device can generated "start condition", "address", "transfer direction specification", "data", and "stop condition" data to the slave device, via the serial data bus. The slave device automatically detects these received status and data by hardware. This function can simplify the part of application program that controls the $\mathrm{I}^{2} \mathrm{C}$ bus.

Since the SCLO and SDAO pins are used for open drain outputs, IICO requires pull-up resistors for the serial clock line and the serial data bus line.

Figure 18-1 shows a block diagram of serial interface IIC0.

Figure 18-1. Block Diagram of Serial Interface IIC0

Remark The 78K0/KB2 products are not mounted with the EXSCLO pin.

Figure 18-2 shows a serial bus configuration example.

Figure 18-2. Serial Bus Configuration Example Using I' ${ }^{2} \mathrm{C}$ Bus

18.2 Configuration of Serial Interface IICO

Serial interface IIC0 includes the following hardware.

Table 18-1. Configuration of Serial Interface IIC0

Item	Configuration
Registers	IIC shift register 0 (IICO) Slave address register 0 (SVAO)
Control registers	IIC control register 0 (IICCO) IIC status register 0 (IICSO) IIC flag register 0 (IICFO) IIC clock selection register 0 (IICCLO) IIC function expansion register 0 (IICXO) Port mode register 6 (PM6) Port register 6 (P6)

(1) IIC shift register 0 (IICO)

IICO is used to convert 8-bit serial data to 8-bit parallel data and vice versa in synchronization with the serial clock. IICO can be used for both transmission and reception.
The actual transmit and receive operations can be controlled by writing and reading operations to IIC0.
Cancel the wait state and start data transfer by writing data to IIC0 during the wait period.
IIC0 is set by an 8-bit memory manipulation instruction.
Reset signal generation clears IICO to 00 H .

Figure 18-3. Format of IIC Shift Register 0 (IIC0)

Address:		S						
Symbol	7	6	5	4	3	2	1	0
IICO								

Cautions 1. Do not write data to IICO during data transfer.

2. Write or read IICO only during the wait period. Accessing IICO in a communication state other than during the wait period is prohibited. When the device serves as the master, however, IICO can be written only once after the communication trigger bit (STTO) is set to 1.
3. When communication is reserved, write data to the IICO register after the interrupt triggered by a stop condition is detected.
(2) Slave address register 0 (SVAO)

This register stores seven bits of local addresses $\{A 6, A 5, A 4, A 3, A 2, A 1, A 0\}$ when in slave mode. This register can be set by an 8-bit memory manipulation instruction.
However, rewriting to this register is prohibited while STDO $=1$ (while the start condition is detected).
Reset signal generation clears SVA0 to 00H.

Figure 18-4. Format of Slave Address Register 0 (SVAO)

Address:		After reset: 00 H	R/W					
Symbol	7	6	5	4	3	2	1	0
SVAO								$0^{\text {Note }}$

Note Bit 0 is fixed to 0 .
(3) SO latch

The SO latch is used to retain the SDAO pin's output level.

(4) Wake-up controller

This circuit generates an interrupt request (INTIICO) when the address received by this register matches the address value set to slave address register 0 (SVAO) or when an extension code is received
(5) Prescaler

This selects the sampling clock to be used.

(6) Serial clock counter

This counter counts the serial clocks that are output or input during transmit/receive operations and is used to verify that 8-bit data was transmitted or received.

(7) Interrupt request signal generator

This circuit controls the generation of interrupt request signals (INTIICO). An $I^{2} C$ interrupt request is generated by the following two triggers.

- Falling edge of eighth or ninth clock of the serial clock (set by WTIMO bit)
- Interrupt request generated when a stop condition is detected (set by SPIE0 bit)

Remark WTIMO bit: Bit 3 of IIC control register 0 (IICCO)
SPIEO bit: Bit 4 of IIC control register 0 (IICCO)
(8) Serial clock controller

In master mode, this circuit generates the clock output via the SCLO pin from a sampling clock.
(9) Serial clock wait controller

This circuit controls the wait timing.
(10) ACK generator, stop condition detector, start condition detector, and ACK detector

These circuits generate and detect each status.
(11) Data hold time correction circuit

This circuit generates the hold time for data corresponding to the falling edge of the serial clock.

(12) Start condition generator

This circuit generates a start condition when the STTO bit is set to 1 .
However, in the communication reservation disabled status (IICRSV bit $=1$), when the bus is not released (IICBSY bit $=1$), start condition requests are ignored and the STCF bit is set to 1 .

(13) Stop condition generator

This circuit generates a stop condition when the SPT0 bit is set to 1 .

(14) Bus status detector

This circuit detects whether or not the bus is released by detecting start conditions and stop conditions.
However, as the bus status cannot be detected immediately following operation, the initial status is set by the STCEN bit.

Remark STTO bit: Bit 1 of IIC control register 0 (IICCO) SPTO bit: Bit 0 of IIC control register 0 (IICCO)
IICRSV bit: Bit 0 of IIC flag register 0 (IICFO)
IICBSY bit: Bit 6 of IIC flag register 0 (IICFO)
STCF bit: \quad Bit 7 of IIC flag register 0 (IICFO)
STCEN bit: Bit 1 of IIC flag register 0 (IICFO)

18.3 Registers to Control Serial Interface IICO

Serial interface IIC0 is controlled by the following seven registers.

- IIC control register 0 (IICCO)
- IIC flag register 0 (IICFO)
- IIC status register 0 (IICSO)
- IIC clock selection register 0 (IICCLO)
- IIC function expansion register 0 (IICXO)
- Port mode register 6 (PM6)
- Port register 6 (P6)
(1) IIC control register 0 (IICCO)

This register is used to enable/stop $I^{2} C$ operations, set wait timing, and set other $I^{2} C$ operations.
IICCO register is set by a 1-bit or 8 -bit memory manipulation instruction. However, set the SPIEO, WTIMO, and ACKEO bits while IICEO bit = 0 or during the wait period. These bits can be set at the same time when the IICEO bit is set from " 0 " to " 1 ".
Reset signal generation clears IICCO to 00 H .

Figure 18-5. Format of IIC Control Register 0 (IICC0) (1/4)

IICE0	$I^{2} \mathrm{C}$ operation enable
0	Stop operation. Reset IIC status register 0 (IICSO) ${ }^{\text {Note } 1}$. Stop internal operation.
1	Enable operation.
Be sure to set this bit (1) while the SCL0 and SDA0 lines are at high level.	
Condition for clearing (IICE0 $=0)$	Condition for setting (IICE0 $=1)$
- Cleared by instruction \bullet Reset	\bullet Set by instruction

LRELO $^{\text {Notes } 2,3}$	Exit from communications
0	Normal operation
1	This exits from the current communications and sets standby mode. This setting is automatically cleared to 0 after being executed. Its uses include cases in which a locally irrelevant extension code has been received. The SCLO and SDAO lines are set to high impedance. The following flags of IIC control register 0 (IICCO) and IIC status register 0 (IICSO) are cleared to 0. \bullet STTO •SPTO •MSTSO •EXCO •COIO •TRCO •ACKDO •STDO

The standby mode following exit from communications remains in effect until the following communications entry conditions are met.

- After a stop condition is detected, restart is in master mode.
- An address match or extension code reception occurs after the start condition.

Condition for clearing $(L R E L 0=0)$	Condition for setting $(L R E L 0=1)$
- Automatically cleared after execution	\bullet Set by instruction
- Reset	

WRELO ${ }^{\text {Noles } 2,3}$	Wait cancellation	
0	Do not cancel wait	
1	Cancel wait. This setting is automatically cleared after wait is canceled.	
When WRELO is set (wait canceled) during the wait period at the ninth clock pulse in the transmission status (TRC0 = 1), the SDA0 line goes into the high impedance state $(\operatorname{TRCO}=0)$.		
Condition for clearing (WRELO $=0$)		Condition for setting (WRELO = 1)
- Automatically cleared after execution - Reset		- Set by instruction

Notes 1. The IICSO register, the STCFO and IICBSY bits of the IICFO register, and the CLDO and DADO bits of the IICCLO register are reset.
2. The signals of these bits are invalid while the IICEO bit is 0 .
3. When the LRELO and WRELO bits are read, 0 is always read.
$<R>\quad$ Caution If the operation of $I^{2} C$ is enabled (IICE $0=1$) when the SCLO line is high level, the SDAO line is low level, and the digital filter is turned on (DFCO of the IICCLO register $=1$), a start condition will be inadvertently detected immediately. In this case, set (1) the LRELO bit by using a 1-bit memory manipulation instruction immediately after enabling operation of $I^{2} C(I I C E 0=1)$.

Figure 18-5. Format of IIC Control Register 0 (IICCO) (2/4)

SPIE0 ${ }^{\text {Note 1 }}$	Enable/disable generation of interrupt request when stop condition is detected	
0	Disable	Condition for setting (SPIE0 $=1)$
1	Enable	• Set by instruction
Condition for clearing $($ SPIE0 $=0)$		
- Cleared by instruction - Reset		

WTIM0 ${ }^{\text {Note 1 }}$	Control of wait and interrupt request generation
0	Interrupt request is generated at the eighth clock's falling edge. Master mode: After output of eight clocks, clock output is set to low level and wait is set. Slave mode: After input of eight clocks, the clock is set to low level and wait is set for master device.
1	Interrupt request is generated at the ninth clock's falling edge. Master mode: After output of nine clocks, clock output is set to low level and wait is set. Slave mode: After input of nine clocks, the clock is set to low level and wait is set for master device.

An interrupt is generated at the falling edge of the ninth clock during address transfer independently of the setting of this bit. The setting of this bit is valid when the address transfer is completed. When in master mode, a wait is inserted at the falling edge of the ninth clock during address transfers. For a slave device that has received a local address, a wait is inserted at the falling edge of the ninth clock after an acknowledge ($\overline{\mathrm{ACK}}$) is issued. However, when the slave device has received an extension code, a wait is inserted at the falling edge of the eighth clock.

Condition for clearing $(\mathrm{WTIM0}=0)$	Condition for setting $(\mathrm{WTIM0}=1)$
- Cleared by instruction	\bullet Set by instruction
- Reset	

ACKEO $^{\text {Notes 1, } 2}$	Acknowledgment control	
0	Disable acknowledgment.	
1	Enable acknowledgment. During the ninth clock period, the SDAO line is set to low level.	
Condition for clearing ($\mathrm{ACKE}=0$)		Condition for setting ($\mathrm{ACKE}=1$)
- Cleared by instruction - Reset		- Set by instruction

Notes 1. This flag's signal is invalid when IICEO $=0$.
2. The set value is invalid during address transfer and if the code is not an extension code. When the device serves as a slave and the addresses match, an acknowledge is generated regardless of the set value.

Figure 18-5. Format of IIC Control Register 0 (IICC0) (3/4)

STTO ${ }^{\text {Note }}$	Start condition trigger	
0	Do not generate a start condition.	
1	When bus is released (in standby state, when IICBSY $=0$): If this bit is set (1), a start condition is generated (startup as the master). When a third party is communicating: - When communication reservation function is enabled (IICRSV $=0$) Functions as the start condition reservation flag. When set to 1 , automatically generates a start condition after the bus is released. - When communication reservation function is disabled (IICRSV =1) Even if this bit is set (1), the STT0 is cleared and the STTO clear flag (STCF) is set (1). No start condition is generated. In the wait state (when master device): Generates a restart condition after releasing the wait.	
Cautions concerning set timing - For master reception: Cannot be set to 1 during transfer. Can be set to 1 only in the waiting period when ACKE0 has been cleared to 0 and slave has been notified of final reception. - For master transmission: A start condition cannot be generated normally during the acknowledge period. Set to 1 during the wait period that follows output of the ninth clock. - Cannot be set to 1 at the same time as stop condition trigger (SPTO). - Setting the STTO bit to 1 and then setting it again before it is cleared to 0 is prohibited.		
Condition	r clearing ($\mathrm{STTO}=0$)	Condition for setting (STT0 = 1)
- Cleared reserva - Cleared - Cleared - Cleared - When II - Reset	by setting SSTO bit to 1 while communication n is prohibited. y loss in arbitration fter start condition is generated by master device y LRELO $=1$ (exit from communications) E0 $=0$ (operation stop)	- Set by instruction

Note The signal of this bit is invalid while IICEO is 0 .

Remarks 1. Bit 1 (STTO) becomes 0 when it is read after data setting.
2. IICRSV: Bit 0 of IIC flag register (IICFO)

STCF: Bit 7 of IIC flag register (IICFO)

Figure 18-5. Format of IIC Control Register 0 (IICC0) (4/4)

SPT0	Stop condition trigger	
0	Stop condition is not generated.	
1	Stop condition is generated (termination of master device's transfer).	
Cautions concerning set timing - For master reception: Cannot be set to 1 during transfer. Can be set to 1 only in the waiting period when ACKEO has been cleared to 0 and slave has been notified of final reception. - For master transmission: A stop condition cannot be generated normally during the acknowledge period. Therefore, set it during the wait period that follows output of the ninth clock. - Cannot be set to 1 at the same time as start condition trigger (STTO). - SPTO bit can be set to 1 only when in master mode. - When WTIMO has been cleared to 0, if SPTO bit is set to 1 during the wait period that follows output of eight clocks, note that a stop condition will be generated during the high-level period of the ninth clock. WTIMO should be changed from 0 to 1 during the wait period following the output of eight clocks, and SPTO bit should be set to 1 during the wait period that follows the output of the ninth clock. - Setting SPTO bit to 1 and then setting it again before it is cleared to 0 is prohibited.		
Condition	or clearing ($\mathrm{SPTO}=0$)	Condition for setting (SPT0 = 1)
- Cleared - Automa - Cleared - When II - Reset	y loss in arbitration ally cleared after stop condition is detected L LRELO $=1$ (exit from communications) E0 $=0$ (operation stop)	- Set by instruction

Caution When bit 3 (TRCO) of the IIC status register 0 (IICSO) is set to 1 (transmission status), bit 5 (WRELO) of the IICCO register is set to 1 during the ninth clock and wait is canceled, after which the TRCO bit is cleared (reception status) and the SDAO line is set to high impedance. Release the wait performed while the TRC bit is 1 (transmission status) by writing to the IIC shift register.

Remark Bit 0 (SPTO) becomes 0 when it is read after data setting.
(2) IIC status register 0 (IICSO)

This register indicates the status of $I^{2} C$.
IICS0 is read by a 1-bit or 8-bit memory manipulation instruction only when STT0 = 1 and during the wait period.
Reset signal generation clears IICSO to 00H.
Caution If data is read from IICSO register, a wait cycle is generated. Do not read data from IICSO register when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

Figure 18-6. Format of IIC Status Register 0 (IICSO) (1/3)

Address: FFAAH		After reset: OOH		R	<3>	<2>	<1>	<0>
Symbol	<7>	<6>	<5>	<4>				
IICSO	MSTS0	ALD0	EXCO	COIO	TRC0	ACKD0	STD0	SPD0

MSTSO	Master device status	
0	Slave device status or communication standby status	
1	Master device communication status	
Condition for clearing (MSTSO $=0$)		Condition for setting (MSTSO $=1$)
- When a stop condition is detected	- When a start condition is generated	
- When ALDO $=1$ (arbitration loss)		
- Cleared by LRELO $=1$ (exit from communications)		
- When IICEO changes from 1 to 0 (operation stop)		
- Reset		

ALDO	Detection of arbitration loss	
0	This status means either that there was no arbitration or that the arbitration result was a "win".	
1	This status indicates the arbitration result was a "loss". MSTSO bit is cleared.	
Condition for clearing (ALDO $=0$)		Condition for setting (ALDO $=1$)
- Automatically cleared after IICSO register is read - When IICE - Reset	- When the arbitration result is a "loss".	

EXCO	Detection of extension code reception	
0	Extension code was not received.	
1	Extension code was received.	Condition for setting (EXCO $=1$)
Condition for clearing (EXCO $=0$)	- When the higher four bits of the received address data is either "0000" or " 1111 " (set at the rising edge of the eighth clock).	
- When a start condition is detected		
- When a stop condition is detected		
- Cleared by LRELO $=1$ (exit from communications)		
- When IICEO changes from 1 to 0 (operation stop)		
- Reset		

Note This register is also cleared when a 1-bit memory manipulation instruction is executed for bits other than IICS0 register. Therefore, when using the ALD0 bit, read the data of this bit before the data of the other bits.

Remark LRELO: Bit 6 of IIC control register 0 (IICCO)
IICEO: Bit 7 of IIC control register 0 (IICCO)

Figure 18-6. Format of IIC Status Register 0 (IICSO) (2/3)

COIO	Detection of matching addresses	
0	Addresses do not match.	Condition for setting (COIO $=1)$
1	Addresses match.	- When the received address matches the local address
(slave address register 0 (SVA0))		
Condition for clearing (COIO $=0)$		(set at the rising edge of the eighth clock).
- When a start condition is detected		
- When a stop condition is detected		
- Cleared by LRELO = 1 (exit from communications)		
- When IICEO changes from 1 to 0 (operation stop)		
- Reset		

TRC0	Detection of transmit/receive status	
0	Receive status (other than transmit status). The SDA0 line is set for high impedance.	
1	Transmit status. The value in the SOO latch is enabled for output to the SDAO line (valid starting at the falling edge of the first byte's ninth clock).	
Condition for clearing $(\operatorname{TRCO}=0)$ <Both master and slave> - When a stop condition is detected - Cleared by LRELO $=1$ (exit from communications) - When the IICEO bit changes from 1 to 0 (operation stop) - Cleared by WRELO $=1^{\text {Note }}$ (wait cancel) - When the ALDO bit changes from 0 to 1 (arbitration loss) - Reset - When not used for communication (MSTSO, EXCO, COIO = 0) <Master> - When " 1 " is output to the first byte's LSB (transfer direction specification bit) <Slave> - When a start condition is detected - When " 0 " is input to the first byte's LSB (transfer direction specification bit)		Condition for setting (TRC0 = 1)
		<Master> - When a start condition is generated - When 0 (master transmission) is output to the LSB (transfer direction specification bit) of the first byte (during address transfer) <Slave> - When 1 (slave transmission) is input to the LSB (transfer direction specification bit) of the first byte from the master (during address transfer)

Note When bit 3 (TRC0) of the IIC status register 0 (IICSO) is set to 1 (transmission status), bit 5 (WRELO) of the IIC control register 0 (IICCO) is set to 1 during the ninth clock and wait is canceled, after which the TRCO bit is cleared (reception status) and the SDAAO line is set to high impedance. Release the wait performed while TRCO bit is 1 (transmission status) by writing to the IIC shift register.

Remark LRELO: Bit 6 of IIC control register 0 (IICCO) IICEO: Bit 7 of IIC control register 0 (IICCO)

Figure 18-6. Format of IIC Status Register 0 (IICSO) (3/3)

ACKD0	Detection of acknowledge ($\overline{\mathrm{ACK}}$)	
0	Acknowledge was not detected.	
1	Acknowledge was detected.	
Condition for clearing ($\mathrm{ACKDO}=0$)		Condition for setting (${ }^{\text {aCKDO }}=1$)
- When a stop condition is detected - At the rising edge of the next byte's first clock - Cleared by LRELO $=1$ (exit from communications) - When IICE0 changes from 1 to 0 (operation stop) - Reset		- After the SDAO line is set to low level at the rising edge of ninth clock of SCLO line

STD0		Detection of start condition
0	Start condition was not detected.	Condition for setting (STD0 = 1)
1	Start condition was detected. This indicates that the address transfer period is in effect.	
Condition for clearing (STD0 $=0$)	• When a start condition is detected	
- When a stop condition is detected - At the rising edge of the next byte's first clock following address transfer		
• Cleared by LRELO = 1 (exit from communications)		
- When IICE0 changes from 1 to 0 (operation stop)		
- Reset		

SPD0	Detection of stop condition	
0	Stop condition was not detected.	
1	Stop condition was detected. The master device's communication is terminated and the bus is released.	
Condition for clearing (SPD0 $=0$)	Condition for setting (SPD0 = 1)	
- At the rising edge of the address transfer byte's first clock following setting of this bit and detection of a start condition	• When a stop condition is detected	
- When IICE0 changes from 1 to 0 (operation stop)		
- Reset		

Remark LRELO: Bit 6 of IIC control register 0 (IICCO)
IICEO: Bit 7 of IIC control register 0 (IICCO)

(3) IIC flag register 0 (IICFO)

This register sets the operation mode of $I^{2} \mathrm{C}$ and indicates the status of the $I^{2} \mathrm{C}$ bus.
This register can be set by a 1-bit or 8 -bit memory manipulation instruction. However, the STT0 clear flag (STCF) and $I^{2} C$ bus status flag (IICBSY) are read-only.
The IICRSV bit can be used to enable/disable the communication reservation function.
The STCEN bit can be used to set the initial value of the IICBSY bit.
The IICRSV and STCEN bits can be written only when the operation of $I^{2} C$ is disabled (bit 7 (IICEO) of the IIC control register $0($ IICCO $)=0$). When operation is enabled, the IICFO register can be read.
Reset signal generation clears this register to 00 H

Figure 18-7. Format of IIC Flag Register 0 (IICFO)

IICBSY	$\mathrm{I}^{2} \mathrm{C}$ bus status flag	
0	Bus release status (communication initial status when STCEN $=1$)	
1	Bus communication status (communication initial status when STCEN $=0$)	
Condition for clearing (IICBSY = 0)		Condition for setting (IICBSY = 1)
- Detection of stop condition - When IICE $=0$ (operation stop) - Reset	- Detection of start condition	

STCEN	Initial start enable trigger	
0	After operation is enabled (IICE $0=1$), enable generation of a start condition upon detection of a stop condition.	
1	After operation is enabled (IICEO $=1$), enable generation of a start condition without detecting a stop condition.	
Condition for clearing (STCEN $=0$)		Condition for setting
- Detection of start condition - Reset		- Set by instruction

IICRSV	Communication reservation function disable bit	
0	Enable communication reservation	
1	Disable communication reservation	
Condition for clearing (IICRSV $=0)$	Condition for setting (IICRSV = 1)	
- Cleared by instruction - Reset	• Set by instruction	

Note Bits 6 and 7 are read-only.

Cautions 1. Write to STCEN bit only when the operation is stopped (IICEO = 0).
2. As the bus release status (IICBSY $=0$) is recognized regardless of the actual bus status when STCEN $=1$, when generating the first start condition (STTO $=1$), it is necessary to verify that no third party communications are in progress in order to prevent such communications from being destroyed.
3. Write to IICRSV bit only when the operation is stopped (IICEO $=0$).

Remark STTO: Bit 1 of IIC control register 0 (IICCO)
IICEO: Bit 7 of IIC control register 0 (IICCO)

(4) IIC clock selection register 0 (IICCLO)

This register is used to set the transfer clock for the $I^{2} \mathrm{C}$ bus.
IICCLO is set by a 1-bit or 8-bit memory manipulation instruction. However, the CLD0 and DAD0 bits are read-only. The SMCO, CL01, and CLOO bits are set in combination with bit 0 (CLXO) of IIC function expansion register 0 (IICXO) (see 18.3 (6) I ${ }^{2} \mathrm{C}$ transfer clock setting method).
Set IICCLO while bit 7 (IICEO) of IIC control register 0 (IICCO) is 0 .
Reset signal generation clears IICCLO to 00 H .
Figure 18-8. Format of IIC Clock Selection Register 0 (IICCLO)

CLD0	Detection of SCLO pin level (valid only when IICE0 $=1$)	
0	The SCL0 pin was detected at low level.	
1	The SCL0 pin was detected at high level.	Condition for setting (CLD0 $=1$)
Condition for clearing (CLD0 $=0$)		• When the SCLO pin is at high level
- When the SCL0 pin is at low level - When IICE0 $=0$ (operation stop) - Reset		

DAD0	Detection of SDA0 pin level (valid only when IICE0 $=1$)	
0	The SDA0 pin was detected at low level.	
1	The SDA0 pin was detected at high level.	Condition for setting (DAD0 $=1$)
Condition for clearing (DAD0 $=0$)		• When the SDA0 pin is at high level
- When the SDA0 pin is at low level - When IICE0 $=0$ (operation stop) - Reset		

SMC0		Operation mode switching
0	Operates in standard mode.	
1	Operates in high-speed mode.	

DFC0	Digital filter operation control
0	Digital filter off.
1	Digital filter on.
Digital filter can be used only in high-speed mode. In high-speed mode, the transfer clock does not vary regardless of DFC0 bit set (1)/clear (0). The digital filter is used for noise elimination in high-speed mode.	

Note Bits 4 and 5 are read-only.
Remark IICEO: Bit 7 of IIC control register 0 (IICCO)

(5) IIC function expansion register 0 (IICXO)

This register sets the function expansion of $I^{2} C$.
IICX0 is set by a 1 -bit or 8 -bit memory manipulation instruction. The CLX0 bit is set in combination with bits 3,1 , and 0 (SMCO, CLO1, and CLOO) of IIC clock selection register 0 (IICCLO) (see 18.3 (6) I'C transfer clock setting method).
Set IICXO while bit 7 (IICEO) of IIC control register 0 (IICCO) is 0 .
Reset signal generation clears IICXO to 00 H .

Figure 18-9. Format of IIC Function Expansion Register 0 (IICXO)

Address: FFA9H After reset: 00H R/W

| Symbol | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | $<0>$ | |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | CLXO |

(6) $I^{2} C$ transfer clock setting method

The $I^{2} C$ transfer clock frequency ($f s c L$) is calculated using the following expression.

```
fscL = 1/(m }\timesT+tR+tF
    m=12,18, 24, 44, 66, 86 (see Table 18-2 Selection Clock Setting)
    T: 1/fw
    tr: SCLO rise time
    tF: SCLO fall time
```

For example, the $I^{2} C$ transfer clock frequency (fscl) when $f w=f p r s / 2=4.19 \mathrm{MHz}, \mathrm{m}=86, \mathrm{tr}=200 \mathrm{~ns}$, and $\mathrm{tF}=50$ ns is calculated using following expression.

$$
\mathrm{fscL}=1 /(88 \times 238.7 \mathrm{~ns}+200 \mathrm{~ns}+50 \mathrm{~ns}) \cong 48.1 \mathrm{kHz}
$$

The selection clock is set using a combination of bits 3, 1, and 0 (SMCO, CL01, and CLOO) of IIC clock selection register 0 (IICCLO) and bit 0 (CLXO) of IIC function expansion register 0 (IICXO).

Table 18-2. Selection Clock Setting

IICXO	IICCLO			Selection Clock (fw) ${ }^{\text {Notes 1,2 }}$	Transfer Clock (fw/m)	Settable Selection Clock (fw) Range	Operation Mode
Bit 0	Bit 3	Bit 1	Bit 0				
CLXO	SMC0	CL01	CL00				
0	0	0	0	fPRS/2	$\mathrm{fw} / 44$	2.00 to 4.19 MHz	Normal mode $(S M C O$ bit $=0)$
0	0	0	1	fPRS/2	fw/86	4.19 to 8.38 MHz	
0	0	1	0	fPRS/4	fw/86		
0	0	1	1	fexscLo ${ }^{\text {Notes } 3,4}$	fw/66	6.4 MHz	
0	1	0	\times	fPRS/2	fw/24	4.00 to 8.38 MHz	High-speed mode $($ SMCO bit $=1)$
0	1	1	0	fPRS/4	fw/24		
0	1	1	1	fexscLo ${ }^{\text {Note 3,4 }}$	$\mathrm{fw} / 18$	6.4 MHz	
1	0	\times	\times	Setting prohibited			
1	1	0	\times	fPRS/2	$\mathrm{fw} / 12$	$4.00 \text { to } 4.19 \mathrm{MHz}$	High-speed mode (SMC0 bit = 1)
1	1	1	0	fPRS/4	$\mathrm{fw} / 12$		
1	1	1	1	Setting prohibited			

Notes 1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products $(\mu$ PD78F05xx and 78F05xxD)	Expanded-specification Products $(\mu$ PD78F05xxA and 78F05xxDA)
$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\mathrm{fPRS} \leq 20 \mathrm{MHz}$	fPRS $\leq 20 \mathrm{MHz}$
$2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$\mathrm{fPRS} \leq 10 \mathrm{MHz}$	
$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$ (Standard products and (A) grade products only)	$\mathrm{fPRS} \leq 5 \mathrm{MHz}$	fPRS $\leq 5 \mathrm{MHz}$

(The values shown in the table above are those when fPRS $=\mathrm{fxH}(\mathrm{XSEL}=1)$.)
2. If the peripheral hardware clock (fprs) operates on the internal high-speed oscillation clock (fxh) ($\mathrm{XSEL}=0$), set CLXO, SMC0, CL01 and CL00 as follows.

IICXO	IICCLO			Selection Clock (fw)	Transfer Clock (fw/m)	Settable Selection Clock (fw) Range	Operation Mode
Bit 0	Bit 3	Bit 1	Bit 0				
CLXO	SMCO	CL01	CL00				
0	0	0	0	$\mathrm{ffRS} / 2$	$\mathrm{fw} / 44$	3.8 MHz to 4.2 MHz	Normal mode (SMCO bit $=0$)
0	1	0	\times	$\mathrm{fPRS} / 2$	fw/24		High-speed mode (SMCO bit = 1)

3. This must not be set, because the $78 \mathrm{KO} / \mathrm{KB} 2$ products are not mounted with the EXSCLO pin.
4. Do not start communication with the external clock from the EXSCLO pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Caution Determine the transfer clock frequency of $I^{2} \mathrm{C}$ by using CLXO, SMCO, CL01, and CLOO before enabling the operation (by setting bit 7 (IICEO) of IIC control register 0 (IICCO) to 1). To change the transfer clock frequency, clear IICEO once to 0 .

Remarks 1. \times : don't care
2. fprs: Peripheral hardware clock frequency
3. fexsclo: External clock frequency from EXSCLO pin

(7) Port mode register 6 (PM6)

This register sets the input/output of port 6 in 1-bit units.
When using the P60/SCLO pin as clock I/O and the P61/SDA0 pin as serial data I/O, clear PM60 and PM61, and the output latches of P60 and P61 to 0.
Set IICEO (bit 7 of IIC control register 0 (IICCO)) to 1 before setting the output mode because the P60/SCLO and P61/SDA0 pins output a low level (fixed) when IICE0 is 0.
PM6 is set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation sets PM6 to FFH.

Figure 18-10. Format of Port Mode Register 6 (PM6)

Remark The figure shown above presents the format of port mode register 6 of $78 \mathrm{KO} / \mathrm{KF} 2$ products. For the format of port mode register 6 of other products, see (1) Port mode registers (PMxx) in 5.3 Registers Controlling Port Function.

$18.4 \mathrm{I}^{2} \mathrm{C}$ Bus Mode Functions

18.4.1 Pin configuration

The serial clock pin (SCLO) and serial data bus pin (SDAO) are configured as follows.
(1) SCLO. This pin is used for serial clock input and output.
This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.
(2) SDAO

This pin is used for serial data input and output.
This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

Since outputs from the serial clock line and the serial data bus line are N-ch open-drain outputs, an external pull-up resistor is required.

Figure 18-11. Pin Configuration Diagram

18.5 $I^{2} \mathrm{C}$ Bus Definitions and Control Methods

The following section describes the $I^{2} C$ bus's serial data communication format and the signals used by the $I^{2} C$ bus. Figure 18-12 shows the transfer timing for the "start condition", "address", "data", and "stop condition" output via the $I^{2} \mathrm{C}$ bus's serial data bus.

Figure 18-12. $I^{2} \mathrm{C}$ Bus Serial Data Transfer Timing

The master device generates the start condition, slave address, and stop condition.
The acknowledge $(\overline{\mathrm{ACK}})$ can be generated by either the master or slave device (normally, it is output by the device that receives 8-bit data).

The serial clock (SCLO) is continuously output by the master device. However, in the slave device, the SCLO's low level period can be extended and a wait can be inserted.

18.5.1 Start conditions

A start condition is met when the SCLO pin is at high level and the SDAO pin changes from high level to low level. The start conditions for the SCLO pin and SDAO pin are signals that the master device generates to the slave device when starting a serial transfer. When the device is used as a slave, start conditions can be detected.

Figure 18-13. Start Conditions

A start condition is output when bit 1 (STTO) of IIC control register 0 (IICCO) is set (to 1) after a stop condition has been detected (SPDO: Bit $0=1$ in IIC status register 0 (IICSO)). When a start condition is detected, bit 1 (STDO) of IICSO is set (to 1).

18.5.2 Addresses

The address is defined by the 7 bits of data that follow the start condition.
An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via the bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in slave address register 0 (SVAO). If the address data matches the SVAO register values, the slave device is selected and communicates with the master device until the master device generates a start condition or stop condition.

Figure 18-14. Address

Note INTIICO is not issued if data other than a local address or extension code is received during slave device operation.

The slave address and the eighth bit, which specifies the transfer direction as described in 18.5.3 Transfer direction specification below, are together written to IIC shift register 0 (IICO) and are then output. Received addresses are written to IICO.

The slave address is assigned to the higher 7 bits of IICO register.

18.5.3 Transfer direction specification

In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction.
When this transfer direction specification bit has a value of " 0 ", it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of "1", it indicates that the master device is receiving data from a slave device.

Figure 18-15. Transfer Direction Specification

Note INTIICO is not issued if data other than a local address or extension code is received during slave device operation.

18.5.4 Acknowledge ($\overline{\mathrm{ACK}}$)

$\overline{\mathrm{ACK}}$ is used to check the status of serial data at the transmission and reception sides.
The reception side returns $\overline{\mathrm{ACK}}$ each time it has received 8-bit data.
The transmission side usually receives $\overline{\mathrm{ACK}}$ after transmitting 8-bit data. When $\overline{\mathrm{ACK}}$ is returned from the reception side, it is assumed that reception has been correctly performed and processing is continued. Whether $\overline{\text { ACK }}$ has been detected can be checked by using bit 2 (ACKDO) of IIC status register 0 (IICSO).

When the master receives the last data item, it does not return $\overline{\mathrm{ACK}}$ and instead generates a stop condition. If a slave does not return $\overline{\mathrm{ACK}}$ after receiving data, the master outputs a stop condition or restart condition and stops transmission. If $\overline{\mathrm{ACK}}$ is not returned, the possible causes are as follows.
<1> Reception was not performed normally.
<2> The final data item was received.
$<3>$ The reception side specified by the address does not exist.

To generate $\overline{\mathrm{ACK}}$, the reception side makes the SDAO line low at the ninth clock (indicating normal reception).
Automatic generation of $\overline{\mathrm{ACK}}$ is enabled by setting bit 2 (ACKEO) of IIC control register 0 (IICCO) to 1. Bit 3 (TRCO) of the IICSO register is set by the data of the eighth bit that follows 7-bit address information. Usually, set ACKEO bit to 1 for reception (TRC0 = 0).

If a slave can receive no more data during reception ($\mathrm{TRC0}=0$) or does not require the next data item, then the slave must inform the master, by clearing ACKEO bit to 0 , that it will not receive any more data.

When the master does not require the next data item during reception (TRC0 $=0$), it must clear ACKE0 bit to 0 so that $\overline{\mathrm{ACK}}$ is not generated. In this way, the master informs a slave at the transmission side that it does not require any more data (transmission will be stopped).

Figure 18-16. ACK

When the local address is received, $\overline{\text { ACK }}$ is automatically generated, regardless of the value of ACKEO bit. When an address other than that of the local address is received, $\overline{\mathrm{ACK}}$ is not generated (NACK).

When an extension code is received, $\overline{A C K}$ is generated if ACKEO bit is set to 1 in advance.
How $\overline{\mathrm{ACK}}$ is generated when data is received differs as follows depending on the setting of the wait timing.

- When 8-clock wait state is selected (bit 3 (WTIMO) of IICCO register $=0$):

By setting ACKEO bit to 1 before releasing the wait state, $\overline{\text { ACK }}$ is generated at the falling edge of the eighth clock of the SCLO pin.

- When 9-clock wait state is selected (bit 3 (WTIMO) of IICCO register $=1$):
$\overline{\mathrm{ACK}}$ is generated by setting ACKEO bit to 1 in advance.

18.5.5 Stop condition

When the SCLO pin is at high level, changing the SDAO pin from low level to high level generates a stop condition.
A stop condition is a signal that the master device generates to the slave device when serial transfer has been completed. When the device is used as a slave, stop conditions can be detected.

Figure 18-17. Stop Condition

A stop condition is generated when bit 0 (SPTO) of IIC control register 0 (IICCO) is set to 1 . When the stop condition is detected, bit 0 (SPDO) of IIC status register 0 (IICSO) is set to 1 and INTIICO is generated when bit 4 (SPIEO) of IICCO register is set to 1 .

18.5.6 Wait

The wait is used to notify the communication partner that a device (master or slave) is preparing to transmit or receive data (i.e., is in a wait state).

Setting the SCLO pin to low level notifies the communication partner of the wait state. When wait state has been canceled for both the master and slave devices, the next data transfer can begin.

Figure 18-18. Wait (1/2)
(1) When master device has a nine-clock wait and slave device has an eight-clock wait (master transmits, slave receives, and ACKEO = 1)

Figure 18-18. Wait (2/2)
(2) When master and slave devices both have a nine-clock wait (master transmits, slave receives, and ACKEO = 1)

Remark ACKEO: Bit 2 of IIC control register 0 (IICCO) WRELO: Bit 5 of IIC control register 0 (IICCO)

A wait may be automatically generated depending on the setting of bit 3 (WTIMO) of IIC control register 0 (IICCO).
Normally, the receiving side cancels the wait state when bit 5 (WRELO) of IICCO register is set to 1 or when FFH is written to IIC shift register 0 (IICO), and the transmitting side cancels the wait state when data is written to IICO register.

The master device can also cancel the wait state via either of the following methods.

- By setting bit 1 (STTO) of IICCO register to 1
- By setting bit 0 (SPTO) of IICCO register to 1

18.5.7 Canceling wait

The $I^{2} C$ usually cancels a wait state by the following processing.

- Writing data to IIC shift register 0 (IICO)
- Setting bit 5 (WRELO) of IIC control register 0 (IICCO) (canceling wait)
- Setting bit 1 (STTO) of IICO register (generating start condition) ${ }^{\text {Note }}$
- Setting bit 0 (SPTO) of IICO register (generating stop condition) ${ }^{\text {Note }}$

Note Master only

When the above wait canceling processing is executed, the $I^{2} \mathrm{C}$ cancels the wait state and communication is resumed. To cancel a wait state and transmit data (including addresses), write the data to IIC0 register.
To receive data after canceling a wait state, or to complete data transmission, set bit 5 (WRELO) of the IICO control register 0 (IICCO) to 1.

To generate a restart condition after canceling a wait state, set bit 1 (STTO) of IICCO register to 1.
To generate a stop condition after canceling a wait state, set bit 0 (SPTO) of IICC0 register to 1.
Execute the canceling processing only once for one wait state.
If, for example, data is written to IICO register after canceling a wait state by setting WRELO bit to 1 , an incorrect value may be output to SDAO line because the timing for changing the SDAO line conflicts with the timing for writing IIC0 register.

In addition to the above, communication is stopped if IICEO bit is cleared to 0 when communication has been aborted, so that the wait state can be canceled.

If the $I^{2} C$ bus has deadlocked due to noise, processing is saved from communication by setting bit 6 (LRELO) of IICCO register, so that the wait state can be canceled.

18.5.8 Interrupt request (INTIIC0) generation timing and wait control

The setting of bit 3 (WTIMO) of IIC control register 0 (IICCO) determines the timing by which INTIIC0 is generated and the corresponding wait control, as shown in Table 18-3.

Table 18-3. INTIIC0 Generation Timing and Wait Control

WTIM0	During Slave Device Operation			During Master Device Operation		
	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission
0	$9^{\text {Notes } 1,2}$	$8^{\text {Note 2 }}$	$8^{\text {Note 2 }}$	9	8	8
1	$9^{\text {Notes } 1,2}$	$9^{\text {Note 2 }}$	$9^{\text {Note 2 }}$	9	9	9

Notes 1. The slave device's INTIICO signal and wait period occurs at the falling edge of the ninth clock only when there is a match with the address set to slave address register 0 (SVAO).
At this point, $\overline{A C K}$ is generated regardless of the value set to bit 2 (ACKEO) of the IICCO register. For a slave device that has received an extension code, INTIICO occurs at the falling edge of the eighth clock.
However, if the address does not match after restart, INTIICO is generated at the falling edge of the 9th clock, but wait does not occur.
2. If the received address does not match the contents of slave address register 0 (SVAO) and extension code is not received, neither INTIICO nor a wait occurs.

Remark The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.

(1) During address transmission/reception

- Slave device operation: Interrupt and wait timing are determined depending on the conditions described in Notes 1 and 2 above, regardless of the WTIMO bit.
- Master device operation: Interrupt and wait timing occur at the falling edge of the ninth clock regardless of the WTIMO bit.

(2) During data reception

- Master/slave device operation: Interrupt and wait timing are determined according to the WTIMO bit.
(3) During data transmission
- Master/slave device operation: Interrupt and wait timing are determined according to the WTIMO bit.
(4) Wait cancellation method

The four wait cancellation methods are as follows.

- Writing data to IIC shift register 0 (IICO)
- Setting bit 5 (WRELO) of IIC control register 0 (IICCO) (canceling wait)
- Setting bit 1 (STTO) of IIC0 register (generating start condition) Note
- Setting bit 0 (SPTO) of IICO register (generating stop condition) ${ }^{\text {Note }}$

Note Master only.

When an 8 -clock wait has been selected (WTIMO $=0$), the presence/absence of $\overline{A C K}$ generation must be determined prior to wait cancellation.
(5) Stop condition detection

INTIICO is generated when a stop condition is detected (only when SPIEO $=1$).

18.5.9 Address match detection method

In $I^{2} C$ bus mode, the master device can select a particular slave device by transmitting the corresponding slave address. Address match can be detected automatically by hardware. An interrupt request (INTIICO) occurs when a local address has been set to slave address register 0 (SVAO) and when the address set to SVA0 matches the slave address sent by the master device, or when an extension code has been received.

18.5.10 Error detection

In $I^{2} \mathrm{C}$ bus mode, the status of the serial data bus (SDAO) during data transmission is captured by IIC shift register 0 (IICO) of the transmitting device, so the IICO data prior to transmission can be compared with the transmitted IICO data to enable detection of transmission errors. A transmission error is judged as having occurred when the compared data values do not match.

18.5.11 Extension code

(1) When the higher 4 bits of the receive address are either " 0000 " or " 1111 ", the extension code reception flag (EXC0) is set to 1 for extension code reception and an interrupt request (INTIICO) is issued at the falling edge of the eighth clock. The local address stored in slave address register 0 (SVAO) is not affected.
(2) If " $11110 \times \times 0$ " is set to SVAO register by a 10 -bit address transfer and " $11110 \times \times 0$ " is transferred from the master device, the results are as follows. Note that INTIICO occurs at the falling edge of the eighth clock.

- Higher four bits of data match: EXCO = 1
- Seven bits of data match: $\mathrm{COIO}=1$

Remark EXCO: Bit 5 of IIC status register 0 (IICSO)
COIO: Bit 4 of IIC status register 0 (IICSO)
(3) Since the processing after the interrupt request occurs differs according to the data that follows the extension code, such processing is performed by software.

If the extension code is received while a slave device is operating, then the slave device is participating in communication even if its address does not match.
For example, after the extension code is received, if you do not wish to operate the target device as a slave device, set bit 6 (LRELO) of the IIC control register 0 (IICCO) to 1 to set the standby mode for the next communication operation.

Table 18-4. Bit Definitions of Main Extension Code

Slave Address	R/W Bit	Description
0000000	0	General call address
$11110 \times x$	0	10-bit slave address specification (for address authentication)
$11110 \times x$	1	10-bit slave address specification (for read command issuance after address match)

Remark For extension codes other than the above, refer to THE I ${ }^{2}$ C-BUS SPECIFICATION published by NXP.

18.5.12 Arbitration

When several master devices simultaneously generate a start condition (when STT0 is set to 1 before STD0 is set to 1), communication among the master devices is performed as the number of clocks are adjusted until the data differs. This kind of operation is called arbitration.

When one of the master devices loses in arbitration, an arbitration loss flag (ALDO) in IIC status register 0 (IICSO) is set (1) via the timing by which the arbitration loss occurred, and the SCLO and SDAO lines are both set to high impedance, which releases the bus.

The arbitration loss is detected based on the timing of the next interrupt request (the eighth or ninth clock, when a stop condition is detected, etc.) and the ALDO = 1 setting that has been made by software.

For details of interrupt request timing, see 18.5.17 Timing of $I^{2} C$ interrupt request (INTIICO) occurrence.

Remark STD0: Bit 1 of IIC status register 0 (IICSO)
STTO: Bit 1 of IIC control register 0 (IICCO)

Figure 18-19. Arbitration Timing Example

Table 18-5. Status During Arbitration and Interrupt Request Generation Timing

Status During Arbitration	Interrupt Request Generation Timing
During address transmission	At falling edge of eighth or ninth clock following byte transfer ${ }^{\text {Note } 1}$
Read/write data after address transmission	
During extension code transmission	
Read/write data after extension code transmission	
During data transmission	
During $\overline{A C K}$ transfer period after data transmission	
When restart condition is detected during data transfer	
When stop condition is detected during data transfer	When stop condition is generated (when SPIE $0=1$) ${ }^{\text {Note } 2}$
When data is at low level while attempting to generate a restart condition	At falling edge of eighth or ninth clock following byte transfer ${ }^{\text {Note } 1}$
When stop condition is detected while attempting to generate a restart condition	When stop condition is generated (when SPIE $=1$) ${ }^{\text {Note } 2}$
When data is at low level while attempting to generate a stop condition	At falling edge of eighth or ninth clock following byte transfer ${ }^{\text {Note } 1}$
When SCLO is at low level while attempting to generate a restart condition	

Notes 1. When WTIMO bit (bit 3 of IIC control register 0 (IICCO)) $=1$, an interrupt request occurs at the falling edge of the ninth clock. When WTIMO $=0$ and the extension code's slave address is received, an interrupt request occurs at the falling edge of the eighth clock.
2. When there is a chance that arbitration will occur, set SPIE $0=1$ for master device operation.

Remark SPIE0: Bit 4 of IIC control register 0 (IICCO)

18.5.13 Wakeup function

The $I^{2} C$ bus slave function is a function that generates an interrupt request signal (INTIICO) when a local address and extension code have been received.

This function makes processing more efficient by preventing unnecessary INTIICO signal from occurring when addresses do not match.

When a start condition is detected, wakeup standby mode is set. This wakeup standby mode is in effect while addresses are transmitted due to the possibility that an arbitration loss may change the master device (which has generated a start condition) to a slave device.

However, when a stop condition is detected, bit 4 (SPIEO) of IIC control register 0 (IICCO) is set regardless of the wakeup function, and this determines whether interrupt requests are enabled or disabled.

18.5.14 Communication reservation

(1) When communication reservation function is enabled (bit 0 (IICRSV) of IIC flag register 0 (IICFO) = $\mathbf{0}$)

To start master device communications when not currently using a bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes under which the bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled ($\overline{\mathrm{ACK}}$ is not returned and the bus was released when bit 6 (LRELO) of IIC control register 0 (IICCO) was set to 1).

If bit 1 (STTO) of IICCO is set to 1 while the bus is not used (after a stop condition is detected), a start condition is automatically generated and wait state is set.
If an address is written to IIC shift register 0 (IICO) after bit 4 (SPIEO) of IICCO was set to 1 , and it was detected by generation of an interrupt request signal (INTIICO) that the bus was released (detection of the stop condition), then the device automatically starts communication as the master. Data written to IICO before the stop condition is detected is invalid.

When STTO has been set to 1, the operation mode (as start condition or as communication reservation) is determined according to the bus status.

- If the bus has been released \qquad a start condition is generated
- If the bus has not been released (standby mode). \qquad communication reservation

Check whether the communication reservation operates or not by using MSTSO bit (bit 7 of IIC status register 0 (IICSO)) after STTO bit is set to 1 and the wait time elapses.
The wait periods, which should be set via software, are listed in Table 18-6.

Table 18-6. Wait Periods

CLX0	SMC0	CLO1	CLOO	Wait Period	
0	0	0	0	46 clocks	
0	0	0	1	86 clocks	
0	0	1	0	172 clocks	
0	0	1	1	34 clocks	
0	1	0	0	30 clocks	
0	1	0	1		
0	1	1	0	60 clocks	
0	1	1	1	12 clocks	
1	1	0	0	18 clocks	
1	1	0	1		
1	1	1	0	36 clocks	

Figure 18-20 shows the communication reservation timing.

Figure 18-20. Communication Reservation Timing

Remark IIC0: IIC shift register 0
STTO: Bit 1 of IIC control register 0 (IICCO)
STDO: Bit 1 of IIC status register 0 (IICSO)
SPDO: Bit 0 of IIC status register 0 (IICSO)

Communication reservations are accepted via the following timing. After bit 1 (STDO) of IIC status register 0 (IICSO) is set to 1 , a communication reservation can be made by setting bit 1 (STTO) of IIC control register 0 (IICCO) to 1 before a stop condition is detected.

Figure 18-21. Timing for Accepting Communication Reservations

Figure 18-22 shows the communication reservation protocol.

Figure 18-22. Communication Reservation Protocol

Note The communication reservation operation executes a write to IIC shift register 0 (IIC0) when a stop condition interrupt request occurs.

Remark STTO: Bit 1 of IIC control register 0 (IICCO)
MSTSO: Bit 7 of IIC status register 0 (IICSO)
IICO: IIC shift register 0
(2) When communication reservation function is disabled (bit $\mathbf{0}$ (IICRSV) of IIC flag register $\mathbf{0}$ (IICFO) = $\mathbf{1}$)

When bit 1 (STTO) of IIC control register 0 (IICCO) is set to 1 when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. The following two statuses are included in the status where bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released when bit 6 (LRELO) of IICCO register was set to 1)

To confirm whether the start condition was generated or request was rejected, check STCF flag (bit 7 of IICFO). The time shown in Table 18-7 is required until STCF flag is set to 1 after setting STTO $=1$. Therefore, secure the time by software.

Table 18-7. Wait Periods

CL01	CL00	Wait Period
0	0	6 clocks
0	1	6 clocks
1	0	12 clocks
1	1	3 clocks

18.5.15 Cautions

(1) When STCEN (bit 1 of IIC flag register $0($ IICFO $)$) $=0$

Immediately after $I^{2} C$ operation is enabled (IICEO $=1$), the bus communication status (IICBSY flag (bit 6 of IICFO) $=$ 1) is recognized regardless of the actual bus status. When changing from a mode in which no stop condition has been detected to a master device communication mode, first generate a stop condition to release the bus, then perform master device communication.
When using multiple masters, it is not possible to perform master device communication when the bus has not been released (when a stop condition has not been detected).
Use the following sequence for generating a stop condition.
<1> Set IIC clock selection register 0 (IICCLO).
$<2>$ Set bit 7 (IICEO) of IIC control register 0 (IICCO) to 1.
$<3>$ Set bit 0 (SPTO) of IICCO to 1 .
(2) When STCEN = 1

Immediately after $I^{2} C$ operation is enabled (IICEO $=1$), the bus released status (IICBSY $=0$) is recognized regardless of the actual bus status. To generate the first start condition (STTO (bit 1 of IIC control register 0 $(I I C C O))=1$), it is necessary to confirm that the bus has been released, so as to not disturb other communications.
(3) If other $I^{2} C$ communications are already in progress

If $I^{2} C$ operation is enabled and the device participates in communication already in progress when the SDAO pin is low and the SCLO pin is high, the macro of $I^{2} \mathrm{C}$ recognizes that the SDAO pin has gone low (detects a start condition). If the value on the bus at this time can be recognized as an extension code, $\overline{\mathrm{ACK}}$ is returned, but this interferes with other $I^{2} \mathrm{C}$ communications. To avoid this, start $I^{2} \mathrm{C}$ in the following sequence.
<1> Clear bit 4 (SPIEO) of IICCO register to 0 to disable generation of an interrupt request signal (INTIICO) when the stop condition is detected.
$<2>$ Set bit 7 (IICEO) of IICCO register to 1 to enable the operation of $I^{2} C$.
<3> Wait for detection of the start condition.
<4> Set bit 6 (LRELO) of IICCO register to 1 before $\overline{\text { ACK }}$ is returned (4 to 80 clocks after setting IICEO bit to 1), to forcibly disable detection.
(4) Determine the transfer clock frequency by using SMC0, CL01, CL00 bits (bits 3, 1, and 0 of IICLO register), and CLXO bit (bit 0 of IICXO register) before enabling the operation (IICE $0=1$). To change the transfer clock frequency, clear IICEO bit to 0 once.
(5) Setting STT0 and SPT0 bits (bits 1 and 0 of IICCO register) again after they are set and before they are cleared to 0 is prohibited.
(6) When transmission is reserved, set SPIEO bit (bit 4 of IICLO register) to 1 so that an interrupt request is generated when the stop condition is detected. Transfer is started when communication data is written to IIC status register 0 (IICSO) after the interrupt request is generated. Unless the interrupt is generated when the stop condition is detected, the device stops in the wait state because the interrupt request is not generated when communication is started. However, it is not necessary to set SPIEO bit to 1 when MSTSO bit (bit 7 of IIC status register 0 (IICSO) is detected by software.

18.5.16 Communication operations

The following shows three operation procedures with the flowchart.

(1) Master operation in single master system

The flowchart when using the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers as the master in a single master system is shown below. This flowchart is broadly divided into the initial settings and communication processing. Execute the initial settings at startup. If communication with the slave is required, prepare the communication and then execute communication processing.

(2) Master operation in multimaster system

In the $I^{2} C$ bus multimaster system, whether the bus is released or used cannot be judged by the $I^{2} C$ bus specifications when the bus takes part in a communication. Here, when data and clock are at a high level for a certain period (1 frame), the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers takes part in a communication with bus released state.
This flowchart is broadly divided into the initial settings, communication waiting, and communication processing. The processing when the 78K0/Kx2 microcontrollers looses in arbitration and is specified as the slave is omitted here, and only the processing as the master is shown. Execute the initial settings at startup to take part in a communication. Then, wait for the communication request as the master or wait for the specification as the slave. The actual communication is performed in the communication processing, and it supports the transmission/reception with the slave and the arbitration with other masters.
(3) Slave operation

An example of when the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is used as the $\mathrm{I}^{2} \mathrm{C}$ bus slave is shown below.
When used as the slave, operation is started by an interrupt. Execute the initial settings at startup, then wait for the INTIICO interrupt occurrence (communication waiting). When an INTIICO interrupt occurs, the communication status is judged and its result is passed as a flag over to the main processing.
By checking the flags, necessary communication processing is performed.

(1) Master operation in single-master system

Figure 18-23. Master Operation in Single-Master System

Note Release (SCLO and SDAO pins = high level) the $I^{2} C$ bus in conformance with the specifications of the product that is communicating. If EEPROM is outputting a low level to the SDAO pin, for example, set the SCLO pin in the output port mode, and output a clock pulse from the output port until the SDAO pin is constantly at high level.

Remark Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats.
(2) Master operation in multi-master system

Figure 18-24. Master Operation in Multi-Master System (1/3)

Note Confirm that the bus is released (CLDO bit = 1, DADO bit = 1) for a specific period (for example, for a period of one frame). If the SDAO pin is constantly at low level, decide whether to release the I ${ }^{2} \mathrm{C}$ bus (SCLO and SDAO pins = high level) in conformance with the specifications of the product that is communicating.

Figure 18-24. Master Operation in Multi-Master System (2/3)

Figure 18-24. Master Operation in Multi-Master System (3/3)

Remarks 1. Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats.
2. To use the device as a master in a multi-master system, read the MSTSO bit each time interrupt INTIICO has occurred to check the arbitration result.
3. To use the device as a slave in a multi-master system, check the status by using the IICSO and IICFO registers each time interrupt INTIICO has occurred, and determine the processing to be performed next.

(3) Slave operation

The processing procedure of the slave operation is as follows.
Basically, the slave operation is event-driven. Therefore, processing by the INTIIC0 interrupt (processing that must substantially change the operation status such as detection of a stop condition during communication) is necessary.
In the following explanation, it is assumed that the extension code is not supported for data communication. It is also assumed that the INTIICO interrupt servicing only performs status transition processing, and that actual data communication is performed by the main processing.

Therefore, data communication processing is performed by preparing the following three flags and passing them to the main processing instead of INTIICO.

<1> Communication mode flag

This flag indicates the following two communication statuses.

- Clear mode: Status in which data communication is not performed
- Communication mode: Status in which data communication is performed (from valid address detection to stop condition detection, no detection of $\overline{\mathrm{ACK}}$ from master, address mismatch)

<2> Ready flag

This flag indicates that data communication is enabled. Its function is the same as the INTIIC0 interrupt for ordinary data communication. This flag is set by interrupt servicing and cleared by the main processing. Clear this flag by interrupt servicing when communication is started. However, the ready flag is not set by interrupt servicing when the first data is transmitted. Therefore, the first data is transmitted without the flag being cleared (an address match is interpreted as a request for the next data).

<3> Communication direction flag

This flag indicates the direction of communication. Its value is the same as TRCO.

The main processing of the slave operation is explained next.
Start serial interface IICO and wait until communication is enabled. When communication is enabled, execute communication by using the communication mode flag and ready flag (processing of the stop condition and start condition is performed by an interrupt. Here, check the status by using the flags).
The transmission operation is repeated until the master no longer returns $\overline{\mathrm{ACK}}$. If $\overline{\mathrm{ACK}}$ is not returned from the master, communication is completed.
For reception, the necessary amount of data is received. When communication is completed, $\overline{\operatorname{ACK}}$ is not returned as the next data. After that, the master generates a stop condition or restart condition. Exit from the communication status occurs in this way.

Figure 18-25. Slave Operation Flowchart (1)

Remark Conform to the specifications of the product that is in communication, regarding the transmission and reception formats.

An example of the processing procedure of the slave with the INTIIC0 interrupt is explained below (processing is performed assuming that no extension code is used). The INTIIC0 interrupt checks the status, and the following operations are performed.
<1> Communication is stopped if the stop condition is issued.
$<2>$ If the start condition is issued, the address is checked and communication is completed if the address does not match. If the address matches, the communication mode is set, wait is cancelled, and processing returns from the interrupt (the ready flag is cleared).
$<3>$ For data transmit/receive, only the ready flag is set. Processing returns from the interrupt with the $I^{2} \mathrm{C}$ bus remaining in the wait state.

Remark <1> to <3> above correspond to <1> to <3> in Figure 18-26 Slave Operation Flowchart (2).

Figure 18-26. Slave Operation Flowchart (2)

18.5.17 Timing of $\mathrm{I}^{2} \mathrm{C}$ interrupt request (INTIICO) occurrence

The timing of transmitting or receiving data and generation of interrupt request signal INTIICO, and the value of the IICSO register when the INTIIC0 signal is generated are shown below.

Remark	ST:	Start condition
	AD6 to AD0:	Address
$\mathrm{R} / \overline{\mathrm{W}:}$	Transfer direction specification	
	$\overline{\mathrm{ACK}}:$	Acknowledge
D7 to D0:	Data	
SP:	Stop condition	

(1) Master device operation
(a) Start ~ Address ~ Data ~ Data ~ Stop (transmission/reception)
(i) When WTIMO = 0

(ii) When WTIMO = 1

41: IICS0 = 1000×110B
A2: IICSO = 1000×100B
43: IICS0 $=1000 \times \times 00 \mathrm{~B}$ (Sets SPT0 to 1)
$\triangle 4: \mathrm{IICSO}=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta:$ Generated only when SPIE0 $=1$
x : Don't care
(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)
(i) When WTIMO $=0$

$\triangle 1$: $\mathrm{IICSO}=1000 \times 110 \mathrm{~B}$
42: IICSO $=1000 \times 000$ B (Sets WTIMO to $1^{\text {Note } 1}$)
43: IICSO $=1000 \times \times 00$ B (Clears WTIMO to $0^{\text {Note } 2}$, sets STTO to 1)
44: IICSO = 1000×110B
45: IICSO $=1000 \times 000$ B (Sets WTIM0 to $1^{\text {Note } 3}$)
$\triangle 6$: IICSO $=1000 \times \times 00 \mathrm{~B}$ (Sets SPT0 to 1)
$\triangle 7:$ IICSO $=00000001 \mathrm{~B}$

Notes 1. To generate a start condition, set WTIMO to 1 and change the timing for generating the INTIICO interrupt request signal.
2. Clear WTIMO to 0 to restore the original setting.
3. To generate a stop condition, set WTIMO to 1 and change the timing for generating the INTIICO interrupt request signal.

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
x : Don't care
(ii) When WTIMO = 1

$\Delta 1$: IICSO $=1000 \times 110 \mathrm{~B}$
42: IICSO $=1000 \times \times 00 \mathrm{~B}$ (Sets STT0 to 1)
$\triangle 3$: $\operatorname{IICSO}=1000 \times 110 \mathrm{~B}$
44: IICSO $=1000 \times \times 00$ (Sets SPT0 to 1)
$\triangle 5$: IICSO $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIE0 $=1$
\times : Don't care
(c) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)
(i) When WTIMO = 0

$\triangle 1$: IICSO $=1010 \times 110 \mathrm{~B}$
-2: IICSO $=1010 \times 000 \mathrm{~B}$
43: IICSO = 1010×000B (Sets WTIM0 to $1^{\text {Note }}$)
44: IICSO $=1010 \times \times 00$ (Sets SPT0 to 1)
$\triangle 5:$ IICSO $=00000001 \mathrm{~B}$

Note To generate a stop condition, set WTIMO to 1 and change the timing for generating the INTIIC0 interrupt request signal.

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
x : Don't care

(ii) When WTIMO = 1

(2) Slave device operation (slave address data reception)
(a) Start ~ Address ~ Data ~ Data ~ Stop
(i) When WTIMO = 0

(ii) When WTIMO = 1

ST	AD6 to AD0	R / \bar{W}	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\mathrm{ACK}}$	SP	
$\Delta 1$									

41: $\operatorname{IICSO}=0001 \times 110 \mathrm{~B}$
42: IICSO $=0001 \times 100 \mathrm{~B}$
A3: IICSO $=0001 \times \times 00 \mathrm{~B}$
$\triangle 4$: IICSO $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE0 $=1$
x : Don't care
(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop
(i) When WTIMO = 0 (after restart, matches with SVAO)

$\Delta 1$: IICSO = 0001×110B
A2: IICSO $=0001 \times 000 \mathrm{~B}$
43: IICSO = 0001×110B
44: IICSO = 0001×000B
$\triangle 5$: IICSO = 00000001B

Remark 4: Always generated
Δ : Generated only when SPIE0 $=1$
x : Don't care
(ii) When WTIMO = $\mathbf{1}$ (after restart, matches with SVAO)

ST	AD6 to AD0	R/W	ACK	D7 to D0	$\overline{\text { ACK }}$	ST		AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP
ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	ST		AD6 to AD0	R/W	ACK	D7 to D0	ACK	SP

41: IICSO = 0001×110B
42: IICSO $=0001 \times \times 00 \mathrm{~B}$
-3: IICSO $=0001 \times 110 \mathrm{~B}$
44: IICSO $=0001 \times \times 00 \mathrm{~B}$
$\triangle 5$: IICSO = 00000001B

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
\times : Don't care
(c) Start ~ Address ~ Data ~ Start ~ Code ~ Data ~ Stop
(i) When WTIMO = $\mathbf{0}$ (after restart, does not match address (= extension code))

$\Delta 1$: IICSO = 0001×110B
42: $\operatorname{IICSO}=0001 \times 000 \mathrm{~B}$
43: $\operatorname{IICSO}=0010 \times 010 \mathrm{~B}$
44: IICSO $=0010 \times 000 \mathrm{~B}$
$\triangle 5$: IICSO = 00000001B

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
\times : Don't care
(ii) When WTIM0 = 1 (after restart, does not match address (= extension code))

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	S	P
						2			-3	4			

41: $\operatorname{IICSO}=0001 \times 110 \mathrm{~B}$
42: $\operatorname{IICSO}=0001 \times \times 00 \mathrm{~B}$
-3: $\operatorname{IICSO}=0010 \times 010 \mathrm{~B}$
44: $\operatorname{IICSO}=0010 \times 110 \mathrm{~B}$
$\triangle 5$: IICSO $=0010 \times \times 00 \mathrm{~B}$
$\triangle 6$: IICSO $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIE0 $=1$
\times : Don't care
(d) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop
(i) When WTIMO = 0 (after restart, does not match address (= not extension code))

41: $\mathrm{IICSO}=0001 \times 110 \mathrm{~B}$
42: $\operatorname{IICSO}=0001 \times 000 \mathrm{~B}$
A3: IICSO = 00000110B
$\triangle 4$: IICSO = 00000001B

Remark 4: Always generated
Δ : Generated only when SPIE0 $=1$
x: Don't care
(ii) When WTIMO = 1 (after restart, does not match address (= not extension code))

ST	AD6 to AD0	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP

$\Delta 1$: IICSO = 0001×110B
42: IICSO $=0001 \times \times 00 \mathrm{~B}$
-3: $\mathrm{IICSO}=00000110 \mathrm{~B}$
$\triangle 4: \mathrm{IICSO}=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta: \quad$ Generated only when SPIE0 $=1$
x : Don't care
(3) Slave device operation (when receiving extension code)

The device is always participating in communication when it receives an extension code.
(a) Start ~ Code ~ Data ~ Data ~ Stop
(i) When WTIMO = 0

ST	AD6 to AD0	R/W	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	SP
$\mathbf{\Delta 1}$								$\mathbf{\Delta} 2$

41: IICSO $=0010 \times 010 \mathrm{~B}$
A2: IICSO $=0010 \times 000 \mathrm{~B}$
43: IICSO = 0010×000B
$\triangle 4$: IICSO = 00000001B

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
x : Don't care
(ii) When WTIMO = 1

ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	D7 to D0	ACK	SP

41: $\operatorname{IICSO}=0010 \times 010 \mathrm{~B}$
A2: IICSO $=0010 \times 110 \mathrm{~B}$
43: $\operatorname{IICSO}=0010 \times 100 \mathrm{~B}$
44: IICSO $=0010 \times \times 00 \mathrm{~B}$
$\triangle 5$: IICSO $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIE0 $=1$
\times : Don't care
(b) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop
(i) When WTIMO = 0 (after restart, matches SVAO)

ST	AD6 to AD0	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP

41: IICSO $=0010 \times 010 \mathrm{~B}$
42: IICSO $=0010 \times 000 \mathrm{~B}$
A3: IICSO $=0001 \times 110$ B
44: IICSO $=0001 \times 000 \mathrm{~B}$
$\triangle 5:$ IICSO $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIEO $=1$
\times : Don't care
(ii) When WTIMO = $\mathbf{1}$ (after restart, matches SVA0)

41: IICSO $=0010 \times 010 \mathrm{~B}$
42: IICSO $=0010 \times 110 \mathrm{~B}$
-3: IICSO $=0010 \times \times 00 \mathrm{~B}$
44: $\mathrm{IICSO}=0001 \times 110 \mathrm{~B}$
A5: IICSO $=0001 \times \times 00 \mathrm{~B}$
$\triangle 6$: IICSO = 00000001B

Remark 4: Always generated
Δ : Generated only when SPIE0 $=1$
x : Don't care
(c) Start ~ Code ~ Data ~ Start ~ Code ~ Data ~ Stop
(i) When WTIMO = 0 (after restart, extension code reception)

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	ACK	SP

$\Delta 1$: IICSO $=0010 \times 010 \mathrm{~B}$
42: IICSO $=0010 \times 000 \mathrm{~B}$
43: $\operatorname{IICSO}=0010 \times 010 \mathrm{~B}$
44: IICSO $=0010 \times 000 \mathrm{~B}$
$\triangle 5$: IICSO = 00000001B

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
\times : Don't care
(ii) When WTIM0 = 1 (after restart, extension code reception)

ST	AD6 to AD0	R / W	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP	SP
						ST	AD6 to ADO		44	D7to 0			

41: IICS0 = 0010×010B
42: $\operatorname{IICSO}=0010 \times 110 \mathrm{~B}$
-3: IICSO $=0010 \times \times 00 \mathrm{~B}$
44: $\operatorname{IICSO}=0010 \times 010 \mathrm{~B}$
45: $\operatorname{IICSO}=0010 \times 110 \mathrm{~B}$
46: IICSO = 0010××00B
$\Delta 7$: IICS0 = 00000001B

Remark 4: Always generated
Δ : Generated only when SPIE0 $=1$
\times : Don't care
(d) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop
(i) When WTIMO = 0 (after restart, does not match address (= not extension code))

41: IICSO = 00100010B
A2: IICSO = 00100000B
43: IICSO = 00000110B
$\triangle 4$: IICSO $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
x : Don't care
(ii) When WTIMO = 1 (after restart, does not match address (= not extension code))

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP

$\Delta 1$: IICSO = 00100010B
-2: IICSO $=00100110 \mathrm{~B}$
A3: IICSO $=00100 \times 00 \mathrm{~B}$
44: IICSO = 00000110B
$\triangle 5$: IICSO = 00000001B

Remark A: Always generated
Δ : Generated only when SPIE0 $=1$
x: Don't care
(4) Operation without communication
(a) Start ~ Code ~ Data ~ Data ~ Stop

ST	AD6 to AD0	R/W	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	SP

$\triangle 1: I I C S 0=00000001 B$

Remark Δ : Generated only when SPIEO $=1$
(5) Arbitration loss operation (operation as slave after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS0 bit each time interrupt request signal INTIICO has occurred to check the arbitration result.
(a) When arbitration loss occurs during transmission of slave address data
(i) When WTIMO = 0

$\triangle 1$: $\mathrm{IICSO}=0101 \times 110 \mathrm{~B}$
42: IICSO $=0001 \times 000 \mathrm{~B}$
A3: IICSO = 0001×000B
$\triangle 4$: IICSO $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIEO $=1$
x : Don't care
(ii) When WTIMO = 1

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP
$\Delta 1$								

41: $\mathrm{IICSO}=0101 \times 110 \mathrm{~B}$
A2: IICSO $=0001 \times 100 \mathrm{~B}$
43: IICSO $=0001 \times \times 00 \mathrm{~B}$
$\triangle 4$: IICSO $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
x : Don't care
(b) When arbitration loss occurs during transmission of extension code
(i) When WTIMO = 0

A1: IICSO $=0110 \times 010 \mathrm{~B}$
A2: IICSO $=0010 \times 000 \mathrm{~B}$
A3: IICSO $=0010 \times 000 \mathrm{~B}$
$\triangle 4$: IICSO $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE0 $=1$
x : Don't care
(ii) When WTIMO = 1

ST	AD6 to AD0	R/产	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$
SP							

A1: IICSO $=0110 \times 010 \mathrm{~B}$
A2: IICSO $=0010 \times 110 \mathrm{~B}$
A3: IICSO $=0010 \times 100 \mathrm{~B}$
44: IICSO $=0010 \times \times 00 \mathrm{~B}$
$\triangle 5$: IICSO $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIEO $=1$
\times : Don't care
(6) Operation when arbitration loss occurs (no communication after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS0 bit each time interrupt request signal INTIICO has occurred to check the arbitration result.
(a) When arbitration loss occurs during transmission of slave address data (when WTIMO = 1)

А1: IICSO $=01000110 \mathrm{~B}$
$\triangle 2: I I C S 0=00000001 B$

Remark A: Always generated
$\Delta:$ Generated only when SPIE0 $=1$
(b) When arbitration loss occurs during transmission of extension code

ST	AD6 to AD0	R/ $\overline{\mathrm{W}}$	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	SP
$\mathbf{\Delta 1}$								

41: IICS0 = 0110×010B
Sets LRELO = 1 by software
$\Delta 2$: $\mathrm{IICSO}=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE0 $=1$
x : Don't care
(c) When arbitration loss occurs during transmission of data
(i) When WTIMO = 0

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP
$\Delta 1$								

41: IICSO = 10001110B
A2: IICSO = 01000000B
$\triangle 3$: IICSO = 00000001B

Remark 4: Always generated
$\Delta:$ Generated only when SPIE $=1$
(ii) When WTIMO = 1

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP

A1: IICS0 = 10001110B
A2: IICSO $=01000100 \mathrm{~B}$
$\triangle 3$: IICSO $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
(d) When loss occurs due to restart condition during data transfer
(i) Not extension code (Example: unmatches with SVAO)

(ii) Extension code

$\triangle 1:$ IICSO = 1000×110B
42: IICSO = 01100010B
Sets LRELO = 1 by software
$\triangle 3$: $\mathrm{IICSO}=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta:$ Generated only when SPIE0 $=1$
x : Don't care
$\mathrm{n}=6$ to 0
(e) When loss occurs due to stop condition during data transfer

А1: $\operatorname{lICSO}=10000110 \mathrm{~B}$
$\Delta 2$: IICSO = 01000001B

Remark A: Always generated
Δ : Generated only when SPIE0 $=1$
x : Don't care
$\mathrm{n}=6$ to 0
(f) When arbitration loss occurs due to low-level data when attempting to generate a restart condition
(i) When WTIMO = 0

A1: $I I C S 0=1000 \times 110 B$
42: IICSO = 1000×000B (Sets WTIMO to 1)
©3: IICS0 $=1000 \times 100 \mathrm{~B}$ (Clears WTIM0 to 0)
44: IICSO = 01000000B
$\triangle 5: \mathrm{IICSO}=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta:$ Generated only when SPIE0 $=1$
x : Don't care
(ii) When WTIMO = $\mathbf{1}$

(g) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition
(i) When WTIMO = 0

A1: IICSO = 1000×110B
42: IICSO = 1000×000B (Sets WTIMO to 1)
43: IICS0 $=1000 \times \times 00$ (Sets STT0 to 1)
$\triangle 4: \mathrm{IICSO}=01000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIEO $=1$
x : Don't care

(ii) When WTIMO = 1

$\Delta 1:$ IICSO = 1000×110B
©2: IICSO $=1000 \times \times 00 \mathrm{~B}$ (Sets STT0 to 1)
$\triangle 3$: IICSO $=01000001 \mathrm{~B}$

Remark A: Always generated
$\Delta:$ Generated only when SPIE0 $=1$
x : Don't care
(h) When arbitration loss occurs due to low-level data when attempting to generate a stop condition
(i) When WTIMO = 0

A1: $I I C S 0=1000 \times 110 B$
42: IICSO = 1000×000B (Sets WTIMO to 1)
©3: IICS0 $=1000 \times 100 \mathrm{~B}$ (Clears WTIM0 to 0)
44: IICSO = 01000100B
$\triangle 5: \mathrm{IICSO}=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta:$ Generated only when SPIE0 $=1$
x : Don't care
(ii) When WTIMO = $\mathbf{1}$

18.6 Timing Charts

When using the $I^{2} C$ bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.

After outputting the slave address, the master device transmits the TRCO bit (bit 3 of IIC status register 0 (IICSO)), which specifies the data transfer direction, and then starts serial communication with the slave device.

Figures 18-27 and 18-28 show timing charts of the data communication.
IIC shift register 0 (IICO)'s shift operation is synchronized with the falling edge of the serial clock (SCLO). The transmit data is transferred to the SOO latch and is output (MSB first) via the SDAO pin.

Data input via the SDAO pin is captured into IIC0 at the rising edge of SCLO.

Figure 18-27. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (1/3)
(1) Start condition ~ address

Processing by master device

Notes 1. Write data to IICO, not setting WRELO, in order to cancel a wait state during master transmission.
2. To cancel slave wait, write "FFH" to IICO or set WRELO.

Figure 18-27. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (2/3)
(2) Data

Notes 1. Write data to IICO, not setting WRELO, in order to cancel a wait state during master transmission.
2. To cancel slave wait, write "FFH" to IICO or set WRELO.

Figure 18-27. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (3/3)
(3) Stop condition

Notes 1. Write data to IICO, not setting WRELO, in order to cancel a wait state during master transmission.
2. To cancel slave wait, write "FFH" to IICO or set WRELO.

Figure 18-28. Example of Slave to Master Communication (When 8-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (1/3)
(1) Start condition ~ address

Notes 1. To cancel master wait, write "FFH" to IICO or set WRELO.
2. Write data to IICO, not setting WRELO, in order to cancel a wait state during slave transmission.

Figure 18-28. Example of Slave to Master Communication (When 8-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (2/3)
(2) Data

Processing by master device

Notes 1. To cancel master wait, write "FFH" to IICO or set WRELO.
2. Write data to IICO, not setting WRELO, in order to cancel a wait state during slave transmission.

Figure 18-28. Example of Slave to Master Communication
(When 8-Clock and 9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (3/3)
(3) Stop condition

Processing by master device

Notes 1. To cancel wait, write "FFH" to IICO or set WRELO.
2. Write data to IICO, not setting WRELO, in order to cancel a wait state during slave transmission.
3. If a wait state during slave transmission is canceled by setting WRELO, TRCO will be cleared.

CHAPTER 19 MULTIPLIER/DIVIDER

	$78 \mathrm{~K} 0 / \mathrm{KB} 2$	$78 \mathrm{KO} / \mathrm{KC} 2$	$78 \mathrm{KO} / \mathrm{KD} 2$	$78 \mathrm{KO} / \mathrm{KE} 2$	78K0/KF2
Multiplier/divider	-	Products whose flash memory is less than $32 \mathrm{~KB}:-$ Products whose flash memory is at least $48 \mathrm{~KB}: \sqrt{ }$			

Remark $\sqrt{ }$: Mounted, -: Not mounted

Caution Do not use serial interface IICO and the multiplier/divider simultaneously, because various flags corresponding to interrupt request sources are shared among serial interface IICO and the multiplier/divider.

19.1 Functions of Multiplier/Divider

The multiplier/divider has the following functions.

- 16 bits $\times 16$ bits $=32$ bits (multiplication)
- 32 bits $\div 16$ bits $=32$ bits, 16-bit remainder (division)

19.2 Configuration of Multiplier/Divider

The multiplier/divider includes the following hardware.

Table 19-1. Configuration of Multiplier/Divider

Item	Configuration
Registers	Remainder data register 0 (SDR0) Multiplication/division data registers AO (MDAOH, MDAOL) Multiplication/division data registers B0 (MDBO)
Control register	Multiplier/divider control register 0 (DMUC0)

Figure 19-1 shows the block diagram of the multiplier/divider.

Figure 19-1. Block Diagram of Multiplier/Divider

(1) Remainder data register 0 (SDR0)

SDRO is a 16-bit register that stores a remainder. This register stores 0 in the multiplication mode and the remainder of an operation result in the division mode.
SDR0 can be read by an 8-bit or 16 -bit memory manipulation instruction.
Reset signal generation clears SDR0 to 0000H.

Figure 19-2. Format of Remainder Data Register 0 (SDRO)

Address:	After reset: 0000 H															
Symbol	FF61H (SDR0H)								FF60H (SDR0L)							
																1
SDR0	SDR 015	$\begin{gathered} \text { SDR } \\ 014 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 013 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 012 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 011 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 010 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 009 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 008 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 007 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 006 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 005 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 004 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 003 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 002 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 001 \end{gathered}$	$\begin{gathered} \text { SDR } \\ 000 \end{gathered}$

Cautions 1. The value read from SDRO during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1) is not guaranteed.
2. SDR0 is reset when the operation is started (when DMUE is set to 1).
(2) Multiplication/division data register A0 (MDAOH, MDAOL)

MDAO is a 32 -bit register that sets a 16 -bit multiplier A in the multiplication mode and a 32 -bit dividend in the division mode, and stores the 32 -bit result of the operation (higher 16 bits: MDAOH, lower 16 bits: MDAOL).

Figure 19-3. Format of Multiplication/Division Data Register A0 (MDAOH, MDAOL)

Cautions 1. MDAOH is cleared to 0 when an operation is started in the multiplication mode (when multiplier/divider control register 0 (DMUCO) is set to 81 H).
2. Do not change the value of MDAO during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is 1). Even in this case, the operation is executed, but the result is undefined.
3. The value read from MDAO during operation processing (while DMUE is 1) is not guaranteed.

The functions of MDAO when an operation is executed are shown in the table below.

Table 19-2. Functions of MDAO During Operation Execution

DMUSEL0	Operation Mode	Setting	Operation Result
0	Division mode	Dividend	Division result (quotient)
1	Multiplication mode	Higher 16 bits: 0, Lower 16 bits: Multiplier A	Multiplication result (product)

Remark DMUSELO: Bit 0 of multiplier/divider control register 0 (DMUC0)

The register configuration differs between when multiplication is executed and when division is executed, as follows.

- Register configuration during multiplication
<Multiplier A> <Multiplier B> <Product>
MDA0 (bits 15 to 0$) \times$ MDB0 (bits 15 to 0) $=$ MDA0 (bits 31 to 0)
- Register configuration during division
<Dividend> <Divisor> <Quotient> <Remainder>
MDAO (bits 31 to 0) \div MDB0 (bits 15 to 0) $=$ MDAO (bits 31 to 0) \ldots SDRO (bits 15 to 0)

MDAO fetches the calculation result as soon as the clock is input, when bit 7 (DMUE) of multiplier/divider control register 0 (DMUC0) is set to 1 .
MDAOH and MDAOL can be set by an 8-bit or 16-bit memory manipulation instruction.
Reset signal generation clears MDAOH and MDAOL to 0000H.
(3) Multiplication/division data register B0 (MDB0)

MDBO is a register that stores a 16 -bit multiplier B in the multiplication mode and a 16 -bit divisor in the division mode.
MDB0 can be set by an 8-bit or 16-bit memory manipulation instruction.
Reset signal generation clears MDB0 to 0000 H .

Figure 19-4. Format of Multiplication/Division Data Register B0 (MDB0)

Cautions 1. Do not change the value of MDBO during operation processing (while bit 7 (DMUE) of multiplier/divider control register 0 (DMUCO) is 1). Even in this case, the operation is executed, but the result is undefined.
2. Do not clear MDBO to 0000 H in the division mode. If set, undefined operation results are stored in MDAO and SDRO

19.3 Register Controlling Multiplier/Divider

The multiplier/divider is controlled by multiplier/divider control register 0 (DMUC0).
(1) Multiplier/divider control register 0 (DMUC0)

DMUCO is an 8-bit register that controls the operation of the multiplier/divider.
DMUCO can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears DMUCO to 00H.

Figure 19-5. Format of Multiplier/Divider Control Register 0 (DMUC0)
Address: FF68H After reset: 00 H R/W

Symbol	$<7>$		6	5	4	3	2	1	0
	DMUC0	DMUE	0	0	0	0	0	0	DMUSELO

DMUE $^{\text {Note }}$		Operation start/stop
0	Stops operation	
1	Starts operation	

| DMUSELO | Operation mode (multiplication/division) selection |
| :---: | :--- | :--- |
| 0 | Division mode |
| 1 | Multiplication mode |

Note When DMUE is set to 1 , the operation is started. DMUE is automatically cleared to 0 after the operation is complete.

Cautions 1. If DMUE is cleared to 0 during operation processing (when DMUE is 1), the operation result is not guaranteed. If the operation is completed while the clearing instruction is being executed, the operation result is guaranteed, provided that the interrupt flag is set.
2. Do not change the value of DMUSELO during operation processing (while DMUE is 1). If it is changed, undefined operation results are stored in multiplication/division data register AO (MDAO) and remainder data register 0 (SDRO).
3. If DMUE is cleared to 0 during operation processing (while DMUE is 1), the operation processing is stopped. To execute the operation again, set multiplication/division data register AO (MDAO), multiplication/division data register B0 (MDBO), and multiplier/divider control register 0 (DMUCO), and start the operation (by setting DMUE to 1).

19.4 Operations of Multiplier/Divider

19.4.1 Multiplication operation

- Initial setting

1. Set operation data to multiplication/division data register AOL (MDAOL) and multiplication/division data register B0 (MDBO).
2. Set bits 0 (DMUSELO) and 7 (DMUE) of multiplier/divider control register 0 (DMUC0) to 1 . Operation will start.

- During operation

3. The operation will be completed when 16 peripheral hardware clocks (fprs) have been issued after the start of the operation (intermediate data is stored in the MDAOL and MDAOH registers during operation, and therefore the read values of these registers are not guaranteed).

- End of operation

4. The operation result data is stored in the MDAOL and MDAOH registers.
5. DMUE is cleared to 0 (end of operation).
6. After the operation, an interrupt request signal (INTDMU) is generated.

- Next operation

7. To execute multiplication next, start from the initial setting in 19.4.1 Multiplication operation.
8. To execute division next, start from the initial setting in 19.4.2 Division operation.

INTDMU \qquad

19.4.2 Division operation

- Initial setting

1. Set operation data to multiplication/division data register AO (MDAOL and MDAOH) and multiplication/division data register B0 (MDB0).
2. Set bits 0 (DMUSELO) and 7 (DMUE) of multiplier/divider control register 0 (DMUCO) to 0 and 1 , respectively. Operation will start.

- During operation

3. The operation will be completed when 32 peripheral hardware clocks (fprs) have been issued after the start of the operation (intermediate data is stored in the MDAOL and MDAOH registers and remainder data register 0 (SDRO) during operation, and therefore the read values of these registers are not guaranteed).

- End of operation

4. The result data is stored in the MDAOL, MDAOH, and SDR0 registers.
5. DMUE is cleared to 0 (end of operation).
6. After the operation, an interrupt request signal (INTDMU) is generated.

- Next operation

7. To execute multiplication next, start from the initial setting in 19.4.1 Multiplication operation.
8. To execute division next, start from the initial setting in 19.4.2 Division operation.

Figure 19-7. Timing Chart of Division Operation (DCBA2586H $\div 0018 \mathrm{H}$)

INTDMU \qquad

CHAPTER 20 INTERRUPT FUNCTIONS

		78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2		78K0/KF2	
		Products whose flash memory is less than 32 KB			Products whose flash memory is at least 48 KB			
Maskable interrupts	External		6	38/44 pins: 7 ch 48 pins: 8 ch	8	9	9	9
	internal	14	16	16	16	19	20	

20.1 Interrupt Function Types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into a high interrupt priority group and a low interrupt priority group by setting the priority specification flag registers (PROL, PROH, PR1L, PR1H).
Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the priority of vectored interrupt servicing. For the priority order, see Table 20-1.
A standby release signal is generated and STOP and HALT modes are released.
External interrupt requests and internal interrupt requests are provided as maskable interrupts.

(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

20.2 Interrupt Sources and Configuration

The interrupt sources consist of maskable interrupts and software interrupts. In addition, they also have up to four reset sources (see Table 20-1).

Table 20-1. Interrupt Source List (1/2)

Interrupt Type	Internal/ External	Basic Configuration Type ${ }^{\text {Note } 1}$	Default Priority ${ }^{\text {Note } 2}$	Interrupt Source		Vector Table Address	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{D} \\ & 2 \end{aligned}$	KE2	KF2
				Name	Trigger						
Maskable	Internal	(A)	0	INTLVI	Low-voltage detection ${ }^{\text {Note } 3}$	0004H	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark
	External	(B)	1	INTP0	Pin input edge detection	0006H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			2	INTP1		0008H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
			3	INTP2		000AH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			4	INTP3		000 CH	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			5	INTP4		000EH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			6	INTP5		0010H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
	Internal	(A)	7	INTSRE6	UART6 reception error generation	0012H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			8	INTSR6	End of UART6 reception	0014H	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark
			9	INTST6	End of UART6 transmission	0016H	$\sqrt{ }$				
			10	INTCSI10/ INTSTO	End of CSI10 communication/end of UART0 transmission	0018H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
			11	INTTMH1	Match between TMH1 and CMP01 (when compare register is specified)	001AH	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
			12	INTTMH0	Match between TMHO and CMPOO (when compare register is specified)	001CH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$
			13	INTTM50	Match between TM50 and CR50 (when compare register is specified)	001EH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark
			14	INTTM000	Match between TM00 and CR000 (when compare register is specified), TIO10 pin valid edge detection (when capture register is specified)	0020H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$
			15	INTTM010	Match between TM00 and CR010 (when compare register is specified), TIOOO pin valid edge detection (when capture register is specified)	0022H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			16	INTAD	End of A / D conversion	0024H	$\sqrt{ }$				
			17	INTSR0	End of UARTO reception or reception error generation	0026H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark
			18	INTWTI	Watch timer reference time interval signal	0028H	-	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			19	INTTM51	Match between TM51 and CR51 (when compare register is specified)	002AH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark

Notes 1. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 20-1.
2. The default priority determines the sequence of processing vectored interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 28 indicates the lowest priority.
3. When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is cleared to 0 .
4. When 8 -bit timer/event counter 51 is used in the carrier generator mode, an interrupt is generated upon the timing when the INTTM5H1 signal is generated (see Figure 9-13 Transfer Timing).

Table 20-1. Interrupt Source List (2/2)

Interrupt Type	Internal/ External	Basic Configuration Type ${ }^{\text {Note } 1}$	Default Priority ${ }^{\text {Note } 2}$	Interrupt Source		Vector Table Address	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~B} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{E} \\ & 2 \end{aligned}$	KF2
				Name	Trigger						
Maskable	External	(C)	20	INTKR	Key interrupt detection	002CH	-	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
	Internal	(A)	21	INTWT	Watch timer overflow	002EH	-	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
	External	(B)	22	INTP6	Pin input edge detection	0030H	-	$\underset{\text { Note } 4}{\sqrt{ }}$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			23	INTP7		0032H	-	-	-	$\sqrt{ }$	\checkmark
	Internal	(A)	24	INTIICO/ INTDMU	End of IICO communication/end of multiply/divide operation	0034H	$\underset{\text { Note } 5}{\sqrt{ }}$	$\underset{\text { Note } 5}{\mid}$	$\underset{\text { Note } 5}{\sqrt{ }}$	$\underset{\text { Note } 5}{V}$	\checkmark
			25	INTCSI11	End of CSI11 communication	0036H	-	-	-	$\underset{\text { Note } 6}{V}$	\checkmark
			26	INTTM001	Match between TM01 and CR001 (when compare register is specified), TI011 pin valid edge detection (when capture register is specified)	0038H	-	-	-	$\underset{\text { Note } 6}{V}$	\checkmark
			27	INTTM011	Match between TM01 and CR011 (when compare register is specified), TI001 pin valid edge detection (when capture register is specified)	003AH	-	-	-	$\underset{\text { Note } 6}{V}$	\checkmark
			28	INTACSI	End of CSIA0 communication	003CH	-	-	-	-	\checkmark
Software	-	(D)	-	BRK	BRK instruction execution	003EH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark
Reset	-	-	-	RESET	Reset input	0000H	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark
				POC	Power-on clear						
				LVI	Low-voltage detection ${ }^{\text {Note } 3}$						
				WDT	WDT overflow						

Notes 1. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 20-1.
2. The default priority determines the sequence of processing vectored interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 28 indicates the lowest priority
3. When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is set to 1 .
4. 48-pin products only.
5. INTIICO: products with the flash memory of 32 KB or less INTIIC0/INTDMU: products with the flash memory of 48 KB or more
6. Products with the flash memory of 48 KB or more only.

Figure 20-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal maskable interrupt

(B) External maskable interrupt (INTPn)

Remark $\mathrm{n}=0$ to 5: 78K0/KB2, 38-pin and 44-pin products of $78 \mathrm{KO} / \mathrm{KC} 2$
$\mathrm{n}=0$ to $6: 78 \mathrm{KO} / \mathrm{KD} 2,48$-pin products of $78 \mathrm{KO} / \mathrm{KC} 2$
$\mathrm{n}=0$ to $7: \quad 78 \mathrm{KO} / \mathrm{KE} 2,78 \mathrm{KO} / \mathrm{KF} 2$

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specification flag

Figure 20-1. Basic Configuration of Interrupt Function (2/2)
<R> (C) External maskable interrupt (INTKR)

$\begin{array}{lll}\text { Remark } & \mathrm{n}=0,1: & 38 \text {-pin products of } 78 \mathrm{KO} / \mathrm{KC2} \\ & \mathrm{n}=0 \text { to } 3: & 44 \text {-pin and } 48 \text {-pin products of } 78 \mathrm{KO} / \mathrm{KC2} \\ \mathrm{n}=0 \text { to } 7: & 78 \mathrm{KO} / \mathrm{KD} 2,78 \mathrm{~K} / \mathrm{KE} 2,78 \mathrm{KO} / \mathrm{KF} 2\end{array}$
(D) Software interrupt

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specification flag
KRM: Key return mode register

20.3 Registers Controlling Interrupt Functions

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag register (IFOL, IFOH, IF1L, IF1H)
- Interrupt mask flag register (MK0L, MKOH, MK1L, MK1H)
- Priority specification flag register (PROL, PROH, PR1L, PR1H)
- External interrupt rising edge enable register (EGP)
- External interrupt falling edge enable register (EGN)
- Program status word (PSW)

Table 20-2 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Table 20-2. Flags Corresponding to Interrupt Request Sources (1/2)

K					Interrupt	Interrupt Request Flag			Interrupt Mask Flag			Priority Specification Flag		
$\begin{aligned} & \mathrm{B} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 2 \end{aligned}$	$\begin{array}{l\|} D \\ 2 \\ 2 \end{array}$	E	F	Source			Register			Register			Register
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTLVI	LVIIF		IFOL	LVIMK		MKOL	LVIPR		PROL
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTPO	PIFO			PMK0			PPR0		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP1	PIF1			PMK1			PPR1		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP2	PIF2			PMK2			PPR2		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP3	PIF3			РMK3			PPR3		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP4	PIF4			PMK4			PPR4		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP5	PIF5			PMK5			PPR5		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTSRE6	SREIF6			SREMK6			SREPR6		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTSR6	SRIF6		IFOH	SRMK6		MKOH	SRPR6		PROH
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTST6	STIF6			STMK6			STPR6		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTCSI10	CSIIF10 Note 1	DUALIFO Note		$\underset{\text { Note2 }}{\text { CSIMK10 }}$	DUALMKO Note 2		${ }_{\text {Nole } 3}^{\text {CSIPR10 }}$	DUALPRO Note 3	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTSTO	$\begin{aligned} & \text { STIFO } \\ & \text { Note } 1 \end{aligned}$			$\left.\right\|_{\text {Note2 }} \text { STMKO }$			$\left\lvert\, \begin{aligned} & \text { STPR } 30 \end{aligned}\right.$		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTMH1	TMIFH1			TMMKH1			TMPRH1		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTMHO	TMIFH0			TMMKH0			TMPRH0		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTM50	TMIF50			TMMK50			TMPR50		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTM000	TMIF000			TMMK000			TMPR000		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTM010	TMIF010			TMMK010			TMPR010		

Notes 1. If either interrupt source INTCSI10 or INTSTO is generated, bit 2 of IFOH is set (1).
2. Bit 2 of MKOH supports both interrupt sources INTCSI10 and INTSTO.
3. Bit 2 of PROH supports both interrupt sources INTCSI10 and INTSTO.

Table 20-2. Flags Corresponding to Interrupt Request Sources (2/2)

K	K	K	K		Interrupt	Interrupt Request Flag		Interrupt Mask Flag		Priority Specification Flag	
B	C	D	E	F	Source		Register		Register		Register
$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	INTAD	ADIF	IF1L	ADMK	MK1L	ADPR	PR1L
\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	INTSR0	SRIF0		SRMK0		SRPR0	
-	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	INTWTI	WTIIF		WTIMK		WTIPR	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTM51 Note 4	TMIF51		TMMK51		TMPR51	
-	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	INTKR	KRIF		KRMK		KRPR	
-	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	INTWT	WTIF		WTMK		WTPR	
-	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	INTP6	PIF6		PMK6		PPR6	
-	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	INTP7	PIF7		PMK7		PPR7	
$\left.\begin{array}{\|c\|c\|} \sqrt{ } \\ \text { Note e } 2 \mid \end{array} \right\rvert\,$	$\underbrace{}_{2} \text { Note }$		$\left\lvert\, \begin{gathered} \mid \\ \hline \text { Note } 2 \end{gathered}\right.$	\checkmark	INTIICO Note 5	IICIFO ${ }^{\text {Note } 6}$	IF1H	IICMK0 ${ }^{\text {Note } 7}$	MK1H	IICPR0 ${ }^{\text {Note } 8}$	PR1H
					INTDMU Note 5	DMUIF ${ }^{\text {Note } 6}$		DMUMK ${ }^{\text {Note } 7}$		DMUPR ${ }^{\text {Note } 8}$	
-	-	-	$\left\|\begin{array}{c} \sqrt{ } \\ \text { Note } 3 \end{array}\right\|$	\checkmark	INTCSI11	CSIIF11		CSIMK11		CSIPR11	
-	-		$\left\lvert\, \begin{array}{c\|} \hline \sqrt{ } \\ \text { Note } 3 \end{array}\right.$	\checkmark	INTTM001	TMIF001		TMMK001		TMPR001	
-	-		$\left\lvert\, \begin{gathered} \sqrt{ } \\ \text { Note } 3 \end{gathered}\right.$	$\sqrt{ }$	INTTM011	TMIF011		TMMK011		TMPR011	
-	-	-	-	$\sqrt{ }$	INTACSI	ACSIIF		ACSIMK		ACSIPR	

Notes 1. 48-pin products only.
2. INTIICO: products whose flash memory is less than 32 KB

INTIIC0/INTDMU: products whose flash memory is at least 48 KB
3. Products whose flash memory is at least 48 KB only.
4. When 8 -bit timer/event counter 51 is used in the carrier generator mode, an interrupt is generated upon the timing when the INTTM5H1 signal is generated (see Figure 9-13 Transfer Timing).
5. Do not use serial interface IIC0 and multiplier/divider simultaneously, because the flags corresponding to the interrupt request sources of serial interface IIC0 and multiplier/divider support both of these interrupt request sources. If software which operates serial interface IIC0 is developed by CC78K0 which is C compiler, do not select the check box of "Using Multiplier/Divider" on GUI of PM+.
6. If either interrupt source INTIICO or INTDMU is generated, bit 0 of IF1H is set (1).
7. Bit 0 of MK1H supports both interrupt sources INTIICO and INTDMU.
8. Bit 0 of PR1H supports both interrupt sources INTIICO and INTDMU.
(1) Interrupt request flag registers (IF0L, IFOH, IF1L, IF1H)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon reset signal generation.
When an interrupt is acknowledged, the interrupt request flag is automatically cleared and then the interrupt routine is entered.
IFOL, IFOH, IF1L, and IF1H are set by a 1-bit or 8 -bit memory manipulation instruction. When IFOL and IFOH, and IF1L and IF1H are combined to form 16-bit registers IFO and IF1, they are set by a 16 -bit memory manipulation instruction.

Reset signal generation clears these registers to 00 H .

Cautions 1. When operating a timer, serial interface, or A/D converter after standby release, operate it once after clearing the interrupt request flag. An interrupt request flag may be set by noise.
2. When manipulating a flag of the interrupt request flag register, use a 1-bit memory manipulation instruction (CLR1). When describing in C language, use a bit manipulation instruction such as "IFOL. $0=0$;" or "_asm("clr1 IFOL, 0 ");" because the compiled assembler must be a 1-bit memory manipulation instruction (CLR1).
If a program is described in C language using an 8-bit memory manipulation instruction such as "IFOL \& = 0xfe;" and compiled, it becomes the assembler of three instructions.
mov a, IFOL
and a, \#OFEH
mov IFOL, a

In this case, even if the request flag of another bit of the same interrupt request flag register (IFOL) is set to 1 at the timing between "mov a, IFOL" and "mov IFOL, a", the flag is cleared to 0 at "mov IFOL, a". Therefore, care must be exercised when using an 8-bit memory manipulation instruction in C language.

Figure 20-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H) (78K0/KB2)

Address: FFEOH After reset: 00 H R/W
Symbol
IFOL

| $<7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SREIF6 | PIF5 | PIF4 | PIF3 | PIF2 | PIF1 | PIF0 | LVIIF |

Address: FFE1H After reset: 00 H R/W
Symbol
IFOH

$<7>$		$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
TMIF010	TMIF000	TMIF50	TMIFH0	TMIFH1	DUALIF0	STIF6	SRIF6	

Address: FFE2H After reset: 00 H R/W
Symbol
IF1L

7	6	5	4	$<3>$	2	$<1>$	$<0>$
0	0	0	0	TMIF51	0	SRIF0	ADIF

Address: FFE3H After reset: 00 H R/W
Symbol IF1H

7	6	5	4	3	2	1	$<0>$
0	0	0	0	0	0	0	IICIF0

XXIFX	
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Caution Be sure to clear bits 2, 4 to $\mathbf{7}$ of IF1L and bits 1 to $\mathbf{7}$ of IF1H to 0.

Figure 20-3. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H) (78K0/KC2)

Address: FFEOH After reset: 00H R/W
Symbol
IFOL

| $\ll 7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SREIF6 | PIF5 | PIF4 | PIF3 | PIF2 | PIF1 | PIF0 | LVIIF |

Address: FFE1H After reset: 00 H R/W
Symbol
IFOH

| $<7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TMIF010 | TMIF000 | TMIF50 | TMIFH0 | TMIFH1 | DUALIF0 | STIF6 | SRIF6 |
| | | | | | | CSIIF10 | |
| STIF0 | | | | | | | |$]$

Address: FFE2H After reset: 00 H R/W
Symbol
IF1L

7	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
0	PIF6 $^{\text {Note } 1}$	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF

Address: FFE3H After reset: 00 H R/W
Symbol
IF1H

7	6	5	4	3	2	1	0	0
0	0	0	0	0	0	0	IICIF0	
DMUIF								

XXIFX	
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Notes 1. 48-pin products only.
2. Products whose flash memory is at least 48 KB only.

Cautions 1. Be sure to clear bits 6 and 7 of IF1L to 0 in the 38 -pin and 44 -pin products.

 Be sure to clear bit 7 of IF1L to 0 in the 48 -pin products.2. Be sure to clear bits 1 to 7 of IF1H to 0 .

Figure 20-4. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H) (78K0/KD2)

Address: FFEOH After reset: 00H R/W
Symbol
IFOL

| $<7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SREIF6 | PIF5 | PIF4 | PIF3 | PIF2 | PIF1 | PIF0 | LVIIF |

Address: FFE1H After reset: 00 H R/W
Symbol
IFOH

<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
TMIF010	TMIF000	TMIF50	TMIFH0	TMIFH1	DUALIFO CSIIF10 STIFO	STIF6	SRIF6

Address: FFE2H After reset: 00 H R/W
Symbol
IF1L

7	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
0	PIF6	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF

Address: FFE3H After reset: 00 H R/W
Symbol IF1H

7	6	5	4	3	2	1	0	0
0	0	0	0	0	0	IICIF0		
DMUIF $^{\text {Note }}$								

XXIFX	
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Note Products whose flash memory is at least 48 KB only.

Caution Be sure to clear bit 7 of 1F1L and bits 1 to 7 of IF1H to 0 .

Figure 20-5. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H) (78K0/KE2)

Address: FFEOH After reset: 00 H R/W
Symbol
IFOL

| $\ll 7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SREIF6 | PIF5 | PIF4 | PIF3 | PIF2 | PIF1 | PIF0 | LVIIF |

Address: FFE1H After reset: 00 H R/W
Symbol
IFOH

| $<7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TMIF010 | TMIF000 | TMIF50 | TMIFH0 | TMIFH1 | DUALIF0 | STIF6 | SRIF6 |
| | | | | | | CSIIF10 | |
| STIF0 | | | | | | | |$]$

Address: FFE2H After reset: 00 H R/W
Symbol
IF1L

$<7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
PIF7	PIF6	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF

Address: FFE3H After reset: 00 H R/W
Symbol IF1H

| 7 | 6 | 5 | 4 | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | TMIF011 $^{\text {Note }}$ | TMIF001 $^{\text {Note }}$ | CSIIF11 ${ }^{\text {Note }}$ | IICIF0
 DMUIF $^{\text {Note }}$ |

XXIFX	
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Note Products whose flash memory is at least 48 KB only.

Caution Be sure to clear bits 1 to 7 of IF1H to 0 for the products whose flash memory is less than $\mathbf{3 2}$ KB. Be sure to clear bits 4 to 7 of IF1H to 0 for the products whose flash memory is at least 48 KB.

Figure 20-6. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H) (78K0/KF2)

Address: FFEOH After reset: 00H R/W
Symbol
IFOL

| $<7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SREIF6 | PIF5 | PIF4 | PIF3 | PIF2 | PIF1 | PIF0 | LVIIF |

Address: FFE1H After reset: 00 H R/W
Symbol
IFOH

$<7>$							$<6>$
TMIF010	TMIF000	TMIF50	TMIFH0	TMIFH1	DUALIF0	STIF6	SRIF6
						CSIIF10	

Address: FFE2H After reset: 00 H R/W
Symbol
IF1L

$\ll 7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
PIF7	PIF6	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF

Address: FFE3H After reset: 00 H R/W
Symbol IF1H

7	6	5	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
0	0	0	ACSIIF	TMIF011	TMIF001	CSIIF11	IICIF0
DMUIF							

XXIFX	
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Caution Be sure to clear bits 5 to 7 of IF1H to 0.

(2) Interrupt mask flag registers (MK0L, MKOH, MK1L, MK1H)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing.
MKOL, MK0H, MK1L, and MK1H are set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H, and MK1L and MK1H are combined to form 16-bit registers MKO and MK1, they are set by a 16-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Figure 20-7. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KB2)

Address: FFE4H After reset: FFH R/W								
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK

Address: FFE5H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOH	TMMK010	TMMK000	TMMK50	TMMKH0	TMMKH1	DUALMK0 CSIMK10 STMK0	STMK6	SRMK6

Address: FFE6H After reset: FFH R/W

Symbol	7	6	5	4	<3>	2	<1>	<0>
MK1L	1	1	1	1	TMMK51	1	SRMK0	ADMK

Address: FFE7H After reset: FFH R/W
Symbol
MK1H

7	6	5	4	3	2	1	$<0>$
1	1	1	1	1	1	1	IICMK0

XXMKX		Interrupt servicing control
0	Interrupt servicing enabled	
1	Interrupt servicing disabled	

Caution Be sure to set bits 2, 4 to $\mathbf{7}$ of MK1L and bits 1 to $\mathbf{7}$ of MK1H to 1 .

Figure 20-8. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KC2)

Address: FFE4H After reset: FFH R/W								
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK

Address: FFE5H After reset: FFH R/W
Symbol

$<7>$							
TMMK010	TMMK000	TMMK50	TMMKH0	TMMKH1	DUALMK0	STMK6	SRMK6

Address: FFE6H After reset: FFH R/W

Symbol	7	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK1L	1	PMK6 ${ }^{\text {Note } 1}$	WTMK	KRMK	TMMK51	WTIMK	SRMK0	ADMK

Address: FFE7H After reset: FFH R/W
Symbol
MK1H

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | <0> |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | IICMK0 |
| DMUMK $^{\text {Note 2 }}$ | | | | | | | |

XXMKX		Interrupt servicing control
0	Interrupt servicing enabled	
1	Interrupt servicing disabled	

Notes 1. 48-pin products only.
2. Products whose flash memory is at least 48 KB only.

Cautions 1. Be sure to set bits 6 and 7 of MK1L to 1 in the 38 -pin and 44 -pin products. Be sure to set bit 7 of MK1L to 1 in the 48 -pin products.
2. Be sure to set bits $\mathbf{1}$ to $\mathbf{7}$ of MK 1 H to 1 .

Figure 20-9. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KD2)

Address	After	: FFH						
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK

Address: FFE5H After reset: FFH R/W
Symbol

$<7>$							
TMMK010	TMMK000	TMMK50	TMMKH0	TMMKH1	DUALMK0	STMK6	SRMK6

Address: FFE6H After reset: FFH R/W

Symbol	7	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK1L	1	PMK6	WTMK	KRMK	TMMK51	WTIMK	SRMK0	ADMK

Address: FFE7H After reset: FFH R/W
Symbol
MK1H

7	6	5	4	3	2	1	1	IICMK0 DMUMK Note
1	1	1	1	1	1	1		

XXMKX		Interrupt servicing control
0	Interrupt servicing enabled	
1	Interrupt servicing disabled	

Note Products whose flash memory is at least 48 KB only.

Caution Be sure to set bit $\mathbf{7}$ of MK1L and bits 1 to $\mathbf{7}$ of MK1H to 1 .

Figure 20-10. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KE2)

Address: FFE4H After reset: FFH			R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK

Address: FFE5H After reset: FFH R/W
Symbol

| $<7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TMMK010 | TMMK000 | TMMK50 | TMMKH0 | TMMKH1 | DUALMK0
 CSIMK10
 STMK0 | STMK6 | SRMK6 |

Address: FFE6H After reset: FFH R/W
Symbol
MK1L

$<7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
PMK7	PMK6	WTMK	KRMK	TMMK51	WTIMK	SRMK0	ADMK

Address: FFE7H After reset: FFH R/W
Symbol
MK1H

7	6	5	4	<3>	<2>	<1>	<0>
1	1	1	1	TMMK011 ${ }^{\text {Note }}$	TMMK001 ${ }^{\text {Note }}$	CSIMK11 ${ }^{\text {Note }}$	IICMKO DMUMK ${ }^{\text {Note }}$

XXMKX		Interrupt servicing control
0	Interrupt servicing enabled	
1	Interrupt servicing disabled	

Note Products whose flash memory is at least 48 KB only.

Caution Be sure to set bits 1 to 7 of MK1H to 1 for the products whose flash memory is less than $\mathbf{3 2}$ KB. Be sure to set bits 4 to 7 of MK1H to 1 for the products whose flash memory is at least 48 KB.

Figure 20-11. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KF2)

Addres	After	: FFH						
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK

Address: FFE5H After reset: FFH R/W
Symbol

$<7>$							$<6>$	$<5>$
TMMK010	TMMK000	TMMK50	TMMKH0	TMMKH1	DUALMK0	STMK6	SRMK6	

Address: FFE6H After reset: FFH R/W
Symbol
MK1L

$\ll 7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
PMK7	PMK6	WTMK	KRMK	TMMK51	WTIMK	SRMK0	ADMK

Address: FFE7H After reset: FFH R/W
Symbol
MK1H

7	6	5	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
1	1	1	ACSIMK	TMMK011	TMMK001	CSIMK11	IICMK0 DMUMK

XXMKX		Interrupt servicing control
0	Interrupt servicing enabled	
1	Interrupt servicing disabled	

Caution Be sure to set bits 5 to 7 of MK1H to 1 .

(3) Priority specification flag registers (PR0L, PR0H, PR1L, PR1H)

The priority specification flag registers are used to set the corresponding maskable interrupt priority order.
PROL, PROH, PR1L, and PR1H are set by a 1-bit or 8-bit memory manipulation instruction. If PROL and PR0H, and PR1L and PR1H are combined to form 16-bit registers PR0 and PR1, they are set by a 16-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Figure 20-12. Format of Priority Specification Flag Registers (PROL, PROH, PR1L, PR1H) ($\mathbf{7 8 K 0} \mathbf{K B} \mathbf{K}$)
Address: FFE8H 4 After reset: FFH R / W

| | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | $<7>$ | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | |
| PROL | SREPR6 | PPR5 | PPR4 | PPR3 | PPR2 | PPR1 | PPR0 | LVIPR |

Address: FFE9H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PROH	TMPR010	TMPR000	TMPR50	TMPRH0	TMPRH1	DUALPR0 CSIPR10 STPRO	STPR6	SRPR6

Address: FFEAH After reset: FFH R/W

Symbol	7	6	5	4	<3>	2	<1>	<0>
PR1L	1	1	1	1	TMPR51	1	SRPR0	ADPR

Address: FFEBH After reset: FFH R/W
Symbol
PR1H

7	6	5	4	3	2	1	$<0>$
1	1	1	1	1	1	1	IICPR0

XXPRX		Priority level selection
0	High priority level	
1	Low priority level	

Caution Be sure to set bits 2, 4 to 7 of PR1L and bits 1 to $\mathbf{7}$ of PR1H to 1 .

Figure 20-13. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L, PR1H) (78K0/KC2)

Address: FFE8H After reset: FFH R/W								
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PROL	SREPR6	PPR5	PPR4	PPR3	PPR2	PPR1	PPR0	LVIPR

Address: FFE9H After reset: FFH R/W
Symbol

$<7>$							$<6>$	$<5>$
TMPR010	TMPR000	TMPR50	TMPRH0	TMPRH1	DUALPR0	STPR6	SRPR6	

Address: FFEAH After reset: FFH R/W

Symbol	7	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR1L	1	PPR6 ${ }^{\text {Note } 1}$	WTPR	KRPR	TMPR51	WTIPR	SRPR0	ADPR

Address: FFEBH After reset: FFH R/W
Symbol
PR1H

7	6	5	4	3	2	1	1	IICPR0
1	1	1	1	1	1	1		
DMUPR $^{\text {Note } 2}$								

XXPRX		Priority level selection
0	High priority level	
1	Low priority level	

Notes 1. 48-pin products only.
2. Products whose flash memory is at least 48 KB only.

Cautions 1. Be sure to set bits 6 and 7 of PR1L to 1 in the 38 -pin and 44 -pin products. Be sure to set bit 7 of PR1L to 1 in the 48-pin products.
2. Be sure to set bits 1 to $\mathbf{7}$ of PR1H to 1 .

Figure 20-14. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L, PR1H) (78K0/KD2)
Address: FFE8H After reset: FFH R/W
Symbol

	$<6>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	
PR0L	SREPR6	PPR5	PPR4	PPR3	PPR2	PPR1	PPR0	LVIPR

Address: FFE9H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PROH	TMPR010	TMPR000	TMPR50	TMPRH0	TMPRH1	DUALPRO CSIPR10 STPR0	STPR6	SRPR6

Address: FFEAH After reset: FFH R/W

Symbol	7	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR1L	1	PPR6	WTPR	KRPR	TMPR51	WTIPR	SRPRO	ADPR

Address: FFEBH After reset: FFH R/W
Symbol
PR1H

7	6	5	4	3	2	1	1	IICPR0
1	1	1	1	1	1	1		
DMUPR $^{\text {Note }}$								

XXPRX	
0	High priority level
1	Low priority level

Note Products whose flash memory is at least 48 KB only.

Caution Be sure to set bit 7 of PR1L and bits 1 to 7 of PR1H to 1.

Figure 20-15. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L, PR1H) (78K0/KE2)
Address: FFE8H After reset: FFH R/W
Symbol

	$<6>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	
PR0L	SREPR6	PPR5	PPR4	PPR3	PPR2	PPR1	PPR0	LVIPR

Address: FFE9H After reset: FFH R/W
Symbol <7> <6>
PROH

TMPR010	TMPR000	TMPR50	TMPRH0	TMPRH1	DUALPR0 CSIPR10 STPR0	STPR6	SRPR6

Address: FFEAH After reset: FFH R/W
Symbol
PR1L

$\ll 7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
PPR7	PPR6	WTPR	KRPR	TMPR51	WTIPR	SRPR0	ADPR

Address: FFEBH After reset: FFH R/W
Symbol
PR1H

7	6	5	4	<3>	<2>	<1>	<0>
1	1	1	1	TMPR011 ${ }^{\text {Note }}$	TMPR001 ${ }^{\text {Note }}$	CSIPR11 ${ }^{\text {Note }}$	IICPRO DMUPR ${ }^{\text {Note }}$

XXPRX		Priority level selection
0	High priority level	
1	Low priority level	

Note Products whose flash memory is at least 48 KB only.

Caution Be sure to set bits 1 to 7 of PR1H to 1 for the products whose flash memory is less than $\mathbf{3 2}$ KB. Be sure to set bits 4 to 7 of PR1H to 1 for the products whose flash memory is at least 48 KB .

Figure 20-16. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L, PR1H) (78K0/KF2)

Caution Be sure to set bits $\mathbf{5}$ to $\mathbf{7}$ of PR1H to 1 .

(4) External interrupt rising edge enable register (EGP), external interrupt falling edge enable register (EGN)

These registers specify the valid edge for INTPn.
EGP and EGN are set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Remark $\mathrm{n}=0$ to 5: 78K0/KB2, 38-pin and 44-pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$
$\mathrm{n}=0$ to $6: 78 \mathrm{KO} / \mathrm{KD} 2,48$-pin products of $78 \mathrm{KO} / \mathrm{KC} 2$
$\mathrm{n}=0$ to $7: 78 \mathrm{KO} / \mathrm{KE} 2,78 \mathrm{KO} / \mathrm{KF} 2$

Figure 20-17. Format of External Interrupt Rising Edge Enable Register (EGP) and External Interrupt Falling Edge Enable Register (EGN) (1/2)

(1) $78 \mathrm{KO} / \mathrm{KB} 2$

Address: FF48H After reset: 00 H R/W
Symbol EGP

7	6	5	4	3	2	1	0
0	0	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0

Address: FF49H After reset: 00 H R/W
Symbol
EGN

7	6	5	4	3	2	1	0
0	0	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

(2) 38-pin and 44-pin products of $78 \mathrm{KO} / \mathrm{KC2}$

Address: FF48H After reset: 00 H R/W
Symbol
EGP

7	6	5	4	3	2	1	0
0	0	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0

Address: FF49H After reset: 00H R/W
Symbol
EGN

7	6	5	4	3	2	1	0
0	0	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

(3) 48-pin products of $78 \mathrm{KO} / \mathrm{KC2}, 78 \mathrm{KO} / \mathrm{KD} 2$

Address: FF48H After reset: 00H R/W
Symbol
EGP

7	6	5	4		3	2	1
0	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0

Address: FF49H After reset: 00 H R/W
Symbol EGN

7	6	5	4	3	2	1	0
0	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

EGPn	EGNn	INTPn pin valid edge selection
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Caution Be sure to clear bits 6 and 7 of EGP and EGN to 0 in $78 \mathrm{KO} / \mathrm{KB2}$, and 38-pin and 44-pin products of $78 \mathrm{KO} / \mathrm{KC2}$.
Be sure to clear bit 7 of EGP and EGN to 0 in $78 \mathrm{~K} 0 / \mathrm{KD} 2$, and 48 -pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$.

Remark $\mathrm{n}=0$ to $5: 78 \mathrm{~K} 0 / \mathrm{KB} 2,38$-pin and 44 -pin products of $78 \mathrm{~K} 0 / \mathrm{KC2}$
$\mathrm{n}=0$ to $6: 78 \mathrm{~K} 0 / \mathrm{KD} 2$, 48-pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$

Figure 20-17. Format of External Interrupt Rising Edge Enable Register (EGP) and External Interrupt Falling Edge Enable Register (EGN) (2/2)

(4) 78K0/KE2, 78K0/KF2

Address: FF48H After reset: 00 H R/W
Symbol
EGP

7	6	5	4	3	2	1	0
EGP7	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0

Address: FF49H After reset: 00 H R/W
Symbol
EGN

7	6	5	4	3	2	1	0
EGN7	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

EGPn	EGNn	INTPn pin valid edge selection
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Remark $\mathrm{n}=0$ to $7: 78 \mathrm{KO} / \mathrm{KE} 2,78 \mathrm{KO} / \mathrm{KF} 2$

Table 20-3 shows the ports corresponding to EGPn and EGNn.

Table 20-3. Ports Corresponding to EGPn and EGNn

			Detection Enable Register		Edge Detection	Interrupt Request		
			Port	Signal				
^	Note 1 Note 2				EGP0	EGNO	P120	INTP0
			EGP1	EGN1	P30	INTP1		
			EGP2	EGN2	P31	INTP2		
			EGP3	EGN3	P32	INTP3		
Note 3			EGP4	EGN4	P33	INTP4		
		∇	EGP5	EGN5	P16	INTP5		
			EGP6	EGN6	P140	INTP6		
			EGP7	EGN7	P141	INTP7		

Notes 1. $78 \mathrm{KO} / \mathrm{KB} 2$, and 38 -pin and 44 -pin products of $78 \mathrm{KO} / \mathrm{KC} 2$
2. $78 \mathrm{KO} / \mathrm{KD} 2$, and 48 -pin products of $78 \mathrm{KO} / \mathrm{KC2}$
3. $78 \mathrm{KO} / \mathrm{KE} 2$ and $78 \mathrm{KO} / \mathrm{KF} 2$

Caution Select the port mode by clearing EGPn and EGNn to 0 because an edge may be detected when the external interrupt function is switched to the port function.

Remark $\mathrm{n}=0$ to 5: 78K0/KB2, 38-pin and 44-pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$
$\mathrm{n}=0$ to $6: 78 \mathrm{KO} / \mathrm{KD} 2,48$-pin products of $78 \mathrm{KO} / \mathrm{KC} 2$
$\mathrm{n}=0$ to 7: 78K0/KE2, 78K0/KF2

(5) Program status word (PSW)

The program status word is a register used to hold the instruction execution result and the current status for an interrupt request. The IE flag that sets maskable interrupt enable/disable and the ISP flag that controls multiple interrupt servicing are mapped to the PSW.
Besides 8-bit read/write, this register can carry out operations using bit manipulation instructions and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, if the BRK instruction is executed, the contents of the PSW are automatically saved into a stack and the IE flag is reset to 0 . If a maskable interrupt request is acknowledged, the contents of the priority specification flag of the acknowledged interrupt are transferred to the ISP flag. The PSW contents are also saved into the stack with the PUSH PSW instruction. They are restored from the stack with the RETI, RETB, and POP PSW instructions.

Reset signal generation sets PSW to 02H.

Figure 20-18. Format of Program Status Word

20.4 Interrupt Servicing Operations

20.4.1 Maskable interrupt acknowledgment

A maskable interrupt becomes acknowledgeable when the interrupt request flag is set to 1 and the mask (MK) flag corresponding to that interrupt request is cleared to 0 . A vectored interrupt request is acknowledged if interrupts are in the interrupt enabled state (when the IE flag is set to 1). However, a low-priority interrupt request is not acknowledged during servicing of a higher priority interrupt request (when the ISP flag is reset to 0).

The times from generation of a maskable interrupt request until vectored interrupt servicing is performed are listed in Table 20-4 below.

For the interrupt request acknowledgment timing, see Figures 20-20 and 20-21.

Table 20-4. Time from Generation of Maskable Interrupt Until Servicing

	Minimum Time	Maximum Time $^{\text {Note }}$
When $\times \times \mathrm{PR}=0$	7 clocks	32 clocks
When $\times \times \mathrm{PR}=1$	8 clocks	33 clocks

Note If an interrupt request is generated just before a divide instruction, the wait time becomes longer.

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

If two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level specified in the priority specification flag is acknowledged first. If two or more interrupts requests have the same priority level, the request with the highest default priority is acknowledged first.

An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.
Figure 20-19 shows the interrupt request acknowledgment algorithm.
If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged interrupt are transferred to the ISP flag. The vector table data determined for each interrupt request is the loaded into the PC and branched.

Restoring from an interrupt is possible by using the RETI instruction.

Figure 20-19. Interrupt Request Acknowledgment Processing Algorithm

x×IF: Interrupt request flag
$\times \times$ MK: Interrupt mask flag
$x \times$ PR: Priority specification flag
IE: Flag that controls acknowledgment of maskable interrupt request ($1=$ Enable, $0=$ Disable)
ISP: Flag that indicates the priority level of the interrupt currently being serviced ($0=$ high-priority interrupt servicing, 1 = No interrupt request acknowledged, or low-priority interrupt servicing)

Figure 20-20. Interrupt Request Acknowledgment Timing (Minimum Time)

Remark 1 clock: 1/fcpu (fcpu: CPU clock)

Figure 20-21. Interrupt Request Acknowledgment Timing (Maximum Time)

Remark 1 clock: $1 / \mathrm{fcpu}$ (fcpu: CPU clock)

20.4.2 Software interrupt request acknowledgment

A software interrupt acknowledge is acknowledged by BRK instruction execution. Software interrupts cannot be disabled.

If a software interrupt request is acknowledged, the contents are saved into the stacks in the order of the program status word (PSW), then program counter (PC), the IE flag is reset (0), and the contents of the vector table (003EH, 003 FH) are loaded into the PC and branched.

Restoring from a software interrupt is possible by using the RETB instruction.

Caution Do not use the RETI instruction for restoring from the software interrupt.

20.4.3 Multiple interrupt servicing

Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt.
Multiple interrupt servicing does not occur unless the interrupt request acknowledgment enabled state is selected (IE = 1). When an interrupt request is acknowledged, interrupt request acknowledgment becomes disabled ($\mathrm{IE}=0$). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the El instruction during interrupt servicing to enable interrupt acknowledgment.

Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control. Programmable priority control is used for multiple interrupt servicing.

In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for multiple interrupt servicing. Interrupt requests that are not enabled because interrupts are in the interrupt disabled state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the pending interrupt request is acknowledged following execution of at least one main processing instruction execution.

Table 20-5 shows relationship between interrupt requests enabled for multiple interrupt servicing and Figure 20-22 shows multiple interrupt servicing examples.

Table 20-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing During Interrupt Servicing

Interrupt Being Serviced		Maskable Interrupt Request				Software Interrupt Request
		$\mathrm{PR}=0$		$\mathrm{PR}=1$		
		$\mathrm{IE}=1$	$\mathrm{IE}=0$	$\mathrm{IE}=1$	$\mathrm{IE}=0$	
Maskable interrupt	ISP = 0	\bigcirc	\times	\times	\times	\bigcirc
	$\mathrm{ISP}=1$	\bigcirc	\times	\bigcirc	\times	\bigcirc
Software interrupt		\bigcirc	\times	\bigcirc	\times	\bigcirc

Remarks 1. O: Multiple interrupt servicing enabled
2. \times : Multiple interrupt servicing disabled
3. ISP and IE are flags contained in the PSW.

ISP = 0: An interrupt with higher priority is being serviced.
ISP = 1: No interrupt request has been acknowledged, or an interrupt with a lower priority is being serviced.
$\mathrm{IE}=0$: Interrupt request acknowledgment is disabled.
$\mathrm{IE}=1$: Interrupt request acknowledgment is enabled.
4. PR is a flag contained in PROL, PROH, PR1L, and PR1H.
$P R=0$: Higher priority level
$P R=1$: Lower priority level

Figure 20-22. Examples of Multiple Interrupt Servicing (1/2)

Example 1. Multiple interrupt servicing occurs twice

During servicing of interrupt INTxx, two interrupt requests, INTyy and INTzz, are acknowledged, and multiple interrupt servicing takes place. Before each interrupt request is acknowledged, the El instruction must always be issued to enable interrupt request acknowledgment.

Example 2. Multiple interrupt servicing does not occur due to priority control

Interrupt request INTyy issued during servicing of interrupt INTxx is not acknowledged because its priority is lower than that of INTxx, and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.
$P R=0$: Higher priority level
$P R=1$: Lower priority level
IE = 0: Interrupt request acknowledgment disabled

Figure 20-22. Examples of Multiple Interrupt Servicing (2/2)

Example 3. Multiple interrupt servicing does not occur because interrupts are not enabled

Interrupts are not enabled during servicing of interrupt INTxx (El instruction is not issued), therefore, interrupt request INTyy is not acknowledged and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

PR = 0: Higher priority level
$\mathrm{IE}=0$: Interrupt request acknowledgment disabled

20.4.4 Interrupt request hold

There are instructions where, even if an interrupt request is issued for them while another instruction is being executed, request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, \#byte
- MOV A, PSW
- MOV PSW, A
- MOV1 PSW. bit, CY
- MOV1 CY, PSW. bit
- AND1 CY, PSW. bit
- OR1 CY, PSW. bit
- XOR1 CY, PSW. bit
- SET1 PSW. bit
- CLR1 PSW. bit
- RETB
- RETI
- PUSH PSW
- POP PSW
- BT PSW. bit, \$addr16
- BF PSW. bit, \$addr16
- BTCLR PSW. bit, \$addr16
- El
- DI
- Manipulation instructions for the IF0L, IF0H, IF1L, IF1H, MK0L, MK0H, MK1L, MK1H, PR0L, PROH, PR1L, and PR1H registers.

Caution The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged.

Figure 20-23 shows the timing at which interrupt requests are held pending.

Figure 20-23. Interrupt Request Hold

Remarks 1. Instruction N: Interrupt request hold instruction
2. Instruction M: Instruction other than interrupt request hold instruction
3. The $\times \times$ PR (priority level) values do not affect the operation of $x \times \mathrm{IF}$ (interrupt request).

CHAPTER 21 KEY INTERRUPT FUNCTION

	$78 K 0 / \mathrm{KB2}$	$78 \mathrm{KO} / \mathrm{KC} 2$	$78 \mathrm{~K} 0 / \mathrm{KD} 2$	$78 \mathrm{KO} / \mathrm{KE} 2$	$78 \mathrm{K0} / \mathrm{KF} 2$
Key interrupt	-	38 pins: 2 ch $44 / 48$ pins: 4 ch		8 ch	

21.1 Functions of Key Interrupt

A key interrupt (INTKR) can be generated by setting the key return mode register (KRM) and inputting a falling edge to the key interrupt input pins (KRn).

Table 21-1. Assignment of Key Interrupt Detection Pins

Flag	Description
KRMn	Controls KRn signal in 1-bit units.

$$
\text { Remark } \begin{aligned}
& \mathrm{n}=0,1: \quad 38 \text {-pin products of } 78 \mathrm{KO} / \mathrm{KC} 2 \\
& \\
& \mathrm{n}=0 \text { to } 3: 44 \text {-pin and } 48 \text {-pin products of } 78 \mathrm{KO} / \mathrm{KC} 2 \\
& \\
& \mathrm{n}=0 \text { to } 7: 78 \mathrm{KO} / \mathrm{KD} 2,78 \mathrm{Ko} / \mathrm{KE} 2,78 \mathrm{KO} / \mathrm{KF} 2
\end{aligned}
$$

21.2 Configuration of Key Interrupt

The key interrupt includes the following hardware.

Table 21-2. Configuration of Key Interrupt

Item	Configuration
Control register	Key return mode register (KRM)

Figure 21-1. Block Diagram of Key Interrupt

Remark KR0, KR1, KRM0, KRM1: 38-pin products of $78 \mathrm{~K} 0 / \mathrm{KC} 2$
KRO to KR3, KRM0 to KRM3: 44-pin and 48-pin products of $78 \mathrm{KO} / \mathrm{KC} 2$ KR0 to KR7, KRM0 to KRM7: 78K0/KD2, 78K0/KE2, 78K0/KF2

21.3 Register Controlling Key Interrupt

(1) Key return mode register (KRM)

This register controls the KRMn bit using the KRn signal.
KRM is set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears KRM to 00 H .

Figure 21-2. Format of Key Return Mode Register (KRM)
(1) 38-pin products of $78 \mathrm{KO} / \mathrm{KC2}$

Address: FF6EH After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
KRM	0	0	0	0	0	0	KRM1	KRM0

(2) 44-pin and 48 -pin products of $78 \mathrm{KO} / \mathrm{KC} 2$

Address: FF6EH After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
KRM	0	0	0	0	KRM3	KRM2	KRM1	KRM0

(3) 78K0/KD2, 78K0/KE2, 78K0/KF2

Address: FF6EH After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
KRM	KRM7	KRM6	KRM5	KRM4	KRM3	KRM2	KRM1	KRM0

KRMn	Key interrupt mode control
0	Does not detect key interrupt signal
1	Detects key interrupt signal

Cautions 1. If any of the KRMn bits used is set to $\mathbf{1}$, set bit \mathbf{n} (PU7n) of the corresponding pull-up resistor register 7 (PU7) to 1.
2. If KRM is changed, the interrupt request flag may be set. Therefore, disable interrupts and then change the KRM register. Clear the interrupt request flag and enable interrupts.
3. The bits not used in the key interrupt mode can be used as normal ports.
4. For the 38 -pin products of $78 \mathrm{KO} / \mathrm{KC2}$, be sure to set bits 2 to 7 of KRM to " 0 ". For the 44 -pin and 48 -pin products of $78 \mathrm{KO} / \mathrm{KC2}$, be sure to set bits 4 to 7 of KRM to " 0 ".

```
Remark \(\mathrm{n}=0,1: \quad 38\)-pin products of \(78 \mathrm{KO} / \mathrm{KC} 2\)
    \(\mathrm{n}=0\) to 3: 44-pin and 48-pin products of \(78 \mathrm{KO} / \mathrm{KC} 2\)
    \(\mathrm{n}=0\) to \(7: 78 \mathrm{~K} 0 / \mathrm{KD} 2,78 \mathrm{K0} / \mathrm{KE} 2,78 \mathrm{K0} / \mathrm{KF} 2\)
```


CHAPTER 22 STANDBY FUNCTION

22.1 Standby Function and Configuration

22.1.1 Standby function

The standby function is mounted onto all $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontroller products.
The standby function is designed to reduce the operating current of the system. The following two modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. In the HALT mode, the CPU operation clock is stopped. If the highspeed system clock oscillator, internal high-speed oscillator, internal low-speed oscillator, or subsystem clock oscillator is operating before the HALT mode is set, oscillation of each clock continues. In this mode, the operating current is not decreased as much as in the STOP mode, but the HALT mode is effective for restarting operation immediately upon interrupt request generation and carrying out intermittent operations frequently.

Note The 78K0/KB2 is not provided with a subsystem clock oscillator.

(2) STOP mode

STOP instruction execution sets the STOP mode. In the STOP mode, the high-speed system clock oscillator and internal high-speed oscillator stop, stopping the whole system, thereby considerably reducing the CPU operating current.

Because this mode can be cleared by an interrupt request, it enables intermittent operations to be carried out. However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is released when the X 1 clock is selected, select the HALT mode if it is necessary to start processing immediately upon interrupt request generation.

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set are held. The I/O port output latches and output buffer statuses are also held.

Cautions 1. The STOP mode can be used only when the CPU is operating on the main system clock. The subsystem clock oscillation cannot be stopped. The HALT mode can be used when the CPU is operating on either the main system clock or the subsystem clock.
2. When shifting to the STOP mode, be sure to stop the peripheral hardware operation operating with main system clock before executing STOP instruction.
3. The following sequence is recommended for operating current reduction of the A / D converter when the standby function is used: First clear bit 7 (ADCS) and bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 to stop the A/D conversion operation, and then execute the STOP instruction.

22.1.2 Registers controlling standby function

The standby function is controlled by the following two registers.

- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

Remark For the registers that start, stop, or select the clock, see CHAPTER 6 CLOCK GENERATOR.
(1) Oscillation stabilization time counter status register (OSTC)

This is the register that indicates the count status of the X1 clock oscillation stabilization time counter. When X1 clock oscillation starts with the internal high-speed oscillation clock or subsystem clock used as the CPU clock, the X1 clock oscillation stabilization time can be checked.
OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.
When reset is released (reset by RESET input, POC, LVI, and WDT), the STOP instruction and MSTOP (bit 7 of MOC register) $=1$ clear OSTC to 00 H .

Figure 22-1. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

MOST11	MOST13	MOST14	MOST15	MOST16	Oscillation stabilization time status		
						$\mathrm{fx}=10 \mathrm{MHz}$	$\mathrm{fx}=20 \mathrm{MHz}$
1	0	0	0	0	$2^{11 / f x}$ min.	$204.8 \mu \mathrm{~s} \mathrm{~min}$.	$102.4 \mu \mathrm{~s} \mathrm{~min}$.
1	1	0	0	0	$2^{13} / \mathrm{fx} \mathrm{min}$.	$819.2 \mu \mathrm{~s} \mathrm{~min}$.	$409.6 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	0	0	$2^{14} / f x \mathrm{~min}$.	1.64 ms min .	$819.2 \mu \mathrm{smin}$.
1	1	1	1	0	$2^{15} / f_{x} \mathrm{~min}$.	3.27 ms min .	1.64 ms min .
1	1	1	1	1	$2^{16} / f x \mathrm{~min}$.	6.55 ms min .	3.27 ms min .

Cautions 1. After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.
2. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS
Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

3. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency
(2) Oscillation stabilization time select register (OSTS)

This register is used to select the X1 clock oscillation stabilization wait time when the STOP mode is released.
When the X1 clock is selected as the CPU clock, the operation waits for the time set using OSTS after the STOP mode is released.
When the internal high-speed oscillation clock is selected as the CPU clock, confirm with OSTC that the desired oscillation stabilization time has elapsed after the STOP mode is released. The oscillation stabilization time can be checked up to the time set using OSTC.
OSTS can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets OSTS to 05H.

Figure 22-2. Format of Oscillation Stabilization Time Select Register (OSTS)

Address:	H Afte	set: 05H	W				
Symbol	7	6	5	4	3	2	10
OSTS	0	0	0	0	0	OSTS2	OSTS1 OSTS0
	OSTS2	OSTS1	OSTS0		cilla	on stabilization tim	selection
						$\mathrm{fx}=10 \mathrm{MHz}$	$\mathrm{fx}=20 \mathrm{MHz}$
	0	0	1	$2^{11 / f x}$		$204.8 \mu \mathrm{~s}$	$102.4 \mu \mathrm{~s}$
	0	1	0	$2^{13} / \mathrm{fx}$		$819.2 \mu \mathrm{~s}$	$409.6 \mu \mathrm{~s}$
	0	1	1	$2^{14} / \mathrm{fx}$		1.64 ms	$819.2 \mu \mathrm{~s}$
	1	0	0	$2^{15} / \mathrm{fx}$		3.27 ms	1.64 ms
	1	0	1	$2^{16} / f x$		6.55 ms	3.27 ms
		er than ab		Setting			

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set OSTS before executing the STOP instruction.
2. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
3. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS
Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

4. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

22.2 Standby Function Operation

22.2.1 HALT mode

(1) HALT mode

The HALT mode is set by executing the HALT instruction. HALT mode can be set regardless of whether the CPU clock before the setting was the high-speed system clock, internal high-speed oscillation clock, or subsystem clock ${ }^{\text {Note }}$. The operating statuses in the HALT mode are shown below.

Note The 78K0/KB2 is not provided with a subsystem clock.

Table 22-1. Operating Statuses in HALT Mode (1/2)

			When HALT Instructio	Executed While CPU Is Ope	g on Main System Clock
			When CPU Is Operating on Internal High-Speed Oscillation Clock (fRH)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (fЕхсlк)
System clock			Clock supply to the CPU is stopped		
Main system clock		ffH	Operation continues (cannot be stopped)	Status before HALT mode was set is retained	
		fx	Status before HALT mode was set is retained	Operation continues (cannot be stopped)	Status before HALT mode was set is retained
		fexclk	Operates or stops by external clock input		Operation continues (cannot be stopped)
Subsystem clock		fxt	Status before HALT mode was set is retained		
		fexclks	Operates or stops by external clock input		
ffR			Status before HALT mode was set is retained		
CPU			Operation stopped		
Flash memory					
RAM			Status before HALT mode was set is retained		
Port (latch)					
16-bit timer/event counter		00	Operable		
		01			
8-bit timer/event counter		50			
		51			
8-bit timer		H0			
		H1			
Watch timer					
Watchdog timer			Operable. Clock supply to watchdog timer stops when "internal low-speed oscillator can be stopped by software" is set by option byte.		
Clock output			Operable		
Buzzer output					
A/D converter					
Serial interface	UART0				
	UART6				
	CSI10				
	CSI11				
	CSIAO				
	IICO				
Multiplier/divider					
Power-on-clear function					
Low-voltage detection function					
External interrupt					

Remarks 1. frн: Internal high-speed oscillation clock,
fexclk: External main system clock,
fexclks: External subsystem clock,
fxt: XT1 clock
frL: Internal low-speed oscillation clock
2. The functions mounted depend on the product. See 1.7 Block Diagram and 1.8 Outline of Functions.

Table 22-1. Operating Statuses in HALT Mode (2/2)

HALT Mode Setting Item			When HALT Instruction Is Executed	CPU Is Operating on Subsystem Clock
			When CPU Is Operating on XT1 Clock (fxt)	When CPU Is Operating on External Subsystem Clock (fexcles)
System clock			Clock supply to the CPU is stopped	
Main system clock		fRH	Status before HALT mode was set is retained	
		fx		
		fexclk	Operates or stops by external clock input	
Subsystem clock		fxt	Operation continues (cannot be stopped)	Status before HALT mode was set is retained
		fexclks	Operates or stops by external clock input	Operation continues (cannot be stopped)
$\mathrm{frL}^{\text {L }}$			Status before HALT mode was set is retained	
CPU			Operation stopped	
Flash memory				
RAM			Status before HALT mode was set is retained	
Port (latch)				
16-bit timer/event counter		$00^{\text {Note }}$	Operable	
		$01^{\text {Note }}$		
8-bit timer/event counter		$50^{\text {Note }}$		
		$51^{\text {Note }}$		
8-bit timer		H0		
		H1		
Watch timer				
Watchdog timer			Operable. Clock supply to watchdog timer stops when "internal low-speed oscillator can be stopped by software" is set by option byte.	
Clock output			Operable	
Buzzer output			Operable. However, operation disabled when peripheral hardware clock (fpRs) is stopped.	
A/D converter				
Serial interface	UARTO		Operable	
	UART6			
	CSI10 ${ }^{\text {Note }}$			
	CSI11 ${ }^{\text {Note }}$			
	CSIAO ${ }^{\text {Note }}$			
	IIC0 ${ }^{\text {Note }}$			
Multiplier/divider				
Power-on-clear function				
Low-voltage detection function				
External interrupt				

Note When the CPU is operating on the subsystem clock and the internal high-speed oscillation clock and high-speed system clock have been stopped, do not start operation of these functions on the external clock input from peripheral hardware pins.

Remarks 1. fri: Internal high-speed oscillation clock,
fexclk: External main system clock,
fx: X1 clock
fexclks: External subsystem clock,
fxt: XT1 clock
frL: Internal low-speed oscillation clock
2. The functions mounted depend on the product. See 1.7 Block Diagram and 1.8 Outline of Functions.

(2) HALT mode release

The HALT mode can be released by the following two sources.
(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Figure 22-3. HALT Mode Release by Interrupt Request Generation

internal high-speed oscillation clock, or subsystem clock ${ }^{\text {Note } 2}$

Notes 1. The wait time is as follows:

- When vectored interrupt servicing is carried out: 11 or 12 clocks
- When vectored interrupt servicing is not carried out: 4 or 5 clocks

2. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.

Remark The broken lines indicate the case when the interrupt request which has released the standby mode is acknowledged.
(b) Release by reset signal generation

When the reset signal is generated, HALT mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 22-4. HALT Mode Release by Reset
(1) When high-speed system clock is used as CPU clock

(2) When internal high-speed oscillation clock is used as CPU clock

(3) When subsystem clock is used as CPU clock ${ }^{\text {Note } 1}$

Notes 1. The $78 K 0 / K B 2$ is not provided with a subsystem clock.
2. Oscillation stabilization time is not required when using the external subsystem clock (fexclкs) as the subsystem clock.

Remark fx: X1 clock oscillation frequency

Table 22-2. Operation in Response to Interrupt Request in HALT Mode

Release Source	$\mathrm{MK}_{\times \times}$	$\mathrm{PR} \times \times$	IE	ISP	Operation
Maskable interrupt request	0	0	0	\times	Next address instruction execution
	0	0	1	\times	Interrupt servicing execution
	0	1	0	1	Next address instruction execution
	0	1	\times	0	Interrupt servicing execution
	0	1	1	\times	HALT mode held
	1	\times	\times	\times	\times

x : don't care

22.2.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set only when the CPU clock before the setting was the main system clock.

Caution Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.

The operating statuses in the STOP mode are shown below.

Table 22-3. Operating Statuses in STOP Mode

			When STOP Instructio	Executed While CPU Is Ope	g on Main System Clock
			When CPU Is Operating on Internal High-Speed Oscillation Clock (fRH)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (fexcle)
System clock			Clock supply to the CPU is stopped		
Main system clock		fRH	Stopped		
		$\mathrm{fx}^{\text {x }}$			
		fexclk	Input invalid		
Subsystem clock		fxt	Status before STOP mode was set is retained		
		fexcles	Operates or stops by external clock input		
f_{RL}			Status before STOP mode was set is retained		
CPU			Operation stopped		
Flash memory					
RAM			Status before STOP mode was set is retained		
Port (latch)					
16-bit timer/event counter		$00^{\text {Note } 1}$	Operation stopped		
		$01^{\text {Note } 1}$			
8-bit timer/event counter		$50^{\text {Note } 1}$	Operable only when TI50 is selected as the count clock		
		$51^{\text {Note } 1}$	Operable only when TI51 is selected as the count clock		
8-bit timer		H0	Operable only when TM50 output is selected as the count clock during 8-bit timer/event counter 50 operation		
		H1	Operable only when $\mathrm{fRL}, \mathrm{frL}^{2} /{ }^{7}, \mathrm{f}_{\mathrm{RL}} / 2^{9}$ is selected as the count clock		
Watch timer			Operable only when subsystem clock is selected as the count clock		
Watchdog timer			Operable. Clock supply to watchdog timer stops when "internal low-speed oscillator can be stopped by software" is set by option byte.		
Clock output			Operable only when subsystem clock is selected as the count clock		
Buzzer output			Operation stopped		
A/D converter					
Serial interface	UART0		Operable only when TM50 output is selected as the serial clock during 8-bit timer/event counter 50 operation		
	UART6				
	CSI10 ${ }^{\text {Note } 1}$		Operable only when external clock is selected as the serial clock		
	CSI11 ${ }^{\text {Note } 1}$				
	CSIAO ${ }^{\text {Note } 1}$		Operation stopped		
	IIC0		Operable only when the external clock from EXSCLO/P62 pin is selected as the serial clock $^{\text {Note } 2}$		
Multiplier/divider			Operation stopped		
Power-on-clear function			Operable		
Low-voltage detection function					
External interrupt					

Notes 1. Do not start operation of these functions on the external clock input from peripheral hardware pins in the stop mode.
2. The operation of $78 \mathrm{~K} 0 / \mathrm{KB} 2$ products is stopped (The external clock from the EXSCLO/P62 pin cannot be selected, because the EXSCLO/P62 pin is not mounted.).

Remarks 1. fri: Internal high-speed oscillation clock,
fx: X1 clock
fexclk: External main system clock,
fXt: XT1 clock
frL: Internal low-speed oscillation clock
See 1.7 Block Diagram and 1.8 Outline of Functions.

Cautions 1. To use the peripheral hardware that stops operation in the STOP mode, and the peripheral hardware for which the clock that stops oscillating in the STOP mode after the STOP mode is released, restart the peripheral hardware.
2. Even if "internal low-speed oscillator can be stopped by software" is selected by the option byte, the internal low-speed oscillation clock continues in the STOP mode in the status before the STOP mode is set. To stop the internal low-speed oscillator's oscillation in the STOP mode, stop it by software and then execute the STOP instruction.
3. To shorten oscillation stabilization time after the STOP mode is released when the CPU operates with the high-speed system clock (X1 oscillation), switch the CPU clock to the internal high-speed oscillation clock before the execution of the STOP instruction using the following procedure.
$<1>$ Set RSTOP to 0 (starting oscillation of the internal high-speed oscillator) $\rightarrow<2>$ Set MCMO to 0 (switching the CPU from X1 oscillation to internal high-speed oscillation) $\rightarrow<3>$ Check that MCS is 0 (checking the CPU clock) $\rightarrow<4>$ Check that RSTS is 1 (checking internal high-speed oscillation operation) $\rightarrow<5>$ Execute the STOP instruction
Before changing the CPU clock from the internal high-speed oscillation clock to the high-speed system clock (X1 oscillation) after the STOP mode is released, check the oscillation stabilization time with the oscillation stabilization time counter status register (OSTC).
4. If the STOP instruction is executed when AMPH $=1$, supply of the CPU clock is stopped for 4.06 to $16.12 \mu \mathrm{~s}$ after the STOP mode is released when the internal high-speed oscillation clock is selected as the CPU clock, or for the duration of 160 external clocks when the high-speed system clock (external clock input) is selected as the CPU clock.
5. Execute the STOP instruction after having confirmed that the internal high-speed oscillator is operating stably (RSTS = 1).
(2) STOP mode release

Figure 22-5. Operation Timing When STOP Mode Is Released (When Unmasked Interrupt Request Is Generated)

Notes 1. When AMPH $=1$
2. The wait time is as follows:

- When vectored interrupt servicing is carried out: 17 or 18 clocks
- When vectored interrupt servicing is not carried out: 11 or 12 clocks

The STOP mode can be released by the following two sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation stabilization time has elapsed, if interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Figure 22-6. STOP Mode Release by Interrupt Request Generation (1/2)
(1) When high-speed system clock (X1 oscillation) is used as CPU clock

(2) When high-speed system clock (external clock input) is used as CPU clock

- When AMPH = 1

- When AMPH = 0

Note The wait time is as follows:

- When vectored interrupt servicing is carried out: 17 or 18 clocks
- When vectored interrupt servicing is not carried out: 11 or 12 clocks

Remark The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

Figure 22-6. STOP Mode Release by Interrupt Request Generation (2/2)
(3) When internal high-speed oscillation clock is used as CPU clock

- When AMPH = 1

- When AMPH = 0

Note The wait time is as follows:

- When vectored interrupt servicing is carried out: 17 or 18 clocks
- When vectored interrupt servicing is not carried out: 11 or 12 clocks

Remark The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.
(b) Release by reset signal generation

When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 22-7. STOP Mode Release by Reset
(1) When high-speed system clock is used as CPU clock

Note Oscillation stabilization time is not required when using the external main system clock (fexclk) as the highspeed system clock.
(2) When internal high-speed oscillation clock is used as CPU clock

Remark fx: X1 clock oscillation frequency

Table 22-4. Operation in Response to Interrupt Request in STOP Mode

Release Source	MK $_{\times \times}$	PR $\times x$	IE	ISP	Operation
Maskable interrupt request	0	0	0	\times	Next address instruction execution
	0	0	1	\times	Interrupt servicing execution
	0	1	0	1	Next address instruction execution
	0	1	\times	0	Interrupt servicing execution
	0	1	1	\times	STOP mode held
	1	\times	\times	\times	Reset processing

CHAPTER 23 RESET FUNCTION

The reset function is mounted onto all $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontroller products.
The following four operations are available to generate a reset signal.
(1) External reset input via $\overline{\text { RESET }}$ pin
(2) Internal reset by watchdog timer program loop detection
(3) Internal reset by comparison of supply voltage and detection voltage of power-on-clear (POC) circuit
(4) Internal reset by comparison of supply voltage and detection voltage of low-power-supply detector (LVI)

External and internal resets have no functional differences. In both cases, program execution starts at the address at 0000 H and 0001 H when the reset signal is generated.

A reset is applied when a low level is input to the $\overline{\text { RESET }}$ pin, the watchdog timer overflows, or by POC and LVI circuit voltage detection, and each item of hardware is set to the status shown in Tables 23-1 and 23-2. Each pin is high impedance during reset signal generation or during the oscillation stabilization time just after a reset release, except for P130, which is low-level output.

When a low level is input to the $\overline{\operatorname{RESET}}$ pin, the device is reset. It is released from the reset status when a high level is input to the RESET pin and program execution is started with the internal high-speed oscillation clock after reset processing. A reset by the watchdog timer is automatically released, and program execution starts using the internal highspeed oscillation clock (see Figures $23-2$ to $23-4$) after reset processing. Reset by POC and LVI circuit power supply detection is automatically released when $V_{D D} \geq V_{P O C}$ or $V_{D D} \geq V_{L V I}$ after the reset, and program execution starts using the internal high-speed oscillation clock (see CHAPTER 24 POWER-ON-CLEAR CIRCUIT and CHAPTER 25 LOWVOLTAGE DETECTOR) after reset processing.

Cautions 1. For an external reset, input a low level for $10 \mu \mathrm{~s}$ or more to the RESET pin.
2. During reset signal generation, the X1 clock, XT1 clock ${ }^{\text {Note } 1}$, internal high-speed oscillation clock, and internal low-speed oscillation clock stop oscillating. External main system clock input and external subsystem clock ${ }^{\text {Note } 1}$ input become invalid.
3. When the STOP mode is released by a reset, the STOP mode contents are held during reset input. However, the port pins become high-impedance, except for P130 ${ }^{\text {Note } 2}$, which is set to lowlevel output.

Notes 1. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with XT 1 clock and external subsystem clock.
2. P130 pin is not mounted onto 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$ and $78 \mathrm{~K} 0 / \mathrm{KB} 2$.

Figure 23-1. Block Diagram of Reset Function

Caution An LVI circuit internal reset does not reset the LVI circuit.

Remarks 1. LVIM: Low-voltage detection register
2. LVIS: Low-voltage detection level selection register

Figure 23-2. Timing of Reset by RESET Input

Notes 1. P130 pin is not mounted onto $78 \mathrm{KO} / \mathrm{KB} 2$, and 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$.
2. Set P130 to high-level output by software.

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

Figure 23-3. Timing of Reset Due to Watchdog Timer Overflow

Notes 1. P130 pin is not mounted onto $78 \mathrm{KO} / \mathrm{KB} 2$, and 38 -pin and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC2}$.
2. Set P130 to high-level output by software.

Caution A watchdog timer internal reset resets the watchdog timer.

Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

Figure 23-4. Timing of Reset in STOP Mode by RESET Input

Notes 1. P130 pin is not mounted onto 78K0/KB2, and 38-pin and 44-pin products of the 78K0/KC2.
2. Set P130 to high-level output by software.

Remarks 1. When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.
2. For the reset timing of the power-on-clear circuit and low-voltage detector, see CHAPTER 24 POWER-ON-CLEAR CIRCUIT and CHAPTER 25 LOW-VOLTAGE DETECTOR.

Table 23-1. Operation Statuses During Reset Period

Item			During Reset Period
System clock			Clock supply to the CPU is stopped.
Main system clock		f_{RH}	Operation stopped
		fx	Operation stopped (pin is I/O port mode)
		fexclk	Clock input invalid (pin is l/O port mode)
Subsystem clock		fxt	Operation stopped (pin is I/O port mode)
		fexcles	Clock input invalid (pin is I/O port mode)
$\mathrm{frL}^{\text {L }}$			Operation stopped
CPU			
Flash memory			
RAM			
Port (latch)			
16-bit timer/event counter		00	
		01	
8-bit timer/event counter		50	
		51	
8-bit timer		H0	
		H1	
Watch timer			
Watchdog timer			
Clock output			
Buzzer output			
A/D converter			
Serial interface	UART0		
	UART6		
	CSI10		
	CSI11		
	CSIAO		
	IICO		
Multiplier/divider			
Power-on-clear function			Operable
Low-voltage detection function			Operation stopped
External interrupt			

Remarks 1. frн: Internal high-speed oscillation clock,
fexclк: External main system clock,
fexclks: External subsystem clock,
frL: Internal low-speed oscillation clock
2. The functions mounted depend on the product. See 1.7 Block Diagram and 1.8 Outline of Functions.

Table 23-2. Hardware Statuses After Reset Acknowledgment (1/4)

Hardware	After Reset Acknowledgment	
Program counter (PC)	The contents of the reset vector table $(0000 \mathrm{H}, 0001 \mathrm{H})$ are set.	
Stack pointer (SP)	Data memory	Undefined
Program status word (PSW)	General-purpose registers	02 H
RAM	Undefined	
Port registers (P0 to P7, P12 to P14) (output latches)	Undefined ${ }^{\text {Note 2 }}$	
Port mode registers (PM0 to PM7, PM12, PM14)	00 H	
Pull-up resistor option registers (PU0, PU1, PU3 to PU7, PU12, PU14)	FFH	
Internal expansion RAM size switching register (IXS)	00 H	
Internal memory size switching register (IMS)	$0 C^{\text {Notes } 3,4}$	

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.
3. The initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) after a reset release are constant (IMS $=\mathrm{CFH}$, IXS $=0 \mathrm{CH}$) in all products of the 78K0/Kx2 microcontrollers, regardless of the internal memory capacity. Therefore, set the value corresponding to each product as indicated in Tables 3-1 and 3-2.
4. The ROM and RAM capacities of the products with the on-chip debug function can be debugged by setting IMS and IXS, according to the debug target products. Set IMS and IXS according to the debug target products.
Remark The special function register (SFR) mounted depend on the product. See 3.2.3 Special function registers (SFRs).

Table 23-2. Hardware Statuses After Reset Acknowledgment (2/4)

Hardware		Status After Reset Acknowledgment ${ }^{\text {Note } 1}$
Memory bank select register (BANK)		00H
Clock operation mode select register (OSCCTL)		00H
Processor clock control register (PCC)		01H
Internal oscillation mode register (RCM)		80 H
Main OSC control register (MOC)		80 H
Main clock mode register (MCM)		OOH
Oscillation stabilization time counter status register (OSTC)		00H
Oscillation stabilization time select register (OSTS)		05H
16-bit timer/event counters 00, 01	Timer counters 00, 01 (TM00, TM01)	0000H
	Capture/compare registers 000, 010, 001, 011 (CR000, CR010, CR001, CR011)	0000H
	Mode control registers 00, 01 (TMC00, TMC01)	OOH
	Prescaler mode registers 00, 01 (PRM00, PRM01)	OOH
	Capture/compare control registers 00, 01 (CRC00, CRC01)	OOH
	Timer output control registers 00, 01 (TOC00, TOC01)	OOH
8 -bit timer/event counters$50,51$	Timer counters 50, 51 (TM50, TM51)	OOH
	Compare registers 50, 51 (CR50, CR51)	00H
	Timer clock selection registers 50, 51 (TCL50, TCL51)	OOH
	Mode control registers 50, 51 (TMC50, TMC51)	OOH
8-bit timers $\mathrm{H} 0, \mathrm{H} 1$	Compare registers 00, 10, 01, 11 (CMP00, CMP10, CMP01, CMP11)	OOH
	Mode registers (TMHMD0, TMHMD1)	OOH
	Carrier control register 1 (TMCYC1) ${ }^{\text {Note } 2}$	OOH
Watch timer	Operation mode register (WTM)	OOH
Clock output/buzzer output controller	Clock output selection register (CKS)	00H
Watchdog timer	Enable register (WDTE)	1AH/9AH ${ }^{\text {Note } 3}$
A/D converter	10-bit A/D conversion result register (ADCR)	0000H
	8-bit A/D conversion result register (ADCRH)	OOH
	Mode register (ADM)	OOH
	Analog input channel specification register (ADS)	OOH
	A/D port configuration register (ADPC)	OOH
Serial interface UART0	Receive buffer register 0 (RXB0)	FFH
	Transmit shift register 0 (TXS0)	FFH
	Asynchronous serial interface operation mode register 0 (ASIM0)	01H
	Asynchronous serial interface reception error status register 0 (ASIS0)	OOH
	Baud rate generator control register 0 (BRGC0)	1FH

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
2. 8-bit timer H 1 only.
3. The reset value of WDTE is determined by the option byte setting.

Remark The special function register (SFR) mounted depend on the product. See 3.2.3 Special function registers (SFRs).

Table 23-2. Hardware Statuses After Reset Acknowledgment (3/4)

Hardware		Status After Reset Acknowledgment ${ }^{\text {Note }}$
Serial interface UART6	Receive buffer register 6 (RXB6)	FFH
	Transmit buffer register 6 (TXB6)	FFH
	Asynchronous serial interface operation mode register 6 (ASIM6)	01H
	Asynchronous serial interface reception error status register 6 (ASIS6)	OOH
	Asynchronous serial interface transmission status register 6 (ASIF6)	OOH
	Clock selection register 6 (CKSR6)	00H
	Baud rate generator control register 6 (BRGC6)	FFH
	Asynchronous serial interface control register 6 (ASICL6)	16H
	Input switch control register (ISC)	00H
Serial interfaces CSI10, CSI11	Transmit buffer registers 10, 11 (SOTB10, SOTB11)	OOH
	Serial I/O shift registers 10, 11 (SIO10, SIO11)	OOH
	Serial operation mode registers 10, 11 (CSIM10, CSIM11)	OOH
	Serial clock selection registers 10, 11 (CSIC10, CSIC11)	OOH
Serial interface CSIAO	Serial operation mode specification register 0 (CSIMA0)	OOH
	Serial status register 0 (CSISO)	OOH
	Serial trigger register 0 (CSITO)	OOH
	Divisor value selection register 0 (BRGCA0)	03H
	Automatic data transfer address point specification register 0 (ADTP0)	00H
	Automatic data transfer interval specification register 0 (ADTIO)	OOH
	Serial I/O shift register 0 (SIOAO)	OOH
	Automatic data transfer address count register 0 (ADTC0)	OOH
Serial interface IICO	Shift register 0 (IICO)	OOH
	Control register 0 (IICCO)	OOH
	Slave address register 0 (SVA0)	OOH
	Clock selection register 0 (IICCLO)	OOH
	Function expansion register 0 (IICXO)	OOH
	Status register 0 (IICSO)	OOH
	Flag register 0 (IICFO)	00H
Multiplier/divider	Remainder data register 0 (SDR0)	0000H
	Multiplication/division data register A0 (MDAOH, MDAOL)	0000H
	Multiplication/division data register B0 (MDB0)	0000H
	Multiplier/divider control register 0 (DMUC0)	OOH
Key interrupt	Key return mode register (KRM)	OOH

Note During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

Remark The special function register (SFR) mounted depend on the product. See 3.2.3 Special function registers (SFRs).

Table 23-2. Hardware Statuses After Reset Acknowledgment (4/4)

Hardware		Status After Reset Acknowledgment
Reset function	Reset control flag register (RESF)	$00 H^{\text {Note 2 }}$

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
2. These values vary depending on the reset source.

Reset Source Register		RESET Input	Reset by POC	Reset by WDT	Reset by LVI
RESF	WDTRF flag	Cleared (0)	Cleared (0)	Set (1)	Held
	LVIRF flag			Held	Set (1)
LVIM		Cleared (00H)	Cleared (00H)	Cleared (00H)	Held
LVIS					

Remark The special function register (SFR) mounted depend on the product. See 3.2.3 Special function registers (SFRs).

23.1 Register for Confirming Reset Source

Many internal reset generation sources exist in the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers. The reset control flag register (RESF) is used to store which source has generated the reset request.

RESF can be read by an 8-bit memory manipulation instruction.
$\overline{\text { RESET input, reset by power-on-clear (POC) circuit, and reading RESF set RESF to 00H. }}$

Figure 23-5. Format of Reset Control Flag Register (RESF)

Address: FFACH After reset: $00 \mathrm{H}^{\text {Note }} \quad \mathrm{R}$

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 7 | 0 | 0 | WDTRF | 0 | 0 | 0 | LVIRF |

WDTRF	Internal reset request by watchdog timer (WDT)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

LVIRF	Internal reset request by low-voltage detector (LVI)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

Note The value after reset varies depending on the reset source.

Caution Do not read data by a 1-bit memory manipulation instruction.

The status of RESF when a reset request is generated is shown in Table 23-3.

Table 23-3. RESF Status When Reset Request Is Generated

	Reset Source	$\overline{\text { RESET Input }}$	Reset by POC	Reset by WDT
Flag			Reset by LVI	
WDTRF	Cleared (0)	Cleared (0)	Set (1)	Held
			Held	Set (1)

CHAPTER 24 POWER-ON-CLEAR CIRCUIT

24.1 Functions of Power-on-Clear Circuit

The power-on-clear circuit (POC) is mounted onto all $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontroller products.
The power-on-clear circuit has the following functions.

- Generates internal reset signal at power on. In the 1.59 V POC mode (option byte: $\mathrm{POCMODE}=0$), the reset signal is released when the supply voltage (VDD) exceeds $1.59 \mathrm{~V} \pm 0.15 \mathrm{~V}$.
In the $2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ POC mode (option byte: $\mathrm{POCMODE}=1$), the reset signal is released when the supply voltage (Vdd) exceeds $2.7 \mathrm{~V} \pm 0.2 \mathrm{~V}$.
- Compares supply voltage (V DD) and detection voltage (V POC $=1.59 \mathrm{~V} \pm 0.15 \mathrm{~V}$), generates internal reset signal when VdD < Vpoc.

Caution If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is cleared to $\mathbf{0 0 H}$.

Remark 78K0/Kx2 microcontrollers incorporate multiple hardware functions that generate an internal reset signal. A flag that indicates the reset source is located in the reset control flag register (RESF) for when an internal reset signal is generated by the watchdog timer (WDT) or low-voltage-detector (LVI). RESF is not cleared to 00 H and the flag is set to 1 when an internal reset signal is generated by WDT or LVI. For details of RESF, see CHAPTER 23 RESET FUNCTION.

24.2 Configuration of Power-on-Clear Circuit

The block diagram of the power-on-clear circuit is shown in Figure 24-1.

Figure 24-1. Block Diagram of Power-on-Clear Circuit

24.3 Operation of Power-on-Clear Circuit

(1) In 1.59 V POC mode (option byte: $\operatorname{POCMODE=0\text {)}}$

- An internal reset signal is generated on power application. When the supply voltage (VDD) exceeds the detection voltage ($\mathrm{VPOC}=1.59 \mathrm{~V} \pm 0.15 \mathrm{~V}$), the reset status is released.
- The supply voltage (V DD) and detection voltage (V POc $=1.59 \mathrm{~V} \pm 0.15 \mathrm{~V}$) are compared. When $\mathrm{VdD}<\mathrm{VPOc}$, the internal reset signal is generated. It is released when VdD \geq Vpoc.
(2) In 2.7 V/1.59 V POC mode (option byte: $\operatorname{POCMODE~=~1)~}$
- An internal reset signal is generated on power application. When the supply voltage (VDD) exceeds the detection voltage (V dDPoc $=2.7 \mathrm{~V} \pm 0.2 \mathrm{~V}$), the reset status is released.
- The supply voltage (Vdd) and detection voltage ($\mathrm{VPOC}=1.59 \mathrm{~V} \pm 0.15 \mathrm{~V}$) are compared. When Vdd $<$ Vpoc, the internal reset signal is generated. It is released when Vdd \geq Vddpoc.

The timing of generation of the internal reset signal by the power-on-clear circuit and low-voltage detector is shown below.

Figure 24-2. Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (1/2)
(1) In 1.59 V POC mode (option byte: $\operatorname{POCMODE=0\text {)}}$

Notes 1. The guaranteed operation range for the standard and (A) grade products is $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, and 2.7 V $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ for the (A 2) grade products. To set the voltage range below the guaranteed operation range to the reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input a low level to the RESET pin.
2. With the standard and (A) grade products, if the voltage rises to 1.8 V at a rate slower than $0.5 \mathrm{~V} / \mathrm{ms}$ (MIN.) on power application, input a low level to the RESET pin after power application and before the voltage reaches 1.8 V , or set the $2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ POC mode by using an option byte (POCMODE = 1).
3. With the (A2) grade products, if the voltage rises to 2.7 V at a rate slower than $0.75 \mathrm{~V} / \mathrm{ms}$ (MIN .) on power application, input a low level to the RESET pin after power application and before the voltage reaches 2.7 V .
4. The oscillation accuracy stabilization time of the internal high-speed oscillation clock is included in the internal voltage stabilization time.
5. The CPU clock can be switched from the internal high-speed oscillation clock to the high-speed system clock or to the subsystem clock ${ }^{\text {Note } 6}$. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock $^{\text {Note } 6}$, use the timer function for confirmation of the lapse of the stabilization time.
6. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with subsystem clock and XT 1 clock.

Caution Set the low-voltage detector by software after the reset status is released (see CHAPTER 25 LOWVOLTAGE DETECTOR).

Remark VLvi: LVI detection voltage
Vpoc: POC detection voltage

Figure 24-2. Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (2/2)
(2) In 2.7 V/1.59 V POC mode (option byte: $\operatorname{POCMODE~=~1)~}$

Notes 1. The guaranteed operation range for the standard and (A) grade products is $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, and 2.7 V $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ for the (A2) grade products. To set the voltage range below the guaranteed operation range to the reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input a low level to the RESET pin.
2. The CPU clock can be switched from the internal high-speed oscillation clock to the high-speed system clock or subsystem clock ${ }^{\text {Note } 3 .}$. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock $^{\text {Note } 3}$, use the timer function for confirmation of the lapse of the stabilization time.
3. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with subsystem clock and XT 1 clock.

Cautions 1. Set the low-voltage detector by software after the reset status is released (see CHAPTER 25 LOW-VOLTAGE DETECTOR).
2. A voltage oscillation stabilization time of 1.93 to 5.39 ms is required after the supply voltage reaches 1.59 V (TYP.). If the supply voltage rises from 1.59 V (TYP.) to 2.7 V (TYP.) within 1.93 ms , the power supply oscillation stabilization time of 0 to 5.39 ms is automatically generated before reset processing.

Remark Vıvi: LVI detection voltage
Vpoc: POC detection voltage

24.4 Cautions for Power-on-Clear Circuit

In a system where the supply voltage (VdD) fluctuates for a certain period in the vicinity of the POC detection voltage (VPoc), the system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.

<Action>

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports.

Figure 24-3. Example of Software Processing After Reset Release (1/2)

- If supply voltage fluctuation is 50 ms or less in vicinity of POC detection voltage

Notes 1. If reset is generated again during this period, initialization processing $<2>$ is not started.
2. A flowchart is shown on the next page.

Figure 24-3. Example of Software Processing After Reset Release (2/2)

- Checking reset source

CHAPTER 25 LOW-VOLTAGE DETECTOR

25.1 Functions of Low-Voltage Detector

The low-voltage detector (LVI) is mounted onto all $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontroller products.
The low-voltage detector has the following functions.

- The LVI circuit compares the supply voltage (VDD) with the detection voltage (VLvi) or the input voltage from an external input pin (EXLVI) with the detection voltage (VExLVI $=1.21 \mathrm{~V}$ (TYP.): fixed), and generates an internal reset or internal interrupt signal.
- The supply voltage (VDD) or input voltage from an external input pin (EXLVI) can be selected by software.
- Reset or interrupt function can be selected by software.
- Detection levels (16 levels ${ }^{\text {Note }}$) of supply voltage can be changed by software.
- Operable in STOP mode.

Note Standard products and (A) grade products: 16 levels
(A2) grade products:
10 levels

The reset and interrupt signals are generated as follows depending on selection by software.

Selection of Level Detection of Supply Voltage (Vdo)$(\text { LVISEL = 0) }$		Selection Level Detection of Input Voltage from External Input Pin (EXLVI) (LVISEL = 1)	
Selects reset (LVIMD = 1).	Selects interrupt (LVIMD $=0$).	Selects reset (LVIMD = 1) .	Selects interrupt (LVIMD $=0$).
Generates an internal reset signal when VDd < VLvi and releases the reset signal when VDD \geq VLVI.	Generates an internal interrupt signal when VDD drops lower than VLvi (VDd < VLvi) or when Vdo becomes Vlvi or higher (VDD $\geq V_{\text {LVII }}$).	Generates an internal reset signal when EXLVI < VExLvi and releases the reset signal when EXLVI \geq VexLvI.	Generates an internal interrupt signal when EXLVI drops lower than Vexlvi (EXLVI < VExLvI) or when EXLVI becomes Vexlvi or higher (EXLVI $\geq \mathrm{V}_{\mathrm{EXLV}}$).

Remark LVISEL: Bit 2 of low-voltage detection register (LVIM)
LVIMD: Bit 1 of LVIM

While the low-voltage detector is operating, whether the supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the low-voltage detection flag (LVIF: bit 0 of LVIM).

When the low-voltage detector is used to reset, bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of RESF, see CHAPTER 23 RESET FUNCTION.

25.2 Configuration of Low-Voltage Detector

The block diagram of the low-voltage detector is shown in Figure 25-1.

Figure 25-1. Block Diagram of Low-Voltage Detector

25.3 Registers Controlling Low-Voltage Detector

The low-voltage detector is controlled by the following registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level selection register (LVIS)
- Port mode register 12 (PM12)
(1) Low-voltage detection register (LVIM)

This register sets low-voltage detection and the operation mode.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
The generation of a reset signal other than an LVI reset clears this register to 00 H .

Figure 25-2. Format of Low-Voltage Detection Register (LVIM)

Address:	H	t:						
Symbol	<7>	6	5	4	3	<2>	<1>	<0>
LVIM	LVION	0	0	0	0	LVISEL	LVIMD	LVIF

LVION $^{\text {Notes } 3,4}$		Enables low-voltage detection operation
0	Disables operation	
1	Enables operation	

LVISEL $^{\text {Note } 3}$	Voltage detection selection
0	Detects level of supply voltage (VDD)
1	Detects level of input voltage from external input pin (EXLVI)

LVIMD ${ }^{\text {Note } 3}$	Low-voltage detection operation mode (interrupt/reset) selection
0	- LVISEL = 0: Generates an internal interrupt signal when the supply voltage (VDD) drops lower than the detection voltage (VLVI) (VDD < VLvI) or when VDD becomes VLVI or higher (VDD $\geq V_{\text {LVII }}$). - LVISEL = 1: Generates an interrupt signal when the input voltage from an external input pin (EXLVI) drops lower than the detection voltage (VExLvI) (EXLVI < Vexivi) or when EXLVI becomes $\mathrm{V}_{\text {exlvi }}$ or higher (EXLVI \geq VexLvi).
1	- LVISEL = 0: Generates an internal reset signal when the supply voltage (VDD) < detection voltage (VLvI) and releases the reset signal when $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V}_{\mathrm{Lv}}$. - LVISEL = 1: Generates an internal reset signal when the input voltage from an external input pin (EXLVI) < detection voltage (VExLvi) and releases the reset signal when EXLVI \geq VExLvI.

LVIF	Low-voltage detection flag
0	- LVISEL $=0$: Supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right) \geq$ detection voltage $\left(\mathrm{V}_{\mathrm{LI}}\right)$, or when operation is disabled - LVISEL = 1: Input voltage from external input pin (EXLVI) \geq detection voltage (VEXLVI), or when operation is disabled
1	- LVISEL $=0$: Supply voltage (VDD) < detection voltage (VLVI) - LVISEL = 1: Input voltage from external input pin (EXLVI) < detection voltage (VExLvi)

Notes 1. This bit is cleared to 00 H upon a reset other than an LVI reset.
2. Bit 0 is read-only.
3. LVION, LVIMD, and LVISEL are cleared to 0 in the case of a reset other than an LVI reset. These are not cleared to 0 in the case of an LVI reset.
4. When LVION is set to 1 , operation of the comparator in the LVI circuit is started. Use software to wait for an operation stabilization time ($10 \mu \mathrm{~s}$ (MIN.)) from when LVION is set to 1 until operation is stabilized. After operation has stabilized, the external input of $200 \mu \mathrm{~s}$ (MIN.) (Minimum pulse width: $200 \mu \mathrm{~S}$ (MIN.)) is required from when a state below LVI detection voltage has been entered, until LVIF is set (1).

Cautions 1. To stop LVI, follow either of the procedures below.

- When using 8-bit memory manipulation instruction: Write 00H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVION to 0.

2. Input voltage from external input pin (EXLVI) must be EXLVI < VDD.

Cautions 3. When using LVI as an interrupt, if LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1.
4. With the conventional-specification products (μ PD78F05xx and 78F05xxD), after an LVI reset has been generated, do not write values to LVIS and LVIM when LVION = 1 .
(2) Low-voltage detection level selection register (LVIS)

This register selects the low-voltage detection level.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
The generation of a reset signal other than an LVI reset clears this register to 00 H .

Figure 25-3. Format of Low-Voltage Detection Level Selection Register (LVIS)

Address:		After reset: $00 \mathrm{H}^{\text {Note } 1}$	R/W					
Symbol	7	6	5	4	3	2	1	0
LVIS	0	0	0	0	LVIS3	LVIS2	LVIS1	LVIS0

LVIS3	LVIS2	LVIS1	LVISO	Detection level
0	0	0	0	VLvio ($4.24 \mathrm{~V} \pm 0.1 \mathrm{~V}$)
0	0	0	1	VLV11 (4.09 V $\pm 0.1 \mathrm{~V}$)
0	0	1	0	VLVII ($3.93 \mathrm{~V} \pm 0.1 \mathrm{~V}$)
0	0	1	1	$\mathrm{V}_{\text {LVII }}(3.78 \mathrm{~V} \pm 0.1 \mathrm{~V}$)
0	1	0	0	VLVII ($3.62 \mathrm{~V} \pm 0.1 \mathrm{~V}$)
0	1	0	1	VLV15 ($3.47 \mathrm{~V} \pm 0.1 \mathrm{~V}$)
0	1	1	0	VLVIG ($3.32 \mathrm{~V} \pm 0.1 \mathrm{~V}$)
0	1	1	1	$\mathrm{V}_{\operatorname{LVI7}}(3.16 \mathrm{~V} \pm 0.1 \mathrm{~V})$
1	0	0	0	VLV18 ($3.01 \mathrm{~V} \pm 0.1 \mathrm{~V}$)
1	0	0	1	VLvig (2.85 V $\pm 0.1 \mathrm{~V}$)
1	0	1	0	$\mathrm{V}_{\text {LVIIO }}(2.70 \mathrm{~V} \pm 0.1 \mathrm{~V})^{\text {Note } 2}$
1	0	1	1	V LV111 (2.55 V $\pm 0.1 \mathrm{~V}$) ${ }^{\text {Nole } 2}$
1	1	0	0	$\mathrm{V}_{\text {LVII2 }}\left(2.39 \mathrm{~V} \pm 0.1 \mathrm{~V}\right.$) ${ }^{\text {Note } 2}$
1	1	0	1	$\mathrm{V}_{\text {LVII3 }}\left(2.24 \mathrm{~V} \pm 0.1 \mathrm{~V}\right.$) ${ }^{\text {Note } 2}$
1	1	1	0	$\mathrm{V}_{\text {LV14 }}\left(2.08 \mathrm{~V} \pm 0.1 \mathrm{~V}\right.$) ${ }^{\text {Note } 2}$
1	1	1	1	VLV15 (1.93 V $\pm 0.1 \mathrm{~V}$) ${ }^{\text {Note } 2}$

Notes 1. The value of LVIS is not reset but retained as is, upon a reset by LVI. It is cleared to 00 H upon other resets.
2. Do not set $\mathrm{V}_{\mathrm{LV} 110}$ to $\mathrm{V}_{\mathrm{LVII} 15}$ for (A2) grade products.

Cautions 1. Be sure to clear bits 4 to 7 to " 0 ".
2. Do not change the value of LVIS during LVI operation.
3. When an input voltage from the external input pin (EXLVI) is detected, the detection voltage (VexLvi = 1.21 V (TYP.)) is fixed. Therefore, setting of LVIS is not necessary.
4. With the conventional-specification products (μ PD78F05xx and 78F05xxD), after an LVI reset has been generated, do not write values to LVIS and LVIM when LVION = 1 .

(3) Port mode register 12 (PM12)

When using the P120/EXLVI/INTP0 pin for external low-voltage detection potential input, set PM120 to 1. At this time, the output latch of P120 may be 0 or 1 .
PM12 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets PM12 to FFH.

Figure 25-4. Format of Port Mode Register 12 (PM12)

Address:		After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120

PM12n	P12n pin I/O mode selection ($\mathrm{n}=0$ to 4)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Remark The format of port mode register 12 of $78 \mathrm{KO} / \mathrm{KB} 2$ products is different from the above format. See 5.3 Registers Controlling Port Function (1) Port mode registers (PMxx).

25.4 Operation of Low-Voltage Detector

The low-voltage detector can be used in the following two modes.
(1) Used as reset (LVIMD = 1)

- If LVISEL $=0$, compares the supply voltage (VDD) and detection voltage (V LvI), generates an internal reset signal when $V_{D D}<V_{L V I}$, and releases internal reset when $V_{D D} \geq V_{L V I}$.
- If LVISEL = 1, compares the input voltage from external input pin (EXLVI) and detection voltage ($\mathrm{VEXLVI}^{=1.21 \mathrm{~V}}$ (TYP.)), generates an internal reset signal when EXLVI < VExLVI, and releases internal reset when EXLVI \geq VExLVI.
(2) Used as interrupt (LVIMD = 0)
 ($\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{LVI}}$) or when V_{dd} becomes V_{LV} or higher ($\mathrm{V}_{\mathrm{dd}} \geq \mathrm{V}_{\text {LvII }}$), generates an interrupt signal (INTLVI).
- If LVISEL $=1$, compares the input voltage from external input pin (EXLVI) and detection voltage (VExLVI $=1.21 \mathrm{~V}$ (TYP.)). When EXLVI drops lower than VexLvi (EXLVI < VExLvi) or when EXLVI becomes VexLvI or higher (EXLVI \geq VExLVI), generates an interrupt signal (INTLVI).

While the low-voltage detector is operating, whether the supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the low-voltage detection flag (LVIF: bit 0 of LVIM).

Remark LVIMD: Bit 1 of low-voltage detection register (LVIM)
LVISEL: Bit 2 of LVIM

25.4.1 When used as reset

(1) When detecting level of supply voltage (Vdo)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
<2> Clear bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 0 (detects level of supply voltage (VDD)) (default value).
$<3>$ Set the detection voltage using bits 3 to 0 (LVIS3 to LVISO) of the low-voltage detection level selection register (LVIS).
<4> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
<5> Use software to wait for an operation stabilization time (10 $\mu \mathrm{s}$ (MIN.)).
<6> Wait until it is checked that (supply voltage (VDD) \geq detection voltage (VLvi)) by bit 0 (LVIF) of LVIM.
$<7>$ Set bit 1 (LVIMD) of LVIM to 1 (generates reset when the level is detected).

Figure 25-5 shows the timing of the internal reset signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <7> above.

Cautions 1. <1> must always be executed. When LVIMK = 0, an interrupt may occur immediately after the processing in <4>.
2. If supply voltage (V_{dd}) \geq detection voltage (V_{Lv}) when LVIMD is set to $\mathbf{1}$, an internal reset signal is not generated.

- When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction: Write 00H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVIMD to 0 and then LVION to 0 .

Figure 25-5. Timing of Low-Voltage Detector Internal Reset Signal Generation (Detects Level of Supply Voltage (Vdd)) (1/2)
(1) In 1.59 V POC mode (option byte: POCMODE $=0$)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The LVIF flag may be set (1).
3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, see CHAPTER 23 RESET FUNCTION.

Remark <1> to $<7>$ in Figure 25-5 above correspond to $<1>$ to $<7>$ in the description of "When starting operation" in 25.4.1 (1) When detecting level of supply voltage (VDD).

Figure 25-5. Timing of Low-Voltage Detector Internal Reset Signal Generation (Detects Level of Supply Voltage (Vdd)) (2/2)
(2) In 2.7 V/1.59 V POC mode (option byte: $\operatorname{POCMODE~=~1)~}$

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The LVIF flag may be set (1).
3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, see CHAPTER 23 RESET FUNCTION.

Remark <1> to <7> in Figure 25-5 above correspond to <1> to <7> in the description of "When starting operation" in 25.4.1 (1) When detecting level of supply voltage (VDD).
(2) When detecting level of input voltage from external input pin (EXLVI)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
<2> Set bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 1 (detects level of input voltage from external input pin (EXLVI)).
$<3>$ Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
<4> Use software to wait for an operation stabilization time (10 $\mu \mathrm{s}$ (MIN.)).
$<5>$ Wait until it is checked that (input voltage from external input pin (EXLVI) \geq detection voltage ($\mathrm{V}_{\text {ExLVI }}=1.21 \mathrm{~V}$ (TYP.))) by bit 0 (LVIF) of LVIM.
<6> Set bit 1 (LVIMD) of LVIM to 1 (generates reset signal when the level is detected).

Figure $25-6$ shows the timing of the internal reset signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to $<6>$ above.

Cautions 1. <1> must always be executed. When LVIMK = 0 , an interrupt may occur immediately after the processing in <3>.
2. If input voltage from external input pin (EXLVI) \geq detection voltage ($\mathrm{VexLvi}^{2}=1.21 \mathrm{~V}$ (TYP.)) when LVIMD is set to 1 , an internal reset signal is not generated.
3. Input voltage from external input pin (EXLVI) must be EXLVI < Vdo.

- When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction: Write 00 H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVIMD to 0 and then LVION to 0 .

Figure 25-6. Timing of Low-Voltage Detector Internal Reset Signal Generation (Detects Level of Input Voltage from External Input Pin (EXLVI))

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The LVIF flag may be set (1).
3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, see CHAPTER 23 RESET FUNCTION.

Remark <1> to <6> in Figure 25-6 above correspond to <1> to <6> in the description of "When starting operation" in 25.4.1 (2) When detecting level of input voltage from external input pin (EXLVI).

25.4.2 When used as interrupt

(1) When detecting level of supply voltage (VDd)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
<2> Clear bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 0 (detects level of supply voltage (VDD)) (default value).
$<3>$ Set the detection voltage using bits 3 to 0 (LVIS3 to LVISO) of the low-voltage detection level selection register (LVIS).
<4> Clear bit 1 (LVIMD) of LVIM to 0 (generates interrupt signal when the level is detected) (default value).
<5> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
<6> Use software to wait for an operation stabilization time ($10 \mu \mathrm{~s}$ (MIN.)).
$<7>$ Confirm that "supply voltage ($V_{D D}$) \geq detection voltage ($V_{L V I}$)" when detecting the falling edge of $V_{D D}$, or "supply voltage (VDD) < detection voltage (VLvI)" when detecting the rising edge of $V_{D D}$, at bit 0 (LVIF) of LVIM.
<8> Clear the interrupt request flag of LVI (LVIIF) to 0.
<9> Release the interrupt mask flag of LVI (LVIMK).
<10> Execute the El instruction (when vector interrupts are used).

Figure 25-7 shows the timing of the interrupt signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <9> above.

- When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction: Write 00 H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVION to 0 .

Figure 25-7. Timing of Low-Voltage Detector Interrupt Signal Generation (Detects Level of Supply Voltage (Vdd)) (1/2)
(1) In 1.59 V POC mode (option byte: $\operatorname{POCMODE=0\text {)}}$

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
3. If LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1 .

Remark <1> to <9> in Figure 25-7 above correspond to <1> to <9> in the description of "When starting operation" in 25.4.2 (1) When detecting level of supply voltage (Vdd).

Figure 25-7. Timing of Low-Voltage Detector Interrupt Signal Generation (Detects Level of Supply Voltage (Vdd)) (2/2)
(2) In 2.7 V/1.59 V POC mode (option byte: POCMODE = 1)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
3. If LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1 .

Remark <1> to <9> in Figure 25-7 above correspond to <1> to <9> in the description of "When starting operation" in 25.4.2 (1) When detecting level of supply voltage (Vdd).
(2) When detecting level of input voltage from external input pin (EXLVI)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
<2> Set bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 1 (detects level of input voltage from external input pin (EXLVI)).
$<3>$ Clear bit 1 (LVIMD) of LVIM to 0 (generates interrupt signal when the level is detected) (default value).
$<4>$ Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
<5> Use software to wait for an operation stabilization time ($10 \mu \mathrm{~s}$ (MIN.)).
$<6>$ Confirm that "input voltage from external input pin (EXLVI) \geq detection voltage (VExLvI $=1.21 \mathrm{~V}$ (TYP.)" when detecting the falling edge of EXLVI, or "input voltage from external input pin (EXLVI) < detection voltage (VExLVI $=1.21 \mathrm{~V}$ (TYP.)" when detecting the rising edge of EXLVI, at bit 0 (LVIF) of LVIM.
$<7>$ Clear the interrupt request flag of LVI (LVIIF) to 0.
<8> Release the interrupt mask flag of LVI (LVIMK).
<9> Execute the El instruction (when vector interrupts are used).

Figure 25-8 shows the timing of the interrupt signal generated by the low-voltage detector. The numbers in this timing chart correspond to $<1>$ to $<8>$ above.

Caution Input voltage from external input pin (EXLVI) must be EXLVI < Vdo.

- When stopping operation

Either of the following procedures must be executed.

- When using 8-bit memory manipulation instruction: Write 00 H to LVIM.
- When using 1-bit memory manipulation instruction: Clear LVION to 0 .

Figure 25-8. Timing of Low-Voltage Detector Interrupt Signal Generation (Detects Level of Input Voltage from External Input Pin (EXLVI))

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
3. If LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1

Remark <1> to <8> in Figure 25-8 above correspond to $<1>$ to $<8>$ in the description of "When starting operation" in 25.4.2 (2) When detecting level of input voltage from external input pin (EXLVI).

25.5 Cautions for Low-Voltage Detector

In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the LVI detection voltage (VLvI), the operation is as follows depending on how the low-voltage detector is used.

(1) When used as reset

The system may be repeatedly reset and released from the reset status.
In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking action (1) below.

(2) When used as interrupt

Interrupt requests may be frequently generated. Take (b) of action (2) below.
<Action>
(1) When used as reset

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports (see Figure 25-9).

(2) When used as interrupt

(a) Confirm that "supply voltage (V_{DD}) \geq detection voltage (VLvI)" when detecting the falling edge of V_{DD}, or "supply voltage (V_{DD}) < detection voltage ($\mathrm{V}_{\mathrm{LvI}}$)" when detecting the rising edge of V_{DD}, in the servicing routine of the LVI interrupt by using bit 0 (LVIF) of the low-voltage detection register (LVIM). Clear bit 0 (LVIIF) of interrupt request flag register OL (IFOL) to 0 .
(b) In a system where the supply voltage fluctuation period is long in the vicinity of the LVI detection voltage, wait for the supply voltage fluctuation period, confirm that "supply voltage (VDD) \geq detection voltage (VLvI)" when detecting the falling edge of V_{DD}, or "supply voltage (V_{DD}) < detection voltage (V_{Lv})" when detecting the rising edge of V_{DD}, using the LVIF flag, and clear the LVIIF flag to 0 .

Remark If bit 2 (LVISEL) of the low voltage detection register (LVIM) is set to " 1 ", the meanings of the above words change as follows.

- Supply voltage (VdD) \rightarrow Input voltage from external input pin (EXLVI)
- Detection voltage (VLvi) \rightarrow Detection voltage (VExLvi $=1.21 \mathrm{~V}$)

Figure 25-9. Example of Software Processing After Reset Release (1/2)

- If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage

Note A flowchart is shown on the next page.

Figure 25-9. Example of Software Processing After Reset Release (2/2)

- Checking reset source

CHAPTER 26 OPTION BYTE

26.1 Functions of Option Bytes

The flash memory at 0080 H to 0084 H of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is an option byte area. When power is turned on or when the device is restarted from the reset status, the device automatically references the option bytes and sets specified functions. When using the product, be sure to set the following functions by using the option bytes.

When the boot swap operation is used during self-programming, 0080 H to 0084 H are switched to 1080 H to 1084 H . Therefore, set values that are the same as those of 0080 H to 0084 H to 1080 H to 1084 H in advance.

Caution Be sure to set 00 H to 0082 H and $0083 \mathrm{H}(0082 \mathrm{H} / 1082 \mathrm{H}$ and $0083 \mathrm{H} / 1083 \mathrm{H}$ when the boot swap function is used).
(1) $0080 \mathrm{H} / 1080 \mathrm{H}$

O Internal low-speed oscillator operation

- Can be stopped by software
- Cannot be stopped

O Watchdog timer overflow time setting
O Watchdog timer counter operation

- Enabled counter operation
- Disabled counter operation

O Watchdog timer window open period setting

Caution Set a value that is the same as that of 0080 H to 1080 H because 0080 H and 1080 H are switched during the boot swap operation.
(2) $0081 \mathrm{H} / 1081 \mathrm{H}$

O Selecting POC mode

- During 2.7 V/1.59 V POC mode operation (POCMODE = 1)

The device is in the reset state upon power application and until the supply voltage reaches 2.7 V (TYP.). It is released from the reset state when the voltage exceeds 2.7 V (TYP.). After that, POC is not detected at 2.7 V but is detected at 1.59 V (TYP.).

With standard and (A) grade products, if the supply voltage rises to 1.8 V after power application at a rate slower than $0.5 \mathrm{~V} / \mathrm{ms}$ (MIN .), use of the $2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ POC mode is recommended.

- During 1.59 V POC mode operation (POCMODE $=0$)

The device is in the reset state upon power application and until the supply voltage reaches 1.59 V (TYP.). It is released from the reset state when the voltage exceeds 1.59 V (TYP.). After that, POC is detected at 1.59 V (TYP.), in the same manner as on power application.

Caution POCMODE can only be written by using a dedicated flash memory programmer. It cannot be set during self-programming or boot swap operation during self-programming. However, because the value of 1081 H is copied to 0081 H during the boot swap operation, it is recommended to set a value that is the same as that of 0081 H to 1081 H when the boot swap function is used.
(3) $0084 \mathrm{H} / 1084 \mathrm{H}$

O On-chip debug operation control

- Disabling on-chip debug operation
- Enabling on-chip debug operation and erasing data of the flash memory in case authentication of the on-chip debug security ID fails
- Enabling on-chip debug operation and not erasing data of the flash memory even in case authentication of the on-chip debug security ID fails

Cautions 1. Be sure to set 00 H (disabling on-chip debug operation) to 0084 H for products not equipped with the on-chip debug function (μ PD78F05xx and 78F05xxA). Also set 00 H to 1084 H because $\mathbf{0 0 8 4 H}$ and 1084 H are switched during the boot operation.
2. To use the on-chip debug function with a product equipped with the on-chip debug function ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$ and 78 F 05 xxDA), set 02 H or 03 H to 0084 H . Set a value that is the same as that of 0084 H to 1084 H because $\mathbf{0 0 8 4} \mathrm{H}$ and 1084 H are switched during the boot operation.

26.2 Format of Option Byte

The format of the option byte is shown below.

Figure 26-1. Format of Option Byte (1/2)

Address: $0080 \mathrm{H} / 1080 \mathrm{H}^{\text {Note }}$

7	6	5	4	3	2	1	0
0	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	LSROSC

WINDOW1	WINDOW0	Watchdog timer window open period
0	0	25%
0	1	50%
1	0	75%
1	1	100%

WDTON	Operation control of watchdog timer counter/illegal access detection
0	Counter operation disabled (counting stopped after reset), illegal access detection operation disabled
1	Counter operation enabled (counting started after reset), illegal access detection operation enabled

WDCS2	WDCS1	WDCSO	Watchdog timer overflow time
0	0	0	$2^{10 / f \mathrm{frL}}$ (3.88 ms)
0	0	1	$2^{11 / f g r ~(~} 7.76 \mathrm{~ms}$)
0	1	0	$2^{12 / f \text { fri }(15.52 ~ m s) ~}$
0	1	1	$2^{13} /$ frL $(31.03 \mathrm{~ms})$
1	0	0	$2^{14 / f \text { frL }}$ (62.06 ms)
1	0	1	$2^{15 / f g L}$ (124.12 ms)
1	1	0	$2^{16} / \mathrm{fRL}(248.24 \mathrm{~ms})$
1	1	1	$2^{17} / \mathrm{frL}$ (496.48 ms)

LSROSC	Internal low-speed oscillator operation
0	Can be stopped by software (stopped when 1 is written to bit 1 (LSRSTOP) of RCM register)
1	Cannot be stopped (not stopped even if 1 is written to LSRSTOP bit)

Note Set a value that is the same as that of 0080 H to 1080 H because 0080 H and 1080 H are switched during the boot swap operation.

Cautions 1. The combination of WDCS2 $=$ WDCS $1=$ WDCSO $=0$ and WINDOW $1=$ WINDOWO $=0$ is prohibited.
2. Setting WINDOW1 $=$ WINDOWO $=0$ is prohibited when using the watchdog timer at $1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<$ 2.7 V .
3. The watchdog timer continues its operation during self-programming and EEPROM emulation of the flash memory. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.
4. If LSROSC $=0$ (oscillation can be stopped by software), the count clock is not supplied to the watchdog timer in the HALT and STOP modes, regardless of the setting of bit 0 (LSRSTOP) of the internal oscillation mode register (RCM).
When 8-bit timer H 1 operates with the internal low-speed oscillation clock, the count clock is supplied to 8 -bit timer H1 even in the HALT/STOP mode.
5. Be sure to clear bit 7 to 0 .

Remarks 1. frL: Internal low-speed oscillation clock frequency
2. (): fRL $=264 \mathrm{kHz}$ (MAX.)

Figure 26-1. Format of Option Byte (2/2)

Address: $0081 \mathrm{H} / 1081 \mathrm{H}^{\text {Notes } 1,2}$

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	POCMODE

POCMODE		POC mode selection
0	1.59 V POC mode (default)	
1	$2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ POC mode	

Notes 1. POCMODE can only be written by using a dedicated flash memory programmer. It cannot be set during self-programming or boot swap operation during self-programming. However, because the value of 1081H is copied to 0081 H during the boot swap operation, it is recommended to set a value that is the same as that of 0081 H to 1081 H when the boot swap function is used.
2. To change the setting for the POC mode, set the value to 0081 H again after batch erasure (chip erasure) of the flash memory. The setting cannot be changed after the memory of the specified block is erased.

Caution Be sure to clear bits 7 to 1 to " 0 ".

Address: $0082 \mathrm{H} / 1082 \mathrm{H}, 0083 \mathrm{H} / 1083 \mathrm{H}^{\text {Note }}$

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

Note Be sure to set 00 H to 0082 H and 0083 H , as these addresses are reserved areas. Also set 00 H to 1082 H and 1083 H because 0082 H and 0083 H are switched with 1082 H and 1083 H when the boot swap operation is used.

Address: $0084 \mathrm{H} / 1084 \mathrm{H}^{\text {Notes1, 2 }}$

7	6	5	4	3	2	1	0
0	0	0	0	0	0	OCDEN1	OCDEN0

OCDEN1	OCDEN0	On-chip debug operation control
0	0	Operation disabled
0	1	Setting prohibited
1	0	Operation enabled. Does not erase data of the flash memory in case authentication of the on-chip debug security ID fails.
1	1	Operation enabled. Erases data of the flash memory in case authentication of the on-chip debug security ID fails.

Notes 1. Be sure to set 00 H (on-chip debug operation disabled) to 0084 H for products not equipped with the on-chip debug function (μ PD78F05xx and 78 F 05 xxA). Also set 00 H to 1084 H because 0084 H and 1084 H are switched during the boot swap operation.
2. To use the on-chip debug function with a product equipped with the on-chip debug function (μ PD78F05xxD and 78 F 05 xxDA), set 02 H or 03 H to 0084 H . Set a value that is the same as that of 0084 H to 1084 H because 0084 H and 1084 H are switched during the boot swap operation.

Remark For the on-chip debug security ID, see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD and 78F05xxDA ONLY).

Here is an example of description of the software for setting the option bytes.

OPT	CSEG	AT 0080H	
OPTION:	DB	30 H	; Enables watchdog timer operation (illegal access detection operation), ; Window open period of watchdog timer: 50%, ; Overflow time of watchdog timer: $2^{10 / f R L}$, ; Internal low-speed oscillator can be stopped by software.
	DB	OOH	; 1.59 V POC mode
	DB	OOH	; Reserved area
	DB	OOH	; Reserved area
	DB	OOH	; On-chip debug operation disabled

Remark Referencing of the option byte is performed during reset processing. For the reset processing timing, see CHAPTER 23 RESET FUNCTION.

CHAPTER 27 FLASH MEMORY

The $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers incorporates the flash memory to which a program can be written, erased, and overwritten while mounted on the board.

27.1 Internal Memory Size Switching Register

Select the internal memory capacity using the internal memory size switching register (IMS).
IMS is set by an 8-bit memory manipulation instruction.
Reset signal generation sets IMS to CFH.

Caution Be sure to set each product to the values shown in Table 27-1 after a reset release.

Figure 27-1. Format of Internal Memory Size Switching Register (IMS)

Address: FFFOH After reset: CFH R/W
Symbol
IMS

7	6	5	4	3	2	1	0
RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0

RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection
0	0	0	768 bytes
0	1	0	512 bytes
1	1	0	1024 bytes
Other than above			

ROM3	ROM2	ROM1	ROM0	Internal ROM capacity selection
0	0	1	0	8 KB
0	1	0	0	16 KB
0	1	1	0	24 KB
1	0	0	0	32 KB
1	1	0	0	48 KB
1	1	1	1	60 KB
Other than above				

Caution To set the memory size, set IMS and then IXS. Set the memory size so that the internal ROM and internal expansion RAM areas do not overlap.

Table 27-1. Internal Memory Size Switching Register Settings

78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2	78K0/KF2	IMS Setting
$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0500, \\ & \text { 78F0500A } \end{aligned}$	-	-	-	-	42H
$\begin{aligned} & \mu \text { PD78F0501, } \\ & \text { 78F0501A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0511, } \\ & \text { 78F0511A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521, \\ & 78 \mathrm{~F} 0521 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0531, } \\ & \text { 78F0531A } \end{aligned}$	-	04H
μ PD78F0502, 78F0502A	$\begin{aligned} & \mu \text { PD78F0512, } \\ & \text { 78F0512A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0522, \\ & \text { 78F0522A } \end{aligned}$	μ PD78F0532, 78F0532A	-	C 6 H
$\begin{aligned} & \mu \text { PD78F0503, } \\ & \text { 78F0503A, } \\ & \text { 78F0503D }^{\text {Note 1 }}, \\ & \text { 78F0503DA }^{\text {Note 1 }} \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0513, } \\ & \text { 78F0513A, } \\ & \text { 78F0513D } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0523, \\ & 78 \mathrm{~F} 0523 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0533, } \\ & 78 F 0533 A \end{aligned}$	-	C 8 H
-	$\begin{aligned} & \mu \text { PD78F0514, } \\ & \text { 78F0514A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0524, } \\ & \text { 78F0524A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0534, } \\ & \text { 78F0534A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0544, } \\ & \text { 78F0544A } \end{aligned}$	CCH
-	$\begin{aligned} & \mu \text { PD78F0515, } \\ & \text { 78F0515A, } \\ & \text { 78F0515D } \\ & \text { Note 1 }, \\ & \text { 78F0515DA } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0525, \\ & 78 \mathrm{~F} 0525 \mathrm{~A} \end{aligned}$	μ PD78F0535, 78F0535A	$\mu \text { PD78F0545, }$ 78F0545A	CFH
-	-	μ PD78F0526, 78F0526A	μ PD78F0536, 78F0536A	μ PD78F0546, 78F0546A	$\mathrm{CCH}^{\text {Note } 2}$
-	-	$\begin{aligned} & \mu \text { PD78F0527, } \\ & \text { 78F0527A, } \\ & \text { 78F0527D }^{\text {Note } 1}, \\ & \text { 78F0527DA } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0537, } \\ & \text { 78F0537A, } \\ & \text { 78F0537D } \\ & \text { 78Fte } 1 \\ & \text { 78F0537DA } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0547, } \\ & \text { 78F0547A, } \\ & \text { 78F0547D } \end{aligned}$	$\mathrm{CCH}^{\text {Note } 2}$

Notes 1. The internal ROM capacity and internal high-speed RAM capacity of the products with the on-chip debug function can be debugged according to the debug target products. Set IMS according to the debug target products.
2. The μ PD78F05x6 and 78F05x6A ($x=2$ to 4) have internal ROMs of 96 KB , and the μ PD78F05x7, $78 F 05 \times 7 \mathrm{~A}, 78 \mathrm{~F} 05 \times 7 \mathrm{D}$, and $78 \mathrm{~F} 05 \times 7 \mathrm{DA}(\mathrm{x}=2$ to 4) have those of 128 KB . However, the set value of IMS of these devices is the same as those of the 48 KB product because memory banks are used. For how to set the memory banks, see 4.3 Memory Bank Select Register (BANK).

27.2 Internal Expansion RAM Size Switching Register

Select the internal expansion RAM capacity using the internal expansion RAM size switching register (IXS).
IXS is set by an 8-bit memory manipulation instruction.
Reset signal generation sets IXS to 0 CH .

Caution Be sure to set each product to the values shown in Table 27-2 after a reset release.

Figure 27-2. Format of Internal Expansion RAM Size Switching Register (IXS)

Address: FFF4H After reset: OCH R/W
Symbol
IXS

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 0 | 0 | 0 | 0 | IXRAM3 | IXRAM2 | IXRAM1 | IXRAM0 |

IXRAM3	IXRAM2	IXRAM1	IXRAM0	Internal expansion RAM capacity selection
1	1	0	0	0 bytes
1	0	1	0	1024 bytes
1	0	0	0	2048 bytes
0	1	0	0	4096 bytes
0	0	0	0	6144 bytes
Other than above				

Caution To set memory size, set IMS and then IXS. Set memory size so that the internal ROM area and internal expansion RAM area do not overlap.

Table 27-2. Internal Expansion RAM Size Switching Register Settings

48-pin products of $78 \mathrm{KO} / \mathrm{KC2}$	78K0/KD2	78K0/KE2	78K0/KF2	IXS Setting
$\begin{aligned} & \mu \text { PD78F0511, } \\ & \text { 78F0511A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0521, } \\ & \text { 78F0521A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0531, } \\ & \text { 78F0531A } \end{aligned}$	-	OCH
$\begin{aligned} & \mu \text { PD78F0512, } \\ & \text { 78F0512A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0522, } \\ & \text { 78F0522A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0532, } \\ & \text { 78F0532A } \end{aligned}$	-	OCH
μ PD78F0513, 78F0513A	$\begin{aligned} & \mu \text { PD78F0523, } \\ & \text { 78F0523A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0533, } \\ & \text { 78F0533A } \end{aligned}$	-	OCH
$\begin{aligned} & \mu \text { PD78F0514, } \\ & \text { 78F0514A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0524, } \\ & \text { 78F0524A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0534, } \\ & \text { 78F0534A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0544, } \\ & \text { 78F0544A } \end{aligned}$	OAH
μ PD78F0515, 78F0515A, 78F0515D ${ }^{\text {Note }}$, 78F0515DA ${ }^{\text {Note }}$	μ PD78F0525, 78F0525A	μ PD78F0535, 78F0535A	$\begin{aligned} & \mu \text { PD78F0545, } \\ & \text { 78F0545A } \end{aligned}$	08H
-	$\begin{aligned} & \mu \text { PD78F0526, } \\ & \text { 78F0526A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0536, } \\ & \text { 78F0536A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0546, } \\ & \text { 78F0546A } \end{aligned}$	04H
-	$\begin{aligned} & \mu \text { PD78F0527, } \\ & \text { 78F0527A, } \\ & \text { 78F0527D }^{\text {Note }} \\ & \text { 78F0527DA }^{\text {Note }} \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0537, } \\ & \text { 78F0537A, } \\ & \text { 78F0537D }{ }^{\text {Note }} \\ & \text { 78F0537DA }^{\text {Note }} \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0547, } \\ & \text { 78F0547A, } \\ & \text { 78F0547D }^{\text {Note }} \\ & \text { 78F0547DA }^{\text {Note }} \end{aligned}$	OOH

Note The internal expansion RAM capacity of the products with the on-chip debug function can be debugged according to the debug target products. Set IXS according to the debug target products.

27.3 Writing with Flash Memory Programmer

Data can be written to the flash memory on-board or off-board, by using a dedicated flash memory programmer.

(1) On-board programming

The contents of the flash memory can be rewritten after the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers have been mounted on the target system. The connectors that connect the dedicated flash memory programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the 78K0/Kx2 microcontrollers are mounted on the target system.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

27.4 Programming Environment

The environment required for writing a program to the flash memory of the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers are illustrated below.

Figure 27-3. Environment for Writing Program to Flash Memory

A host machine that controls the dedicated flash memory programmer is necessary.
To interface between the dedicated flash memory programmer and the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers, CSI10 or UART6 is used for manipulation such as writing and erasing. To write the flash memory off-board, a dedicated program adapter (FA series) is necessary.

27.5 Communication Mode

Communication between the dedicated flash memory programmer and the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is established by serial communication via CSI10 or UART6 of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers.
(1) CSI10

Transfer rate: 2.4 kHz to 2.5 MHz

Figure 27-4. Communication with Dedicated Flash memory programmer (CSI10)

MDO	FLMDO	
	Vdo/EVdo/AV ${ }_{\text {ref }}$	
GND	Vss/EVss/AVss	
/RESET	RESET	
SI/RxD	SO10	
SO/TxD	SI10	
SCK	SCK10	

(2) UART6

Transfer rate: 115200 bps

Figure 27-5. Communication with Dedicated Flash memory programmer (UART6)

The dedicated flash memory programmer generates the following signals for the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers. For details, refer to the user's manual for the PG-FP5, FL-PR5, PG-FP4, or FL-PR4.

Table 27-3. Pin Connection

Dedicated Flash memory programmer			78K0/Kx2	Connection	
Signal Name	I/O	Pin Function	Pin Name	CSI10	UART6
FLMDO	Output	Mode signal	FLMDO	\bigcirc	\bigcirc
Vod	I/O	VDD voltage generation/power monitoring	Vdd, EVdd, AV ${ }_{\text {ref }}$	\bigcirc	O
GND	-	Ground	Vss, EVss, AVss	\bigcirc	\bigcirc
CLK	Output	Clock output to 78K0/Kx2 microcontrollers	EXCLK/X2/P122	$x^{\text {Note } 1}$	$\mathrm{O}^{\text {Note } 2}$
/RESET	Output	Reset signal	RESET	\bigcirc	O
SI/RxD	Input	Receive signal	SO10/TxD6	\bigcirc	O
SO/TxD	Output	Transmit signal	SI10/RxD6	\bigcirc	\bigcirc
SCK	Output	Transfer clock	$\overline{\text { SCK10 }}$	()	\times

Notes 1. Only the internal high-speed oscillation clock (fRr) can be used when CSII0 is used.
2. Only the X1 clock (fx) or external main system clock (fexclk) can be used when UART6 is used.

Remark O: Be sure to connect the pin.
O: The pin does not have to be connected if the signal is generated on the target board.
\times : The pin does not have to be connected.

For the pins not to be used when the dedicated program adapter (FA series) is used, perform the processing described under the recommended connection of unused pins shown in Table 2-3 Pin I/O Circuit Types, or those described in Table 27-4 Processing of Unused Pins When the Flash Memory Write Adapter Is Connected (Required).

Table 27-4. Processing of Unused Pins When the Flash Memory Write Adapter Is Connected (Required)

Pin name	Pin processing
P00, P01	Independently connect to EVss via a resistor. ${ }^{\text {Notes 1,5 }}$
P03 to P06	Independently connect to EVss via a resistor. ${ }^{\text {Notes 2,5 }}$
P10, P11	Independently connect to EVss via a resistor. ${ }^{\text {Notes 3,5 }}$
P14	Independently connect to EVss via a resistor. ${ }^{\text {Notes 4,5 }}$
P16, P17	Independently connect to EVss via a resistor. ${ }^{\text {Notes 1,5 }}$
P30 to P33	
P60 to P63	Independently connect to EV ss via a resistor, or connect directly to EVss. Note 5
P70 to P77	Independently connect to EVss via a resistor. ${ }^{\text {Notes 1,5 }}$
P120	
P140 to P143	

Notes 1. These pins may be directly connected to EVss, without using a resistor, when design is performed so that operation is not switched to the normal operation mode on the flash memory write adapter board during flash memory programming.
2. These pins may be left open with the μ PD78F053n and 78F053nA ($\mathrm{n}=1$ to 3) of the 78K0/KE2 as well as the 78K0/KD2.
3. Connect these pins with the programmer when communicating with the dedicated flash memory programmer via serial communication by CSI10.
4. Connect this pin with the programmer when communicating with the dedicated flash memory programmer via serial communication by UART6.
5. With products without an EVss pin, connect them to Vss. With products without an EVdo pin, connect them to VdD.

27.6 Connection of Pins on Board

To write the flash memory on-board, connectors that connect the dedicated flash memory programmer must be provided on the target system. First provide a function that selects the normal operation mode or flash memory programming mode on the board.

When the flash memory programming mode is set, all the pins not used for programming the flash memory are in the same status as immediately after reset. Therefore, if the external device does not recognize the state immediately after reset, the pins must be handled as described below.

27.6.1 FLMDO pin

In the normal operation mode, 0 V is input to the FLMDO pin. In the flash memory programming mode, the VDD write voltage is supplied to the FLMD0 pin. An FLMD0 pin connection example is shown below.

Figure 27-6. FLMDO Pin Connection Example

27.6.2 Serial interface pins

The pins used by each serial interface are listed below.

Table 27-5. Pins Used by Each Serial Interface

Serial Interface	Pins Used
CSI10	SO10, SI10, $\overline{\text { SCK10 }}$
UART6	TxD6, RxD6

To connect the dedicated flash memory programmer to the pins of a serial interface that is connected to another device on the board, care must be exercised so that signals do not collide or that the other device does not malfunction.

(1) Signal collision

If the dedicated flash memory programmer (output) is connected to a pin (input) of a serial interface connected to another device (output), signal collision takes place. To avoid this collision, either isolate the connection with the other device, or make the other device go into an output high-impedance state.

Figure 27-7. Signal Collision (Input Pin of Serial Interface)

78K0/Kx2

In the flash memory programming mode, the signal output by the device collides with the signal sent from the dedicated flash programmer. Therefore, isolate the signal of the other device.

(2) Malfunction of other device

If the dedicated flash memory programmer (output or input) is connected to a pin (input or output) of a serial interface connected to another device (input), a signal may be output to the other device, causing the device to malfunction. To avoid this malfunction, isolate the connection with the other device.

Figure 27-8. Malfunction of Other Device

78K0/Kx2 microcontrollers

If the signal output by the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers in the flash memory programming mode affects the other device, isolate the signal of the other device.

78K0/Kx2
microcontrollers

If the signal output by the dedicated flash memory programmer in the flash memory programming mode affects the other device, isolate the signal of the other device.

27.6.3 RESET pin

If the reset signal of the dedicated flash memory programmer is connected to the RESET pin that is connected to the reset signal generator on the board, signal collision takes place. To prevent this collision, isolate the connection with the reset signal generator.

If the reset signal is input from the user system while the flash memory programming mode is set, the flash memory will not be correctly programmed. Do not input any signal other than the reset signal of the dedicated flash memory programmer.

Figure 27-9. Signal Collision (RESET Pin)

In the flash memory programming mode, the signal output by the reset signal generator collides with the signal output by the dedicated flash memory programmer. Therefore, isolate the signal of the reset signal generator.

27.6.4 Port pins

When the flash memory programming mode is set, all the pins not used for flash memory programming enter the same status as that immediately after reset. If external devices connected to the ports do not recognize the port status immediately after reset, the port pin must be connected to EVdD ${ }^{\text {Note }}$ or $E V s s^{\text {Note }}$ via a resistor.

Note With products without an EVss pin, connect them to Vss. With products without an EVDD pin, connect them to VD.

<R> 27.6.5 REGC pin

Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$) in the same manner as during normal operation.

27.6.6 Other signal pins

Connect X1 and X2 in the same status as in the normal operation mode when using the on-board clock.
To input the operating clock from the dedicated flash memory programmer, however, connect CLK of the programmer to EXCLK/X2/P122.

Cautions 1. Only the internal high-speed oscillation clock (fRH) can be used when CSI10 is used.
2. Only the X1 clock (fx) or external main system clock ($\mathrm{f} \times \mathrm{xCLK}$) can be used when UART6 is used.
3. For the product with an on-chip debug function ($\mu \mathrm{PD} 78 \mathrm{FO5xxD}$ and 78 F 05 xxDA), connect P31/INTP2/OCD1A and P121/X1/OCD0A as follows when writing the flash memory with a flash memory programmer.

- P31/INTP2/OCD1A: Connect to EVss ${ }^{\text {Note }}$ via a resistor.
- P121/X1/OCD0A: Connect to Vss ${ }^{\text {Note }}$ via a resistor.

Note With products without an EVss pin, connect them to Vss.

27.6.7 Power supply

To use the supply voltage output of the flash memory programmer, connect the Vdd pin to Vdd of the flash memory programmer, and the Vss pin to GND of the flash memory programmer.

To use the on-board supply voltage, connect in compliance with the normal operation mode.
However, be sure to connect the VDD and Vss pins to VdD and GND of the flash memory programmer to use the power monitor function with the flash memory programmer, even when using the on-board supply voltage.

Supply the same other power supplies (EVDD, EVss, AVREF, and AVss) as those in the normal operation mode.

27.7 Programming Method

27.7.1 Controlling flash memory

The following figure illustrates the procedure to manipulate the flash memory.

Figure 27-10. Flash Memory Manipulation Procedure

27.7.2 Flash memory programming mode

To rewrite the contents of the flash memory by using the dedicated flash memory programmer, set the 78K0/Kx2 microcontrollers in the flash memory programming mode. To set the mode, set the FLMDO pin to Vdd and clear the reset signal.

Change the mode by using a jumper when writing the flash memory on-board.
Figure 27-11. Flash Memory Programming Mode

Table 27-6. Relationship Between FLMD0 Pin and Operation Mode After Reset Release

FLMD0	Operation Mode
0	Normal operation mode
$V_{D D}$	Flash memory programming mode

27.7.3 Selecting communication mode

In the 78K0/Kx2 microcontrollers, a communication mode is selected by inputting pulses to the FLMD0 pin after the dedicated flash memory programming mode is entered. These FLMDO pulses are generated by the flash memory programmer.

The following table shows the relationship between the number of pulses and communication modes.

Table 27-7. Communication Modes

Communication Mode	Standard Setting ${ }^{\text {Note } 1}$				Pins Used	Peripheral Clock	Number of FLMD0 Pulses
	Port	Speed	Frequency	Multiply Rate			
UART (UART6)	UART-Ext-Osc	115,200 bps $^{\text {Note } 3}$	2 to $20 \mathrm{MHz}{ }^{\text {Note } 2}$	1.0	TxD6, RxD6	fx	0
	UART-Ext-FP5CK					fexCLK	3
3-wire serial I/O (CSI10)	CSI-Internal-OSC	$\begin{aligned} & 2.4 \mathrm{kHz} \text { to } \\ & 2.5 \mathrm{MHz} \end{aligned}$	-		$\frac{\text { SO10, SI10, }}{\text { SCK10 }}$	f_{RH}	8

Notes 1. Selection items for Standard settings on GUI of the flash memory programmer.
2. The possible setting range differs depending on the voltage. For details, refer to the chapter of electrical specifications.
3. Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.

Caution When UART6 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash memory programmer after the FLMDO pulse has been received.

Remark fx:
X1 clock
fexclk: External main system clock
frн: Internal high-speed oscillation clock

27.7.4 Communication commands

The 78K0/Kx2 microcontrollers communicate with the dedicated flash memory programmer by using commands. The signals sent from the flash memory programmer to the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers are called commands, and the signals sent from the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers to the dedicated flash memory programmer are called response.

Figure 27-12. Communication Commands

The flash memory control commands of the 78K0/Kx2 microcontrollers are listed in the table below. All these commands are issued from the programmer and the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers perform processing corresponding to the respective commands.

Table 27-8. Flash Memory Control Commands

Classification	Command Name	Function
Verify	Verify	Compares the contents of a specified area of the flash memory with data transmitted from the programmer.
Erase	Chip Erase	Erases the entire flash memory.
	Block Erase	Erases a specified area in the flash memory.
Blank check	Block Blank Check	Checks if a specified block in the flash memory has been correctly erased.
Write	Programming	Writes data to a specified area in the flash memory.
Getting information	Status	Gets the current operating status (status data).
	Silicon Signature	Gets 78K0/Kx2 information (such as the part number and flash memory configuration).
	Version Get	Gets the 78K0/Kx2 version and firmware version.
	Checksum	Gets the checksum data for a specified area.
Security	Security Set	Sets security information.
Others	Reset	Used to detect synchronization status of communication.
	Oscillating Frequency Set	Specifies an oscillation frequency.

The 78K0/Kx2 microcontrollers return a response for the command issued by the dedicated flash memory programmer. The response names sent from the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers are listed below.

Table 27-9. Response Names

Response Name	Function
ACK	Acknowledges command/data.
NAK	Acknowledges illegal command/data.

27.8 Security Settings

The $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers support a security function that prohibits rewriting the user program written to the internal flash memory, so that the program cannot be changed by an unauthorized person.

The operations shown below can be performed using the Security Set command. The security setting is valid when the programming mode is set next.

- Disabling batch erase (chip erase)

Execution of the block erase and batch erase (chip erase) commands for entire blocks in the flash memory is prohibited by this setting during on-board/off-board programming. Once execution of the batch erase (chip erase) command is prohibited, all of the prohibition settings (including prohibition of batch erase (chip erase)) can no longer be cancelled.

Caution After the security setting for the batch erase is set, erasure cannot be performed for the device. In addition, even if a write command is executed, data different from that which has already been written to the flash memory cannot be written, because the erase command is disabled.

- Disabling block erase

Execution of the block erase command for a specific block in the flash memory is prohibited during on-board/off-board programming. However, blocks can be erased by means of self programming.

- Disabling write

Execution of the write and block erase commands for entire blocks in the flash memory is prohibited during on-board/off-board programming. However, blocks can be written by means of self programming.

- Disabling rewriting boot cluster 0

Execution of the block erase command and write command on boot cluster 0 (0000 H to 0 FFFH) in the flash memory is prohibited by this setting. Execution of the batch erase (chip erase) command is also prohibited by this setting.

Caution If a security setting that rewrites boot cluster 0 has been applied, the rewriting of boot cluster 0 and the batch erase (chip erase) will not be executed for the device.

The batch erase (chip erase), block erase, write commands, and rewriting boot cluster 0 are enabled by the default setting when the flash memory is shipped. Security can be set by on-board/off-board programming and self programming. Each security setting can be used in combination.

Prohibition of erasing blocks and writing is cleared by executing the batch erase (chip erase) command.
Table 27-10 shows the relationship between the erase and write commands when the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontroller security function is enabled.

Table 27-10. Relationship Between Enabling Security Function and Command

(1) During on-board/off-board programming

Valid Security		Executed Command	
	Batch Erase (Chip Erase)	Block Erase	
Prohibition of batch erase (chip erase)	Cannot be erased in batch	Blocks cannot be	Write
Prohibition of block erase	Can be erased in batch.	erased.	Can be performed

Note Confirm that no data has been written to the write area. Because data cannot be erased after batch erase (chip erase) is prohibited, do not write data if the data has not been erased.

(2) During self programming

Valid Security		Executed Command	
	Block Erase	Write	
Prohibition of batch erase (chip erase)	Blocks can be erased.	Can be performed.	
Prohibition of block erase			
Prohibition of writing		Boot cluster 0 cannot be written.	
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.		

Table 27-11 shows how to perform security settings in each programming mode.

Table 27-11. Setting Security in Each Programming Mode

(1) On-board/off-board programming

Security	Security Setting	How to Disable Security Setting
Prohibition of batch erase (chip erase)	Set via GUI of dedicated flash memory	Cannot be disabled after set.
Prohibition of block erase	programmer, etc.	Execute batch erase (chip erase) command
Prohibition of writing		Cannot be disabled after set.
Prohibition of rewriting boot cluster 0		

(2) Self programming

Security	Security Setting	How to Disable Security Setting
Prohibition of batch erase (chip erase)	Set by using information library.	Cannot be disabled after set.
Prohibition of block erase		Execute batch erase (chip erase)
Prohibition of writing		command during on-board/off-board programming (cannot be disabled during self programming)
Prohibition of rewriting boot cluster 0		Cannot be disabled after set.

27.9 Processing Time for Each Command When PG-FP4 or PG-FP5 Is Used (Reference)

The following table shows the processing time for each command (reference) when the PG-FP4 or PG-FP5 is used as a dedicated flash memory programmer.

Table 27-12. Processing Time for Each Command When PG-FP4 or PG-FP5 Is Used (Reference) (1/2)
(1) Products with internal ROMs of the 32 KB

Command of PG-FP4	Port: CSI-Internal-OSC (Internal high-speed oscillation clock (fRн)), Speed: 2.5 MHz	Port: UART-Ext-FP4CK (External main system clock (fexcLk)), Speed: 115,200 bps	
		Frequency: 2.0 MHz	Frequency: 20 MHz
Signature	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)
Blankcheck	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)
Erase	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)
Program	2.5 s (TYP.)	5 s (TYP.)	5 s (TYP.)
Verify	1.5 s (TYP.)	4 s (TYP.)	3.5 s (TYP.)
E.P.V	3.5 s (TYP.)	6 s (TYP.)	6 s (TYP.)
Checksum	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)
Security	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)

(2) Products with internal ROMs of the 60 KB

Command of PG-FP4	Port: CSI-Internal-OSC (Internal high-speed oscillation clock (fRн)), Speed: 2.5 MHz	Port: UART-Ext-FP4CK (External main system clock (fexclk)), Speed: 115,200 bps	
		Frequency: 2.0 MHz	Frequency: 20 MHz
Signature	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)
Blankcheck	1 s (TYP.)	1 s (TYP.)	1 s (TYP.)
Erase	1 s (TYP.)	1 s (TYP.)	1 s (TYP.)
Program	5 s (TYP.)	9 s (TYP.)	9 s (TYP.)
Verify	2 s (TYP.)	6.5 s (TYP.)	6.5 s (TYP.)
E.P.V	6 s (TYP.)	10.5 s (TYP.)	10.5 s (TYP.)
Checksum	0.5 s (TYP.)	1 s (TYP.)	1 s (TYP.)
Security	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)

Caution When executing boot swapping, do not use the E.P.V. command with the dedicated flash memory programmer.

Table 27-12. Processing Time for Each Command When PG-FP4 or PG-FP5 Is Used (Reference) (2/2)
(3) Products with internal ROMs of the 128 KB

Command of PG-FP4	Port: CSI-Internal-OSC (Internal high-speed oscillation clock (fRH)), Speed: 2.5 MHz	Port: UART-Ext-FP4CK (External main system clock (fexclk)), Speed: 115,200 bps	
		Frequency: 2.0 MHz	Frequency: 20 MHz
Signature	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)
Blankcheck	1 s (TYP.)	1 s (TYP.)	1 s (TYP.)
Erase	1.5 s (TYP.)	1.5 s (TYP.)	1.5 s (TYP.)
Program	9.5 s (TYP.)	18 s (TYP.)	18 s (TYP.)
Verify	4.5 s (TYP.)	13.5 s (TYP.)	13.5 s (TYP.)
E.P.V	11 s (TYP.)	19.5 s (TYP.)	19.5 s (TYP.)
Checksum	1 s (TYP.)	1 s (TYP.)	1 s (TYP.)
Security	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)

Caution When executing boot swapping, do not use the E.P.V. command with the dedicated flash memory programmer.

27.10 Flash Memory Programming by Self-Programming

The 78K0/Kx2 microcontrollers support a self-programming function that can be used to rewrite the flash memory via a user program. Because this function allows a user application to rewrite the flash memory by using a self-programming library, it can be used to upgrade the program in the field.

If an interrupt occurs during self-programming, self-programming can be temporarily stopped and interrupt servicing can be executed. To execute interrupt servicing, restore the normal operation mode after self-programming has been stopped, and execute the El instruction. After the self-programming mode is later restored, self-programming can be resumed.

Remark For details of the self-programming function and the self-programming library, refer to $\mathbf{7 8 K 0}$ Microcontrollers Self Programming Library Type01 User's Manual (U18274E).

Cautions 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.
2. Oscillation of the internal high-speed oscillator is started during self programming, regardless of the setting of the RSTOP flag (bit 0 of the internal oscillation mode register (RCM)). Oscillation of the internal high-speed oscillator cannot be stopped even if the STOP instruction is executed.
3. Input a high level to the FLMDO pin during self-programming.
4. Be sure to execute the DI instruction before starting self-programming.

The self-programming function checks the interrupt request flags (IFOL, IFOH, IF1L, and IF1H). If an interrupt request is generated, self-programming is stopped.
5. Self-programming is also stopped by an interrupt request that is not masked even in the DI status. To prevent this, mask the interrupt by using the interrupt mask flag registers (MKOL, MKOH, MK1L, and MK1H).

Caution 6. Allocate the entry program for self-programming in the common area of 0000 H to 7 FFFH .

Figure 27-13. Operation Mode and Memory Map for Self-Programming (μ PD78F0547 and 78F0547A)

The following figure illustrates a flow of rewriting the flash memory by using a self-programming library.

Figure 27-14. Flow of Self Programming (Rewriting Flash Memory)

Remark For details of the self-programming library, refer to 78K0 Microcontrollers Self Programming Library Type01 User's Manual (U18274E).

The following table shows the processing time and interrupt response time for the self-programming library.

Table 27-13. Processing Time for Self Programming Library (Conventional-specification Products (μ PD78F05xx and 78F05xxD)) (1/4)
(1) When internal high-speed oscillation clock is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		4.25			
Initialize library		977.75			
Mode check library		753.875		753.125	
Block blank check library		12770.875		12765.875	
Block erase library		36909.5	356318	36904.5	356296.25
Word write library		1214 (1214.375)	2409 (2409.375)	1207 (1207.375)	2402 (2402.375)
Block verify library		25618.875		25613.875	
Self programming end library		4.25			
Get information library	Option value: 03 H	871.25 (871.375)		866 (866.125)	
	Option value: 04 H	863.375 (863.5)		858.125 (858.25)	
	Option value: 05 H	1024.75 (1043.625)		1037.5 (1038.375)	
Set information library		105524.75	790809.375	105523.75	790808.375
EEPROM write library		$\begin{gathered} 1496.5 \\ (1496.875) \\ \hline \end{gathered}$	$\begin{gathered} 2691.5 \\ (2691.875) \\ \hline \end{gathered}$	$\begin{gathered} 1489.5 \\ (1489.875) \\ \hline \end{gathered}$	$\begin{gathered} 2684.5 \\ (2684.875) \\ \hline \end{gathered}$

Remarks 1. Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Table 27-13. Processing Time for Self Programming Library (Conventional-specification Products (μ PD78F05xx and 78F05xxD)) (2/4)
(2) When internal high-speed oscillation clock is used and entry RAM is located in short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		4.25			
Initialize library		443.5			
Mode check library		219.625		218.875	
Block blank check library		12236.625		12231.625	
Block erase library		36363.25	355771.75	36358.25	355750
Word write library		$\begin{gathered} 679.75 \\ (680.125) \\ \hline \end{gathered}$	$\begin{gathered} 1874.75 \\ (1875.125) \\ \hline \end{gathered}$	$\begin{gathered} 672.75 \\ (673.125) \\ \hline \end{gathered}$	$\begin{gathered} 1867.75 \\ (1868.125) \\ \hline \end{gathered}$
Block verify library		25072.625		25067.625	
Self programming end library		4.25			
Get information library	Option value: 03H	337 (337.125)		331.75 (331.875)	
	Option value: 04H	329.125 (239.25)		323.875 (324)	
	Option value: 05H	502.25 (503.125)		497 (497.875)	
Set information library		104978.5	541143.125	104977.5	541142.125
EEPROM write library		$\begin{gathered} 962.25 \\ (962.625) \\ \hline \end{gathered}$	$\begin{gathered} 2157.25 \\ (2157.625) \\ \hline \end{gathered}$	$\begin{gathered} \hline 955.25 \\ (955.625) \\ \hline \end{gathered}$	$\begin{gathered} 2150.25 \\ (2150.625) \\ \hline \end{gathered}$

Remarks 1. Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Table 27-13. Processing Time for Self Programming Library (Conventional-specification Products (μ PD78F05xx and 78F05xxD)) (3/4)
(3) When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		49/fcpu +485.8125			
Mode check library		35/fcpu +374.75		29/fcpu +374.75	
Block blank check library		174/fcpu + 6382.0625		134/fcPu +6382.0625	
Block erase library		$\begin{array}{r} 174 / \text { fcPu }+ \\ 31093.875 \\ \hline \end{array}$	$\begin{gathered} 174 / \text { fcPu }+ \\ 298948.125 \\ \hline \end{gathered}$	$\begin{gathered} 134 / \text { fcPu }+ \\ 31093.875 \end{gathered}$	$\begin{gathered} 134 / \mathrm{fcPu}+ \\ 298948.125 \\ \hline \end{gathered}$
Word write library		$\begin{gathered} 318(321) / \text { fcpu }+ \\ 644.125 \\ \hline \end{gathered}$	$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 1491.625 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcPu }+ \\ 644.125 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcpu }+ \\ 1491.625 \\ \hline \end{gathered}$
Block verify library		174/fcPu + 13448.5625		134/f¢PU +13448.5625	
Self programming end library		34/fcpu			
Get information library	Option value: 03 H	171 (172)/fcpu +432.4375		$129(130) / \mathrm{fcpu}+432.4375$	
	Option value: 04 H	181 (182)/fcPu +427.875		139 (140)/fcpu + 427.875	
	Option value: 05 H	404 (411)/fcpu + 496.125		362 (369)/fcpu + 496.125	
Set information library		$\begin{gathered} 75 / \text { fcpu }+ \\ 79157.6875 \end{gathered}$	$75 / \mathrm{fcPu}+652400$	$\begin{gathered} 67 \text { fcpu }+ \\ 79157.6875 \end{gathered}$	$67 \mathrm{fcPu}+652400$
EEPROM write library		$\begin{gathered} 318(321) / \mathrm{fcpu}+ \\ 799.875 \end{gathered}$	$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 1647.375 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / f c P u+ \\ 799.875 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcpu }+ \\ 1647.375 \\ \hline \end{gathered}$

Remarks 1. Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
3. fcpu: CPU operation clock frequency
4. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Table 27-13. Processing Time for Self Programming Library (Conventional-specification Products (μ PD78F05xx and 78F05xxD)) (4/4)
(4) When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located in short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		49/fcPu +224.6875			
Mode check library		35/fcpu +113.625		29/fcPu +113.625	
Block blank check library		174/fcpu +6120.9375		134/fcpu +6120.9375	
Block erase library		$\begin{aligned} & 174 / \text { fcPu }+ \\ & 30820.75 \end{aligned}$	$\begin{gathered} 174 / \text { fcPu }+ \\ 298675 \\ \hline \end{gathered}$	$\begin{aligned} & 134 / \text { fcPu }+ \\ & 30820.75 \\ & \hline \end{aligned}$	$\begin{gathered} 134 / \text { fcPu }+ \\ 298675 \\ \hline \end{gathered}$
Word write library		$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 383 \\ \hline \end{gathered}$	$\begin{gathered} 318(321) / f c P u+ \\ 1230.5 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcpu + } \\ 383 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / f \mathrm{fcPu}+ \\ 1230.5 \\ \hline \end{gathered}$
Block verify library		174/fcPu +13175.4375		134/fcPu +13175.4375	
Self programming end library		34/ffcpu			
Get information library	Option value: 03 H	171 (172)/fcpu +171.3125		129 (130)/fcpu +171.3125	
	Option value: 04 H	181 (182)/fcpu +166.75		139 (140)/fcpu + 166.75	
	Option value: 05 H	404 (411)/fcpu +231.875		362 (369)/fcpu +231.875	
Set information library		$\begin{gathered} 75 / \text { fcpu }+ \\ 78884.5625 \\ \hline \end{gathered}$	$\begin{gathered} 75 / \text { fcpu + } \\ 527566.875 \\ \hline \end{gathered}$	$\begin{gathered} 67 \text { fcpu }+ \\ 78884.5625 \\ \hline \end{gathered}$	$\begin{gathered} \text { 67fCPU }+ \\ 527566.875 \\ \hline \end{gathered}$
EEPROM write library		$\begin{gathered} 318(321) / \mathrm{fcpu}+ \\ 538.75 \end{gathered}$	$\begin{gathered} 318(321) / \mathrm{fcPu}+ \\ 1386.25 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcPu }+ \\ 538.75 \\ \hline \end{gathered}$	$\begin{gathered} 262(265) / \text { fcPu }+ \\ 1386.25 \\ \hline \end{gathered}$

Remarks 1. Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
3. fcpu: CPU operation clock frequency
4. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Table 27-14. Processing Time for Self Programming Library (Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)) (1/3)
(1) When internal high-speed oscillation clock is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		4.0	4.5	4.0	4.5
Initialize library		1105.9	1106.6	1105.9	1106.6
Mode check library		905.7	906.1	904.9	905.3
Block blank check library		12776.1	12778.3	12770.9	12772.6
Block erase library		26050.4	349971.3	26045.3	349965.6
Word write library		$1180.1+203 \times w$	$1184.3+2241 \times w$	$1172.9+203 \times w$	$1176.3+2241 \times w$
Block verify library		25337.9	25340.2	25332.8	25334.5
Self programming end library		4.0	4.5	4.0	4.5
Get information library	Option value: 03 H	1072.9	1075.2	1067.5	1069.1
	Option value: 04 H	1060.2	1062.6	1054.8	1056.6
	Option value: 05 H	1023.8	1028.2	1018.3	1022.1
Set information library		70265.9	759995.0	70264.9	759994.0
EEPROM write library		$1316.8+347 \times w$	$1320.9+2385 \times w$	$1309.0+347 \times w$	$1312.4+2385 \times$ w

(2) When internal high-speed oscillation clock is used and entry RAM is located in short direct addressing range

Library Name	Processing Time $(\mu \mathrm{s})$			
	Normal Model of C Compiler		Static Model of C Compiler/Assembler	
	Min.	Max.	Min.	Max.
Self programming start library	4.0	4.5	4.0	4.5
Initialize library	449.5	450.2	449.5	450.2
Mode check library	249.3	249.7	248.6	248.9
Block blank check library	12119.7	12121.9	12114.6	12116.3
Block erase library	25344.7	349266.4	25339.6	349260.8
Word write library	$445.8+203 \times \mathrm{w}$	$449.9+2241 \times \mathrm{w}$	$438.5+203 \times \mathrm{w}$	$441.9+2241 \times \mathrm{w}$
Block verify library	24682.7	24684.9	24677.6	24679.3
Self programming end library	4.0	4.5	4.0	4.5
Get information library	Option value: 03 H	417.6	419.8	412.1
	Option value: 04 H	405.0	407.4	399.5

Remarks 1. The above processing times are those when a write start address structure is located in the internal highspeed RAM and during stabilized operation of the internal high-speed oscillator (RSTS =1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
3. w : Number of words in write data (1 word = 4 bytes)

Table 27-14. Processing Time for Self Programming Library (Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)) (2/3)
(3) When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located outside short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		55/fcPu + 594			
Mode check library		36/fcpu + 495		30/fcpu + 495	
Block blank check library		179/fcpu + 6429		136/fcpu + 6429	
Block erase library		179/fcpu +19713	179/f.fPu +268079	136/fcpu +19713	136/fcPu + 268079
Word write library		$\begin{gathered} 333 / \text { fcpu }+647+ \\ 136 \times w \end{gathered}$	$\begin{gathered} 333 / \text { fcpu }+647+ \\ 1647 \times \mathrm{w} \\ \hline \end{gathered}$	$\begin{gathered} 272 / \text { fcPu }+647+ \\ 136 \times w \\ \hline \end{gathered}$	$\begin{gathered} 272 / \text { fcpu }+647+ \\ 1647 \times \mathrm{w} \\ \hline \end{gathered}$
Block verify library		179/fcPu +13284		136/fcpu +13284	
Self programming end library		34/fıpu			
Get information library	Option value: 03 H	180/fcpu +581		134/fcpu +581	
	Option value: 04 H	190/fcpu + 574		144/fcpu +574	
	Option value: 05 H	350/fCPU + 535		304/fcPu +535	
Set information library		80/fcpu +43181	80/fcpu +572934	72/fcpu +43181	72/fcpu + 572934
EEPROM write library		$\begin{gathered} 333 / \text { fcPu }+729+ \\ 209 \times w \end{gathered}$	$\begin{gathered} 333 / \text { fcpu }+729+ \\ 1722 \times \mathrm{w} \\ \hline \end{gathered}$	$\begin{gathered} 268 / \text { fcpu }+729+ \\ 209 \times w \\ \hline \end{gathered}$	$\begin{gathered} 268 / \text { fcpu }+729+ \\ 1722 \times \mathrm{w} \\ \hline \end{gathered}$

Remarks 1. The above processing times are those when a write start address structure is located in the internal highspeed RAM and during stabilized operation of the internal high-speed oscillator (RSTS $=1$).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
3. fcpu: CPU operation clock frequency
4. w : Number of words in write data (1 word $=4$ bytes)

Table 27-14. Processing Time for Self Programming Library (Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)) (3/3)
(4) When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located in short direct addressing range

Library Name		Processing Time ($\mu \mathrm{s}$)			
		Normal Model of C Compiler		Static Model of C Compiler/Assembler	
		Min.	Max.	Min.	Max.
Self programming start library		34/fcpu			
Initialize library		55/fcpu +272			
Mode check library		36/fcPu + 173		30/fcPu + 173	
Block blank check library		179/fcpu +6108		136/fcpu + 6108	
Block erase library		179/fCPU +19371	179/fcpu +267738	136/fcpu +19371	136/fcpu +267738
Word write library		$\begin{gathered} 333 / \text { fcPu }+247+ \\ 136 \times w \end{gathered}$	$\begin{gathered} 333 / \text { fcPu }+247+ \\ 1647 \times \mathrm{w} \\ \hline \end{gathered}$	$\begin{gathered} 272 / f \mathrm{fPU}+247+ \\ 136 \times w \\ \hline \end{gathered}$	$\begin{gathered} 272 / \text { fcPu }+247+ \\ 1647 \times \mathrm{w} \\ \hline \end{gathered}$
Block verify library		179/fcpu+12964		136/fcpu+12964	
Self programming end library		34/fcpu			
Get information library	Option value: 03 H	180/fcPu +261		134/fcpu +261	
	Option value: 04 H	190/fcpu +254		144/fcpu +254	
	Option value: 05 H	$350 / \mathrm{fcPu}+213$		304/fcpu +213	
Set information library		80/fcpu +42839	80/fcpu +572592	$72 / \mathrm{fcpu}+42839$	72/fcpu +572592
EEPROM write library		$\begin{gathered} 333 / \text { fcPu }+516+ \\ 209 \times w \end{gathered}$	$\begin{gathered} 333 / \text { fcPu }+516+ \\ 1722 \times \mathrm{w} \\ \hline \end{gathered}$	$\begin{gathered} 268 / \mathrm{fcPu}+516+ \\ 209 \times w \end{gathered}$	$\begin{gathered} 268 / \text { fcpu }+516+ \\ 1722 \times w \\ \hline \end{gathered}$

Remarks 1. The above processing times are those when a write start address structure is located in the internal highspeed RAM and during stabilized operation of the internal high-speed oscillator (RSTS = 1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
3. fcpu: CPU operation clock frequency
4. w : Number of words in write data (1 word $=4$ bytes)

Table 27-15. Interrupt Response Time for Self Programming Library (Conventional-specification Products (μ PD78F05xx and 78F05xxD)) (1/2)
(1) When internal high-speed oscillation clock is used

Library Name	Interrupt Response Time (μ s (Max.))			
	Normal Model of C Compiler		Static Model of C Compiler/Assembler	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	933.6	668.6	927.9	662.9
Block erase library	1026.6	763.6	1020.9	757.9
Word write library	2505.8	1942.8	2497.8	1934.8
Block verify library	958.6	693.6	952.9	687.9
Set information library	476.5	211.5	475.5	210.5
EEPROM write library	2760.8	2168.8	2759.5	2167.5

Remarks 1. The above interrupt response times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
(2) When high-speed system clock is used (normal model of Compiler)

| Library Name | Interrupt Response Time $(\mu$ s $($ Max. $))$ | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |$]$

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcpu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Table 27-15. Interrupt Response Time for Self Programming Library (Conventional-specification Products (μ PD78F05xx and 78F05xxD)) (2/2)
(3) When high-speed system clock is used (static model of C compiler/assembler)

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	RSTOP $=0, \mathrm{RSTS}=1$		RSTOP = 1	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	136/fcPu + 507	136/fcpu +407	136/fcpu + 1650	136/fcpu +714
Block erase library	136/fcpu +559	136/fcpu +460	136/fcpu + 1702	136/fcpu +767
Word write library	272/fcPu + 1589	272/fcpu +1298	272/fcPu + 2732	272/fcPu + 1605
Block verify library	136/fcpu +518	136/fcpu +418	136/fcpu + 1661	136/fcpu +725
Set information library	$72 / \mathrm{fcpu}+370$	72/fcpu + 165	$72 / \mathrm{fcPu}+1513$	72/fcpu + 472
EEPROM write library ${ }^{\text {Note }}$	19/fcpu + 1759	19/fcpu +1468	19/fcpu +1759	19/fсpu +1468
	$268 / \mathrm{fcPu}+834$	$268 / \mathrm{fcpu}+512$	268/fcpu + 2061	$268 / \mathrm{fcpu}+873$

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcpu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Table 27-16. Interrupt Response Time for Self Programming Library (Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)) (1/2)
(1) When internal high-speed oscillation clock is used

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	Normal Model of C Compiler		Static Model of C Compiler/Assembler	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	1100.9	431.9	1095.3	426.3
Block erase library	1452.9	783.9	1447.3	778.3
Word write library	1247.2	579.2	1239.2	571.2
Block verify library	1125.9	455.9	1120.3	450.3
Set information library	906.9	312.0	905.8	311.0
EEPROM write library	1215.2	547.2	1213.9	545.9

Remarks 1. The above interrupt response times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
2. RSTS: Bit 7 of the internal oscillation mode register (RCM)
(2) When high-speed system clock is used (normal model of C compiler)

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	RSTOP $=0, \mathrm{RSTS}=1$		RSTOP = 1	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	179/fcpu + 567	179/fcpu +246	179/fcpu + 1708	179/fCPU +569
Block erase library	179/fcpu +780	179/fcpu +459	179/fcpu + 1921	179/fcpu +782
Word write library	$333 / \mathrm{fcPu}+763$	$333 / \mathrm{fcPu}+443$	333/fcpu + 1871	$333 / \mathrm{fcPu}+767$
Block verify library	179/fCPu +580	179/fcpu +259	179/fcpu + 1721	179/fCPU +582
Set information library	80/fcpu + 456	80/fcpu + 200	80/fcpu +1598	80/fcpu + 459
EEPROM write library ${ }^{\text {Note }}$	29/fcPu + 767	29/f¢Pu + 447	29/fCPu + 767	29/fcpu +447
	333/fcpu +696	$333 / \mathrm{fcPu}+376$	333/fcPu + 1838	$333 / \mathrm{fcpu}+700$

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcpu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Table 27-16. Interrupt Response Time for Self Programming Library (Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)) (2/2)
(3) When high-speed system clock is used (static model of C compiler/assembler)

Library Name	Interrupt Response Time ($\mu \mathrm{s}$ (Max.))			
	RSTOP $=0$, RSTS $=1$		RSTOP = 1	
	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing range	Entry RAM location is in short direct addressing range
Block blank check library	136/fcpu +567	136/fcpu +246	136/fcpu + 1708	136/fcpu +569
Block erase library	136/fcpu +780	136/fcpu +459	136/fcpu + 1921	136/fcpu +782
Word write library	272/fcpu +763	272/fcpu +443	272/fcPu + 1871	272/fcPu +767
Block verify library	136/fcpu +580	136/fcpu +259	136/fcpu + 1721	136/fcpu +582
Set information library	72/fcpu + 456	72/fcpu + 200	72/fcpu + 1598	72/fcpu + 459
EEPROM write library ${ }^{\text {Note }}$	19/f¢Pu + 767	19/fcpu +447	19/fcpu +767	19/fCPU +447
	268/fcpu +696	268/fcpu +376	268/fcpu + 1838	268/fcpu +700

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcpu.

Remarks 1. fcpu: CPU operation clock frequency
2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

27.10.1 Boot swap function

If rewriting the boot area has failed during self-programming due to a power failure or some other cause, the data in the boot area may be lost and the program may not be restarted by resetting.

The boot swap function is used to avoid this problem.
Before erasing boot cluster $0^{\text {Note }}$, which is a boot program area, by self-programming, write a new boot program to boot cluster 1 in advance. When the program has been correctly written to boot cluster 1 , swap this boot cluster 1 and boot cluster 0 by using the set information function of the firmware of the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers, so that boot cluster 1 is used as a boot area. After that, erase or write the original boot program area, boot cluster 0.

As a result, even if a power failure occurs while the boot programming area is being rewritten, the program is executed correctly because it is booted from boot cluster 1 to be swapped when the program is reset and started next.

If the program has been correctly written to boot cluster 0 , restore the original boot area by using the set information function of the firmware of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers.

Note A boot cluster is a 4 KB area and boot clusters 0 and 1 are swapped by the boot swap function.

Boot cluster $0(0000 \mathrm{H}$ to 0 FFFH): Original boot program area
Boot cluster 1 (1000H to 1FFFH): Area subject to boot swap function

Caution When executing boot swapping, do not use the E.P.V command with the dedicated flash memory programmer.

Figure 27-15. Boot Swap Function

Remark Boot cluster 1 becomes 0000 H to 0FFFH when a reset is generated after the boot flag has been set.

Figure 27-16. Example of Executing Boot Swapping

Booted by boot cluster 0

	rasing block 2		rasing block 3		Writi	ing blocks 0 to			Boot swap		
7	New boot program	7	New boot program		7	New boot program		7	New boot program		
6	New boot program	6	New boot program		6	New boot program		6	New boot program		
5	New boot program	5	New boot program		5	New boot program		5	New boot program		
4	New boot program	4	New boot program		4	New boot program		4	New boot program	1000 H	
3	Boot program	3			3	New boot program		3	New boot program		
2		2			2	New boot program		2	New boot program		
1		1			1	New boot program		1	New boot program		
0		0			0	New boot program		0	New boot program	0000H	

27.11 Creating ROM Code to Place Order for Previously Written Product

Before placing an order with Renesas Electronics for a previously written product, the ROM code for the order must be created.

To create the ROM code, use the Hex Consolidation Utility (hereafter abbreviated to HCU) on the finished programs (hex files) and optional data (such as security settings for flash memory programs).

The HCU is a software tool that includes functions required for creating ROM code.
The HCU can be downloaded at the Renesas Electronics website.
(1) Website
http:www2.renesas.com/micro/en/ods \rightarrow Click Version-up Service.

(2) Downloading the HCU

To download the HCU, click Software for previously written flash products and then HCU_GUI.

Remark For details about how to install and use the HCU, see the materials (the user's manual) that comes with the HCU at the above website.

27.11.1 Procedure for using ROM code to place an order

Use the HCU to create the ROM code by following the procedure below, and then place your order with Renesas Electronics. For details, see the ROM Code Ordering Method Information (C10302J).

CHAPTER 28 ON-CHIP DEBUG FUNCTION (μ PD78F05xxD and 78F05xxDA ONLY)

28.1 Connecting QB-MINI2 to μ PD78F05xxD and 78F05xxDA

The μ PD78F05xxD and 78F05xxDA use the VdD, FLMD0, $\overline{R E S E T}$, OCD0A/X1 (or OCD1A/P31), OCD0B/X2 (or OCD1B/P32), and Vss pins to communicate with the host machine via an on-chip debug emulator (QB-MINI2). Whether OCD0A/X1 and OCD1A/P31, or OCD0B/X2 and OCD1B/P32 are used can be selected.

Caution The μ PD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Remark μ PD78F05xxD: $\quad \mu$ PD78F0503D, 78F0513D, 78F0515D, 78F0527D, 78F0537D, 78F0547D μ PD78F05xxDA: μ PD78F0503DA, 78F0513DA, 78F0515DA, 78F0527DA, 78F0537DA, 78F0547DA

Figure 28-1. Connection Example of QB-MINI2 and μ PD78F05xxD and 78F05xxDA (When OCDOA/X1 and OCD0B/X2 Are Used)

Notes 1. This connection is designed assuming that the reset signal is output from the N-ch open-drain buffer (output resistance: 100Ω or less). For details, refer to QB-MINI2 User's Manual (U18371E).
2. Make pull-down resistor 470Ω or more ($10 \mathrm{k} \Omega$: recommended).

Cautions 1. Input the clock from the OCDOA/X1 pin during on-chip debugging.
2. Control the OCDOA/X1 and OCDOB/X2 pins by externally pulling down the OCD1A/P31 pin or by using an external circuit using the P130 pin (that outputs a low level when the device is reset).

Figure 28-2. Connection Example of QB-MINI2 and μ PD78F05xxD and 78F05xxDA (When OCD1A/P31 and OCD1B/P32 Are Used)

Notes 1. This connection is designed assuming that the reset signal is output from the N -ch open-drain buffer (output resistance: 100Ω or less). For details, refer to QB-MINI2 User's Manual (U18371E).
2. This is the processing of the pin when OCD1B/P32 is set as the input port (to prevent the pin from being left opened when not connected to QB-MINI2).
3. Make pull-down resistor 470Ω or more ($10 \mathrm{k} \Omega$: recommended).

Connect the FLMDO pin as follows when performing self programming by means of on-chip debugging.

Figure 28-3. Connection of FLMDO Pin for Self Programming by Means of On-Chip Debugging

Caution When using the port that controls the FLMDO pin, make sure that it satisfies the values of the highlevel output current and FLMDO supply voltage (minimum value: 0.8 VdD) stated in CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\left.+125^{\circ} \mathrm{C}\right)$.

28.2 Reserved Area Used by QB-MINI2

QB-MINI2 uses the reserved areas shown in Figure 28-4 below to implement communication with the μ PD78F05xxD and 78 F05xxDA, or each debug function. The shaded reserved areas are used for the respective debug functions to be used, and the other areas are always used for debugging. These reserved areas can be secured by using user programs and compiler options.

When using a boot swap operation during self programming, set the same value to boot cluster 1 beforehand.
For details on reserved area, refer to QB-MINI2 User's Manual (U18371E).

Figure 28-4. Reserved Area Used by QB-MINI2

Note With products not incorporated the internal expansion RAM (μ PD78F0503D, 78F0503DA, 78F0513D, and 78F0513DA), it is not necessary to secure this area.

Remark Shaded reserved areas: Area used for the respective debug functions to be used
Other reserved areas: Areas always used for debugging

CHAPTER 29 INSTRUCTION SET

This chapter lists each instruction set of the $78 \mathrm{KO} / \mathrm{Kx2}$ microcontrollers in table form. For details of each operation and operation code, refer to the separate document 78K/0 Series Instructions User's Manual (U12326E).

29.1 Conventions Used in Operation List

29.1.1 Operand identifiers and specification methods

Operands are written in the "Operand" column of each instruction in accordance with the specification method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more methods, select one of them. Uppercase letters and the symbols \#, !, \$ and [] are keywords and must be written as they are. Each symbol has the following meaning.

- \#: Immediate data specification
- !: Absolute address specification
- \$: Relative address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to write the \#, !, \$, and [] symbols.

For operand register identifiers r and $r p$, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for specification.

Table 29-1. Operand Identifiers and Specification Methods

Identifier	Specification Method
$\begin{aligned} & \text { r } \\ & \text { rp } \\ & \text { sfr } \\ & \text { sfrp } \end{aligned}$	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7) AX (RP0), BC (RP1), DE (RP2), HL (RP3) Special function register symbol ${ }^{\text {Note }}$ Special function register symbol (16-bit manipulatable register even addresses only) ${ }^{\text {Note }}$
saddr saddrp	FE20H to FF1FH Immediate data or labels FE20H to FF1FH Immediate data or labels (even address only)
addr16 addr11 addr5	0000 H to FFFFH Immediate data or labels (Only even addresses for 16-bit data transfer instructions) 0800 H to 0FFFH Immediate data or labels 0040 H to 007FH Immediate data or labels (even address only)
word byte bit	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label
RBn	RB0 to RB3

Note Addresses from FFDOH to FFDFH cannot be accessed with these operands.

Remark For special function register symbols, see Table 3-8 Special Function Register List.

29.1.2 Description of operation column

A: A register; 8-bit accumulator
X: $\quad \mathrm{X}$ register
B: B register
C: \quad C register
D: D register
E: E register
H: H register
L: L register
AX: AX register pair; 16-bit accumulator
$B C$: $\quad B C$ register pair
DE: DE register pair
HL: HL register pair
PC: Program counter
SP: Stack pointer
PSW: Program status word
CY: Carry flag
AC: Auxiliary carry flag
Z: \quad Zero flag
RBS: Register bank select flag
IE: Interrupt request enable flag
(): Memory contents indicated by address or register contents in parentheses
$\mathrm{X}_{\mathrm{H}}, \mathrm{X}_{\mathrm{L}}$: Higher 8 bits and lower 8 bits of 16 -bit register
\wedge : Logical product (AND)
v: Logical sum (OR)
\forall : Exclusive logical sum (exclusive OR)
-: Inverted data
addr16: 16-bit immediate data or label
jdisp8: Signed 8-bit data (displacement value)

29.1.3 Description of flag operation column

(Blank): Not affected
0: \quad Cleared to 0
1: Set to 1
\times : Set/cleared according to the result
R : Previously saved value is restored

29.2 Operation List

Instruction Group	Mnemonic	Operands		Bytes	Clocks		Operation	Flag
					Note 1	Note 2		Z AC CY
8-bit data transfer	MOV	r, \#byte		2	4	-	$r \leftarrow$ byte	
		saddr, \#byte		3	6	7	(saddr) \leftarrow byte	
		sfr, \#byte		3	-	7	sfr \leftarrow byte	
		A, r	Note 3	1	2	-	$\mathrm{A} \leftarrow \mathrm{r}$	
		r, A	Note 3	1	2	-	$r \leftarrow A$	
		A, saddr		2	4	5	$\mathrm{A} \leftarrow$ (saddr)	
		saddr, A		2	4	5	(saddr) $\leftarrow \mathrm{A}$	
		A, sfr		2	-	5	$\mathrm{A} \leftarrow \mathrm{sfr}$	
		sfr, A		2	-	5	$\mathrm{sfr} \leftarrow \mathrm{A}$	
		A, !addr16		3	8	9	A \leftarrow (addr16)	
		!addr16, A		3	8	9	(addr16) $\leftarrow \mathrm{A}$	
		PSW, \#byte		3	-	7	PSW \leftarrow byte	$\times \times$
		A, PSW		2	-	5	$\mathrm{A} \leftarrow \mathrm{PSW}$	
		PSW, A		2	-	5	PSW $\leftarrow \mathrm{A}$	$\times \times$
		A, [DE]		1	4	5	$\mathrm{A} \leftarrow(\mathrm{DE})$	
		[DE], A		1	4	5	$(\mathrm{DE}) \leftarrow \mathrm{A}$	
		A, [HL]		1	4	5	$\mathrm{A} \leftarrow(\mathrm{HL})$	
		[HL], A		1	4	5	$(\mathrm{HL}) \leftarrow \mathrm{A}$	
		A, [HL + byte]		2	8	9	$A \leftarrow(H L+$ byte $)$	
		[HL + byte], A		2	8	9	$(\mathrm{HL}+$ byte $) \leftarrow \mathrm{A}$	
		A, [HL + B]		1	6	7	$A \leftarrow(H L+B)$	
		[$\mathrm{HL}+\mathrm{B}], \mathrm{A}$		1	6	7	$(\mathrm{HL}+\mathrm{B}) \leftarrow \mathrm{A}$	
		A, [HL + C]		1	6	7	$A \leftarrow(H L+C)$	
		[$\mathrm{HL}+\mathrm{C}], \mathrm{A}$		1	6	7	$(\mathrm{HL}+\mathrm{C}) \leftarrow \mathrm{A}$	
	XCH	A, r	Note 3	1	2	-	$\mathrm{A} \leftrightarrow \mathrm{r}$	
		A, saddr		2	4	6	A \leftrightarrow (saddr)	
		A, sfr		2	-	6	A \leftrightarrow (sfr)	
		A, !addr16		3	8	10	A \leftrightarrow (addr16)	
		A, [DE]		1	4	6	$\mathrm{A} \leftrightarrow$ (DE)	
		A, [HL]		1	4	6	$\mathrm{A} \leftrightarrow(\mathrm{HL})$	
		A, [HL + byte]		2	8	10	A \leftrightarrow (HL + byte)	
		A, [$\mathrm{HL}+\mathrm{B}$]		2	8	10	$A \leftrightarrow(H L+B)$	
		A, [HL + C]		2	8	10	$\mathrm{A} \leftrightarrow(\mathrm{HL}+\mathrm{C})$	

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed
3. Except " $r=A$ "

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

Instruction Group	Mnemonic	Operands		Bytes	Clocks		Operation	Flag	
					Note 1	Note 2			AC CY
16-bit data transfer	MOVW	rp, \#word		3	6	-	$\mathrm{rp} \leftarrow$ word		
		saddrp, \#word		4	8	10	(saddrp) \leftarrow word		
		sfrp, \#word		4	-	10	sfrp \leftarrow word		
		AX, saddrp		2	6	8	AX \leftarrow (saddrp)		
		saddrp, AX		2	6	8	(saddrp) \leftarrow AX		
		AX, sfrp		2	-	8	AX $\leftarrow \operatorname{sfrp}$		
		sfrp, AX		2	-	8	sfrp $\leftarrow A X$		
		AX, rp	Note 3	1	4	-	$\mathrm{AX} \leftarrow \mathrm{p}$		
		rp, AX	Note 3	1	4	-	$\mathrm{rp} \leftarrow \mathrm{AX}$		
		AX, !addr16		3	10	12	$\mathrm{AX} \leftarrow$ (addr16)		
		!addr16, AX		3	10	12	(addr16) $\leftarrow \mathrm{AX}$		
	XCHW	AX, rp	Note 3	1	4	-	AX $\mathrm{A}^{\text {r }}$		
8-bit operation	ADD	A, \#byte		2	4	-	A, CY \leftarrow A + byte	\times	$\times \times$
		saddr, \#byte		3	6	8	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte	\times	$\times \times$
		A, r	Note 4	2	4	-	$A, C Y \leftarrow A+r$	\times	$\times \times$
		r, A		2	4	-	$r, C Y \leftarrow r+A$	\times	$\times \times$
		A, saddr		2	4	5	A, CY $\leftarrow \mathrm{A}+$ (saddr)	\times	$\times \times$
		A, !addr16		3	8	9	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+($ addr16 $)$	\times	$\times \times$
		A, [HL]		1	4	5	$A, C Y \leftarrow A+(H L)$	\times	$\times \times$
		A, [HL + byte]		2	8	9	$A, C Y \leftarrow A+(H L+$ byte $)$	\times	$\times \times$
		A, [HL + B]		2	8	9	$A, C Y \leftarrow A+(H L+B)$	\times	$\times \times$
		A, $[\mathrm{HL}+\mathrm{C}]$		2	8	9	$A, C Y \leftarrow A+(H L+C)$	\times	$\times \times$
	ADDC	A, \#byte		2	4	-	A, CY $\leftarrow \mathrm{A}+$ byte + CY	\times	$\times \times$
		saddr, \#byte		3	6	8	(saddr), CY \leftarrow (saddr) + byte + CY	\times	$\times \times$
		A, r	Note 4	2	4	-	$A, C Y \leftarrow A+r+C Y$	\times	$\times \times$
		r, A		2	4	-	$r, C Y \leftarrow r+A+C Y$	\times	$\times \times$
		A, saddr		2	4	5	A, CY $\leftarrow \mathrm{A}+$ (saddr) + CY	\times	$\times \times$
		A, !addr16		3	8	9	A, CY $\leftarrow \mathrm{A}+($ addr16) +C	\times	$\times \times$
		A, [HL]		1	4	5	$A, C Y \leftarrow A+(H L)+C Y$	\times	$\times \times$
		A, [HL + byte]		2	8	9	A, CY $\leftarrow \mathrm{A}+(\mathrm{HL}+$ byte $)+\mathrm{CY}$	\times	$\times \times$
		A, [HL + B]		2	8	9	$A, C Y \leftarrow A+(H L+B)+C Y$	\times	$\times \times$
		A, [HL + C]		2	8	9	$A, C Y \leftarrow A+(H L+C)+C Y$	\times	$\times \times$

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed
3. Only when $r p=B C, D E$ or $H L$
4. Except " $r=A$ "

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

Instruction Group	Mnemonic	Operands		Bytes	Clocks		Operation	Flag	
					Note 1	Note 2			AC CY
8-bit operation	SUB	A, \#byte		2	4	-	A, CY $\leftarrow \mathrm{A}$ - byte	\times	$\times \times$
		saddr, \#byte		3	6	8	(saddr), CY \leftarrow (saddr) - byte	\times	$\times \times$
		A, r	Note 3	2	4	-	$A, C Y \leftarrow A-r$	\times	$\times \times$
		r, A		2	4	-	$r, C Y \leftarrow r-A$	\times	$\times \times$
		A, saddr		2	4	5	A, CY \leftarrow A - (saddr)	\times	$\times \times$
		A, !addr16		3	8	9	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-$ (addr16)	\times	$\times \times$
		A, [HL]		1	4	5	$A, C Y \leftarrow A-(H L)$	\times	$\times \times$
		A, [HL + byte]		2	8	9	$A, C Y \leftarrow A-(H L+$ byte $)$	\times	$\times \times$
		A, [$\mathrm{HL}+\mathrm{B}$]		2	8	9	$A, C Y \leftarrow A-(H L+B)$	\times	$\times \times$
		A, [HL + C]		2	8	9	$A, C Y \leftarrow A-(H L+C)$	\times	$\times \times$
	SUBC	A, \#byte		2	4	-	A, CY $\leftarrow \mathrm{A}$ - byte - CY	\times	$\times \times$
		saddr, \#byte		3	6	8	(saddr), CY \leftarrow (saddr) - byte - CY	\times	$\times \times$
		A, r	Note 3	2	4	-	$A, C Y \leftarrow A-r-C Y$	\times	$\times \times$
		r, A		2	4	-	$r, C Y \leftarrow r-A-C Y$	\times	$\times \times$
		A, saddr		2	4	5	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}$ - (saddr) - CY	\times	$\times \times$
		A, !addr16		3	8	9	A, CY $\leftarrow \mathrm{A}$ - (addr16) - CY	\times	$\times \times$
		A, [HL]		1	4	5	$A, C Y \leftarrow A-(H L)-C Y$	\times	$\times \times$
		A, [HL + byte]		2	8	9	A, CY $\leftarrow \mathrm{A}-(\mathrm{HL}+$ byte $)-\mathrm{CY}$	\times	$\times \times$
		A, $[\mathrm{HL}+\mathrm{B}]$		2	8	9	$A, C Y \leftarrow A-(H L+B)-C Y$	\times	$\times \times$
		A, [$\mathrm{HL}+\mathrm{C}$]		2	8	9	$A, C Y \leftarrow A-(H L+C)-C Y$	\times	$\times \times$
	AND	A, \#byte		2	4	-	$A \leftarrow A \wedge$ byte	\times	
		saddr, \#byte		3	6	8	(saddr) \leftarrow (saddr) \wedge byte	\times	
		A, r	Note 3	2	4	-	$A \leftarrow A \wedge r$	\times	
		r, A		2	4	-	$r \leftarrow r \wedge A$	\times	
		A, saddr		2	4	5	$A \leftarrow A \wedge$ (saddr)	\times	
		A, !addr16		3	8	9	$\mathrm{A} \leftarrow \mathrm{A} \wedge$ (addr16)	\times	
		A, [HL]		1	4	5	$A \leftarrow A \wedge(H L)$	\times	
		A, [HL + byte]		2	8	9	$A \leftarrow A \wedge(H L+$ byte $)$	\times	
		A, [HL + B]		2	8	9	$A \leftarrow A \wedge(H L+B)$	\times	
		A, [$\mathrm{HL}+\mathrm{C}$]		2	8	9	$A \leftarrow A \wedge(H L+C)$	\times	

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed
3. Except " $\mathrm{r}=\mathrm{A}$ "

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

Instruction Group	Mnemonic	Operands		Bytes	Clocks		Operation	Flag	
					Note 1	Note 2			AC CY
8-bit operation	OR	A, \#byte		2	4	-	$A \leftarrow A \vee$ byte	\times	
		saddr, \#byte		3	6	8	(saddr) \leftarrow (saddr) \vee byte	\times	
		A, r	Note 3	2	4	-	$A \leftarrow A \vee r$	\times	
		r, A		2	4	-	$r \leftarrow r \vee A$	\times	
		A, saddr		2	4	5	$A \leftarrow A \vee$ (saddr)	\times	
		A, !addr16		3	8	9	$\mathrm{A} \leftarrow \mathrm{A} \vee(\mathrm{addr} 16)$	\times	
		A, [HL]		1	4	5	$A \leftarrow A \vee(H L)$	\times	
		A, [HL + byte]		2	8	9	$A \leftarrow A \vee(H L+$ byte $)$	\times	
		A, [HL + B]		2	8	9	$A \leftarrow A \vee(H L+B)$	\times	
		A, [HL + C]		2	8	9	$A \leftarrow A \vee(H L+C)$	\times	
	XOR	A, \#byte		2	4	-	$A \leftarrow A \forall$ byte	\times	
		saddr, \#byte		3	6	8	(saddr) \leftarrow (saddr) \forall byte	\times	
		A, r	Note 3	2	4	-	$A \leftarrow A \forall r$	\times	
		r, A		2	4	-	$r \leftarrow r \forall A$	\times	
		A, saddr		2	4	5	$A \leftarrow A \forall$ (saddr)	\times	
		A, !addr16		3	8	9	$A \leftarrow A \forall$ (addr16)	\times	
		A, [HL]		1	4	5	$A \leftarrow A \forall(H L)$	\times	
		A, [HL + byte]		2	8	9	$A \leftarrow A *(H L+b y t e)$	\times	
		A, [HL + B]		2	8	9	$A \leftarrow A \forall(H L+B)$	\times	
		A, $[\mathrm{HL}+\mathrm{C}]$		2	8	9	$A \leftarrow A *(H L+C)$	\times	
	CMP	A, \#byte		2	4	-	A - byte	\times	$\times \times$
		saddr, \#byte		3	6	8	(saddr) - byte	\times	$\times \times$
		A, r	Note 3	2	4	-	A - r	\times	$\times \times$
		r, A		2	4	-	$r-A$	\times	$\times \times$
		A, saddr		2	4	5	A - (saddr)	\times	$\times \times$
		A, !addr16		3	8	9	A - (addr16)	\times	$\times \times$
		A, [HL]		1	4	5	A - (HL)	\times	$\times \times$
		A, [HL + byte]		2	8	9	A - (HL + byte)	\times	$\times \times$
		A, [HL + B]		2	8	9	A - (HL + B)	\times	$\times \times$
		A, $[\mathrm{HL}+\mathrm{C}]$		2	8	9	A - (HL + C)	\times	$\times \times$

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed
3. Except " $r=A$ "

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag	
				Note 1	Note 2			AC CY
16-bit operation	ADDW	AX, \#word	3	6	-	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ word	\times	$\times \times$
	SUBW	AX, \#word	3	6	-	$A X, C Y \leftarrow A X$ - word	\times	$\times \times$
	CMPW	AX, \#word	3	6	-	AX - word	\times	$\times \times$
Multiply/ divide	MULU	X	2	16	-	$A X \leftarrow A \times X$		
	DIVUW	C	2	25	-	AX (Quotient), C (Remainder) $\leftarrow \mathrm{AX} \div \mathrm{C}$		
Increment/ decrement	INC	r	1	2	-	$r \leftarrow r+1$	\times	\times
		saddr	2	4	6	(saddr) \leftarrow (saddr) +1	\times	\times
	DEC	r	1	2	-	$\mathrm{r} \leftarrow \mathrm{r}-1$	\times	\times
		saddr	2	4	6	(saddr) \leftarrow (saddr) - 1	\times	\times
	INCW	rp	1	4	-	$\mathrm{rp} \leftarrow \mathrm{rp}+1$		
	DECW	rp	1	4	-	$\mathrm{rp} \leftarrow \mathrm{rp}-1$		
Rotate	ROR	A, 1	1	2	-	$\left(C Y, A_{7} \leftarrow A_{0}, A_{m-1} \leftarrow A_{m}\right) \times 1$ time		\times
	ROL	A, 1	1	2	-	$\left(C Y, A_{0} \leftarrow A_{7}, A_{m+1} \leftarrow A_{m}\right) \times 1$ time		\times
	RORC	A, 1	1	2	-	$\left(C Y \leftarrow A_{0}, A_{7} \leftarrow C Y, A_{m-1} \leftarrow A_{m}\right) \times 1$ time		\times
	ROLC	A, 1	1	2	-	$\left(C Y \leftarrow A_{7}, A_{0} \leftarrow C Y, A_{m+1} \leftarrow A_{m}\right) \times 1$ time		\times
	ROR4	[HL]	2	10	12	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{HL})_{3-0},(\mathrm{HL})_{7-4} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{HL})_{3-0} \leftarrow(\mathrm{HL})_{7-4} \end{aligned}$		
	ROL4	[HL]	2	10	12	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{HL})_{7-4},(\mathrm{HL})_{3-0} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{HL})_{7-4} \leftarrow(\mathrm{HL})_{3-0} \end{aligned}$		
BCD adjustment	ADJBA		2	4	-	Decimal Adjust Accumulator after Addition	\times	$\times \times$
	ADJBS		2	4	-	Decimal Adjust Accumulator after Subtract	\times	$\times \times$
Bit manipulate	MOV1	CY, saddr.bit	3	6	7	CY \leftarrow (saddr.bit)		\times
		CY, sfr.bit	3	-	7	CY \leftarrow sfr.bit		\times
		CY, A.bit	2	4	-	CY \leftarrow A.bit		\times
		CY, PSW.bit	3	-	7	CY \leftarrow PSW.bit		\times
		CY, [HL].bit	2	6	7	$\mathrm{CY} \leftarrow(\mathrm{HL})$. bit		\times
		saddr.bit, CY	3	6	8	(saddr.bit) $\leftarrow C$ CY		
		sfr.bit, CY	3	-	8	sfr.bit $\leftarrow C Y$		
		A.bit, CY	2	4	-	A.bit $\leftarrow \mathrm{CY}$		
		PSW.bit, CY	3	-	8	PSW.bit $\leftarrow C$ CY	\times	\times
		[HL].bit, CY	2	6	8	(HL).bit $\leftarrow \mathrm{CY}$		

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z ACCY
Bit manipulate	AND1	CY, saddr.bit	3	6	7	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddr.bit)	\times
		CY, sfr.bit	3	-	7	$C Y \leftarrow C Y \wedge$ sfr.bit	\times
		CY, A.bit	2	4	-	$C Y \leftarrow C Y \wedge A . b i t$	\times
		CY, PSW.bit	3	-	7	$C Y \leftarrow C Y \wedge$ PSW.bit	\times
		CY, [HL].bit	2	6	7	$C Y \leftarrow C Y \wedge(H L)$. bit	\times
	OR1	CY, saddr.bit	3	6	7	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr. bit)	\times
		CY, sfr.bit	3	-	7	$C Y \leftarrow C Y \vee$ sfr.bit	\times
		CY, A.bit	2	4	-	$C Y \leftarrow C Y \vee A . b i t$	\times
		CY, PSW.bit	3	-	7	$C Y \leftarrow C Y \vee$ PSW.bit	\times
		CY, [HL].bit	2	6	7	CY ¢CY $\vee(H L)$. bit	\times
	XOR1	CY, saddr.bit	3	6	7	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr. $\mathrm{bit}^{\text {a }}$	\times
		CY, sfr.bit	3	-	7	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ sfr.bit	\times
		CY, A.bit	2	4	-	$C Y \leftarrow C Y *$ A.bit	\times
		CY, PSW. bit	3	-	7	$C Y \leftarrow C Y *$ PSW.bit	\times
		CY, [HL].bit	2	6	7	$C Y \leftarrow C Y \forall(H L)$. bit	\times
	SET1	saddr.bit	2	4	6	(saddr.bit) $\leftarrow 1$	
		sfr.bit	3	-	8	sfr.bit $\leftarrow 1$	
		A.bit	2	4	-	A.bit $\leftarrow 1$	
		PSW.bit	2	-	6	PSW.bit $\leftarrow 1$	$\times \times \times$
		[HL].bit	2	6	8	(HL). bit $\leftarrow 1$	
	CLR1	saddr.bit	2	4	6	(saddr.bit) $\leftarrow 0$	
		sfr.bit	3	-	8	sfr.bit $\leftarrow 0$	
		A.bit	2	4	-	A.bit $\leftarrow 0$	
		PSW.bit	2	-	6	PSW.bit $\leftarrow 0$	$\times \times \times$
		[HL].bit	2	6	8	(HL). $\mathrm{bit} \leftarrow 0$	
	SET1	CY	1	2	-	$C Y \leftarrow 1$	1
	CLR1	CY	1	2	-	$C Y \leftarrow 0$	0
	NOT1	CY	1	2	-	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	\times

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z ACCY
Call/return	CALL	!addr16	3	7	-	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+3) \mathrm{H},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+3)\llcorner, \\ & \mathrm{PC} \leftarrow \text { addr16 }, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
	CALLF	!addr11	2	5	-	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+2) \text { н, }(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+2) \mathrm{L}, \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \text { addr11 }, \\ & \mathrm{SP}_{15} \leftarrow \mathrm{SP}_{-2} \end{aligned}$	
	CALLT	[addr5]	1	6	-	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+1) \text { н, }(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+1) \mathrm{L}, \\ & \mathrm{PCH} \leftarrow(\text { addr5 }+1), \mathrm{PCL} \leftarrow(\text { addr5 }), \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
	BRK		1	6	-	$\begin{aligned} & (S P-1) \leftarrow P S W,(S P-2) \leftarrow(P C+1) \text { H }, \\ & (S P-3) \leftarrow(P C+1) L, P C H \leftarrow(003 F H), \\ & P C L \leftarrow(003 E H), S P \leftarrow S P-3, I E \leftarrow 0 \end{aligned}$	
	RET		1	6	-	$\begin{aligned} & \mathrm{PC} \mathrm{C}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1), \mathrm{PCL} \leftarrow(\mathrm{SP}), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$	
	RETI		1	6	-	$\begin{aligned} & \mathrm{PC} C_{H} \leftarrow(\mathrm{SP}+1), \mathrm{PCL} \leftarrow(\mathrm{SP}), \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+3 \\ & \hline \end{aligned}$	R R R
	RETB		1	6	-	$\begin{aligned} & \mathrm{PC} C_{H} \leftarrow(\mathrm{SP}+1), \mathrm{PCL} \leftarrow(\mathrm{SP}), \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+3 \\ & \hline \end{aligned}$	R R R
Stack manipulate	PUSH	PSW	1	2	-	$(S P-1) \leftarrow \mathrm{PSW}, \mathrm{SP} \leftarrow \mathrm{SP}-1$	
		rp	1	4	-	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{rpH},(\mathrm{SP}-2) \leftarrow \mathrm{rpL}, \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	
	POP	PSW	1	2	-	$\mathrm{PSW} \leftarrow(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$	R R R
		rp	1	4	-	$\begin{aligned} & \mathrm{rpH} \leftarrow(\mathrm{SP}+1), \text { rpL } \leftarrow(\mathrm{SP}), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+2 \end{aligned}$	
	MOVW	SP, \#word	4	-	10	$\mathrm{SP} \leftarrow$ word	
		SP, AX	2	-	8	$\mathrm{SP} \leftarrow \mathrm{AX}$	
		AX, SP	2	-	8	$\mathrm{AX} \leftarrow \mathrm{SP}$	
Unconditiona branch	BR	!addr16	3	6	-	$\mathrm{PC} \leftarrow$ addr16	
		\$addr16	2	6	-	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8	
		AX	2	8	-	$\mathrm{PCH} \leftarrow \mathrm{A}, \mathrm{PCL} \leftarrow \mathrm{X}$	
Conditional branch	BC	\$addr16	2	6	-	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{CY}=1$	
	BNC	\$addr16	2	6	-	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{CY}=0$	
	BZ	\$addr16	2	6	-	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $Z=1$	
	BNZ	\$addr16	2	6	-	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{Z}=0$	

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z ACCY
Conditional branch	BT	saddr.bit, \$addr16	3	8	9	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp} 8$ if (saddr.bit) $=1$	
		sfr.bit, \$addr16	4	-	11	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=1$	
		A.bit, \$addr16	3	8	-	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A. bit $=1$	
		PSW.bit, \$addr16	3	-	9	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW. $\mathrm{bit}=1$	
		[HL].bit, \$addr16	3	10	11	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if (HL). bit $=1$	
	BF	saddr.bit, \$addr16	4	10	11	$\mathrm{PC} \leftarrow \mathrm{PC}+4+\mathrm{jdisp} 8$ if (saddr.bit) $=0$	
		sfr.bit, \$addr16	4	-	11	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=0$	
		A.bit, \$addr16	3	8	-	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit $=0$	
		PSW.bit, \$addr16	4	-	11	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if PSW. bit $=0$	
		[HL].bit, \$addr16	3	10	11	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if (HL). bit $=0$	
	BTCLR	saddr.bit, \$addr16	4	10	12	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if $($ saddr.bit) $=1$ then reset (saddr.bit)	
		sfr.bit, \$addr16	4	-	12	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=1$ then reset sfr.bit	
		A.bit, \$addr16	3	8	-	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit $=1$ then reset A.bit	
		PSW.bit, \$addr16	4	-	12	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if PSW.bit $=1$ then reset PSW.bit	$\times \times \times$
		[HL].bit, \$addr16	3	10	12	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if (HL). bit $=1$ then reset (HL).bit	
	DBNZ	B, \$addr16	2	6	-	$\begin{aligned} & B \leftarrow B-1 \text {, then } \\ & P C \leftarrow P C+2+\text { jdisp8 if } B \neq 0 \end{aligned}$	
		C, \$addr16	2	6	-	$\begin{aligned} & C \leftarrow C-1 \text {, then } \\ & P C \leftarrow P C+2+\text { jdisp8 if } C \neq 0 \end{aligned}$	
		saddr, \$addr16	3	8	10	$\begin{aligned} & \text { (saddr) } \leftarrow \text { (saddr) }-1 \text {, then } \\ & \mathrm{PC} \leftarrow \mathrm{PC}+3+\text { jdisp8 if (saddr) } \neq 0 \end{aligned}$	
CPU control	SEL	RBn	2	4	-	RBS1, $0 \leftarrow \mathrm{n}$	
	NOP		1	2	-	No Operation	
	El		2	-	6	IE $\leftarrow 1$ (Enable Interrupt)	
	DI		2	-	6	IE $\leftarrow 0$ (Disable Interrupt)	
	HALT		2	6	-	Set HALT Mode	
	STOP		2	6	-	Set STOP Mode	

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access
2. When an area except the internal high-speed RAM area is accessed

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).
2. This clock cycle applies to the internal ROM program.

29.3 Instructions Listed by Addressing Type

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	\#byte	A	$\mathrm{r}^{\text {Nole }}$	sfr	saddr	!addr16	PSW	[DE]	[HL]	$\left[\begin{array}{l} {[\mathrm{HL}+\text { byte }]} \\ {[\mathrm{HL}+\mathrm{B}]} \\ {[\mathrm{HL}+\mathrm{C}]} \end{array}\right]$	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	$\begin{aligned} & \text { MOV } \\ & \text { XCH } \\ & \text { ADD } \\ & \text { ADDC } \\ & \text { SUB } \\ & \text { SUBC } \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { CMM } \end{aligned}$	MOV	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { XCH } \\ & \text { ADD } \\ & \text { ADDC } \\ & \text { SUB } \\ & \text { SUBC } \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { CMP } \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											$\begin{array}{\|l\|} \hline \text { INC } \\ \text { DEC } \end{array}$
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		$\left\lvert\, \begin{array}{\|l\|} \text { INC } \\ \text { DEC } \end{array}\right.$
!addr16		MOV											
PSW	MOV	MOV											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
[DE]		MOV											
[HL]		MOV											$\begin{array}{\|l\|l} \text { ROR4 } \\ \text { ROL4 } \end{array}$
$\begin{aligned} & {[\mathrm{HL}+\text { byte }]} \\ & {[\mathrm{HL}+\mathrm{B}]} \\ & {[\mathrm{HL}+\mathrm{C}]} \\ & \hline \end{aligned}$		MOV											
X													MULU
C													DIVUw

Note Except " $\mathrm{r}=\mathrm{A}$ "
(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand First Operand	\#word	AX	rp ${ }^{\text {Note }}$	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ${ }^{\text {Note }}$						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when $\mathrm{rp}=\mathrm{BC}, \mathrm{DE}, \mathrm{HL}$
(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

\qquad	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
sfr.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
[HL].bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
CY	MOV1 AND1 OR1 XOR1	MOV AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand	AX	!addr16	!addr11	[addr5]	\$addr16						
First Operand						\quad					
:---	:---	:---	:---	:---							
Basic instruction	BR	CALL BR	CALLF	CALLT							
			BR BC								
Compound instruction				BNC BZ BNZ							

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS)

Target Products	Conventional-specification Products	Expanded-specification Products
78K0/KB2	μ PD78F0500, 78F0501, 78F0502, 78F0503, 78F0503D	μ PD78F0500A, 78F0501A, 78F0502A, 78F0503A, 78F0503DA
78K0/KC2	μ PD78F0511, 78F0512, 78F0513, 78F0514, 78F0515, 78F0513D, 78F0515D	μ PD78F0511A, 78F0512A, 78F0513A, 78F0514A, 78F0515A, 78F0513DA, 78F0515DA
78K0/KD2	μ PD78F0521, 78F0522, 78F0523, 78F0524, 78F0525, 78F0526, 78F0527, 78F0527D	μ PD78F0521A, 78F0522A, 78F0523A, 78F0524A, 78F0525A, 78F0526A, 78F0527A, 78F0527DA
78K0/KE2	μ PD78F0531, 78F0532, 78F0533, 78F0534, 78F0535, 78F0536, 78F0537, 78F0537D	μ PD78F0531A, 78F0532A, 78F0533A, 78F0534A, 78F0535A, 78F0536A, 78F0537A, 78F0537DA
78K0/KF2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544,78 F 0545,78 \mathrm{~F} 0546,78 \mathrm{~F} 0547, \\ & \text { 78F0547D } \end{aligned}$	μ PD78F0544A, 78F0545A, 78F0546A, 78F0547A, 78F0547DA

The following items are described separately for conventional-specification products (μ PD78F05xx, 78F05xxD) and expanded-specification products (μ PD78F05xxA, 78F05xxDA).

- X1 clock oscillation frequency (X1 oscillator characteristics)
- Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width ((1) Basic operation in AC characteristics)
- A/D conversion time (A/D Converter Characteristics)
- Number of rewrites per chip (Flash Memory Programming Characteristics)

Cautions 1. The μ PD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
2. The pins mounted depend on the product as follows.
(1) Port functions

Port	78K0/KB2	78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2
	30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins
Port 0	P00, P01				P00 to P03	P00 to P06	
Port 1	P10 to P17						
Port 2	P20 to P23	P20 to P25	P20 to P27				
Port 3	P30 to P33						
Port 4	-		P40, P41			P40 to P43	P40 to P47
Port 5	-					P50 to P53	P50 to P57
Port 6	P60, P61	P60 to P63					P60 to P67
Port 7	-	P70, P71	P70 to P73	P70 to P75	P70 to P77		
Port 12	P120 to P122	P120 to P124					
Port 13	-			P130			
Port 14	-			P140		P140, P141	P140 to P145

(The remaining table is on the next page.)
(2) Non-port functions

Port		78K0/KB2	78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2
		30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins
Power supply, ground			$\mathrm{V}_{\mathrm{dd}}, \mathrm{AV}_{\text {ref }} \mathrm{V}_{\text {Ss }}$, $A V_{\text {Ss }}$				$\mathrm{V}_{\mathrm{dd}}, \mathrm{EV}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ss}}, \mathrm{EV}_{\mathrm{ss}}, \mathrm{AV}_{\mathrm{ref}}$, AVss	
Regulator		REGC						
Reset		RESET						
Clock oscillation		$x_{1, ~ x 2,}$ EXCLK	X1, $\mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2$, EXCLK, EXCLKS					
Writing to flash memory		FLMDO						
Interrupt		INTP0 to INTP5			INTP0 to INTP6		INTP0 to INTP7	
Key interrupt		-	KRO, KR1	KRO to KR3		KR0 to KR7		
$\stackrel{\stackrel{\rightharpoonup}{\mathbf{D}}}{\stackrel{E}{=}}$	TM00	TIO00, TIO10, TO00						
	TM01	-					TIOO1 ${ }^{\text {Note } 2}$, TlO11 ${ }^{\text {Note } 2}, ~ T O 01{ }^{\text {Note } 2}$	
	TM50	TI50, TO50						
	TM51	TI51, TO51						
	TMH0	TOHO						
	TMH1	TOH1						
	UART0	RxD0, TxD0						
	UART6	RxD6, TxD6						
	IIC0	SCLO, SDAO	SCLO, SDAO, EXSCLO					
	CSI10	SCK10, SI10, SO10						
	CSI11	-						
	CSIAO	-						SCKAO, SIAO, SOAO, BUSYO, STBO
A/D converter		ANIO to ANI3	ANIO to ANI5	ANIO to ANI7				
Clock output		-			PCL			
Buzzer output		-					BUZ	
Low-voltage detector (LVI)		EXLVI						
On-chip debug function		OCDOA, OCD1A, OCD0B, OCD1B (mounted only onto μ PD78F05xxD and 78F05xxDA (products with on-chip debug function))						

Notes 1. This is not mounted onto 30-pin products.
2. This is not mounted onto the $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB .

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdo		-0.5 to +6.5	V
	EVdd		-0.5 to +6.5	V
	Vss		-0.5 to +0.3	V
	EVss		-0.5 to +0.3	V
	AVref		-0.5 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	AVss		-0.5 to +0.3	V
REGC pin input voltage	Viregc		-0.5 to +3.6 and -0.5 to VDD	V
Input voltage	V_{11}	P00 to P06, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120 to P124, P140 to P145, X1, X2, XT1, XT2, RESET, FLMD0	-0.3 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	V_{12}	P60 to P63 (N-ch open drain)	-0.3 to +6.5	V
Output voltage	Vo		-0.3 to $V_{\text {dD }}+0.3^{\text {Note }}$	V
Analog input voltage	Van	ANIO to ANI7	$\begin{aligned} & -0.3 \text { to } A V_{\text {REF }}+0.3^{\text {Note }} \\ & \text { and }-0.3 \text { to Vdd }+0.3^{\text {Note }} \end{aligned}$	V

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)(2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, high	IOH	Per pin	$\begin{aligned} & \text { P00 to P06, P10 to P17, } \\ & \text { P30 to P33, P40 to P47, } \\ & \text { P50 to P57, P64 to P67, } \\ & \text { P70 to P77, P120, } \\ & \text { P130, P140 to P145 } \end{aligned}$	-10	mA
		Total of all pins -80 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	-25	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77	-55	mA
		Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
		Per pin	P121 to P124	-1	mA
		Total of all pins		-4	mA
Output current, low	loL	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P130, P140 to P145	30	mA
		Total of all pins 200 mA	$\begin{aligned} & \text { P00 to P04, P40 to P47, } \\ & \text { P120, P130, P140 to } \\ & \text { P145 } \end{aligned}$	60	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77	140	mA
		Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
		Per pin	P121 to P124	4	mA
		Total of all pins		10	mA
Operating ambient temperature	$\mathrm{T}_{\text {A }}$			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

X1 Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}=\mathrm{EV} \mathrm{dD} \leq 5.5 \mathrm{~V}$, V ss $=\mathrm{EV}$ ss = AV ss $=0 \mathrm{~V}$)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. It is 2.0 MHz (MIN.) when programming on the board via UART6.

Cautions 1. When using the X 1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Internal Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}^{5} \leq 5.5 \mathrm{~V}, \mathrm{~V} s=E V_{s s}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Resonator	Parameter	Conditions		MIN.	TYP.	MAX.	Unit
8 MHz internal oscillator	Internal high-speed oscillation clock frequency $\left(\mathrm{f}_{\mathrm{RH}}\right)^{\text {Note }}$	RSTS = 1	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	7.6	8.0	8.4	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	7.6	8.0	10.4	MHz
		RSTS $=0$		2.48	5.6	9.86	MHz
240 kHz internal oscillator	Internal low-speed oscillation clock frequency (frl)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		216	240	264	kHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		192	240	264	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Remark RSTS: Bit 7 of the internal oscillation mode register (RCM)

XT1 Oscillator Characteristics ${ }^{\text {Note } 1}$
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}^{5} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{EV}$ ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Notes 1. The 78K0/KB2 is not provided with the XT1 oscillator.
2. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.

Recommended Oscillator Constants (1/2)
(1) X1 oscillation: Ceramic resonator $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)(1 / 2)$

Manufacturer	Part Number	$\begin{aligned} & \text { SMD/ } \\ & \text { Lead } \end{aligned}$	Frequency (MHz)	Recommended Circuit Constants		Oscillation Voltage Range	
				C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg. Co., Ltd.	CSTCC2M00G56-R0	SMD	2.00	Internal (47)	Internal (47)	1.8	5.5
	CSTLS4M00G56-B0	Lead	4.00	Internal (47)	Internal (47)		
	CSTCR4M00G55-R0	SMD		Internal (39)	Internal (39)		
	CSTLS4M19G56-B0	Lead	4.194	Internal (47)	Internal (47)		
	CSTCR4M19G55-R0	SMD		Internal (39)	Internal (39)		
	CSTLS4M91G56-B0	Lead	4.915	Internal (47)	Internal (47)		
	CSTCR4M91G55-R0	SMD		Internal (39)	Internal (39)		
	CSTLS5M00G56-B0	Lead	5.00	Internal (47)	Internal (47)	1.9	
	CSTCR5M00G55-R0	SMD		Internal (39)	Internal (39)	1.8	
	CSTLS6M00G56-B0	Lead	6.00	Internal (47)	Internal (47)	2.4	
	CSTCR6M00G55-R0	SMD		Internal (39)	Internal (39)	1.8	
	CSTLS8M00G56-B0	Lead	8.00	Internal (47)	Internal (47)	2.3	
	CSTCE8M00G55-R0	SMD		Internal (33)	Internal (33)	1.9	
	CSTLS8M38G56-B0	Lead	8.388	Internal (47)	Internal (47)	2.3	
	CSTCE8M38G55-R0	SMD		Internal (33)	Internal (33)	1.9	
	CSTLS10M0G56-B0	Lead	10.0	Internal (47)	Internal (47)	2.5	
	CSTCE10M0G55-R0	SMD		Internal (33)	Internal (33)	2.3	
	CSTCE12M0G55-R0	SMD	12.0	Internal (33)	Internal (33)	2.3	
	CSTCE16M0V53-R0	SMD	16.0	Internal (15)	Internal (15)	2.3	
	CSTCE20M0V53-R0	SMD	20.0	Internal (15)	Internal (15)	2.6	
Murata Mfg. Co., Ltd. (low-capacitance products)	CSTLS6M00G53-B0	Lead	6.00	Internal (15)	Internal (15)	1.8	5.5
	CSTLS8M00G53-B0	Lead	8.00	Internal (15)	Internal (15)	1.8	
	CSTLS8M38G53-B0	Lead	8.388	Internal (15)	Internal (15)	1.8	
	CSTLS10M0G53-B0	Lead	10.0	Internal (15)	Internal (15)	1.8	
	CSTCE12M0G52-R0	SMD	12.0	Internal (10)	Internal (10)	1.8	
	CSTCE16M0V51-R0	SMD	16.0	Internal (5)	Internal (5)	1.8	
	CSTCE20M0V51-R0	SMD	20.0	Internal (5)	Internal (5)	1.9	

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the $78 K 0 / K x 2$ so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Recommended Oscillator Constants (2/2)
(1) X1 oscillation: Ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)(2/2)

Manufacturer	Part Number	$\begin{aligned} & \text { SMD/ } \\ & \text { Lead } \end{aligned}$	$\begin{aligned} & \text { Frequency } \\ & \quad(\mathrm{MHz}) \end{aligned}$	Recommended Circuit Constants		Oscillation Voltage Range	
				C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
TDK Corporation	CCR4.0MUC8	SMD	4.00	Internal (27)	Internal (27)	1.8	5.5
	FCR4.0MC5	Lead		Internal (30)	Internal (30)		
	CCR8.0MXC8	SMD	8.00	Internal (18)	Internal (30)		
	FCR8.0MC5	Lead		Internal (20)	Internal (20)		

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the $78 K 0 / K x 2$ so that the internal operation conditions are within the specifications of the DC and AC characteristics.
(2) XT1 oscillation: Crystal resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Part Number	SMD/ Lead	Frequency (MHz)	Load Capacitance CL (pF)	Recommended Circuit Constants						Oscillation Voltage Range	
					$\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			MIN. (V)	MAX. (V)
					$\begin{gathered} \text { C3 } \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{C} 4 \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{Rd} \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{gathered} \text { C3 } \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{C} 4 \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{Rd} \\ (\mathrm{k} \Omega) \end{gathered}$		
Seiko Instruments Inc.	VT-200	Lead	32.768	6.0	4	3	100	6	5	100	1.8	5.5
				12.5	15	15	100	18	15	100		

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0/KE2 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

DC Characteristics (1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	Ioh1	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-3.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-2.5	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-1.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$			-10.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-5.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-19.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-10.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$			-50.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			-29.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-15.0	mA
	IoH2	Per pin for P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$			-0.1	mA
		Per pin for P121 to P124				-0.1	mA
Output current, low ${ }^{\text {Note } 2}$	loL1	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			8.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			5.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$			2.0	mA
		Per pin for P60 to P63	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			15.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$			5.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			2.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			9.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			45.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			35.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			20.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			65.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			50.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			29.0	mA
	IoL2	Per pin for P20 to P27	$\mathrm{AV}_{\text {REF }}=\mathrm{V}_{\mathrm{dD}}$			0.4	mA
		Per pin for P121 to P124				0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from VDD to an output pin.
2. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.
3. Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times \mathrm{t}$ and time for which current is not output is $0.3 \times \mathrm{t}$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.

- Where the duty factor of IO is $n \%$: Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where the duty factor is 50%, Іон $=-20.0 \mathrm{~mA}$
Total output current of pins $=(-20.0 \times 0.7) /(50 \times 0.01)=-28.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product．Refer to Caution 2 at the beginning of this chapter．

DC Characteristics（2／4）

Parameter	Symbol	Conditions		MIN．	TYP．	MAX．	Unit
Input voltage，high （products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	$\mathrm{V}_{\mathrm{H} 1}$	P02，P12，P13，P15，P40 to P47，P50 to P57，P64 to P67，P121 to P124，P144，P145，EXCLK，EXCLKS		0.7 VDD		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00，P01，P03 to P06，P10，P11，P14，P16，P17， P30 to P33，P70 to P77，P120，P140 to P143， RESET		0.8 VDD		VdD	V
	VIH3	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\text {DD }}$	0．7AVREF		AV REFF	V
	VIH_{4}	P60 to P63		0.7 Vdd		6.0	V
Input voltage，high （products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	$\mathrm{V}_{\mathrm{H} 1}$	P02 to P06，P12，P13，P15，P40 to P43，P50 to P53， P121 to P124，EXCLK，EXCLKS		0.7 V do		VdD	V
	$\mathrm{V}_{\mathrm{H} 2}$	P00，P01，P10，P11，P14，P16，P17，P30 to P33， P70 to P77，P120，P140，P141，RESET		0．8VDD		VdD	V
	Vı ${ }^{\text {3 }}$	P20 to P27	$A V_{\text {REF }}=V_{\text {dD }}$	0．7AVREF		AVref	V
	$\mathrm{V}_{\mathrm{IH} 4}$	P60 to P63		0.7 VdD		6.0	V
Input voltage，low （products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	VIL1	P02，P12，P13，P15，P40 to P47，P50 to P57，P60 to P67，P121 to P124，P144，P145，EXCLK，EXCLKS		0		0.3 VDD	V
	VIL2	P00，P01，P03 to P06，P10，P11，P14，P16，P17， P30 to P33，P70 to P77，P120，P140 to P143， RESET		0		0．2VdD	V
	VIL3	P20 to P27	$A V_{\text {REF }}=V_{\text {dD }}$	0		$0.3 \mathrm{AV}_{\text {ref }}$	V
Input voltage，low （products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	VIL1	P02 to P06，P12，P13，P15，P40 to P43，P50 to P53， P60 to P63，P121 to P124，EXCLK，EXCLKS		0		0.3 VDD	V
	VIL2	P00，P01，P10，P11，P14，P16，P17，P30 to P33， P70 to P77，P120，P140，P141，RESET		0		0．2VdD	V
	VIL3	P20 to P27	$A V_{\text {REF }}=V_{\text {dD }}$	0		0．3AV VEF	V
Output voltage，high	Voh1	P00 to P06，P10 to P17， P30 to P33，P40 to P47， P50 to P57，P64 to P67， P70 to P77，P120，P130， P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}_{1}=-3.0 \mathrm{~mA} \end{aligned}$	VDD－ 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \mathrm{IOH}^{\mathrm{H}}=-2.5 \mathrm{~mA} \end{aligned}$	VDD－ 0.5			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \end{aligned}$	VDD－ 0.5			V
	Voh2	P20 to P27	$\begin{aligned} & \mathrm{AV}_{\mathrm{REF}}=\mathrm{V} \mathrm{DD}, \\ & \text { І⿳⺈⿴囗十一 } 2=-100 \mu \mathrm{~A} \end{aligned}$	VDD－ 0.5			V
		P121 to P124	Іон2 $=-100 \mu \mathrm{~A}$	VDD－ 0.5			V

Notes 1．Supported products： $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is at least 48 KB ，and $78 \mathrm{KO} 0 / \mathrm{KF} 2$
2．Supported products： $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is less than $32 \mathrm{~KB}, 78 \mathrm{KO} / \mathrm{KB} 2$ ，and 78KO／KC2

Remark Unless specified otherwise，the characteristics of alternate－function pins are the same as those of port pins．

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

DC Characteristics (3/4)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$				0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \mathrm{loL} 1=5.0 \mathrm{~mA} \end{aligned}$				0.7	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{l} \mathrm{CH} 1=2.0 \mathrm{~mA} \end{aligned}$				0.5	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D D^{<} 2.7 \mathrm{~V}, \\ & \text { loL1 }=0.5 \mathrm{~mA} \end{aligned}$				0.4	V
	Vol2	P20 to P27	$\begin{aligned} & \mathrm{AV} \text { REF }=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{l} \mathrm{l} 2=0.4 \mathrm{~mA} \end{aligned}$				0.4	V
		P121 to P124	$\mathrm{loL2}=0.4 \mathrm{~mA}$				0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}^{2}=15.0 \mathrm{~mA} \end{aligned}$				2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=5.0 \mathrm{~mA} \end{aligned}$				0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \text { loL1 }=5.0 \mathrm{~mA} \end{aligned}$				0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \text { loL1 }=3.0 \mathrm{~mA} \end{aligned}$				0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \text { loL1 }=2.0 \mathrm{~mA} \end{aligned}$				0.4	V
Input leakage current, high	$\mathrm{ILIH1}$	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMDO, $\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				1	$\mu \mathrm{A}$
	ILIH2	P20 to P27	$\mathrm{V}_{\mathrm{I}}=\mathrm{AV}_{\text {REF }}=\mathrm{V}_{\text {DD }}$				1	$\mu \mathrm{A}$
	ІІІнз	P121 to 124	$V_{I}=V_{\text {dD }}$	I/O port mode			1	$\mu \mathrm{A}$
		(X1, X2, XT1, XT2)		OSC mode			20	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$				-1	$\mu \mathrm{A}$
	ILIL2	P20 to P27	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}, \mathrm{AV}_{\text {REF }}=\mathrm{V}_{\text {dD }}$				-1	$\mu \mathrm{A}$
	ILlı3	P121 to 124	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {ss }}$	I/O port mode			-1	$\mu \mathrm{A}$
		(X1, X2, XT1, XT2)		OSC mode			-20	$\mu \mathrm{A}$
Pull-up resistor	Ru	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$			10	20	100	k Ω
FLMD0 supply voltage	VIL	In normal operation mode			0		0.2 VdD	V
	$\mathrm{V}_{\text {IH }}$	In self-programming mode			0.8 VDD		VdD	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

DC Characteristics (4/4)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IdD1	Operating mode	$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 2} \end{aligned}$	Square wave input		3.2	5.5	mA
				Resonator connection		4.5	6.9	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.6	2.8	mA
				Resonator connection		2.3	3.9	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.5	2.7	mA
				Resonator connection		2.2	3.2	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.9	1.6	mA
				Resonator connection		1.3	2.0	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{VDD}=2.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.7	1.4	mA
				Resonator connection		1.0	1.6	mA
			$\mathrm{frH}=8 \mathrm{MHz}, \mathrm{V}$ DD $=5.0 \mathrm{~V}^{\text {Note } 4}$			1.4	2.5	mA
			$\begin{aligned} & \mathrm{f} \text { SuB }=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { Note } 5 \end{aligned}$	Square wave input		6	25	$\mu \mathrm{A}$
				Resonator connection		15	30	$\mu \mathrm{A}$
	IdD2	HALT mode	$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 2} \end{aligned}$	Square wave input		0.8	2.6	mA
				Resonator connection		2.0	4.4	mA
			$\begin{aligned} & \mathrm{fxH}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { Notes } 2,3 \end{aligned}$	Square wave input		0.4	1.3	mA
				Resonator connection		1.0	2.4	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.2	0.65	mA
				Resonator connection		0.5	1.1	mA
			$\mathrm{frH}=8 \mathrm{MHz}, \mathrm{V}$ dD $=5.0 \mathrm{~V}^{\text {Note } 4}$			0.4	1.2	mA
			$\begin{aligned} & \mathrm{f} \text { UUB }=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { Note } 5 \end{aligned}$	Square wave input		3.0	22	$\mu \mathrm{A}$
				Resonator connection		12	25	$\mu \mathrm{A}$
	IDD3 ${ }^{\text {Note } 6}$	STOP mode				1	20	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40$ to $+70{ }^{\circ} \mathrm{C}$			1	10	$\mu \mathrm{A}$
A/D converter operating current	$\mathrm{IADC}^{\text {Note }} 7$	$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{V}$ do, $\mathrm{ADCS}=1$				0.86	1.9	mA
Watchdog timer operating current	IWdt ${ }^{\text {Note }} 8$	During 240 kHz internal low-speed oscillation clock operation				5	10	$\mu \mathrm{A}$
LVI operating current	ILvi ${ }^{\text {Note } 9}$					9	18	$\mu \mathrm{A}$

Remarks 1. fxh: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fRH: Internal high-speed oscillation clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or external subsystem clock frequency)
(Notes on next page)

Notes 1. Total current flowing into the internal power supply (VDD, EVDD), including the peripheral operation current and the input leakage current flowing when the level of the input pin is fixed to Vod or Vss. However, the current flowing into the pull-up resistors and the output current of the port are not included.
2. Not including the operating current of the 8 MHz internal oscillator, 240 kHz internal oscillator, and XT1 oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
3. When AMPH (bit 0 of clock operation mode select register (OSCCTL)) $=0$.
4. Not including the operating current of the X1 oscillator, XT1 oscillator, and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
5. Not including the operating current of the X 1 oscillator, 8 MHz internal oscillator, and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
6. Not including the operating current of the 240 kHz internal oscillator and XT1 oscillation, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
7. Current flowing only to the A / D converter (AV REF). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1 or IdD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
8. Current flowing only to the watchdog timer (including the operating current of the 240 kHz internal oscillator). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1, IdD2 or IdD3 and Iwdt when the watchdog timer operates.
9. Current flowing only to the LVI circuit. The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of ldD1, IdD2 or IDD3 and ILvi when the LVI circuit operates.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

AC Characteristics

(1) Basic operation (1/2)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fxp) operation	Conventionalspecification Products (μ PD78F05xx, 78F05xxD)	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{S}$
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0.2		32	$\mu \mathrm{s}$
				$1.8 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$	$0.4^{\text {Note } 1}$		32	$\mu \mathrm{S}$
			$\begin{aligned} & \text { Expanded- } \\ & \text { specification } \\ & \text { Products } \\ & (\mu \text { PD78F05xxA, } \\ & 78 F 05 x x D A) \\ & \hline \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{s}$
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	$0.4{ }^{\text {Note } 1}$		32	$\mu \mathrm{S}$
		Subsystem clock (fsub) operation ${ }^{\text {Note } 2}$			114	122	125	$\mu \mathrm{S}$
Peripheral hardware clock frequency	fPRS	$\begin{aligned} & \text { fPRS }=\mathrm{fxH} \\ & \text { (XSEL }= \end{aligned}$ 1)	Conventionalspecification Products (μ PD78F05xx, 78F05xxD)	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			20	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			5	MHz
			$\begin{aligned} & \text { Expanded- } \\ & \text { specification } \\ & \text { Products } \\ & (\mu \text { PD78F05xxA, } \\ & 78 F 05 x x D A) \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			20	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$ Note 3			20	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			5	MHz
		$\begin{aligned} & \text { fPRS }=f_{R H} \\ & (X S E L=0) \end{aligned}$		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	7.6		8.4	MHz
				$\underset{\text { Note } 4}{1.8 \mathrm{~V}} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	7.6		10.4	MHz
External main system clock frequency	fexcle	Conventional-specification Products (μ PD78F05xx, 78F05xxD)		$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 5}$		20.0	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$1.0^{\text {Note } 5}$		10.0	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1.0		5.0	MHz
		Expanded-specification Products (μ PD78F05xxA, 78F05xxDA)		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 5}$		20.0	MHz
				$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	1.0		5.0	MHz
External main system clock input high-level width, low-level width	tехсLкн, texclel	Conventional-specification Products (μ PD78F05xx, 78F05xxD)		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	24			ns
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	48			ns
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	96			ns
		Expanded-specification Products (μ PD78F05xxA, 78F05xxDA)		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	24			ns
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	96			ns

Notes 1. $0.38 \mu \mathrm{~s}$ when operating with the 8 MHz internal oscillator.
2. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.
3. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $\mathrm{fxh} / 2(10 \mathrm{MHz}$) or less. The multiplier/divider, however, can operate on $\mathrm{fxh}(20 \mathrm{MHz}$).
4. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $f_{R H} / 2$ or less.
5. 2.0 MHz (MIN.) when using UART6 during on-board programming.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(1) Basic operation (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
External subsystem clock frequency ${ }^{\text {Note } 1}$	fexclks		32	32.768	35	kHz
External subsystem clock input high-level width, low-level width ${ }^{\text {Note } 1}$	texclksh, texclks		12			$\mu \mathrm{S}$
TI000, TIO10, TI001, TI011 input high-level width, low-level width	tтіно, tтilo	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 2 / \mathrm{f}_{\mathrm{sam}}+ \\ & 0.1^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{S}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	2/fsam + $0.2^{\text {Note } 2}$			$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	$\begin{aligned} & 2 / \mathrm{f}_{\mathrm{sam}}+ \\ & 0.5^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{s}$
TI50, TI51 input frequency	$\mathrm{f}_{\text {T15 }}$	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			10	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}$ d $<2.7 \mathrm{~V}$			5	MHz
TI50, TI51 input high-level width, low-level width	ttilfs, tтIL5	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	50			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$	50			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	100			ns
Interrupt input high-level width, low-level width	tinth, tintl		1			$\mu \mathrm{s}$
Key interrupt input low-level width	tKR		250			ns
$\overline{\text { RESET }}$ low-level width	trsL		10			$\mu \mathrm{s}$

Notes 1. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.
 PRM001 or PRM010, PRM011) of prescaler mode registers 00 and 01 (PRM00, PRM01). Note that when selecting the TIOOO or TI001 valid edge as the count clock, fsam $=$ fprs.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
Tcy vs. Vdd (Main System Clock Operation)
<1> Conventional-specification Products ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}, 78 \mathrm{~F} 05 \mathrm{xxD}$)

<2> Expanded-specification Products (μ PD78F05xxA, 78F05xxDA)

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

AC Timing Test Points

External Main System Clock Timing, External Subsystem Clock Timing

TI Timing

TIO00, TI010, TIO01, TI011

Interrupt Request Input Timing

INTPO to INTP7

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(2) Serial interface

(a) UART6 (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(b) UARTO (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(c) IICO

Parameter	Symbol	Conditions	Standard Mode		High-Speed Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	fscl		0	100	0	400	kHz
Setup time of restart condition	tsu: STA		4.7	-	0.6	-	$\mu \mathrm{s}$
Hold time ${ }^{\text {Note } 1}$	thD: STA		4.0	-	0.6	-	$\mu \mathrm{S}$
Hold time when SCLO = "L"	tLow	Internal clock operation	4.7	-	1.3	-	$\mu \mathrm{S}$
		EXSCLO clock (6.4 MHz) operation	4.7	-	1.25	-	$\mu \mathrm{S}$
Hold time when SCLO $=$ " H "	thigh		4.0	-	0.6	-	$\mu \mathrm{S}$
Data setup time (reception)	tsu: dat		250	-	100	-	ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd: DAT	$\begin{aligned} & f w=f x h / 2^{N} \text { or } f w=\text { fexscLo } \\ & \text { selected } \end{aligned}$	0	3.45	0	$0.9^{\text {Note } 4}$	$\mu \mathrm{s}$
						$1.00^{\text {Note } 5}$	
		$\mathrm{fw}_{\mathrm{w}}=\mathrm{fRH} / 2^{\mathrm{N}}$ selected ${ }^{\text {Note }}{ }^{3}$	0	3.45	0	1.05	$\mu \mathrm{S}$
Setup time of stop condition	tsu: sto		4.0	-	0.6	-	$\mu \mathrm{S}$
Bus free time	tbuF		4.7	-	1.3	-	$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.
3. fw indicates the IICO transfer clock selected by the IICCL and IICXO registers.
4. When $\mathrm{fw} \geq 4.4 \mathrm{MHz}$ is selected
5. When $\mathrm{fw}<4.4 \mathrm{MHz}$ is selected

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(d) CSI1n (master mode, $\overline{\text { SCK1n... internal clock output) }}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkCy1	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	160			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ D $<4.0 \mathrm{~V}$	250			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$	500			ns
$\overline{\text { SCK1n }}$ high-/low-level width	$\mathrm{t}_{\mathrm{KH}} 1$, tKL1	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$\begin{gathered} \mathrm{t}_{\mathrm{KCr} 1} / 2- \\ 15^{\text {Note } 1} \end{gathered}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$	$\begin{gathered} \mathrm{t}_{\mathrm{KCr}}^{1} / 2- \\ 25^{\text {Note } 1} \end{gathered}$			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{t}_{\mathrm{KCr} 1} / 2- \\ 55^{\text {Note } 1} \end{gathered}$			ns
SI1n setup time (to $\overline{\text { SCK1n }} \uparrow$)	tsik1	$4.0 \mathrm{~V} \leq \mathrm{V}$ D $\leq 5.5 \mathrm{~V}$	55			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$	80			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$	170			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tksı1		30			ns
Delay time from $\overline{\text { SCK1n }} \downarrow$ to SO1n output	tksO1	$\mathrm{C}=50 \mathrm{pF}^{\text {Note } 2}$			40	ns

Notes 1. This value is when high-speed system clock (fxH) is used.
2. C is the load capacitance of the $\overline{\mathrm{SCK} 1 \mathrm{n}}$ and SO1n output lines.
(e) CSI1n (slave mode, $\overline{\text { SCK1n }}$... external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkcy2			400			ns
$\overline{\text { SCK1n }}$ high-/low-level width	tkH2, tkL2			tkcy2/2			ns
SI1n setup time (to $\overline{\text { SCK1n }} \uparrow$)	tsıк2			80			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tksı2			50			ns
Delay time from $\overline{\text { SCK1n }} \downarrow$ to	tksO2	$\mathrm{C}=50 \mathrm{pF}^{\text {Note }}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			120	ns
SO1n output			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			120	ns
			$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$			165	ns

Note C is the load capacitance of the SO1n output line.

Remark $\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(f) CSIAO (master mode, $\overline{\text { SCKAO...internal clock output) }}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKAO }}$ cycle time	tксүз	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		600			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ DD $<4.0 \mathrm{~V}$		1200			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$		1800			ns
$\overline{\text { SCKAO }}$ high-/low-level width	$\text { tkH3, }^{\text {, }}$tк̌з	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		tксүз/2 - 50			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		tксүз/2 - 100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		tксүз/2 - 200			ns
SIAO setup time (to $\overline{\mathrm{SCKAO}} \uparrow$)	tsıк3	$2.7 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$		100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		200			ns
SIAO hold time (from $\overline{\text { SCKAO }} \uparrow$)	tкsı3			300			ns
Delay time from $\overline{\mathrm{SCKAO}} \downarrow$ to SOAO output	tKsO3	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			200	ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			300	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			400	ns
Time from $\overline{\text { SCKA0 }} \uparrow$ to STB0 \uparrow	tsbD			tксүз/2 100			ns
Strobe signal high-level width	tsbw	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \text { tксуз }- \\ 30 \end{gathered}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		tксүз 60			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		$\begin{gathered} \text { tксүз }_{-} \\ 120 \end{gathered}$			ns
Busy signal setup time (to busy signal detection timing)	tbys	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		100			ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$		200			ns
Busy signal hold time (from busy signal detection timing)	tBY			100			ns
Time from busy inactive to $\overline{\text { SCKAO }} \downarrow$	tsps	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$				$\begin{gathered} 2 t к с ү 3+ \\ 100 \end{gathered}$	ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$				2tксү3 + 150	ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$				$\begin{gathered} 2 \text { tксүз }^{+} \\ 200 \end{gathered}$	ns

Note C is the load capacitance of the $\overline{\text { SCKAO }}$ and SOAO output lines.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(g) CSIAO (slave mode, $\overline{\text { SCKAO }}$...external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKAO }}$ cycle time	tkcy4	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		600			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		1200			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1800			ns
SCKAO high-/low-level width	tkH4, tк८4	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		300			ns
		$2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$		600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$		900			ns
SIAO setup time (to $\overline{\text { SCKAO }} \uparrow$)	tsik4			100			ns
SIAO hold time (from $\overline{\text { SCKAO }} \uparrow$)	tksI4			$\begin{gathered} 2 / f w+ \\ 100^{\text {Note } 1} \end{gathered}$			ns
Delay time from $\overline{\text { SCKAO }} \downarrow$ to SOAO output	tksO4	$\mathrm{C}=100 \mathrm{pF}^{\text {Note } 2}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			$\begin{gathered} 2 / f \mathrm{fw}+ \\ 100^{\text {Note } 1} \end{gathered}$	ns
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			$\begin{gathered} 2 / \mathrm{fw}+ \\ 200^{\text {Note } 1} \end{gathered}$	ns
			$1.8 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}$			$\begin{gathered} 2 / f w+ \\ 300^{\text {Note } 1} \end{gathered}$	ns
$\overline{\text { SCKA0 }}$ rise/fall time	$\mathrm{t}_{\text {R } 4, ~}^{\text {t }}$ \% 4					1000	ns

Notes 1. fw is the CSIAO base clock selected by the CSISO register.
2. C is the load capacitance of the SOAO output line.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Serial Transfer Timing (1/2)

IICO:

CSI1n:

Remark $m=1,2$
$\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Serial Transfer Timing (2/2)

CSIAO:

CSIAO (busy processing):

Note
$\overline{\text { SCKAO }}$ does not become low level here, but the timing is illustrated so that the timing specifications can be shown.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

A/D Converter Characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					10	bit
Overall error ${ }^{\text {Notes 1,2 }}$	Ainl	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$				± 1.2	\%FSR
Conversion time	tconv	Conventionalspecification Products (μ PD78F05xx, 78F05xxD)	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$	6.1		36.7	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$	12.2		36.7	$\mu \mathrm{S}$
			$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$	27		66.6	$\mu \mathrm{S}$
		Expanded- specification Products (μ PD78F05xxA, 78F05xxDA)	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$	6.1		66.6	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$	12.2		66.6	$\mu \mathrm{s}$
			$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$	27		66.6	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Notes 1,2 }}$	Ezs	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<2.7 \mathrm{~V}$				± 0.6	\%FSR
Full-scale error ${ }^{\text {Notes 1,2 }}$	Efs	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$				± 0.6	\%FSR
Integral non-linearity error ${ }^{\text {Note } 1}$	ILE	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 2.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 4.5	LSB
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<2.7 \mathrm{~V}$				± 6.5	LSB
Differential non-linearity error ${ }^{\text {Note } 1}$	DLE	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 1.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 2.0	LSB
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<2.7 \mathrm{~V}$				± 2.0	LSB
Analog input voltage	$V_{\text {AIN }}$			AVss		AVref	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
1.59 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tPTH	VDD: O V \rightarrow change inclination of VPOC	0.5			$\mathrm{~V} / \mathrm{ms}$
Minimum pulse width	tPW		200			$\mu \mathrm{~s}$

1.59 V POC Circuit Timing

Supply Voltage Rise Time ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathrm{C}$, $\mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}$)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. |
| :--- | :--- | :--- | :---: | :---: | :---: | Unit | (|
| :--- |

Supply Voltage Rise Time Timing

- When RESET pin input is not used

- When $\overline{\text { RESET }}$ pin input is used

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

2.7 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, V ss $=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply voltage	VDDPOC	POCMODE (option bye) $=1$	2.50	2.70	2.90	V

Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting.

Option Byte Setting	POC Mode	Operation
POCMODE $=0$	1.59 V mode operation	A reset state is retained until VPoc $=1.59 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when VPoc is exceeded. After that, POC detection is performed at VPoc, similarly as when the power was turned on. The power supply voltage must be raised at a time of tpup1 or tpup2 when POCMODE is 0.
POCMODE $=1$	$2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ mode operation	A reset state is retained until VDDPoc $=2.7 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when VDDPoc is exceeded. After that, POC detection is performed at VPoc $=1.59 \mathrm{~V}$ (TYP.) and not at VDDPoc. The use of the $2.7 \mathrm{~V} / 1.59 \mathrm{~V} \mathrm{POC} \mathrm{mode} \mathrm{is} \mathrm{recommended}$ when the rise of the voltage, after the power is turned on and until the voltage reaches 1.8 V, is more relaxed than tpth.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	V LVIo		4.14	4.24	4.34	V
		V LVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		V LVI3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		V LVI5		3.37	3.47	3.57	V
		VLVI6		3.22	3.32	3.42	V
		VLVIT		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	V
		VLvis		2.75	2.85	2.95	V
		VLVI10		2.60	2.70	2.80	V
		V LVI11		2.45	2.55	2.65	V
		VLVI12		2.29	2.39	2.49	V
		VLVI13		2.14	2.24	2.34	V
		VLV114		1.98	2.08	2.18	V
		VLV115		1.83	1.93	2.03	V
	External input pin ${ }^{\text {Note } 1}$	EXLVI	$\mathrm{EXLVI}<\mathrm{V} D \mathrm{D}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.11	1.21	1.31	V
Minimum pulse width		tıw		200			$\mu \mathrm{s}$
Operation stabilization wait time ${ }^{\text {Note } 2}$		tlwalt		10			$\mu \mathrm{s}$

Notes 1. The EXLVI/P120/INTPO pin is used.
2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $\mathrm{V}_{\mathrm{LVI}(\mathrm{n}}\left(\mathrm{-1)}>\mathrm{V}_{\mathrm{LVII}}: \mathrm{n}=1\right.$ to 15

LVI Circuit Timing

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		$1.44^{\text {Note }}$		5.5	V

Note The value depends on the POC detection voltage. When the voltage drops, the data is retained until a POC reset is effected, but data is not retained when a POC reset is effected.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Flash Memory Programming Characteristics

- Basic characteristics

Parameter		Symbol			Conditions		MIN.	TYP.	MAX.	Unit
VdD supply current		IdD	$\mathrm{fxP}=10 \mathrm{MHz}$ (TYP.), 20 MHz (MAX.)					4.5	11.0	mA
Erase time Notes 1, 2	All block	Teraca						20	200	ms
	Block unit	Terasa						20	200	ms
Write time (in 8-bit units) ${ }^{\text {Note } 1}$		Twrwa						10	100	$\mu \mathrm{s}$
Number of rewrites per chip		Cerwr	1 erase 1 write after erase = 1 rewrite Note 3	Expanded- specification Products (μ PD78F05xxA, 78F05xxDA)	- When a flash memory programmer is used, and the libraries ${ }^{\text {Note } 4}$ provided by Renesas Electronics are used - For program update	Retention: 15 years	1000			Times
		- When the EEPROM emulation libraries ${ }^{\text {Note } 5}$ provided by Renesas Electronics are used - The rewritable ROM size: 4 KB - For data update			Retention: 5 years	10000			Times	
		$\begin{array}{\|l\|} \hline \text { Expanded- } \\ \text { specification } \\ \text { Products } \\ (\mu \text { PD78F05xxA, } \\ \text { 78F05xxDA }) \\ \hline \text { Conventional- } \\ \text { specification } \\ \text { Products } \\ (\mu \text { PD78F05xx, } \\ \text { 78F05xxD }) \\ \hline \end{array}$		Conditions other than the above ${ }^{\text {Note } 6}$	Retention: 10 years	100			Times	

Notes 1. Characteristic of the flash memory. For the characteristic when a dedicated flash programmer, PG-FP4 or PGFP5, is used and the rewrite time during self programming, see Tables 27-12 to 27-14.
2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
3. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
4. The sample library specified by the $\mathbf{7 8 K 0} / \mathbf{K x 2}$ Flash Memory Self Programming User's Manual (Document No.: U17516E) is excluded.
5. The sample program specified by the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ EEPROM Emulation Application Note (Document No.: U17517E) is excluded.
6. These include when the sample library specified by the $78 \mathrm{KO} / \mathrm{Kx} 2$ Flash Memory Self Programming User's Manual (Document No.: U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) are used.
Remarks 1. fxp: Main system clock oscillation frequency
2. For serial write operation characteristics, refer to $\mathbf{7 8 K 0 / K x 2}$ Flash Memory Programming (Programmer) Application Note (Document No.: U17739E).

CHAPTER 31 ELECTRICAL SPECIFICATIONS ((A) GRADE PRODUCTS)

Target Products	Conventional-specification Products	Expanded-specification Products
78K0/KB2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{F0500}(\mathrm{~A}), 78 \mathrm{~F} 0501(\mathrm{~A}), 78 \mathrm{F0502(A)}, \\ & 78 \mathrm{~F} 0503(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0500 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0501 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0502 \mathrm{~A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0503 \mathrm{~A}(\mathrm{~A}) \end{aligned}$
78K0/KC2	μ PD78F0511(A), 78F0512(A), 78F0513(A), 78F0514(A), 78F0515(A)	$\mu \mathrm{PD} 78 \mathrm{~F} 0511 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0512 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0513 \mathrm{~A}(\mathrm{~A})$, 78F0514A(A), 78F0515A(A)
78K0/KD2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{F0521(A)}, 78 \mathrm{~F} 0522(\mathrm{~A}), 78 \mathrm{F0523(A)}, \\ & \text { 78F0524(A), 78F0525(A), 78F0526(A), } \\ & \text { 78F0527(A) } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0521 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{F0522A}(\mathrm{~A}), 78 \mathrm{F0523A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0524 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0525 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0526 \mathrm{~A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0527 \mathrm{~A}(\mathrm{~A}) \end{aligned}$
78K0/KE2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{F0531}(\mathrm{~A}), 78 \mathrm{~F} 0532(\mathrm{~A}), 78 \mathrm{F0533(A)}, \\ & \text { 78F0534(A), 78F0535(A), 78F0536(A), } \\ & \text { 78F0537(A) } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0532 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0533 \mathrm{~A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0534 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0535 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0536 \mathrm{~A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0537 \mathrm{~A}(\mathrm{~A}) \end{aligned}$
78K0/KF2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544(\mathrm{~A}), 78 \mathrm{~F} 0545(\mathrm{~A}), 78 \mathrm{~F} 0546(\mathrm{~A}), \\ & 78 \mathrm{~F} 0547(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0545 \mathrm{~A}(\mathrm{~A}), 78 \mathrm{~F} 0546 \mathrm{~A}(\mathrm{~A}), \\ & 78 \mathrm{~F} 0547 \mathrm{~A}(\mathrm{~A}) \end{aligned}$

The following items are described separately for conventional-specification products ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}(\mathrm{A})$) and expandedspecification products (μ PD78F05xxA(A)).

- X1 clock oscillation frequency (X1 oscillator characteristics)
- Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width ((1) Basic operation in AC characteristics)
- A/D conversion time (A/D Converter Characteristics)
- Number of rewrites per chip (Flash Memory Programming Characteristics)

Caution The pins mounted depend on the product as follows.

(1) Port functions

Port	78K0/KB2	78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2
	30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins
Port 0	P00, P01				P00 to P03	P00 to P06	
Port 1	P10 to P17						
Port 2	P20 to P23	P20 to P25	P20 to P27				
Port 3	P30 to P33						
Port 4	-		P40, P41			P40 to P43	P40 to P47
Port 5	-					P50 to P53	P50 to P57
Port 6	P60, P61	P60 to P63					P60 to P67
Port 7	-	P70, P71	P70 to P73	P70 to P75	P70 to P77		
Port 12	P120 to P122	P120 to P124					
Port 13	-			P130			
Port 14	-			P140		P140, P141	P140 to P145

(The remaining table is on the next page.)
(2) Non-port functions

Notes 1. This is not mounted onto 30 -pin products.
2. This is not mounted onto the $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB .

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdo		-0.5 to +6.5	V
	EVdD		-0.5 to +6.5	V
	Vss		-0.5 to +0.3	V
	EVss		-0.5 to +0.3	V
	AVref		-0.5 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	AVss		-0.5 to +0.3	V
REGC pin input voltage	Viregc		-0.5 to +3.6 and -0.5 to VDD	V
Input voltage	V_{11}	P00 to P06, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120 to P124, P140 to P145, X1, X2, XT1, XT2, RESET, FLMD0	-0.3 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	V_{12}	P60 to P63 (N-ch open drain)	-0.3 to +6.5	V
Output voltage	Vo		-0.3 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
Analog input voltage	Van	ANIO to ANI7	$\begin{aligned} & -0.3 \text { to } A V_{\text {REF }}+0.3^{\text {Note }} \\ & \text { and }-0.3 \text { to VdD }+0.3^{\text {Note }} \end{aligned}$	V

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)(2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, high	IOH	Per pin	$\begin{aligned} & \text { P00 to P06, P10 to P17, } \\ & \text { P30 to P33, P40 to P47, } \\ & \text { P50 to P57, P64 to P67, } \\ & \text { P70 to P77, P120, } \\ & \text { P130, P140 to P145 } \end{aligned}$	-10	mA
		Total of all pins -80 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	-25	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77	-55	mA
		Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
		Per pin	P121 to P124	-1	mA
		Total of all pins		-4	mA
Output current, low	loL	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P130, P140 to P145	30	mA
		Total of all pins 200 mA	$\begin{aligned} & \text { P00 to P04, P40 to P47, } \\ & \text { P120, P130, P140 to } \\ & \text { P145 } \end{aligned}$	60	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77	140	mA
		Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
		Per pin	P121 to P124	4	mA
		Total of all pins		10	mA
Operating ambient temperature	$\mathrm{T}_{\text {A }}$			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

X1 Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}=\mathrm{EV} \mathrm{dD} \leq 5.5 \mathrm{~V}$, V ss $=\mathrm{EV}$ ss = AV ss $=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Parameter	Conditions		MIN.	TYP.	MAX.	Unit
Ceramic resonator, Crystal resonator	Vss X1 \quad X2	X1 clock oscillation frequency (fx) ${ }^{\text {Note } 1}$	Conventionalspecification Products (μ PD78F05xx (A))	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 2}$		20.0	MHz
				$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	$1.0^{\text {Note } 2}$		10.0	
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$	1.0		5.0	
			Expandedspecification Products (μ PD78F05xxA (A))	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 2}$		20.0	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1.0		5.0	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. It is 2.0 MHz (MIN.) when programming on the board via UART6.

Cautions 1. When using the X 1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Internal Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}^{5} \leq 5.5 \mathrm{~V}, \mathrm{~V} s=E V_{s s}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Resonator	Parameter	Conditions		MIN.	TYP.	MAX.	Unit
8 MHz internal oscillator	Internal high-speed oscillation clock frequency $\left(f_{R H}\right)^{\text {Note }}$	RSTS = 1	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	7.6	8.0	8.4	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	7.6	8.0	10.4	MHz
		RSTS $=0$		2.48	5.6	9.86	MHz
240 kHz internal oscillator	Internal low-speed oscillation clock frequency (fri)	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		216	240	264	kHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		192	240	264	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Remark RSTS: Bit 7 of the internal oscillation mode register (RCM)

XT1 Oscillator Characteristics ${ }^{\text {Note } 1}$
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}^{5} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{EV}$ ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Notes 1. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with the XT 1 oscillator.
2. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	$\mathrm{loH1}$	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-3.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-2.5	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-1.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-12.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-7.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-5.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-18.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-15.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-10.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-23.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-20.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-15.0	mA
	Ioh2	Per pin for P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$			-0.1	mA
		Per pin for P121 to P124				-0.1	mA
Output current, low ${ }^{\text {Note } 2}$	loL1	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			8.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			5.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			2.0	mA
		Per pin for P60 to P63	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			15.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			5.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			2.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			9.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			45.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			35.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			20.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			65.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			50.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			29.0	mA
	Iol2	Per pin for P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$			0.4	mA
		Per pin for P121 to P124				0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from Vod to an output pin.
2. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.
3. Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times \mathrm{t}$ and time for which current is not output is $0.3 \times \mathrm{t}$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.

- Where the duty factor of Іон is $n \%$: Total output current of pins $=($ Іон $\times 0.7) /(n \times 0.01)$
<Example> Where the duty factor is 50%, Іон $=-20.0 \mathrm{~mA}$
Total output current of pins $=(-20.0 \times 0.7) /(50 \times 0.01)=-28.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high (products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	V_{1+1}	P02, P12, P13, P15, P40 to P47, P50 to P57, P64 to P67, P121 to P124, P144, P145		0.7 VdD		VdD	V
	$\mathrm{V}_{\mathrm{H} 2}$	P00, P01, P03 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140 to P143, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VdD		VdD	V
	Vін3	P20 to P27	$A V_{\text {REF }}=V_{\text {dD }}$	0.7AVref		AVref	V
	$\mathrm{V}_{\text {IH4 }}$	P60 to P63		0.7 V dd		6.0	V
Input voltage, high (products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	V_{1+1}	P02 to P06, P12, P13, P15, P40 to P43, P50 to P53, P121 to P124		0.7 V DD		VdD	V
	$\mathrm{V}_{\mathrm{H} 2}$	P00, P01, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, EXCLK, EXCLKS, RESET		0.8VDD		VdD	V
	$\mathrm{V}_{\mathbf{1 H} 3}$	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$	0.7AVREF		AVref	V
	$\mathrm{V}_{\text {IH4 }}$	P60 to P63		0.7 V do		6.0	V
Input voltage, low (products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	VIL1	P02, P12, P13, P15, P40 to P47, P50 to P57, P60 to P67, P121 to P124, P144, P145		0		0.3 VdD	V
	VIL2	P00, P01, P03 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140 to P143, EXCLK, EXCLKS, RESET		0		0.2 Vdd	V
	VIL3	P20 to P27	$A V_{\text {REF }}=V_{\text {dD }}$	0		$0.3 A V_{\text {ref }}$	V
Input voltage, low (products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	VIL1	P02 to P06, P12, P13, P15, P40 to P43, P50 to P53, P60 to P63, P121 to P124		0		0.3VDD	V
	VIL2	P00, P01, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, EXCLK, EXCLKS, RESET		0		0.2 VdD	V
	VIL3	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\text {dD }}$	0		$0.3 A V_{\text {ref }}$	V
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH} 1}=-3.0 \mathrm{~mA} \end{aligned}$	VDD - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \text { І }_{\mathrm{OH} 1}=-2.5 \mathrm{~mA} \end{aligned}$	VDD - 0.5			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D D^{2} 2.7 \mathrm{~V}, \\ & \text { Іон } 1=-1.0 \mathrm{~mA} \end{aligned}$	VDD - 0.5			V
	Voh2	P20 to P27	$\begin{aligned} & \mathrm{AV} \text { REF }=\mathrm{V}_{\mathrm{DD}}, \\ & \text { loH2 }=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
		P121 to P124	Іон2 $=-100 \mu \mathrm{~A}$	VDD - 0.5			V

Notes 1. Supported products: $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is at least 48 KB , and $78 \mathrm{~K} 0 / \mathrm{KF} 2$
2. Supported products: $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{~K} 0 / \mathrm{KE} 2$ whose flash memory is less than $32 \mathrm{~KB}, 78 \mathrm{KO} / \mathrm{KB} 2$, and 78KO/KC2

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (3/4)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}=8.5 \mathrm{~mA} \end{aligned}$				0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.0 \mathrm{~V}, \\ & \mathrm{loL} 1=5.0 \mathrm{~mA} \end{aligned}$				0.7	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{loL1}=2.0 \mathrm{~mA} \end{aligned}$				0.5	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{loL1}=0.5 \mathrm{~mA} \end{aligned}$				0.4	V
	Vol2	P20 to P27	$\begin{aligned} & \mathrm{AV} \text { REF }=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{l} \mathrm{l} 2=0.4 \mathrm{~mA} \end{aligned}$				0.4	V
		P121 to P124	$\mathrm{loL2}=0.4 \mathrm{~mA}$				0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=15.0 \mathrm{~mA} \end{aligned}$				2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=5.0 \mathrm{~mA} \end{aligned}$				0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.0 \mathrm{~V}, \\ & \text { loL1 }=5.0 \mathrm{~mA} \end{aligned}$				0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$				0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{loL1}=2.0 \mathrm{~mA} \end{aligned}$				0.4	V
Input leakage current, high	$\mathrm{ILIH1}$	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMDO, $\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				1	$\mu \mathrm{A}$
	ILIH2	P20 to P27	$\mathrm{V}_{\mathrm{I}}=\mathrm{AV}$ REF $=\mathrm{V}_{\mathrm{DD}}$				1	$\mu \mathrm{A}$
	ІІІнз	$\begin{aligned} & \text { P121 to } 124 \\ & (\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2) \end{aligned}$	$\begin{aligned} & V_{1}= \\ & V_{D D} \end{aligned}$	I/O port mode			1	$\mu \mathrm{A}$
				OSC mode			20	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$				-1	$\mu \mathrm{A}$
	ILIL2	P20 to P27	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}, A V_{\text {REF }}=\mathrm{V}_{\text {DD }}$				-1	$\mu \mathrm{A}$
	ILız3	$\text { P121 to } 124$	$\mathrm{V}_{1}=$	I/O port mode			-1	$\mu \mathrm{A}$
		(X1, X2, XT1, XT2)	Vss	OSC mode			-20	$\mu \mathrm{A}$
Pull-up resistor	Ru	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$			10	20	100	k Ω
FLMDO supply voltage	VIL	In normal operation mode			0		0.2 VdD	V
	$\mathrm{V}_{\text {IH }}$	In self-programming mode			0.8 VDD		VdD	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (4/4)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IDD1	Operating mode	$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { Note } 2 \end{aligned}$	Square wave input		3.2	5.5	mA
				Resonator connection		4.5	6.9	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.6	2.8	mA
				Resonator connection		2.3	3.9	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.5	2.7	mA
				Resonator connection		2.2	3.2	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.9	1.6	mA
				Resonator connection		1.3	2.0	mA
			$\begin{aligned} & \mathrm{fxH}_{\mathrm{H}}=5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.7	1.4	mA
				Resonator connection		1.0	1.6	mA
			$\mathrm{frH}=8 \mathrm{MHz}, \mathrm{V}$ dD $=5.0 \mathrm{~V}^{\text {Note } 4}$			1.4	2.5	mA
			$\begin{aligned} & \mathrm{f} \text { SuB }=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 5} \end{aligned}$	Square wave input		6	30	$\mu \mathrm{A}$
				Resonator connection		15	35	$\mu \mathrm{A}$
	IdD2	HALT mode	$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 2} \end{aligned}$	Square wave input		0.8	2.6	mA
				Resonator connection		2.0	4.4	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.4	1.3	mA
				Resonator connection		1.0	2.4	mA
			$\begin{aligned} & \mathrm{f} \mathrm{XH}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.2	0.65	mA
				Resonator connection		0.5	1.1	mA
			$\mathrm{frH}=8 \mathrm{MHz}, \mathrm{V}_{\mathrm{dD}}=5.0 \mathrm{~V}^{\text {Note } 4}$			0.4	1.2	mA
			$\begin{aligned} & \mathrm{f} \text { SuB }=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { Note } 5 \end{aligned}$	Square wave input		3.0	27	$\mu \mathrm{A}$
				Resonator connection		12	32	$\mu \mathrm{A}$
	IDD3 ${ }^{\text {Note } 6}$	STOP mode				1	20	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40$ to $+70{ }^{\circ} \mathrm{C}$			1	10	$\mu \mathrm{A}$
A/D converter operating current	$\mathrm{IADC}^{\text {Note } 7}$	$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{ADCS}=1$				0.86	1.9	mA
Watchdog timer operating current	IWdt ${ }^{\text {Note } 8}$	During 240 kHz internal low-speed oscillation clock operation				5	10	$\mu \mathrm{A}$
LVI operating current	ILvi ${ }^{\text {Note } 9}$					9	18	$\mu \mathrm{A}$

Remarks 1. fxh: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fRH: Internal high-speed oscillation clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or external subsystem clock frequency)
(Notes on next page)

Notes 1. Total current flowing into the internal power supply (VDD, EVDD), including the peripheral operation current and the input leakage current flowing when the level of the input pin is fixed to Vod or Vss. However, the current flowing into the pull-up resistors and the output current of the port are not included.
2. Not including the operating current of the 8 MHz internal oscillator, 240 kHz internal oscillator, and XT1 oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
3. When AMPH (bit 0 of clock operation mode select register (OSCCTL)) $=0$.
4. Not including the operating current of the X1 oscillator, XT1 oscillator, and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
5. Not including the operating current of the X 1 oscillation, 8 MHz internal oscillator and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
6. Not including the operating current of the 240 kHz internal oscillator and XT1 oscillation, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
7. Current flowing only to the A / D converter ($\mathrm{A} \mathrm{V}_{\mathrm{REF}}$). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1 or IdD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
8. Current flowing only to the watchdog timer (including the operating current of the 240 kHz internal oscillator). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1, IdD2 or IdD3 and Iwdt when the watchdog timer operates.
9. Current flowing only to the LVI circuit. The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of ldD1, IDD2 or IDD3 and ILvI when the LVI circuit operates.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

AC Characteristics

(1) Basic operation (1/2)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fxp) operation	Conventionalspecification Products (μ PD78F05xx (A))	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{S}$
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$	0.2		32	$\mu \mathrm{S}$
				$1.8 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$	$0.4{ }^{\text {Note } 1}$		32	$\mu \mathrm{S}$
			Expanded- specification Products (μ PD78F05xxA (A))	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{S}$
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	$0.4{ }^{\text {Note } 1}$		32	$\mu \mathrm{S}$
		Subsystem clock (fsub) operation ${ }^{\text {Note } 2}$			114	122	125	$\mu \mathrm{S}$
Peripheral hardware clock frequency	fprs	$f_{P R S}=f_{x H}$ (XSEL = 1)	Conventional- specification Products (μ PD78F05xx (A))	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			20	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$			10	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			5	MHz
			Expandedspecification Products (μ PD78F05xxA (A))	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			20	MHz
				$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2}<4.0 \mathrm{~V}$ Note 3			20	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{c}$ < 2.7 V			5	MHz
		$\begin{aligned} & f_{P R S}=f_{R H} \\ & (X S E L=0) \end{aligned}$		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	7.6		8.4	MHz
				$\underset{\substack{\text { Note } 4}}{1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}}$	7.6		10.4	MHz
External main system clock frequency	fexclk	Conventional-specification Products$(\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}(\mathrm{~A}))$		$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 5}$		20.0	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$1.0^{\text {Note } 5}$		10.0	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1.0		5.0	MHz
		Expanded-specification Products (μ PD78F05xxA(A))		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 5}$		20.0	MHz
				$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$	1.0		5.0	MHz
External main system clock input high-level width, low-level width	tехсLкн, texclel	Conventional-specification Products$(\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}(\mathrm{~A}))$		$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	24			ns
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	48			ns
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$	96			ns
		Expanded-specification Products $(\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxA}(\mathrm{~A}))$		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	24			ns
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	96			ns

Notes 1. $0.38 \mu \mathrm{~s}$ when operating with the 8 MHz internal oscillator.
2. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.
3. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $\mathrm{fxh}_{\mathrm{h}} / 2(10 \mathrm{MHz})$ or less. The multiplier/divider, however, can operate on $\mathrm{fxh}(20 \mathrm{MHz})$.
4. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $\mathrm{frh}_{\mathrm{R}} / 2$ or less.
5. 2.0 MHz (MIN.) when using UART6 during on-board programming.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(1) Basic operation (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
External subsystem clock frequency ${ }^{\text {Note } 1}$	fexclks		32	32.768	35	kHz
External subsystem clock input high-level width, low-level width ${ }^{\text {Note } 1}$	texclesh, texclks		12			$\mu \mathrm{S}$
TI000, TIO10, TI001, TI011 input high-level width, low-level width	tтіно, tтLLo	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 2 / f_{\text {sam }}+ \\ & 0.1^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{S}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$\begin{aligned} & 2 / f_{\text {sam }}+ \\ & 0.2^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	$\begin{aligned} & 2 / f_{\text {sam }}+ \\ & 0.5^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{s}$
TI50, TI51 input frequency	$\mathrm{f}_{1} 5$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			10	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			5	MHz
TI50, TI51 input high-level width, low-level width	tтilis, tтIL5	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	50			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	50			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	100			ns
Interrupt input high-level width, low-level width	tinth, tintl		1			$\mu \mathrm{S}$
Key interrupt input low-level width	tKR		250			ns
RESET low-level width	trsL		10			$\mu \mathrm{s}$

Notes 1. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.
 PRM001 or PRM010, PRM011) of prescaler mode registers 00 and 01 (PRM00, PRM01). Note that when selecting the TIOOO or TI001 valid edge as the count clock, $\mathrm{f}_{\text {sam }}=\mathrm{fpRs}$.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Tcy vs. Vdd (Main System Clock Operation)
<1> Conventional-specification Products (μ PD78F05xx(A))

<2> Expanded-specification Products (μ PD78F05xxA(A))

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter. AC Timing Test Points

External Main System Clock Timing, External Subsystem Clock Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

TI Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

(2) Serial interface

(a) UART6 (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(b) UARTO (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(c) IICO

Parameter	Symbol	Conditions	Standard Mode		High-Speed Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	fscl		0	100	0	400	kHz
Setup time of restart condition	tsu: STA		4.7	-	0.6	-	$\mu \mathrm{s}$
Hold time ${ }^{\text {Note } 1}$	thD: STA		4.0	-	0.6	-	$\mu \mathrm{S}$
Hold time when SCLO = "L"	tLow	Internal clock operation	4.7	-	1.3	-	$\mu \mathrm{S}$
		EXSCLO clock (6.4 MHz) operation	4.7	-	1.25	-	$\mu \mathrm{S}$
Hold time when SCLO $=$ " H "	thigh		4.0	-	0.6	-	$\mu \mathrm{S}$
Data setup time (reception)	tsu: dat		250	-	100	-	ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd: DAT	$\begin{aligned} & f w=f x h / 2^{N} \text { or } f w=\text { fexscLo } \\ & \text { selected } \end{aligned}$	0	3.45	0	$0.9^{\text {Note } 4}$	$\mu \mathrm{s}$
						$1.00^{\text {Note } 5}$	
		$\mathrm{fw}_{\mathrm{w}}=\mathrm{fRH} / 2^{\mathrm{N}}$ selected ${ }^{\text {Note }}{ }^{3}$	0	3.45	0	1.05	$\mu \mathrm{S}$
Setup time of stop condition	tsu: sto		4.0	-	0.6	-	$\mu \mathrm{S}$
Bus free time	tbuF		4.7	-	1.3	-	$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.
3. fw indicates the IICO transfer clock selected by the IICCL and IICXO registers.
4. When $\mathrm{fw} \geq 4.4 \mathrm{MHz}$ is selected
5. When $\mathrm{fw}<4.4 \mathrm{MHz}$ is selected

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(d) CSI1n (master mode, $\overline{\text { SCK1n... internal clock output) }}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkCy1	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	200			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ D $<4.0 \mathrm{~V}$	400			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$	600			ns
$\overline{\text { SCK1n }}$ high-/low-level width	$\mathrm{t}_{\mathrm{KH}} 1$, tKL1	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	tксү1/2 $20^{\text {Note } 1}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$	tксү1/2 $30^{\text {Note } 1}$			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	tкCy1/2 $60^{\text {Note } 1}$			ns
SI1n setup time (to $\overline{\text { SCK1n }} \uparrow$)	tsik1	$4.0 \mathrm{~V} \leq \mathrm{V}$ D $\leq 5.5 \mathrm{~V}$	70			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ D $<4.0 \mathrm{~V}$	100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{dD}<2.7 \mathrm{~V}$	190			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tkSI1		30			ns
Delay time from $\overline{\text { SCK1n }} \downarrow$ to SO1n output	tksO1	$\mathrm{C}=50 \mathrm{pF}^{\text {Note } 2}$			40	ns

Notes 1. This value is when high-speed system clock (fxH) is used.
2. C is the load capacitance of the $\overline{\mathrm{SCK} 1 \mathrm{n}}$ and SO1n output lines.
(e) CSI1n (slave mode, $\overline{\text { SCK1n }} \ldots$ external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkcy2			400			ns
$\overline{\text { SCK1n }}$ high-/low-level width	tkH2, tkL2			tkcya/2			ns
SI1n setup time (to $\overline{\text { SCK1n }} \uparrow$)	tsıк2			80			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tksı2			50			ns
Delay time from $\overline{\text { SCK1n }} \downarrow$ to	tkso2	$C=50$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			120	ns
SO1n output		$p F^{\text {Note }}$	$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			120	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			180	ns

Note C is the load capacitance of the SO1n output line.

Remark $\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(f) CSIAO (master mode, $\overline{\text { SCKAO...internal clock output) }}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKAO }}$ cycle time	tксуз	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		600			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$		1200			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$		1800			ns
$\overline{\text { SCKAO }}$ high-/low-level width	$\begin{aligned} & \text { tкH3, } \\ & \text { tкLı } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \mathrm{t}_{\mathrm{KCY}} / 2 \\ 50 \end{gathered}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		$\begin{gathered} \mathrm{t}_{\mathrm{tč}} \mathbf{3} / 2- \\ 100 \end{gathered}$			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$		$\begin{gathered} \text { tкCуз }^{2} 2 \\ 200 \end{gathered}$			ns
SIAO setup time (to $\overline{\mathrm{SCKAO}} \uparrow$)	tsıкз	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}$		200			ns
SIAO hold time (from $\overline{\text { SCKAO }} \uparrow$)	tkSI3			300			ns
Delay time from $\overline{\mathrm{SCKAO}} \downarrow$ to SOAO output	tkso3	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			200	ns
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			300	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			400	ns
Time from $\overline{\text { SCKA0 }} \uparrow$ to STB0 \uparrow	tsbd			$\begin{gathered} \text { tксуз }^{2} 2- \\ 100 \end{gathered}$			ns
Strobe signal high-level width	tsBw	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tксүз 30			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		tксүз 60			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		$\begin{gathered} \text { tксуз - } \\ 120 \end{gathered}$			ns
Busy signal setup time (to busy signal detection timing)	tbys	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$		200			ns
Busy signal hold time (from busy signal detection timing)	tBYH			100			ns
Time from busy inactive to $\overline{\text { SCKAO }} \downarrow$	tsps	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$				2 tксүз + 100	ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$				2tксүз - 150	ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$				$\begin{gathered} 2 \mathrm{tkčз}- \\ 200 \end{gathered}$	ns

Note C is the load capacitance of the $\overline{\text { SCKAO }}$ and SOAO output lines.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(g) CSIA0 (slave mode, $\overline{\text { SCKAO }}$...external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKAO }}$ cycle time	tkcy4	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		600			$n s$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		1200			$n s$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1800			ns
$\overline{\text { SCKAO }}$ high-/low-level width	tkH4, tкı4	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		300			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$		600			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		900			ns
SIAO setup time (to $\overline{\mathrm{SCKAO}} \uparrow$)	tsik4			100			ns
SIAO hold time (from $\overline{\mathrm{SCKAO}} \uparrow$)	tksi4			$\begin{gathered} 2 / f \mathrm{fw}+ \\ 100^{\text {Note } 1} \end{gathered}$			ns
Delay time from $\overline{\mathrm{SCKAO}} \downarrow$ to SOAO output	tksO4	$\mathrm{C}=100 \mathrm{pF}^{\text {Note } 2}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			$\begin{gathered} 2 / f w+ \\ 100^{\text {Note } 1} \end{gathered}$	ns
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			$\begin{gathered} 2 / f w+ \\ 200^{\text {Note } 1} \end{gathered}$	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			$\begin{gathered} 2 / f w+ \\ 300^{\text {Note } 1} \end{gathered}$	ns
$\overline{\text { SCKA0 }}$ rise/fall time	$\mathrm{t}_{\text {R4, }} \mathrm{t}_{\text {F } 4}$					1000	ns

Notes 1. $f w$ is the CSIAO base clock selected by the CSISO register.
2. C is the load capacitance of the SOAO output line.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Serial Transfer Timing (1/2)

IICO:

CSI1n:

Remark $m=1,2$
$\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Serial Transfer Timing (2/2)

CSIAO:

CSIAO (busy processing):

Note
$\overline{\text { SCKAO }}$ does not become low level here, but the timing is illustrated so that the timing specifications can be shown.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

A/D Converter Characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					10	bit
Overall error ${ }^{\text {Notes 1,2 }}$	Ainl	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$				± 1.2	\%FSR
Conversion time	tconv	Conventionalspecification Products (μ PD78F05xx(A))	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$	6.1		36.7	$\mu \mathrm{S}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$	12.2		36.7	$\mu \mathrm{s}$
			$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }}<2.7 \mathrm{~V}$	27		66.6	$\mu \mathrm{s}$
		Expanded- specification Products $(\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxA}(\mathrm{~A}))$	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {reF }} \leq 5.5 \mathrm{~V}$	6.1		66.6	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$	12.2		66.6	$\mu \mathrm{s}$
			$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$	27		66.6	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes 1,2 }}$	Ezs	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$				± 0.6	\%FSR
Full-scale error ${ }^{\text {Notes 1,2 }}$	EFS	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<2.7 \mathrm{~V}$				± 0.6	\%FSR
Integral non-linearity error ${ }^{\text {Note } 1}$	ILE	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 2.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 4.5	LSB
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$				± 6.5	LSB
Differential non-linearity error ${ }^{\text {Note } 1}$	DLE	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 1.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 2.0	LSB
		$2.3 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$				± 2.0	LSB
Analog input voltage	$V_{\text {AIN }}$			AVss		AVref	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
1.59 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$, Vss $=\mathrm{EVss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tPTH	VDD: $0 \mathrm{~V} \rightarrow$ change inclination of VPOC	0.5			$\mathrm{~V} / \mathrm{ms}$
Minimum pulse width		tPW		200		

1.59 V POC Circuit Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Supply Voltage Rise Time ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} s \mathrm{~s}=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. |
| :--- | :--- | :--- | :--- | :---: | :---: | Unit | M |
| :--- |

Supply Voltage Rise Time Timing

- When $\overline{\text { RESET }}$ pin input is not used

- When RESET pin input is used

2.7 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply voltage	VDDPOC	POCMODE (option bye) $=1$	2.50	2.70	2.90	V

Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting.

Option Byte Setting	POC Mode	Operation
POCMODE $=0$	1.59 V mode operation	A reset state is retained until $\mathrm{V}_{\text {POC }}=1.59 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when $V_{\text {Poc i }}$ is exceeded. After that, POC detection is performed at $V_{\text {poc, similarly }}$ as when the power was turned on. The power supply voltage must be raised at a time of tpup1 or tpupa when POCMODE is 0 .
POCMODE = 1	2.7 V/1.59 V mode operation	A reset state is retained until $\mathrm{V}_{\text {DDPOC }}=2.7 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when VDDpoc is exceeded. After that, POC detection is performed at $V_{\text {poc }}=1.59 \mathrm{~V}$ (TYP.) and not at Vddpoc. The use of the $2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ POC mode is recommended when the rise of the voltage, after the power is turned on and until the voltage reaches 1.8 V , is more relaxed than tptн.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLvio		4.14	4.24	4.34	V
		V LVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		VLvi3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		V LVI5		3.37	3.47	3.57	V
		VLVII		3.22	3.32	3.42	V
		VLVIT		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	V
		VLV19		2.75	2.85	2.95	V
		VLVI10		2.60	2.70	2.80	V
		VLVI11		2.45	2.55	2.65	V
		VLVI12		2.29	2.39	2.49	V
		VLV113		2.14	2.24	2.34	V
		VLVI14		1.98	2.08	2.18	V
		VLVI15		1.83	1.93	2.03	V
	External input pin ${ }^{\text {Note } 1}$	EXLVI	$\mathrm{EXLVI}<\mathrm{VDD}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.11	1.21	1.31	V
Minimum pulse width		tıw		200			$\mu \mathrm{S}$
Operation stabilization wait time ${ }^{\text {Note } 2}$		tıwalt		10			$\mu \mathrm{S}$

Notes 1. The EXLVI/P120/INTPO pin is used.
2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $\operatorname{VLVI(n-1)}>\operatorname{VLVIn}^{\prime} \mathrm{n}=1$ to 15

LVI Circuit Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		$1.44^{\text {Note }}$		5.5	V

Note The value depends on the POC detection voltage. When the voltage drops, the data is retained until a POC reset is effected, but data is not retained when a POC reset is effected.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Flash Memory Programming Characteristics

- Basic characteristics

Parameter		Symbol			Conditions		MIN.	TYP.	MAX.	Unit
VdD supply current		IdD	$\mathrm{fxP}=10 \mathrm{MHz}$ (TYP.), 20 MHz (MAX.)					4.5	11.0	mA
Erase time Notes 1, 2	All block	Teraca						20	200	ms
	Block unit	Terasa						20	200	ms
Write time (in 8-bit units) ${ }^{\text {Note } 1}$		Twrwa						10	100	$\mu \mathrm{s}$
Number of rewrites per chip		Cerwr	1 erase 1 write after erase = 1 rewrite Note 3	Expandedspecification Products (μ PD78F05xxA (A))	- When a flash memory programmer is used, and the libraries ${ }^{\text {Note } 4}$ provided by Renesas Electronics are used - For program update	Retention: 15 years	1000			Times
		- When the EEPROM emulation libraries ${ }^{\text {Note } 5}$ provided by Renesas Electronics are used - The rewritable ROM size: 4 KB - For data update			Retention: 5 years	10000			Times	
		Expanded- specification Products (μ PD78F05xxA (A)) Conventional- specification Products (μ PD78F05xx (A))		Conditions other than the above ${ }^{\text {Note } 6}$	Retention: 10 years	100			Times	

Notes 1. Characteristic of the flash memory. For the characteristic when a dedicated flash programmer, PG-FP4 or PGFP5, is used and the rewrite time during self programming, see Tables 27-12 to 27-14.
2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
3. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
4. The sample library specified by the $\mathbf{7 8 K 0} / \mathbf{K x 2}$ Flash Memory Self Programming User's Manual (Document No.: U17516E) is excluded.
5. The sample program specified by the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ EEPROM Emulation Application Note (Document No.: U17517E) is excluded.
6. These include when the sample library specified by the $78 \mathrm{KO} / \mathrm{Kx} 2$ Flash Memory Self Programming User's Manual (Document No.: U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) are used.
Remarks 1. fxp: Main system clock oscillation frequency
2. For serial write operation characteristics, refer to $\mathbf{7 8 K 0 / K x 2}$ Flash Memory Programming (Programmer) Application Note (Document No.: U17739E).

CHAPTER 32 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+110^{\circ} \mathrm{C}$)

Target Products	Conventional-specification Products	Expanded-specification Products
78K0/KB2	$\begin{aligned} & \mu \text { PD78F0500(A2), 78F0501(A2), 78F0502(A2), } \\ & \text { 78F0503(A2) } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0500 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0501 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0502 \mathrm{~A}(\mathrm{~A} 2), \\ & 78 \mathrm{~F} 0503 \mathrm{~A}(\mathrm{~A} 2) \end{aligned}$
78K0/KC2	μ PD78F0511(A2), 78F0512(A2), 78F0513(A2), 78F0514(A2), 78F0515(A2)	μ PD78F0511A(A2), 78F0512A(A2), 78F0513A(A2), 78F0514A(A2), 78F0515A(A2)
78K0/KD2	$\begin{aligned} & \mu \text { PD78F0521(A2), 78F0522(A2), 78F0523(A2), } \\ & \text { 78F0524(A2), 78F0525(A2), 78F0526(A2), } \\ & 78 \text { F0527(A2) } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0521A(A2), 78F0522A(A2), 78F0523A(A2), } \\ & \text { 78F0524A(A2), 78F0525A(A2), 78F0526A(A2), } \\ & \text { 78F0527A(A2) } \end{aligned}$
78K0/KE2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531(\mathrm{~A} 2), 78 \mathrm{~F} 0532(\mathrm{~A} 2), 78 \mathrm{~F} 0533(\mathrm{~A} 2), \\ & \text { 78F0534(A2), 78F0535(A2), 78F0536(A2), } \\ & \text { 78F0537(A2) } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531 \mathrm{~A}(\mathrm{~A} 2), \text { 78F0532A(A2), 78F0533A(A2), } \\ & \text { 78F0534A(A2), 78F0535A(A2), 78F0536A(A2), } \\ & \text { 78F0537A(A2) } \end{aligned}$
78K0/KF2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544(\mathrm{~A} 2), 78 \mathrm{~F} 0545(\mathrm{~A} 2), 78 \mathrm{~F} 0546(\mathrm{~A} 2), \\ & 78 \mathrm{~F} 0547(\mathrm{~A} 2) \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0545 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0546 \mathrm{~A}(\mathrm{~A} 2), \\ & 78 \mathrm{~F} 0547 \mathrm{~A}(\mathrm{~A} 2) \end{aligned}$

The following items are described separately for conventional-specification products (μ PD78F05xx(A2)) and expandedspecification products (μ PD78F05xxA(A2)).

- X1 clock oscillation frequency (X1 oscillator characteristics)
- Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width ((1) Basic operation in AC characteristics)
- A/D conversion time (A/D Converter Characteristics)
- Number of rewrites per chip (Flash Memory Programming Characteristics)

Caution The pins mounted depend on the product as follows.

(1) Port functions

Port	78K0/KB2	78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2
	30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins
Port 0	P00, P01				P00 to P03	P00 to P06	
Port 1	P10 to P17						
Port 2	P20 to P23	P20 to P25	P20 to P27				
Port 3	P30 to P33						
Port 4	-		P40, P41			P40 to P43	P40 to P47
Port 5	-					P50 to P53	P50 to P57
Port 6	P60, P61	P60 to P63					P60 to P67
Port 7	-	P70, P71	P70 to P73	P70 to P75	P70 to P77		
Port 12	P120 to P122	P120 to P124					
Port 13	-			P130			
Port 14	-			P140		P140, P141	P140 to P145

(The remaining table is on the next page.)
(2) Non-port functions

Notes 1. This is not mounted onto 30 -pin products.
2. This is not mounted onto the $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB .

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdo		-0.5 to +6.5	V
	EVdD		-0.5 to +6.5	V
	Vss		-0.5 to +0.3	V
	EVss		-0.5 to +0.3	V
	AVref		-0.5 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	AVss		-0.5 to +0.3	V
REGC pin input voltage	Viregc		-0.5 to +3.6 and -0.5 to VDD	V
Input voltage	V_{11}	P00 to P06, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120 to P124, P140 to P145, X1, X2, XT1, XT2, RESET, FLMD0	-0.3 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	V_{12}	P60 to P63 (N-ch open drain)	-0.3 to +6.5	V
Output voltage	Vo		-0.3 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
Analog input voltage	Van	ANIO to ANI7	$\begin{aligned} & -0.3 \text { to } A V_{\text {REF }}+0.3^{\text {Note }} \\ & \text { and }-0.3 \text { to VdD }+0.3^{\text {Note }} \end{aligned}$	V

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)(2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, high	Іон	Per pin	$\begin{aligned} & \text { P00 to P06, P10 to P17, } \\ & \text { P30 to P33, P40 to P47, } \\ & \text { P50 to P57, P64 to P67, } \\ & \text { P70 to P77, P120, } \\ & \text { P130, P140 to P145 } \end{aligned}$	-10	mA
		Total of all pins $-80 \mathrm{~mA}$	P00 to P04, P40 to P47, P120, P130, P140 to P145	-25	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77	-55	mA
		Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
		Per pin	P121 to P124	-1	mA
		Total of all pins		-4	mA
Output current, low	lot	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P130, P140 to P145	30	mA
		Total of all pins 200 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	60	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77	140	mA
		Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
		Per pin	P121 to P124	4	mA
		Total of all pins		10	mA
Operating ambient temperature	$\mathrm{T}_{\text {A }}$			-40 to +110	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

X1 Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD}=\mathrm{EV} \mathrm{dd} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss}=\mathrm{AVss}=0 \mathrm{~V}$)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. It is 2.0 MHz (MIN.) when programming on the board via UART6.

Cautions 1. When using the X 1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Internal Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD}=\mathrm{EV} \mathrm{dd} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss}=\mathrm{AV} s \mathrm{~s}=0 \mathrm{~V}$)

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
8 MHz internal oscillator	Internal high-speed oscillation clock frequency (fRH)	RSTS $=1$	7.6	8.0	8.4	MHz
	RSTS $=0$	2.48	5.6	9.86	MHz	
240 kHz internal oscillator	Internal low-speed oscillation clock frequency (fRL)		216	240	264	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Remark RSTS: Bit 7 of the internal oscillation mode register (RCM)

XT1 Oscillator Characteristics ${ }^{\text {Note } 1}$

Notes 1. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with the XT1 oscillator.
2. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (1/4)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}=\mathrm{EV} \mathrm{dD} \leq 5.5 \mathrm{~V}, \mathrm{AV}$ Ref $\leq \mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ss}}=\mathrm{EVss}=\mathrm{AVss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	$\mathrm{IOH1}$	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-2.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-2.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-7.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$			-6.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-12.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$			-10.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-16.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-14.0	mA
	ІОН2	Per pin for P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$			-0.1	mA
		Per pin for P121 to P124				-0.1	mA
Output current, low ${ }^{\text {Note } 2}$	loL1	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			5.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			3.0	mA
		Per pin for P60 to P63	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			10.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			3.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			13.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			25.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			20.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			38.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			30.0	mA
	Iol2	Per pin for P20 to P27	$\mathrm{AV}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}$			0.4	mA
		Per pin for P121 to P124				0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from VDD to an output pin.
2. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.
3. Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times \mathrm{t}$ and time for which current is not output is $0.3 \times \mathrm{t}$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.

- Where the duty factor of Іон is $\mathrm{n} \%$: Total output current of pins $=(\mathrm{Ioн} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where the duty factor is 50%, Іон $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(50 \times 0.01)=-14.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (2/4)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{AV}$ Ref $\leq \mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ss}}=\mathrm{EV} \mathrm{Ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high (products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	$\mathrm{V}_{\mathrm{H} 1}$	P02, P12, P13, P15, P40 to P47, P50 to P57, P64 to P67, P121 to P124, P144, P145		0.7 VdD		VdD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00, P01, P03 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140 to P143, EXCLK, EXCLKS, $\overline{R E S E T}$		0.8VdD		VdD	V
	$\mathrm{V}_{\mathbf{1 H 3}}$	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\text {dD }}$	0.7AVREF		AV ${ }_{\text {ref }}$	V
	$\mathrm{V}_{\text {IH4 }}$	P60 to P63		0.7 V do		6.0	V
Input voltage, high (products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	$\mathrm{V}_{\mathrm{H} 1}$	P02 to P06, P12, P13, P15, P40 to P43, P50 to P53, P121 to P124		0.7 V DD		VdD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00, P01, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, EXCLK, EXCLKS, RESET		0.8 VdD		VdD	V
	Vін3	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$	$0.7 A V_{\text {ref }}$		AVref	V
	$\mathrm{V}_{\mathrm{IH} 4}$	P60 to P63		0.7 V dD		6.0	V
Input voltage, low (products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	VIL1	P02, P12, P13, P15, P40 to P47, P50 to P57, P60 to P67, P121 to P124, P144, P145		0		0.3 V DD	V
	VIL2	P00, P01, P03 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140 to P143, EXCLK, EXCLKS, RESET		0		0.2 V dD	V
	VIL3	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\text {dD }}$	0		$0.3 A V_{\text {ref }}$	V
Input voltage, low (products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	VIL1	P02 to P06, P12, P13, P15, P40 to P43, P50 to P53, P60 to P63, P121 to P124		0		$0.3 \mathrm{~V}_{\mathrm{dD}}$	V
	VIL2	P00, P01, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, EXCLK, EXCLKS, RESET		0		0.2 V dD	V
	VIL3	P20 to P27	$\mathrm{AV}_{\text {REF }}=\mathrm{V}_{\text {dD }}$	0		$0.3 A V_{\text {reF }}$	V
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH} 1}=-2.5 \mathrm{~mA} \end{aligned}$	Vdd - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH} 1}=-2.0 \mathrm{~mA} \end{aligned}$	VDD - 0.5			V
	VoH2	P20 to P27	$\begin{aligned} & \mathrm{AV} \text { REF }=\mathrm{V} \mathrm{DD}, \\ & \text { ІoH2 }=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
		P121 to P124	І $\mathrm{OH} 2=-100 \mu \mathrm{~A}$	VDD - 0.5			V

Notes 1. Supported products: $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is at least 48 KB , and $78 \mathrm{KO} 0 / \mathrm{KF} 2$
2. Supported products: $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{~K} 0 / \mathrm{KE} 2$ whose flash memory is less than $32 \mathrm{~KB}, 78 \mathrm{KO} / \mathrm{KB} 2$, and 78K0/KC2

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (3/4)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}=\mathrm{EV} \mathrm{Dd} \leq 5.5 \mathrm{~V}, \mathrm{AV}$ Ref $\leq \mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ss}}=\mathrm{EV} \mathrm{Ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}=5.0 \mathrm{~mA} \end{aligned}$				0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \text { loL1 }=3.0 \mathrm{~mA} \end{aligned}$				0.7	V
	Vol2	P20 to P27	$\begin{aligned} & \mathrm{AV} \text { REF }=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{l} \mathrm{LL} 2=0.4 \mathrm{~mA} \end{aligned}$				0.4	V
		P121 to P124	$\mathrm{loL2}=0.4 \mathrm{~mA}$				0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=10.0 \mathrm{~mA} \end{aligned}$				2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}=3.0 \mathrm{~mA} \end{aligned}$				0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$				0.6	V
Input leakage current, high	$\mathrm{ILIH1}$	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, $\overline{R E S E T}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				3	$\mu \mathrm{A}$
	ILIH2	P20 to P27	$\mathrm{V}_{\mathrm{I}}=\mathrm{AV}$ REF $=\mathrm{V}_{\mathrm{DD}}$				3	$\mu \mathrm{A}$
	ІІІнз	$\begin{aligned} & \text { P121 to } 124 \\ & (\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}= \\ & \mathrm{V}_{\mathrm{DD}} \end{aligned}$	I/O port mode			3	$\mu \mathrm{A}$
				OSC mode			20	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$				-3	$\mu \mathrm{A}$
	ILıL2	P20 to P27	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}, A \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {dD }}$				-3	$\mu \mathrm{A}$
	ILlı3	P121 to 124	$\mathrm{V}_{1}=$	I/O port mode			-3	$\mu \mathrm{A}$
		(X1, X2, XT1, XT2)	Vss	OSC mode			-20	$\mu \mathrm{A}$
Pull-up resistor	Ru	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {ss }}$			10	20	100	$\mathrm{k} \Omega$
FLMD0 supply voltage	VIL	In normal operation mode			0		0.2 VDD	V
	V_{IH}	In self-programming mode			0.8VDD		VDD	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (4/4)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}=\mathrm{EV} \mathrm{Dd} \leq 5.5 \mathrm{~V}, \mathrm{AV}$ Ref $\leq \mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ss}}=\mathrm{EV} \mathrm{Ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IDD1	Operating mode	$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 2} \end{aligned}$	Square wave input		3.2	7.2	mA
				Resonator connection		4.5	9.0	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.6	3.7	mA
				Resonator connection		2.3	5.1	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.5	3.6	mA
				Resonator connection		2.2	4.2	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.9	2.1	mA
				Resonator connection		1.3	2.6	mA
			$\mathrm{f}_{\mathrm{RH}}=8 \mathrm{MHz}, \mathrm{V} \mathrm{DD}=5.0 \mathrm{~V}^{\text {Note } 4}$			1.4	3.3	mA
			$\begin{aligned} & \text { f SUB }=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 5} \end{aligned}$	Square wave input		6	93	$\mu \mathrm{A}$
				Resonator connection		15	100	$\mu \mathrm{A}$
	IDD2	HALT mode	$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { Note 2 } \end{aligned}$	Square wave input		0.8	3.4	mA
				Resonator connection		2.0	5.8	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.4	1.7	mA
				Resonator connection		1.0	3.2	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.2	0.85	mA
				Resonator connection		0.5	1.5	mA
			$\mathrm{frH}=8 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 4}$			0.4	1.6	mA
			$\begin{aligned} & \mathrm{fsub}=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 5} \end{aligned}$	Square wave input		3.0	89	$\mu \mathrm{A}$
				Resonator connection		12	93	$\mu \mathrm{A}$
	IDD3 ${ }^{\text {Note } 6}$	STOP mode				1	60	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40$ to $+70{ }^{\circ} \mathrm{C}$			1	10	$\mu \mathrm{A}$
A/D converter operating current	$\mathrm{IADC}^{\text {Note } 7}$	$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{V}$ do,$~ A D C S ~=~ 1 ~$				0.86	2.5	mA
Watchdog timer operating current	IWdt ${ }^{\text {Note }} 8$	During 240 kHz internal low-speed oscillation clock operation				5	13	$\mu \mathrm{A}$
LVI operating current	ILVI ${ }^{\text {Note } 9}$					9	24	$\mu \mathrm{A}$

Remarks 1. fxh: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fRH: Internal high-speed oscillation clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or external subsystem clock frequency)
(Notes on next page)

Notes 1. Total current flowing into the internal power supply ($\mathrm{V}_{\mathrm{DD}}, \mathrm{EVDD}$), including the peripheral operation current and the input leakage current flowing when the level of the input pin is fixed to Vod or Vss. However, the current flowing into the pull-up resistors and the output current of the port are not included.
2. Not including the operating current of the 8 MHz internal oscillator, 240 kHz internal oscillator, and XT1 oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
3. When AMPH (bit 0 of clock operation mode select register (OSCCTL)) $=0$.
4. Not including the operating current of the X1 oscillator, XT1 oscillator, and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
5. Not including the operating current of the X 1 oscillation, 8 MHz internal oscillator and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
6. Not including the operating current of the 240 kHz internal oscillator and XT1 oscillation, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
7. Current flowing only to the A / D converter (AV REF). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
8. Current flowing only to the watchdog timer (including the operating current of the 240 kHz internal oscillator). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1, IdD2 or IdD3 and Iwdt when the watchdog timer operates.
9. Current flowing only to the LVI circuit. The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of ldD1, IdD2 or IdD3 and Ilvi when the LVI circuit operates.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

AC Characteristics

(1) Basic operation (1/2)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fxp) operation	Conventionalspecification Products (μ PD78F05xx (A2))	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{s}$
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0.2		32	$\mu \mathrm{S}$
			Expanded- specification Products (μ PD78F05xxA (A2))	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation ${ }^{\text {Note } 1}$			114	122	125	$\mu \mathrm{s}$
Peripheral hardware clock frequency	fPRS	$f_{P R S}=f_{x H}$ (XSEL = 1)	Conventionalspecification Products (μ PD78F05xx (A2))	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			20	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	MHz
			Expandedspecification Products (μ PD78F05xxA (A2))	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			20	MHz
				$\begin{array}{\|l\|} 2.7 \mathrm{~V} \leq \mathrm{VDD} \\ \mathrm{Note} 2 \end{array}$			20	MHz
		$\begin{aligned} & \text { fPRS }=\mathrm{ffH}_{\mathrm{R}} \\ & (\mathrm{XSEL}=0) \end{aligned}$		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	7.6		8.4	MHz
External main system clock frequency	fexclk	Conventional-specification Products (μ PD78F05xx(A2))		$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 3}$		20.0	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$1.0^{\text {Note } 3}$		10.0	MHz
		Expanded-specification Products (μ PD78F05xxA(A2))		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 3}$		20.0	MHz
External main system clock input high-level width, low-level width	tехсцкн, texclel	Conventional-specification Products (μ PD78F05xx(A2))		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	24			ns
				$2.7 \mathrm{~V} \leq \mathrm{Vdo}<4.0 \mathrm{~V}$	48			ns
		Expanded-specification Products $(\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxA}(\mathrm{~A} 2))$		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	24			ns

Notes 1. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.
2. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $\mathrm{fxh} / 2(10 \mathrm{MHz}$) or less. The multiplier/divider, however, can operate on $\mathrm{fxh}(20 \mathrm{MHz})$.
3. 2.0 MHz (MIN.) when using UART6 during on-board programming.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(1) Basic operation (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
External subsystem clock frequency ${ }^{\text {Note } 1}$	fexcles		32	32.768	35	kHz
External subsystem clock input high-level width, low-level width ${ }^{\text {Note } 1}$	texclesh, texclks		12			$\mu \mathrm{S}$
TI000, TI010, TI001, TI011 input high-level width, low-level width	tтіно, tтılo	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 2 / f_{\mathrm{sam}}+ \\ & 0.1^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{S}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$\begin{aligned} & 2 / f_{\text {sam }}+ \\ & 0.2^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{s}$
TI50, TI51 input frequency	fTI5				10	MHz
TI50, TI51 input high-level width, low-level width	tтін5, tтIL5		50			ns
Interrupt input high-level width, low-level width	tinth, tintl		1			$\mu \mathrm{s}$
Key interrupt input low-level width	tкR		250			ns
$\overline{\text { RESET }}$ low-level width	trsL		10			$\mu \mathrm{s}$

Notes 1. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.
 PRM001 or PRM010, PRM011) of prescaler mode registers 00 and 01 (PRM00, PRM01). Note that when selecting the TIOOO or TI001 valid edge as the count clock, fsam $=$ fprs.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Tcy vs. Vdd (Main System Clock Operation)
<1> Conventional-specification Products (μ PD78F05xx(A2))

<2> Expanded-specification Products (μ PD78F05xxA(A2))

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter. AC Timing Test Points

External Main System Clock Timing, External Subsystem Clock Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

 TI Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

(2) Serial interface

(a) UART6 (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(b) UARTO (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(c) IICO

Parameter	Symbol	Conditions	Standard Mode		High-Speed Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLO clock frequency	fscl		0	100	0	400	kHz
Setup time of restart condition	tsu: STA		4.7	-	0.6	-	$\mu \mathrm{s}$
Hold time ${ }^{\text {Note } 1}$	thD: STA		4.0	-	0.6	-	$\mu \mathrm{S}$
Hold time when SCLO $=$ " L "	tıow	Internal clock operation	4.7	-	1.3	-	$\mu \mathrm{S}$
		EXSCLO clock (6.4 MHz) operation	4.7	-	1.25	-	$\mu \mathrm{S}$
Hold time when SCLO = "H"	thigh		4.0	-	0.6	-	$\mu \mathrm{S}$
Data setup time (reception)	tsu: DAT		250	-	100	-	ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thi: DAT	$\begin{aligned} & f w=f x H / 2^{N} \text { or } f w=\text { fexscLo } \\ & \text { selected } \end{aligned}$	0	3.45	0	$0.9^{\text {Note } 4}$	$\mu \mathrm{S}$
						$1.00{ }^{\text {Note } 5}$	
		$\mathrm{fw}_{\mathrm{w}}=\mathrm{f}_{\mathrm{RH}} / 2^{\mathrm{N}}$ selected ${ }^{\text {Note } 3}$	0	3.45	0	1.05	$\mu \mathrm{S}$
Setup time of stop condition	tsu: sto		4.0	-	0.6	-	$\mu \mathrm{S}$
Bus free time	tbuf		4.7	-	1.3	-	$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the $\overline{A C K}$ (acknowledge) timing.
3. fw indicates the IICO transfer clock selected by the IICCL and IICXO registers.
4. When $\mathrm{fw} \geq 4.4 \mathrm{MHz}$ is selected
5. When $\mathrm{fw}<4.4 \mathrm{MHz}$ is selected

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(d) CSI1n (master mode, $\overline{\text { SCK1n... internal clock output) }}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkCy1	$4.0 \mathrm{~V} \leq \mathrm{V}$ DD $\leq 5.5 \mathrm{~V}$	200			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$	400			ns
$\overline{\text { SCK1n }}$ high-/low-level width	$\begin{aligned} & \text { tкH1, } \\ & \text { tkL1 } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V}$ do $\leq 5.5 \mathrm{~V}$	tксү1/2 - $20^{\text {Note } 1}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	tксү1/2 $30^{\text {Note } 1}$			ns
SI1n setup time (to $\overline{\mathrm{SCK1n}} \uparrow$)	tsik1	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	70			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$	100			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tksı11		30			ns
Delay time from $\overline{\mathrm{SCK} 1 n} \downarrow$ to SO1n output	tksO1	$\mathrm{C}=50 \mathrm{pF}^{\text {Note } 2}$			40	ns

Notes 1. This value is when high-speed system clock (f xH) is used.
2. C is the load capacitance of the $\overline{\mathrm{SCK} 1 \mathrm{n}}$ and SO1n output lines.
(e) CSI1n (slave mode, $\overline{\operatorname{SCK1n}}$... external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkcy2		400			ns
$\overline{\text { SCK1n }}$ high-/low-level width	tkH2, tkL2		tксү2/2			ns
SI1n setup time (to $\overline{\text { SCK1n }} \uparrow$)	tsik2		80			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tks 12		50			ns
Delay time from $\overline{\text { SCK1n }} \downarrow$ to SO1n output	tkso2	$\mathrm{C}=50 \mathrm{pF}^{\text {Note }}$			120	ns

Note C is the load capacitance of the SO1n output line.

Remark $\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(f) CSIAO (master mode, $\overline{\text { SCKAO...internal clock output) }}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKA0 }}$ cycle time	tксүз	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		600			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		1200			ns
$\overline{\text { SCKAO }}$ high-/low-level width	tкнз, tкıз	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		tксүз/2 50			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		$\begin{gathered} \mathrm{t}_{\mathrm{k} с \gamma_{3} / 2}- \\ 100 \end{gathered}$			ns
SIAO setup time (to $\overline{\text { SCKAO }} \uparrow$)	tsiк3			100			ns
SIAO hold time (from $\overline{\text { SCKAO }} \uparrow$)	tкsi3			300			ns
Delay time from $\overline{\text { SCKAO }} \downarrow$ to SOAO output	tkso3	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			200	ns
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			300	ns
Time from $\overline{\mathrm{SCKAO}} \uparrow$ to STB0 \uparrow	tsbD			$\begin{gathered} \text { tксуз } / 2- \\ 100 \end{gathered}$			ns
Strobe signal high-level width	tssw	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		tксүз 30			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		tксүз 60			ns
Busy signal setup time (to busy signal detection timing)	tBys			100			ns
Busy signal hold time (from busy signal detection timing)	tBYH			100			ns
Time from busy inactive to $\overline{\text { SCKAO }} \downarrow$	tsps	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$				$\begin{gathered} 2 \text { tксүз }_{+} \\ 100 \end{gathered}$	ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$				2tксуз - 150	ns

Note C is the load capacitance of the $\overline{\text { SCKAO }}$ and SOAO output lines.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(g) CSIA0 (slave mode, $\overline{\text { SCKAO }}$...external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKAO cycle time	tkcy4	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		600			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		1200			ns
$\overline{\text { SCKAO }}$ high-/low-level width	$\text { tкH4, }^{\prime}$†kL4	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		300			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$		600			ns
SIAO setup time (to $\overline{\mathrm{SCKAO}} \uparrow$)	tsik4			100			ns
SIAO hold time (from $\overline{\text { SCKAO }} \uparrow$)	tks14			$\begin{gathered} 2 / f w+ \\ 100^{\text {Note } 1} \end{gathered}$			ns
Delay time from $\overline{\mathrm{SCKAO}} \downarrow$ to SOAO output	tksO4	$\mathrm{C}=100 \mathrm{p}^{\text {Note } 2}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			$\begin{gathered} 2 / \mathrm{fw}+ \\ 100^{\text {Note } 1} \end{gathered}$	ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			$\begin{gathered} 2 / f \mathrm{fw}+ \\ 200^{\text {Note } ~} \end{gathered}$	ns
$\overline{\text { SCKA0 }}$ rise/fall time	$\mathrm{t}_{\text {R4, }} \mathrm{t}_{\text {F } 4}$					1000	ns

Notes 1. fw is the CSIAO base clock selected by the CSISO register.
2. C is the load capacitance of the SOAO output line.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Serial Transfer Timing (1/2)

IICO:

CSI1n:

Remark $m=1,2$
$\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Serial Transfer Timing (2/2)

CSIAO:

CSIAO (busy processing):

Note
$\overline{\text { SCKAO }}$ does not become low level here, but the timing is illustrated so that the timing specifications can be shown.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

A/D Converter Characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					10	bit
Overall error ${ }^{\text {Notes } 1,2}$	Ainl	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
Conversion time	tconv	Conventionalspecification Products (μ PD78F05xx(A2))	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }} \leq 5.5 \mathrm{~V}$	6.1		36.7	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$	12.2		36.7	$\mu \mathrm{S}$
		Expandedspecification Products (μ PD78F05xxA (A2))	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$	6.1		66.6	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$	12.2		66.6	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	Ezs	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
Full-scale error ${ }^{\text {Notes } 1,2}$	Efs	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
Integral non-linearity error ${ }^{\text {Note } 1}$	ILE	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 2.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 4.5	LSB
Differential non-linearity error ${ }^{\text {Note } 1}$	Dle	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 1.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 2.0	LSB
Analog input voltage	Vain			AVss		$\mathrm{AV}_{\text {REF }}$	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
1.59 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}$, V ss $=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tPTH	VDD: $0 \mathrm{~V} \rightarrow$ change inclination of VPOC	0.5			$\mathrm{~V} / \mathrm{ms}$
Minimum pulse width		tPw		200		

1.59 V POC Circuit Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Supply Voltage Rise Time ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+110^{\circ} \mathrm{C}$, $\mathrm{V} s \mathrm{ss}=\mathrm{EV} s \mathrm{~s}=0 \mathrm{~V}$)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. |
| :--- | :--- | :--- | :--- | :---: | :---: | Unit | M |
| :--- |

Supply Voltage Rise Time Timing

- When RESET pin input is not used

- When RESET pin input is used

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
2.7 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+110^{\circ} \mathrm{C}$, $\mathrm{Vss}=\mathrm{EV} s \mathrm{~s}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply voltage	VDDPOC	POCMODE (option bye) $=1$	2.50	2.70	2.90	V

Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting.

Option Byte Setting	POC Mode	Operation
POCMODE $=0$	1.59 V mode operation	A reset state is retained until VPoc $=1.59 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when VPoc is exceeded. After that, POC detection is performed at VPoc, similarly as when the power was turned on. The power supply voltage must be raised at a time of tpup1 or tpup2 when POCMODE is 0.
POCMODE $=1$	$2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ mode operation	A reset state is retained until VDDPoc $=2.7 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when VDDPoc is exceeded. After that, POC detection is performed at VPoc $=1.59 \mathrm{~V}$ (TYP.) and not at VDDPoc. The use of the $2.7 \mathrm{~V} / 1.59 \mathrm{~V} \mathrm{POC} \mathrm{mode} \mathrm{is} \mathrm{recommended}$ when the rise of the voltage, after the power is turned on and until the voltage reaches 1.8 V, is more relaxed than tpth.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLvio		4.14	4.24	4.34	V
		VLVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		VLVİ		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		VLVI5		3.37	3.47	3.57	V
		VLVI6		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	V
		VLvi9		2.75	2.85	2.95	V
	External input pin ${ }^{\text {Note } 1}$	EXLVI	$\mathrm{EXLVI}<\mathrm{VDD}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.11	1.21	1.31	V
Minimum pulse width		tıw		200			$\mu \mathrm{s}$
Operation stabilization wait time ${ }^{\text {Note } 2}$		tıwait		10			$\mu \mathrm{s}$

Notes 1. The EXLVI/P120/INTPO pin is used.
2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $\operatorname{VLVI(n-1)}>V_{L V I n}: n=1$ to 9

LVI Circuit Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 1 1 0 ^ { \circ }} \mathbf{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		$1.44^{\text {Note }}$		5.5	V

Note The value depends on the POC detection voltage. When the voltage drops, the data is retained until a POC reset is effected, but data is not retained when a POC reset is effected.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Flash Memory Programming Characteristics

- Basic characteristics

Parameter		Symbol			Conditions		MIN.	TYP.	MAX	Unit
Vod supply current		IdD	$\mathrm{fxP}^{\text {a }} 10 \mathrm{MHz}$ (TYP.), 20 MHz (MAX.)					4.5	14.0	mA
Erase time Notes 1, 2	All block	Teraca						20	200	ms
	Block unit	Terasa						20	200	ms
Write time (in 8-bit units) ${ }^{\text {Note } 1}$		Twrwa						10	100	$\mu \mathrm{S}$
Number of rewrites per chip		Cerwr	1 erase 1 write after erase = 1 rewrite Note 3	Expanded- specification Products (μ PD78F05xxA (A2))	- When a flash memory programmer is used, and the libraries ${ }^{\text {Note } 4}$ provided by Renesas Electronics are used - For program update	Retention: 15 years	1000			Times
		- When the EEPROM emulation libraries ${ }^{\text {Note } 5}$ provided by Renesas Electronics are used - The rewritable ROM size: 4 KB - For data update			Retention: 5 years	10000			Times	
		Expanded- specification Products (μ PD78F05xxA (A2)) Conventional- specification Products (μ PD78F05xx (A2))		Conditions other than the above ${ }^{\text {Note } 6}$	Retention: 10 years	100			Times	

Notes 1. Characteristic of the flash memory. For the characteristic when a dedicated flash programmer, PG-FP4 or PGFP5, is used and the rewrite time during self programming, see Tables 27-12 to 27-14.
2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
3. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
4. The sample library specified by the $\mathbf{7 8 K 0} / \mathrm{Kx} 2$ Flash Memory Self Programming User's Manual (Document No.: U17516E) is excluded.
5. The sample program specified by the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ EEPROM Emulation Application Note (Document No.: U17517E) is excluded.
6. These include when the sample library specified by the $78 \mathrm{KO} / \mathrm{Kx} 2$ Flash Memory Self Programming User's Manual (Document No.: U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) are used.
Remarks 1. fxp: Main system clock oscillation frequency
2. For serial write operation characteristics, refer to $\mathbf{7 8 K 0 / K x 2}$ Flash Memory Programming (Programmer) Application Note (Document No.: U17739E).

CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$)

Target Products	Conventional-specification Products	Expanded-specification Products
78K0/KB2	$\begin{aligned} & \mu \text { PD78F0500(A2), 78F0501(A2), 78F0502(A2), } \\ & \text { 78F0503(A2) } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0500 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0501 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0502 \mathrm{~A}(\mathrm{~A} 2), \\ & 78 \mathrm{~F} 0503 \mathrm{~A}(\mathrm{~A} 2) \end{aligned}$
78K0/KC2	μ PD78F0511(A2), 78F0512(A2), 78F0513(A2), 78F0514(A2), 78F0515(A2)	μ PD78F0511A(A2), 78F0512A(A2), 78F0513A(A2), 78F0514A(A2), 78F0515A(A2)
78K0/KD2	$\begin{aligned} & \mu \text { PD78F0521(A2), 78F0522(A2), 78F0523(A2), } \\ & \text { 78F0524(A2), 78F0525(A2), 78F0526(A2), } \\ & 78 \text { F0527(A2) } \end{aligned}$	$\begin{aligned} & \mu \text { PD78F0521A(A2), 78F0522A(A2), 78F0523A(A2), } \\ & \text { 78F0524A(A2), 78F0525A(A2), 78F0526A(A2), } \\ & \text { 78F0527A(A2) } \end{aligned}$
78K0/KE2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531(\mathrm{~A} 2), 78 \mathrm{~F} 0532(\mathrm{~A} 2), 78 \mathrm{~F} 0533(\mathrm{~A} 2), \\ & \text { 78F0534(A2), 78F0535(A2), 78F0536(A2), } \\ & \text { 78F0537(A2) } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0531 \mathrm{~A}(\mathrm{~A} 2), \text { 78F0532A(A2), 78F0533A(A2), } \\ & \text { 78F0534A(A2), 78F0535A(A2), 78F0536A(A2), } \\ & \text { 78F0537A(A2) } \end{aligned}$
78K0/KF2	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544(\mathrm{~A} 2), 78 \mathrm{~F} 0545(\mathrm{~A} 2), 78 \mathrm{~F} 0546(\mathrm{~A} 2), \\ & 78 \mathrm{~F} 0547(\mathrm{~A} 2) \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \mathrm{~F} 0544 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0545 \mathrm{~A}(\mathrm{~A} 2), 78 \mathrm{~F} 0546 \mathrm{~A}(\mathrm{~A} 2), \\ & 78 \mathrm{~F} 0547 \mathrm{~A}(\mathrm{~A} 2) \end{aligned}$

The following items are described separately for conventional-specification products (μ PD78F05xx(A2)) and expandedspecification products (μ PD78F05xxA(A2)).

- X1 clock oscillation frequency (X1 oscillator characteristics)
- Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width ((1) Basic operation in AC characteristics)
- A/D conversion time (A/D Converter Characteristics)
- Number of rewrites per chip (Flash Memory Programming Characteristics)

Caution The pins mounted depend on the product as follows.

(1) Port functions

Port	78K0/KB2	78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2
	30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins
Port 0	P00, P01				P00 to P03	P00 to P06	
Port 1	P10 to P17						
Port 2	P20 to P23	P20 to P25	P20 to P27				
Port 3	P30 to P33						
Port 4	-		P40, P41			P40 to P43	P40 to P47
Port 5	-					P50 to P53	P50 to P57
Port 6	P60, P61	P60 to P63					P60 to P67
Port 7	-	P70, P71	P70 to P73	P70 to P75	P70 to P77		
Port 12	P120 to P122	P120 to P124					
Port 13	-			P130			
Port 14	-			P140		P140, P141	P140 to P145

(The remaining table is on the next page.)
(2) Non-port functions

Notes 1. This is not mounted onto 30 -pin products.
2. This is not mounted onto the $78 \mathrm{KO} / \mathrm{KE} 2$ products whose flash memory is less than 32 KB .

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$) (1/2)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdo		-0.5 to +6.5	V
	EVdD		-0.5 to +6.5	V
	Vss		-0.5 to +0.3	V
	EVss		-0.5 to +0.3	V
	AVref		-0.5 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	AVss		-0.5 to +0.3	V
REGC pin input voltage	Viregc		-0.5 to +3.6 and -0.5 to VDD	V
Input voltage	V_{11}	P00 to P06, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120 to P124, P140 to P145, X1, X2, XT1, XT2, RESET, FLMD0	-0.3 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
	V_{12}	P60 to P63 (N-ch open drain)	-0.3 to +6.5	V
Output voltage	Vo		-0.3 to $V_{\text {DD }}+0.3^{\text {Note }}$	V
Analog input voltage	Van	ANIO to ANI7	$\begin{aligned} & -0.3 \text { to } A V_{\text {REF }}+0.3^{\text {Note }} \\ & \text { and }-0.3 \text { to VdD }+0.3^{\text {Note }} \end{aligned}$	V

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)(2/2)

Parameter	Symbol	Conditions		Ratings	Unit
Output current, high	IOH	Per pin	$\begin{aligned} & \text { P00 to P06, P10 to P17, } \\ & \text { P30 to P33, P40 to P47, } \\ & \text { P50 to P57, P64 to P67, } \\ & \text { P70 to P77, P120, } \\ & \text { P130, P140 to P145 } \end{aligned}$	-10	mA
		Total of all pins -80 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	-25	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77	-55	mA
		Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
		Per pin	P121 to P124	-1	mA
		Total of all pins		-4	mA
Output current, Iow	loL	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P130, P140 to P145	30	mA
		Total of all pins 200 mA	$\begin{aligned} & \text { P00 to P04, P40 to P47, } \\ & \text { P120, P130, P140 to } \\ & \text { P145 } \end{aligned}$	60	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77	140	mA
		Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
		Per pin	P121 to P124	4	mA
		Total of all pins		10	mA
Operating ambient temperature	$\mathrm{T}_{\text {A }}$			-40 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

X1 Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD}=\mathrm{EV} \mathrm{dD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss}=\mathrm{AVss}=0 \mathrm{~V}$)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. It is 2.0 MHz (MIN.) when programming on the board via UART6.

Cautions 1. When using the X 1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Internal Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD}=\mathrm{EV} \mathrm{dD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss}=\mathrm{AVss}=0 \mathrm{~V}$)

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
8 MHz internal oscillator	Internal high-speed oscillation clock frequency (fRH)	RSTS $=1$	7.6	8.0	8.46	MHz
	RSTS $=0$	2.48	5.6	9.86	MHz	
240 kHz internal oscillator	Internal low-speed oscillation clock frequency (fRL)		216	240	264	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Remark RSTS: Bit 7 of the internal oscillation mode register (RCM)

XT1 Oscillator Characteristics ${ }^{\text {Note } 1}$

Notes 1. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with the XT1 oscillator.
2. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (1/4)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}=\mathrm{EV} \mathrm{Dd} \leq 5.5 \mathrm{~V}, \mathrm{AV}$ Ref $\leq \mathrm{V}_{\mathrm{dd}}, \mathrm{Vss}=\mathrm{EVss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	$\mathrm{IOH1}$	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-1.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-1.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-6.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$			-4.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-10.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$			-8.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-14.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-12.0	mA
	ІОН2	Per pin for P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$			-0.1	mA
		Per pin for P121 to P124				-0.1	mA
Output current, low ${ }^{\text {Note } 2}$	IoL1	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			4.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			2.0	mA
		Per pin for P60 to P63	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			8.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			2.0	mA
		Total of P00 to P04, P40 to P47, P120, P130, P140 to P145 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			10.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			8.0	mA
		Total of P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77 ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			16.0	mA
		Total of all the pins above ${ }^{\text {Note } 3}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			30.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			24.0	mA
	IoL2	Per pin for P20 to P27	$\mathrm{AV}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}$			0.4	mA
		Per pin for P121 to P124				0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from VDD to an output pin.
2. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.
3. Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times \mathrm{t}$ and time for which current is not output is $0.3 \times \mathrm{t}$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.

- Where the duty factor of Іон is $n \%$: Total output current of pins $=($ lон $\times 0.7) /(n \times 0.01)$
<Example> Where the duty factor is 50%, Іон $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(50 \times 0.01)=-14.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high (products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	$\mathrm{V}_{\mathrm{H} 1}$	P02, P12, P13, P15, P40 to P47, P50 to P57, P64 to P67, P121 to P124, P144, P145		0.7 VdD		VdD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00, P01, P03 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140 to P143, EXCLK, EXCLKS, $\overline{R E S E T}$		0.8VdD		VdD	V
	$\mathrm{V}_{\mathbf{1 H 3}}$	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\text {dD }}$	0.7AVREF		AV ${ }_{\text {ref }}$	V
	$\mathrm{V}_{\text {IH4 }}$	P60 to P63		0.7 V do		6.0	V
Input voltage, high (products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	$\mathrm{V}_{\mathrm{H} 1}$	P02 to P06, P12, P13, P15, P40 to P43, P50 to P53, P121 to P124		0.7 V DD		VdD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00, P01, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, EXCLK, EXCLKS, RESET		0.8 VdD		VdD	V
	Vін3	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\mathrm{DD}}$	$0.7 A V_{\text {ref }}$		AVref	V
	$\mathrm{V}_{\mathrm{IH} 4}$	P60 to P63		0.7 V dD		6.0	V
Input voltage, low (products whose flash memory is at least $48 \mathrm{~KB})^{\text {Note } 1}$	VIL1	P02, P12, P13, P15, P40 to P47, P50 to P57, P60 to P67, P121 to P124, P144, P145		0		0.3 V DD	V
	VIL2	P00, P01, P03 to P06, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140 to P143, EXCLK, EXCLKS, RESET		0		0.2 V dD	V
	VIL3	P20 to P27	$A V_{\text {REF }}=\mathrm{V}_{\text {dD }}$	0		$0.3 A V_{\text {ref }}$	V
Input voltage, low (products whose flash memory is less than $32 \mathrm{~KB})^{\text {Note } 2}$	VIL1	P02 to P06, P12, P13, P15, P40 to P43, P50 to P53, P60 to P63, P121 to P124		0		$0.3 \mathrm{~V}_{\mathrm{dD}}$	V
	VIL2	P00, P01, P10, P11, P14, P16, P17, P30 to P33, P70 to P77, P120, P140, P141, EXCLK, EXCLKS, RESET		0		0.2 V dD	V
	VIL3	P20 to P27	$\mathrm{AV}_{\text {REF }}=\mathrm{V}_{\text {dD }}$	0		$0.3 A V_{\text {reF }}$	V
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH} 1}=-1.5 \mathrm{~mA} \end{aligned}$	Vdd - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH} 1}=-1.0 \mathrm{~mA} \end{aligned}$	VDD - 0.5			V
	VoH2	P20 to P27	$\begin{aligned} & \mathrm{AV} \text { REF }=\mathrm{V} \mathrm{DD}, \\ & \text { ІoH2 }=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
		P121 to P124	І $\mathrm{OH} 2=-100 \mu \mathrm{~A}$	VDD - 0.5			V

Notes 1. Supported products: $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is at least 48 KB , and $78 \mathrm{KO} 0 / \mathrm{KF} 2$
2. Supported products: $78 \mathrm{KO} / \mathrm{KD} 2$ and $78 \mathrm{KO} / \mathrm{KE} 2$ whose flash memory is less than $32 \mathrm{~KB}, 78 \mathrm{KO} / \mathrm{KB} 2$, and 78K0/KC2

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (3/4)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}=\mathrm{EV} \mathrm{Dd} \leq 5.5 \mathrm{~V}, \mathrm{AV}$ Ref $\leq \mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ss}}=\mathrm{EV} \mathrm{Ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}=4.0 \mathrm{~mA} \end{aligned}$				0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \text { loL1 }=2.0 \mathrm{~mA} \end{aligned}$				0.7	V
	Vol2	P20 to P27	$\begin{aligned} & \mathrm{AV} \text { REF }=\mathrm{VDD}, \\ & \mathrm{l} \mathrm{l} 2=0.4 \mathrm{~mA} \end{aligned}$				0.4	V
		P121 to P124	$\mathrm{loL2}=0.4 \mathrm{~mA}$				0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}=8.0 \mathrm{~mA} \end{aligned}$				2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}=2.0 \mathrm{~mA} \end{aligned}$				0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & \mathrm{loL} 1=2.0 \mathrm{~mA} \end{aligned}$				0.6	V
Input leakage current, high	$\mathrm{ILIH1}$	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, $\overline{R E S E T}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				5	$\mu \mathrm{A}$
	ILIH2	P20 to P27	$\mathrm{V}_{\mathrm{I}}=\mathrm{AV}$ REF $=\mathrm{V}_{\mathrm{DD}}$				5	$\mu \mathrm{A}$
	ІІІнз	$\begin{aligned} & \text { P121 to } 124 \\ & (\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}= \\ & \mathrm{V}_{\mathrm{DD}} \end{aligned}$	I/O port mode			5	$\mu \mathrm{A}$
				OSC mode			20	$\mu \mathrm{A}$
Input leakage current, low	ILlı1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$				-5	$\mu \mathrm{A}$
	ILIL2	P20 to P27	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}, A \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {dD }}$				-5	$\mu \mathrm{A}$
	ILlı3	P121 to 124	$\mathrm{V}_{1}=$	I/O port mode			-5	$\mu \mathrm{A}$
		(X1, X2, XT1, XT2)	Vss	OSC mode			-20	$\mu \mathrm{A}$
Pull-up resistor	Ru	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {ss }}$			10	20	100	$\mathrm{k} \Omega$
FLMD0 supply voltage	VIL	In normal operation mode			0		0.2 VDD	V
	V_{IH}	In self-programming mode			0.8VDD		VDD	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (4/4)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{AV}$ Ref $\leq \mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{ss}}=\mathrm{EV} \mathrm{Ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IDD1	Operating mode	$\begin{aligned} & \mathrm{f}_{\mathrm{H}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \text { Note 2 } \end{aligned}$	Square wave input		3.2	8.3	mA
				Resonator connection		4.5	10.5	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.6	4.2	mA
				Resonator connection		2.3	5.9	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{KH}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		1.5	4.1	mA
				Resonator connection		2.2	4.8	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.9	2.4	mA
				Resonator connection		1.3	3.0	mA
			$\mathrm{f}_{\mathrm{RH}}=8 \mathrm{MHz}, \mathrm{V} \mathrm{DD}=5.0 \mathrm{~V}^{\text {Note } 4}$			1.4	3.8	mA
			$\begin{aligned} & \mathrm{f} \text { SuB }=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{dD}}=5.0 \mathrm{~V} \text { Note } 5 \end{aligned}$	Square wave input		6	138	$\mu \mathrm{A}$
				Resonator connection		15	145	$\mu \mathrm{A}$
	IdD2	HALT mode	$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=20 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 2} \end{aligned}$	Square wave input		0.8	3.9	mA
				Resonator connection		2.0	6.6	mA
			$\begin{aligned} & \mathrm{fxH}_{\mathrm{XH}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.4	2.0	mA
				Resonator connection		1.0	3.6	mA
			$\begin{aligned} & \mathrm{f}_{\mathrm{XH}}=5 \mathrm{MHz}, \\ & \mathrm{VDD}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3} \end{aligned}$	Square wave input		0.2	1.0	mA
				Resonator connection		0.5	1.7	mA
			$\mathrm{frH}=8 \mathrm{MHz}$, V $\mathrm{DD}=5.0 \mathrm{~V}^{\text {Note } 4}$			0.4	1.8	mA
			$\begin{aligned} & \mathrm{f} \text { SuB }=32.768 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 5} \end{aligned}$	Square wave input		3.0	133	$\mu \mathrm{A}$
				Resonator connection		12	138	$\mu \mathrm{A}$
	IDD3 ${ }^{\text {Note } 6}$	STOP mode				1	100	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40$ to $+70{ }^{\circ} \mathrm{C}$			1	10	$\mu \mathrm{A}$
A/D converter operating current	$\mathrm{IadC}^{\text {Note } 7}$	$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{ADCS}=1$				0.86	2.9	mA
Watchdog timer operating current	IWdt ${ }^{\text {Note }} 8$	During 240 kHz internal low-speed oscillation clock operation				5	15	$\mu \mathrm{A}$
LVI operating current	ILvi ${ }^{\text {Note } 9}$					9	27	$\mu \mathrm{A}$

Remarks 1. $\mathrm{fxH}_{\mathrm{H}}$: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fRH: Internal high-speed oscillation clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or external subsystem clock frequency)
(Notes on next page)

Notes 1. Total current flowing into the internal power supply ($\mathrm{V}_{\mathrm{DD}}, \mathrm{EVDD}$), including the peripheral operation current and the input leakage current flowing when the level of the input pin is fixed to Vod or Vss. However, the current flowing into the pull-up resistors and the output current of the port are not included.
2. Not including the operating current of the 8 MHz internal oscillator, 240 kHz internal oscillator, and XT1 oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
3. When AMPH (bit 0 of clock operation mode select register (OSCCTL)) $=0$.
4. Not including the operating current of the X1 oscillator, XT1 oscillator, and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
5. Not including the operating current of the X 1 oscillation, 8 MHz internal oscillator and 240 kHz internal oscillator, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
6. Not including the operating current of the 240 kHz internal oscillator and XT1 oscillation, and the current flowing into the A/D converter, watchdog timer and LVI circuit.
7. Current flowing only to the A / D converter (AV REF). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
8. Current flowing only to the watchdog timer (including the operating current of the 240 kHz internal oscillator). The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of IdD1, IdD2 or IdD3 and Iwdt when the watchdog timer operates.
9. Current flowing only to the LVI circuit. The current value of the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers is the sum of ldD1, IdD2 or IDD3 and ILvi when the LVI circuit operates.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

AC Characteristics

(1) Basic operation (1/2)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fxp) operation	Conventionalspecification Products (μ PD78F05xx (A2))	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{s}$
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0.2		32	$\mu \mathrm{S}$
			Expanded- specification Products (μ PD78F05xxA (A2))	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{dD} \leq 5.5 \mathrm{~V}$	0.1		32	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation ${ }^{\text {Note } 1}$			114	122	125	$\mu \mathrm{s}$
Peripheral hardware clock frequency	fprs	$\begin{aligned} & \text { fPRS }=\mathrm{fxH}^{\prime} \\ & (\mathrm{XSEL}= \end{aligned}$ 1)	Conventionalspecification Products (μ PD78F05xx (A2))	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			20	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			10	MHz
			Expanded- specification Products (μ PD78F05xxA (A2))	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			20	MHz
				$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2}<4.0 \mathrm{~V}$ Note 2			20	MHz
		$\begin{aligned} & f_{\text {PRS }}=f_{R H} \\ & (X S E L=0) \end{aligned}$		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	7.6		8.4	MHz
External main system clock frequency	fexclk	Conventional-specification Products$(\mu \mathrm{PD} 78 \mathrm{~F} 05 \times x(\mathrm{~A} 2))$		$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 3}$		20.0	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$1.0^{\text {Note } 3}$		10.0	MHz
		Expanded-specification Products (μ PD78F05xxA(A2))		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{dD} \leq 5.5 \mathrm{~V}$	$1.0^{\text {Note } 3}$		20.0	MHz
External main system clock input high-level width, low-level width	texclekh, texclkL	Conventional-specification Products$(\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}(\mathrm{~A} 2))$		$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	24			ns
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	48			ns
		Expanded-specification Products (μ PD78F05xxA(A2))		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	24			ns

Notes 1. The $78 \mathrm{~K} 0 / \mathrm{KB} 2$ is not provided with a subsystem clock.
2. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $\mathrm{fxH} / 2(10 \mathrm{MHz})$ or less. The multiplier/divider, however, can operate on $\mathrm{fxH}(20 \mathrm{MHz})$.
3. 2.0 MHz (MIN.) when using UART6 during on-board programming.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.
(1) Basic operation (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
External subsystem clock frequency ${ }^{\text {Note } 1}$	fexcles		32	32.768	35	kHz
External subsystem clock input high-level width, low-level width ${ }^{\text {Note } 1}$	texclesh, texclks		12			$\mu \mathrm{S}$
TI000, TI010, TI001, TI011 input high-level width, low-level width	tтіно, tтılo	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 2 / f_{\mathrm{sam}}+ \\ & 0.1^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{S}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	$\begin{aligned} & 2 / f_{\text {sam }}+ \\ & 0.2^{\text {Note } 2} \end{aligned}$			$\mu \mathrm{s}$
TI50, TI51 input frequency	fTI5				10	MHz
TI50, TI51 input high-level width, low-level width	tтін5, tтIL5		50			ns
Interrupt input high-level width, low-level width	tinth, tintl		1			$\mu \mathrm{s}$
Key interrupt input low-level width	tкR		250			ns
$\overline{\text { RESET }}$ low-level width	trsL		10			$\mu \mathrm{s}$

Notes 1. The $78 \mathrm{KO} / \mathrm{KB} 2$ is not provided with a subsystem clock.
 PRM001 or PRM010, PRM011) of prescaler mode registers 00 and 01 (PRM00, PRM01). Note that when selecting the TIOOO or TI001 valid edge as the count clock, fsam $=$ fprs.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Tcy vs. Vdd (Main System Clock Operation)
<1> Conventional-specification Products (μ PD78F05xx(A2))

<2> Expanded-specification Products (μ PD78F05xxA(A2))

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter. AC Timing Test Points

External Main System Clock Timing, External Subsystem Clock Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

 TI Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(2) Serial interface

(a) UART6 (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(b) UARTO (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(c) IICO

Parameter	Symbol	Conditions	Standard Mode		High-Speed Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	fscl		0	100	0	400	kHz
Setup time of restart condition	tsu: STA		4.7	-	0.6	-	$\mu \mathrm{S}$
Hold time ${ }^{\text {Note } 1}$	thi: STA		4.0	-	0.6	-	$\mu \mathrm{S}$
Hold time when SCL0 = "L"	tLow	Internal clock operation	4.7	-	1.3	-	$\mu \mathrm{s}$
		EXSCLO clock (6.4 MHz) operation	4.7	-	1.25	-	$\mu \mathrm{S}$
Hold time when SCLO = "H"	thigh		4.0	-	0.6	-	$\mu \mathrm{S}$
Data setup time (reception)	tsu: DAT		250	-	100	-	ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd: DAT	$\begin{aligned} & f w=f x h / 2^{N} \text { or } f w=f \text { fxscLo } \\ & \text { selected }^{\text {Note } 3} \end{aligned}$	0	3.45	0	$\frac{0.9}{}{ }^{\text {Note } 4}$ (100 ${ }^{\text {Note 5 }}$	$\mu \mathrm{S}$
		$\mathrm{fw}_{\mathrm{w}}=\mathrm{ffRH} / 2^{\mathrm{N}}$ selected ${ }^{\text {Note } 3}$	0	3.45	0	1.05	$\mu \mathrm{S}$
Setup time of stop condition	tsu: sto		4.0	-	0.6	-	$\mu \mathrm{S}$
Bus free time	tbuF		4.7	-	1.3	-	$\mu \mathrm{S}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.
3. fw indicates the IICO transfer clock selected by the IICCL and IICXO registers.
4. When $\mathrm{fw} \geq 4.4 \mathrm{MHz}$ is selected
5. When $\mathrm{fw}<4.4 \mathrm{MHz}$ is selected

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(d) CSI1n (master mode, $\overline{\text { SCK1n... internal clock output) }}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkCy1	$4.0 \mathrm{~V} \leq \mathrm{V}$ DD $\leq 5.5 \mathrm{~V}$	200			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$	400			ns
$\overline{\text { SCK1n }}$ high-/low-level width	$\begin{aligned} & \text { tкH1, } \\ & \text { tkL1 } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V}$ do $\leq 5.5 \mathrm{~V}$	tксү1/2 - $20^{\text {Note } 1}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	tксү1/2 $30^{\text {Note } 1}$			ns
SI1n setup time (to $\overline{\mathrm{SCK1n}} \uparrow$)	tsik1	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	70			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$	100			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tksı11		30			ns
Delay time from $\overline{\mathrm{SCK} 1 n} \downarrow$ to SO1n output	tksO1	$\mathrm{C}=50 \mathrm{pF}^{\text {Note } 2}$			40	ns

Notes 1. This value is when high-speed system clock (f xH) is used.
2. C is the load capacitance of the $\overline{\mathrm{SCK} 1 \mathrm{n}}$ and SO1n output lines.
(e) CSI1n (slave mode, $\overline{\operatorname{SCK1n}}$... external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1n }}$ cycle time	tkcy2		400			ns
$\overline{\text { SCK1n }}$ high-/low-level width	tkH2, tkL2		tксү2/2			ns
SI1n setup time (to $\overline{\text { SCK1n }} \uparrow$)	tsik2		80			ns
SI1n hold time (from $\overline{\text { SCK1n }} \uparrow$)	tks 12		50			ns
Delay time from $\overline{\text { SCK1n }} \downarrow$ to SO1n output	tkso2	$\mathrm{C}=50 \mathrm{pF}^{\text {Note }}$			120	ns

Note C is the load capacitance of the SO1n output line.

Remark $\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(f) CSIAO (master mode, $\overline{\text { SCKAO...internal clock output) }}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKAO }}$ cycle time	tксүз	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		600			$n \mathrm{n}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$		1200			ns
$\overline{\text { SCKAO }}$ high-/low-level width	$\text { tкнз }^{\prime}$tkL3	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tксүз/2 - 50			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		tксүз/2 - 100			ns
SIAO setup time (to $\overline{\text { SCKAO }} \uparrow$)	tsıкз			100			ns
SIAO hold time (from $\overline{\text { SCKAO }} \uparrow$)	tksı3			300			ns
Delay time from $\overline{\mathrm{SCKAO}} \downarrow$ to SOAO output	tkso3	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			200	ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			300	ns
Time from $\overline{\text { SCKA0 }} \uparrow$ to STB0 \uparrow	tsbd			七ксүз/2 - 100			ns
Strobe signal high-level width	tsbw	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		$\begin{gathered} \text { tксүз }- \\ 30 \end{gathered}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		$\begin{gathered} \text { tксуз }_{-} \\ 60 \end{gathered}$			ns
Busy signal setup time (to busy signal detection timing)	tBys			100			ns
Busy signal hold time (from busy signal detection timing)	tBYH			100			ns
Time from busy inactive to $\overline{\text { SCKAO } \downarrow}$	tsps	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$				$\begin{gathered} 2 \text { tксу3 }_{+} \\ 100 \end{gathered}$	ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$				$\begin{gathered} 2 \text { 2tксүз - } \\ 150 \end{gathered}$	ns

Note C is the load capacitance of the $\overline{\text { SCKAO }}$ and SOAO output lines.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
(g) CSIA0 (slave mode, $\overline{\text { SCKAO }}$...external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKAO }}$ cycle time	tkcy4	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		600			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$		1200			ns
$\overline{\text { SCKA0 }}$ high-/low-level width	$\mathrm{t}_{\mathrm{KH} 4}$, tкL4	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		300			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}$ DD $<4.0 \mathrm{~V}$		600			ns
SIAO setup time (to $\overline{\mathrm{SCKAO}} \uparrow$)	tsik4			100			ns
SIAO hold time (from $\overline{\text { SCKAO }} \uparrow$)	tks 14			$\begin{gathered} 2 / \mathrm{fw}+ \\ 100^{\text {Note } 1} \end{gathered}$			ns
Delay time from $\overline{\text { SCKAO }} \downarrow$ to SOAO output	tkso4	$\mathrm{C}=100 \mathrm{pF}^{\text {Note } 2}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			$\begin{gathered} 2 / f w+ \\ 100^{\text {Note } 1} \end{gathered}$	ns
			$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.0 \mathrm{~V}$			$\begin{gathered} 2 / f w+ \\ 200^{\text {Note } 1} \end{gathered}$	ns
$\overline{\text { SCKA0 }}$ rise/fall time	$\mathrm{t}_{4}, \mathrm{t}_{\text {F } 4}$					1000	ns

Notes 1. fw is the CSIAO base clock selected by the CSISO register.
2. C is the load capacitance of the SOAO output line.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Serial Transfer Timing (1/2)

IICO:

CSI1n:

Remark $m=1,2$
$\mathrm{n}=0,1$

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Serial Transfer Timing (2/2)

CSIAO:

CSIAO (busy processing):

Note
$\overline{\text { SCKAO }}$ does not become low level here, but the timing is illustrated so that the timing specifications can be shown.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

A/D Converter Characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					10	bit
Overall error ${ }^{\text {Notes } 1,2}$	Ainl	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
Conversion time	tconv	Conventionalspecification Products (μ PD78F05xx(A2))	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ReF }} \leq 5.5 \mathrm{~V}$	6.1		36.7	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$	12.2		36.7	$\mu \mathrm{S}$
		Expandedspecification Products (μ PD78F05xxA (A2))	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$	6.1		66.6	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<4.0 \mathrm{~V}$	12.2		66.6	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	Ezs	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
Full-scale error ${ }^{\text {Notes } 1,2}$	Efs	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 0.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 0.6	\%FSR
Integral non-linearity error ${ }^{\text {Note } 1}$	ILE	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq 5.5 \mathrm{~V}$				± 2.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 4.5	LSB
Differential non-linearity error ${ }^{\text {Note } 1}$	Dle	$4.0 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq 5.5 \mathrm{~V}$				± 1.5	LSB
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<4.0 \mathrm{~V}$				± 2.0	LSB
Analog input voltage	Vain			AVss		$\mathrm{AV}_{\text {REF }}$	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
1.59 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+125^{\circ} \mathrm{C}$, V ss $=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tPTH	VDD: $0 \mathrm{~V} \rightarrow$ change inclination of VPOC	0.5			$\mathrm{~V} / \mathrm{ms}$
Minimum pulse width		tPW		200		

1.59 V POC Circuit Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Supply Voltage Rise Time ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+125^{\circ} \mathrm{C}$, $\mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}$)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. |
| :--- | :--- | :--- | :--- | :---: | :---: | Unit | M |
| :--- |

Supply Voltage Rise Time Timing

- When RESET pin input is not used

- When RESET pin input is used

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.
2.7 V POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+125^{\circ} \mathrm{C}$, Vss $=\mathrm{EV} s \mathrm{~s}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply voltage	VDDPoc	POCMODE (option bye) $=1$	2.50	2.70	2.90	V

Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting.

Option Byte Setting	POC Mode	Operation
POCMODE $=0$	1.59 V mode operation	A reset state is retained until VPoc $=1.59 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when VPoc is exceeded. After that, POC detection is performed at VPoc, similarly as when the power was turned on. The power supply voltage must be raised at a time of tpup1 or tpup2 when POCMODE is 0.
POCMODE $=1$	$2.7 \mathrm{~V} / 1.59 \mathrm{~V}$ mode operation	A reset state is retained until VDDPoc $=2.7 \mathrm{~V}$ (TYP.) is reached after the power is turned on, and the reset is released when VDDPoc is exceeded. After that, POC detection is performed at VPoc $=1.59 \mathrm{~V}$ (TYP.) and not at VDDPoc. The use of the $2.7 \mathrm{~V} / 1.59 \mathrm{~V} \mathrm{POC} \mathrm{mode} \mathrm{is} \mathrm{recommended}$ when the rise of the voltage, after the power is turned on and until the voltage reaches 1.8 V, is more relaxed than tpth.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	V LVIo		4.14	4.24	4.34	V
		V LVII		3.99	4.09	4.19	V
		VLvi2		3.83	3.93	4.03	V
		VLVI3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		VLVI5		3.37	3.47	3.57	V
		VLVIG		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		V LVI8		2.91	3.01	3.11	V
		V LVI9		2.75	2.85	2.95	V
	External input pin ${ }^{\text {Note } 1}$	EXLVI	$\mathrm{EXLVI}<\mathrm{VDD}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.11	1.21	1.31	V
Minimum pulse width		tıw		200			$\mu \mathrm{S}$
Operation stabilization wait time ${ }^{\text {Note } 2}$		tıwalt		10			$\mu \mathrm{S}$

Notes 1. The EXLVI/P120/INTPO pin is used.
2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $\operatorname{VLVI(n-1)}>V_{L V I n}: n=1$ to 9

LVI Circuit Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 1 2 5 ^ { \circ }} \mathbf{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		$1.44^{\text {Note }}$		5.5	V

Note The value depends on the POC detection voltage. When the voltage drops, the data is retained until a POC reset is effected, but data is not retained when a POC reset is effected.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Flash Memory Programming Characteristics

- Basic characteristics

Parameter		Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Vod supply current		IdD	$\mathrm{fxp}=10 \mathrm{MHz}$ (TYP.), 20 MHz (MAX.)					4.5	16.0	mA
Erase time Notes 1, 2	All block	Teraca						20	200	ms
	Block unit	Terasa						20	200	ms
Write time (in 8-bit units) ${ }^{\text {Note } 1}$		Twrwa						10	100	$\mu \mathrm{s}$
Number of rewrites per chip		Cerwr	1 erase 1 write after erase $=$ 1 rewrite Note 3	Expandedspecification Products (μ PD78F05xxA (A2))	- When a flash memory programmer is used, and the libraries ${ }^{\text {Note } 4}$ provided by Renesas Electronics are used - For program update	Retention: 15 years	1000			Times
		- When the EEPROM emulation libraries ${ }^{\text {Note } 5}$ provided by Renesas Electronics are used - The rewritable ROM size: 4 KB - For data update			Retention: 5 years	10000			Times	
		Expanded- specification Products (μ PD78F05xxA (A2)) Conventional- specification Products (μ PD78F05xx (A2))		Conditions other than the above ${ }^{\text {Note } 6}$	Retention: 10 years	100			Times	

Notes 1. Characteristic of the flash memory. For the characteristic when a dedicated flash programmer, PG-FP4 or PGFP5, is used and the rewrite time during self programming, see Tables 27-12 to 27-14.
2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
3. When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
4. The sample library specified by the $\mathbf{7 8 K 0} / \mathrm{Kx} 2$ Flash Memory Self Programming User's Manual (Document No.: U17516E) is excluded.
5. The sample program specified by the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ EEPROM Emulation Application Note (Document No.: U17517E) is excluded.
6. These include when the sample library specified by the $78 \mathrm{KO} / \mathrm{Kx} 2$ Flash Memory Self Programming User's Manual (Document No.: U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) are used.
Remarks 1. fxp: Main system clock oscillation frequency
2. For serial write operation characteristics, refer to $\mathbf{7 8 K 0 / K x 2}$ Flash Memory Programming (Programmer) Application Note (Document No.: U17739E).

CHAPTER 34 PACKAGE DRAWINGS

34.1 78K0/KB2

- μ PD78F0500MC-5A4-A, 78F0501MC-5A4-A, 78F0502MC-5A4-A, 78F0503MC-5A4-A, 78F0503DMC-5A4-A

30-PIN PLASTIC SSOP (7.62 mm (300))

NOTE
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	9.85 ± 0.15
B	0.45 MAX.
C	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1 ± 0.05
F	1.3 ± 0.1
G	1.2
H	8.1 ± 0.2
I	6.1 ± 0.2
J	1.0 ± 0.2
K	0.17 ± 0.03
L	0.5
M	0.13
N	0.10
P	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
T	0.25
U	0.6 ± 0.15
	S30MC-65-5A4-2

- μ PD78F0500MC(A)-CAB-AX, 78F0501MC(A)-CAB-AX, 78F0502MC(A)-CAB-AX, 78F0503MC(A)-CAB-AX
- μ PD78F0500MC(A2)-CAB-AX, 78F0501MC(A2)-CAB-AX, 78F0502MC(A2)-CAB-AX, 78F0503MC(A2)-CAB-AX
- μ PD78F0500AMC-CAB-AX, 78F0501AMC-CAB-AX, 78F0502AMC-CAB-AX, 78F0503AMC-CAB-AX, 78F0503DAMC-CAB-AX
- μ PD78F0500AMCA-CAB-G, 78F0501AMCA-CAB-G, 78F0502AMCA-CAB-G, 78F0503AMCA-CAB-G
- μ PD78F0500AMCA2-CAB-G, 78F0501AMCA2-CAB-G, 78F0502AMCA2-CAB-G, 78F0503AMCA2-CAB-G

30-PIN PLASTIC SSOP (7.62mm (300))

detail of lead end

note

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

- μ PD78F0500FC-AA3-A, 78F0501FC-AA3-A, 78F0502FC-AA3-A, 78F0503FC-AA3-A, 78F0503DFC-AA3-A
- μ PD78F0500AFC-AA3-A, 78F0501AFC-AA3-A, 78F0502AFC-AA3-A, 78F0503AFC-AA3-A, 78F0503DAFC-AA3-A

36-PIN PLASTIC FLGA (4x4)

34.2 78K0/KC2

- μ PD78F0511AMC-GAA-AX, 78F0512AMC-GAA-AX, 78F0513AMC-GAA-AX, 78F0513DAMC-GAA-AX
- μ PD78F0511AMCA-GAA-G, 78F0512AMCA-GAA-G, 78F0513AMCA-GAA-G
- μ PD78F0511AMCA2-GAA-G, 78F0512AMCA2-GAA-G, 78F0513AMCA2-GAA-G

38-PIN PLASTIC SSOP (7.62mm (300))

detail of lead end

(UNIT:mm)

(UNIT:mm)	
ITEM	DIMENSIONS
A	12.30 ± 0.10
B	0.30
C	0.65 (T.P.)
D	$0.30{ }_{-0.05}^{+0.10}$
E	0.125 ± 0.075
F	2.00 MAX.
G	1.70 ± 0.10
H	8.10 ± 0.20
I	6.10 ± 0.10
J	1.00 ± 0.20
K	$0.15_{-0.05}^{+0.10}$
L	0.50
M	0.10
N	0.10
P	$3^{\circ}+5^{\circ}{ }^{\circ}$
T	0.25(T.P.)
U	0.60 ± 0.15
V	0.25 MAX.
W	0.15 MAX.

- μ PD78F0511GB-UES-A, 78F0512GB-UES-A, 78F0513GB-UES-A, 78F0513DGB-UES-A

44-PIN PLASTIC LQFP(10x10)

NOTE
Each lead centerline is located within 0.20 mm of its true position at maximum material condition.
detail of lead end

(UNIT:mm)	
ITEM	DIMENSIONS
D	10.00 ± 0.20
E	10.00 ± 0.20
HD	12.00 ± 0.20
HE	12.00 ± 0.20
A	1.60 MAX .
A1	0.10 ± 0.05
A2	1.40 ± 0.05
A3	0.25
b	$0.37_{-0.07}^{+0.08}$
c	$0.145{ }_{-0.045}^{+0.055}$
L	0.50
Lp	0.60 ± 0.15
L1	1.00 ± 0.20
θ	$3^{\circ}{ }_{-3}{ }^{\circ}$
e	0.80
x	0.20
y	0.10
ZD	1.00
ZE	1.00

- μ PD78F0511GB(A)-GAF-AX, 78F0512GB(A)-GAF-AX, 78F0513GB(A)-GAF-AX
- μ PD78F0511GB(A2)-GAF-AX, 78F0512GB(A2)-GAF-AX, 78F0513GB(A2)-GAF-AX
- μ PD78F0511AGB-GAF-AX, 78F0512AGB-GAF-AX, 78F0513AGB-GAF-AX, 78F0513DAGB-GAF-AX
- μ PD78F0511AGBA-GAF-G, 78F0512AGBA-GAF-G, 78F0513AGBA-GAF-G
- μ PD78F0511AGBA2-GAF-G, 78F0512AGBA2-GAF-G, 78F0513AGBA2-GAF-G

44-PIN PLASTIC LQFP (10x10)

- μ PD78F0511GA-8EU-A, 78F0512GA-8EU-A, 78F0513GA-8EU-A, 78F0514GA-8EU-A, 78F0515GA-8EU-A, 78F0515DGA-8EU-A

48-PIN PLASTIC LQFP (FINE PITCH)(7x7)

- μ PD78F0511GA(A)-GAM-AX, 78F0512GA(A)-GAM-AX, 78F0513GA(A)-GAM-AX, 78F0514GA(A)-GAM-AX, 78F0515GA(A)-GAM-AX
- μ PD78F0511GA(A2)-GAM-AX, 78F0512GA(A2)-GAM-AX, 78F0513GA(A2)-GAM-AX, 78F0514GA(A2)-GAM-AX, 78F0515GA(A2)-GAM-AX
- μ PD78F0511AGA-GAM-AX, 78F0512AGA-GAM-AX, 78F0513AGA-GAM-AX, 78F0514AGA-GAM-AX, 78F0515AGA-GAM-AX, 78F0515DAGA-GAM-AX
- μ PD78F0511AGAA-GAM-G, 78F0512AGAA-GAM-G, 78F0513AGAA-GAM-G, 78F0514AGAA-GAM-G, 78F0515AGAA-GAM-G
- μ PD78F0511AGAA2-GAM-G, 78F0512AGAA2-GAM-G, 78F0513AGAA2-GAM-G, 78F0514AGAA2-GAM-G, 78F0515AGAA2-GAM-G

48-PIN PLASTIC LQFP (FINE PITCH) (7x7)

34.3 78K0/KD2

- μ PD78F0521GB-UET-A, 78F0522GB-UET-A, 78F0523GB-UET-A, 78F0524GB-UET-A, 78F0525GB-UET-A, 78F0526GB-UET-A, 78F0527GB-UET-A, 78F0527DGB-UET-A

52-PIN PLASTIC LQFP(10x10)

- μ PD78F0521GB(A)-GAG-AX, 78F0522GB(A)-GAG-AX, 78F0523GB(A)-GAG-AX, 78F0524GB(A)-GAG-AX, 78F0525GB(A)-GAG-AX, 78F0526GB(A)-GAG-AX, 78F0527GB(A)-GAG-AX
- μ PD78F0521GB(A2)-GAG-AX, 78F0522GB(A2)-GAG-AX, 78F0523GB(A2)-GAG-AX, 78F0524GB(A2)-GAG-AX, 78F0525GB(A2)-GAG-AX, 78F0526GB(A2)-GAG-AX, 78F0527GB(A2)-GAG-AX
- μ PD78F0521AGB-GAG-AX, 78F0522AGB-GAG-AX, 78F0523AGB-GAG-AX, 78F0524AGB-GAG-AX, 78F0525AGB-GAG-AX, 78F0526AGB-GAG-AX, 78F0527AGB-GAG-AX, 78F0527DAGB-GAG-AX
- μ PD78F0521AGBA-GAG-G, 78F0522AGBA-GAG-G, 78F0523AGBA-GAG-G, 78F0524AGBA-GAG-G, 78F0525AGBA-GAG-G, 78F0526AGBA-GAG-G, 78F0527AGBA-GAG-G
- μ PD78F0521AGBA2-GAG-G, 78F0522AGBA2-GAG-G, 78F0523AGBA2-GAG-G, 78F0524AGBA2-GAG-G, 78F0525AGBA2-GAG-G, 78F0526AGBA2-GAG-G, 78F0527AGBA2-GAG-G

52-PIN PLASTIC LQFP (10x10)

34.4 78K0/KE2

- μ PD78F0531GB-UEU-A, 78F0532GB-UEU-A, 78F0533GB-UEU-A, 78F0534GB-UEU-A, 78F0535GB-UEU-A, 78F0536GB-UEU-A, 78F0537GB-UEU-A, 78F0537DGB-UEU-A

64-PIN PLASTIC LQFP(FINE PITCH)(10x10)

- μ PD78F0531GB(A)-GAH-AX, 78F0532GB(A)-GAH-AX, 78F0533GB(A)-GAH-AX, 78F0534GB(A)-GAH-AX, 78F0535GB(A)-GAH-AX, 78F0536GB(A)-GAH-AX, 78F0537GB(A)-GAH-AX
- μ PD78F0531GB(A2)-GAH-AX, 78F0532GB(A2)-GAH-AX, 78F0533GB(A2)-GAH-AX, 78F0534GB(A2)-GAH-AX, 78F0535GB(A2)-GAH-AX, 78F0536GB(A2)-GAH-AX, 78F0537GB(A2)-GAH-AX
- μ PD78F0531AGB-GAH-AX, 78F0532AGB-GAH-AX, 78F0533AGB-GAH-AX, 78F0534AGB-GAH-AX, 78F0535AGB-GAH-AX, 78F0536AGB-GAH-AX, 78F0537AGB-GAH-AX, 78F0537DAGB-GAH-AX
- μ PD78F0531AGBA-GAH-G, 78F0532AGBA-GAH-G, 78F0533AGBA-GAH-G, 78F0534AGBA-GAH-G, 78F0535AGBA-GAH-G, 78F0536AGBA-GAH-G, 78F0537AGBA-GAH-G
- μ PD78F0531AGBA2-GAH-G, 78F0532AGBA2-GAH-G, 78F0533AGBA2-GAH-G, 78F0534AGBA2-GAH-G, 78F0535AGBA2-GAH-G, 78F0536AGBA2-GAH-G, 78F0537AGBA2-GAH-G

64-PIN PLASTIC LQFP(FINE PITCH)(10x10)

- μ PD78F0531GC-UBS-A, 78F0532GC-UBS-A, 78F0533GC-UBS-A, 78F0534GC-UBS-A, 78F0535GC-UBS-A, 78F0536GC-UBS-A, 78F0537GC-UBS-A, 78F0537DGC-UBS-A

64-PIN PLASTIC LQFP(14x14)

- μ PD78F0531GC(A)-GAL-AX, 78F0532GC(A)-GAL-AX, 78F0533GC(A)-GAL-AX, 78F0534GC(A)-GAL-AX, 78F0535GC(A)-GAL-AX, 78F0536GC(A)-GAL-AX, 78F0537GC(A)-GAL-AX
- μ PD78F0531GC(A2)-GAL-AX, 78F0532GC(A2)-GAL-AX, 78F0533GC(A2)-GAL-AX, 78F0534GC(A2)-GAL-AX, 78F0535GC(A2)-GAL-AX, 78F0536GC(A2)-GAL-AX, 78F0537GC(A2)-GAL-AX
- μ PD78F0531AGC-GAL-AX, 78F0532AGC-GAL-AX, 78F0533AGC-GAL-AX, 78F0534AGC-GAL-AX, 78F0535AGC-GAL-AX, 78F0536AGC-GAL-AX, 78F0537AGC-GAL-AX, 78F0537DAGC-GAL-AX
- μ PD78F0531AGCA-GAL-G, 78F0532AGCA-GAL-G, 78F0533AGCA-GAL-G, 78F0534AGCA-GAL-G, 78F0535AGCA-GAL-G, 78F0536AGCA-GAL-G, 78F0537AGCA-GAL-G
- μ PD78F0531AGCA2-GAL-G, 78F0532AGCA2-GAL-G, 78F0533AGCA2-GAL-G, 78F0534AGCA2-GAL-G, 78F0535AGCA2-GAL-G, 78F0536AGCA2-GAL-G, 78F0537AGCA2-GAL-G

64-PIN PLASTIC LQFP (14x14)

- μ PD78F0531GK-UET-A, 78F0532GK-UET-A, 78F0533GK-UET-A, 78F0534GK-UET-A, 78F0535GK-UET-A, 78F0536GK-UET-A, 78F0537GK-UET-A, 78F0537DGK-UET-A

64-PIN PLASTIC LQFP(12x12)

- μ PD78F0531GK(A)-GAJ-AX, 78F0532GK(A)-GAJ-AX, 78F0533GK(A)-GAJ-AX, 78F0534GK(A)-GAJ-AX, 78F0535GK(A)-GAJ-AX, 78F0536GK(A)-GAJ-AX, 78F0537GK(A)-GAJ-AX
- μ PD78F0531GK(A2)-GAJ-AX, 78F0532GK(A2)-GAJ-AX, 78F0533GK(A2)-GAJ-AX, 78F0534GK(A2)-GAJ-AX, 78F0535GK(A2)-GAJ-AX, 78F0536GK(A2)-GAJ-AX, 78F0537GK(A2)-GAJ-AX
- μ PD78F0531AGK-GAJ-AX, 78F0532AGK-GAJ-AX, 78F0533AGK-GAJ-AX, 78F0534AGK-GAJ-AX, 78F0535AGK-GAJ-AX, 78F0536AGK-GAJ-AX, 78F0537AGK-GAJ-AX, 78F0537DAGK-GAJ-AX
- μ PD78F0531AGKA-GAJ-G, 78F0532AGKA-GAJ-G, 78F0533AGKA-GAJ-G, 78F0534AGKA-GAJ-G, 78F0535AGKA-GAJ-G, 78F0536AGKA-GAJ-G, 78F0537AGKA-GAJ-G
- μ PD78F0531AGKA2-GAJ-G, 78F0532AGKA2-GAJ-G, 78F0533AGKA2-GAJ-G, 78F0534AGKA2-GAJ-G, 78F0535AGKA2-GAJ-G, 78F0536AGKA2-GAJ-G, 78F0537AGKA2-GAJ-G

64-PIN PLASTIC LQFP (12x12)

- μ PD78F0531GA-9EV-A, 78F0532GA-9EV-A, 78F0533GA-9EV-A, 78F0534GA-9EV-A, 78F0535GA-9EV-A, 78F0536GA-9EV-A, 78F0537GA-9EV-A, 78F0537DGA-9EV-A

64-PIN PLASTIC TQFP (FINE PITCH) (7x7)
NOTE
Each lead centerline is located within 0.07 mm of its true position at maximum material condition.

ITEM	DIMENSIONS
D	7.00 ± 0.20
E	7.00 ± 0.20
HD	9.00 ± 0.20
HE	9.00 ± 0.20
A	1.20 MAX.
A1	0.10 ± 0.05
A2	1.00 ± 0.05
A3	0.25
b	0.18 ± 0.05
c	$0.145_{-0.045}^{+0.055}$
L	0.50
Lp	0.60 ± 0.15
L1	1.00 ± 0.20
θ	$3^{\circ}{ }_{-3}{ }^{\circ}{ }^{\circ}$
e	0.40
x	0.07
y	0.08
ZD	0.50
ZE	0.50

- μ PD78F0531AGA-HAB-AX, 78F0532AGA-HAB-AX, 78F0533AGA-HAB-AX, 78F0534AGA-HAB-AX, 78F0535AGA-HAB-AX, 78F0536AGA-HAB-AX, 78F0537AGA-HAB-AX, 78F0537DAGA-HAB-AX

64-PIN PLASTIC TQFP (FINE PITCH) (7x7)

 its true position at maximum material condition.

- μ PD78F0531FC-AA1-A, 78F0532FC-AA1-A, 78F0533FC-AA1-A, 78F0534FC-AA1-A, 78F0535FC-AA1-A, 78F0536FC-AA1-A, 78F0537FC-AA1-A, 78F0537DFC-AA1-A
- μ PD78F0531AFC-AA1-A, 78F0532AFC-AA1-A, 78F0533AFC-AA1-A, 78F0534AFC-AA1-A, 78F0535AFC-AA1-A, 78F0536AFC-AA1-A, 78F0537AFC-AA1-A, 78F0537DAFC-AA1-A

64-PIN PLASTIC FLGA(5x5)

DETAIL OF (C) PART DETAIL OF (D) PART
DETAIL OF (E) PART

- μ PD78F0531AF1-AA2-A, 78F0532AF1-AA2-A, 78F0533AF1-AA2-A, 78F0534AF1-AA2-A, 78F0535AF1-AA2-A, 78F0536AF1-AA2-A, 78F0537AF1-AA2-A, 78F0537DAF1-AA2-A

64-PIN PLASTIC FBGA (4x4)

	(UNIT:mm)
ITEM	DIMENSIONS
D	4.00 ± 0.10
E	4.00 ± 0.10
w	0.15
A	0.89 ± 0.10
$A 1$	0.20 ± 0.05
A2	0.69
e	0.40
b	0.25 ± 0.05
x	0.05
y	0.08
$y 1$	0.20
ZD	0.60
ZE	0.60
	P64F1-40-AA2

34.5 78K0/KF2

- μ PD78F0544GC-UBT-A, 78F0545GC-UBT-A, 78F0546GC-UBT-A, 78F0547GC-UBT-A, 78F0547DGC-UBT-A

80-PIN PLASTIC LQFP(14x14)

- μ PD78F0544GC(A)-GAD-AX, 78F0545GC(A)-GAD-AX, 78F0546GC(A)-GAD-AX, 78F0547GC(A)-GAD-AX
- μ PD78F0544GC(A2)-GAD-AX, 78F0545GC(A2)-GAD-AX, 78F0546GC(A2)-GAD-AX, 78F0547GC(A2)-GAD-AX
- μ PD78F0544AGC-GAD-AX, 78F0545AGC-GAD-AX, 78F0546AGC-GAD-AX, 78F0547AGC-GAD-AX, 78F0547DAGC-GAD-AX
- μ PD78F0544AGCA-GAD-G, 78F0545AGCA-GAD-G, 78F0546AGCA-GAD-G, 78F0547AGCA-GAD-G
- μ PD78F0544AGCA2-GAD-G, 78F0545AGCA2-GAD-G, 78F0546AGCA2-GAD-G, 78F0547AGCA2-GAD-G

80-PIN PLASTIC LQFP(14×14)

- μ PD78F0544GK-8EU-A, 78F0545GK-8EU-A, 78F0546GK-8EU-A, 78F0547GK-8EU-A, 78F0547DGK-8EU-A

80-PIN PLASTIC LQFP(FINE PITCH)(12x12)

- μ PD78F0544GK(A)-GAK-AX, 78F0545GK(A)-GAK-AX, 78F0546GK(A)-GAK-AX, 78F0547GK(A)-GAK-AX
- μ PD78F0544GK(A2)-GAK-AX, 78F0545GK(A2)-GAK-AX, 78F0546GK(A2)-GAK-AX, 78F0547GK(A2)-GAK-AX
- μ PD78F0544AGK-GAK-AX, 78F0545AGK-GAK-AX, 78F0546AGK-GAK-AX, 78F0547AGK-GAK-AX, 78F0547DAGK-GAK-AX
- μ PD78F0544AGKA-GAK-G, 78F0545AGKA-GAK-G, 78F0546AGKA-GAK-G, 78F0547AGKA-GAK-G
- μ PD78F0544AGKA2-GAK-G, 78F0545AGKA2-GAK-G, 78F0546AGKA2-GAK-G, 78F0547AGKA2-GAK-G

80-PIN PLASTIC LQFP(FINE PITCH)(12x12)

CHAPTER 35 RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the following recommended conditions.
For soldering methods and conditions other than those recommended below, please contact an Renesas Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www2.renesas.com/pkg/en/mount/index.html)

Table 35-1. Soldering Conditions of Conventional-specification Products (μ PD78F05xx and 78F05xxD) (1/3)
(1) 36-pin plastic FLGA (4x4)
μ PD78F050xFC-AA3-A ($\mathrm{x}=0$ to 3), 78F0503DFC-AA3-A
64-pin plastic FLGA (5×5)
μ PD78F053xFC-AA1-A ($\mathrm{x}=1$ to 7), 78F0537DFC-AA1-A

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 to 72 hours)	IR60-207-3

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution The μ PD78F05xxD has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Table 35-1. Soldering Conditions of Conventional-specification Products (μ PD78F05xx and 78F05xxD) (2/3)
(2) 30-pin plastic SSOP (7.62 mm (300))
μ PD78F050xMC-5A4-A ($\mathrm{x}=0$ to 3), 78F0503DMC-5A4-A
44-pin plastic LQFP (10x10)
μ PD78F051xGB-UES-A ($x=1$ to 3), 78F0513DGB-UES-A
48-pin plastic LQFP (fine pitch) (7×7)
μ PD78F051xGA-8EU-A ($x=1$ to 5), 78F0515DGA-8EU-A
μ PD78F051xGA(A)-GAM-AX ($x=1$ to 5), 78 F051xGA(A2)-GAM-AX ($x=1$ to 5)
52-pin plastic LQFP (10x10)
μ PD78F052xGB-UET-A ($x=1$ to 7), 78F0527DGB-UET-A
64-pin plastic LQFP (fine pitch) (10x10)
μ PD78F053xGB-UEU-A ($x=1$ to 7), 78F0537DGB-UEU-A
μ PD78F053xGB(A)-GAH-AX ($x=1$ to 7), 78 F053xGB(A2)-GAH-AX ($x=1$ to 7)
64-pin plastic LQFP (14x14)
μ PD78F053xGC-UBS-A ($\mathrm{x}=1$ to 7), 78F0537DGC-UBS-A
64-pin plastic LQFP (12x12)
μ PD78F053xGK-UET-A ($\mathrm{x}=1$ to 7), 78F0537DGK-UET-A
64-pin plastic TQFP (fine pitch) (7x7)
μ PD78F053xGA-9EV-A ($x=1$ to 7), 78F0537DGA-9EV-A
80-pin plastic LQFP (14×14)
μ PD78F054xGC-UBT-A ($x=4$ to 7), 78F0547DGC-UBT-A
80-pin plastic LQFP (fine pitch) (12×12)
μ PD78F054xGK-8EU-A ($x=4$ to 7), 78F0547DGK-8EU-A
μ PD78F054xGK(A)-GAK-AX ($x=4$ to 7), 78F054xGK(A2)-GAK-AX ($x=4$ to 7)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 to 72 hours)	IR60-207-3
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution The μ PD78F05xxD has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Table 35-1. Soldering Conditions of Conventional-specification Products (μ PD78F05xx and 78F05xxD) (3/3)
(3) 30-pin plastic SSOP (7.62 mm (300))
μ PD78F050xMC(A)-CAB-AX $(x=0$ to 3$)$, $78 F 050 x M C(A 2)-C A B-A X ~(x=0$ to 3$)$
44-pin plastic LQFP (10x10)
μ PD78F051xGB(A)-GAF-AX ($x=1$ to 3), $78 F 051 x G B(A 2)-G A F-A X(x=1$ to 3$)$
52-pin plastic LQFP (10×10)
μ PD78F052xGB(A)-GAG-AX ($x=1$ to 7), $78 F 052 x G B(A 2)-G A G-A X(x=1$ to 7$)$
64-pin plastic LQFP (14x14)
μ PD78F053xGC(A)-GAL-AX ($x=1$ to 7), 78F053xGC(A2)-GAL-AX ($x=1$ to 7)
64-pin plastic LQFP (12x12)
μ PD78F053xGK(A)-GAJ-AX $(x=1$ to 7), 78F053xGK(A2)-GAJ-AX ($x=1$ to 7)
80-pin plastic LQFP (14x14)
$\mu \mathrm{PD} 78 \mathrm{~F} 054 \mathrm{xGC}(\mathrm{A})-\mathrm{GAD}-\mathrm{AX}(\mathrm{x}=4$ to 7$), 78 F 054 x G C(\mathrm{~A} 2)-\mathrm{GAD}-\mathrm{AX}(\mathrm{x}=4$ to 7$)$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 to 72 hours)	IR60-207-3
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature), Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 to 72 hours)	WS60-207-1
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 35-2. Soldering Conditions of Expanded-specification products (μ PD78F05xxA and 78F05xxDA) (1/2)
(1) 36-pin plastic FLGA (4x4)
μ PD78F050xAFC-AA3-A ($\mathrm{x}=0$ to 3), 78F0503DAFC-AA3-A
64-pin plastic FLGA (5x5)
μ PD78F053xAFC-AA1-A ($x=1$ to 7), 78F0537DAFC-AA1-A

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	IR60-107-3

(2) 48 -pin plastic LQFP (fine pitch) (7×7)
μ PD78F051xAGA-GAM-AX ($x=1$ to 5), 78F0515DAGA-GAM-AX
μ PD78F051xAGAA-GAM-G ($x=1$ to 5), 78F051xAGAA2-GAM-G ($x=1$ to 5)
64-pin plastic LQFP (fine pitch) (10x10)
μ PD78F053xAGB-GAH-AX ($x=1$ to 7), 78F0537DAGB-GAH-AX
μ PD78F053xAGBA-GAH-G ($x=1$ to 7), 78F053xAGBA2-GAH-G ($x=1$ to 7)
80-pin plastic LQFP (fine pitch) (12×12)
μ PD78F054xAGK-GAK-AX ($x=4$ to 7), 78F0547DAGK-GAK-AX
μ PD78F054xAGKA-GAK-G ($x=4$ to 7), 78F054xAGKA2-GAK-G ($x=4$ to 7)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note } \text { (after that, prebake at } 125^{\circ} \mathrm{C} \text { for }}$ 10 to 72 hours)	IR60-107-3
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution The μ PD78F05xxDA has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Table 35-2. Soldering Conditions of Expanded-specification products (μ PD78F05xxA and 78F05xxDA) (2/2)
(3) 30-pin plastic SSOP (7.62 mm (300))
μ PD78F050xAMC-CAB-AX ($x=0$ to 3), 78F0503DAMC-CAB-AX
μ PD78F050xAMCA-CAB-G ($\mathrm{x}=0$ to 3), 78F050xAMCA2-CAB-G ($\mathrm{x}=0$ to 3)
38-pin plastic SSOP (7.62 mm (300))
μ PD78F051xAMC-GAA-AX ($x=1$ to 3), 78F0513DAMC-GAA-AX
μ PD78F051xAMCA-GAA-G ($x=1$ to 3), 78F051xAMCA2-GAA-G ($x=1$ to 3)
44-pin plastic LQFP (10x10)
μ PD78F051xAGB-GAF-AX ($x=1$ to 3), 78F0513DAGB-GAF-AX
μ PD78F05x1AGBA-GAF-G ($x=1$ to 3), 78F051xAGBA2-GAF-G ($x=1$ to 3)
52-pin plastic LQFP (10x10)
μ PD78F052xAGB-GAG-AX ($x=1$ to 7), 78F0527DAGB-GAG-AX
μ PD78F052xAGBA-GAG-G ($x=1$ to 7), 78F052xAGBA2-GAG-G $(x=1$ to 7$)$
64-pin plastic LQFP (14x14)
μ PD78F053xAGC-GAL-AX ($x=1$ to 7), 78F0537DAGC-GAL-AX
μ PD78F053xAGCA-GAL-G ($x=1$ to 7), 78F053xAGCA2-GAL-G ($x=1$ to 7)
64-pin plastic LQFP (12x12)
μ PD78F053xAGK-GAJ-AX ($x=1$ to 7), 78F0537DAGK-GAJ-AX
μ PD78F053xAGKA-GAJ-G ($x=1$ to 7), 78F053xAGKA2-GAJ-G ($x=1$ to 7)
80-pin plastic LQFP (14x14)
μ PD78F054xAGC-GAD-G ($x=4$ to 7), 78F0547DAGC-GAD-AX
μ PD78F054xAGCA-GAD-G ($x=4$ to 7), 78F054xAGCA2-GAD-G ($x=4$ to 7)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	IR60-107-3
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature), Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	WS60-107-1
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Cautions 1. Do not use different soldering methods together (except for partial heating).
2. The μ PD78F05xxDA has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

CHAPTER 36 CAUTIONS FOR WAIT

36.1 Cautions for Wait

This product has two internal system buses.
One is a CPU bus and the other is a peripheral bus that interfaces with the low-speed peripheral hardware.
Because the clock of the CPU bus and the clock of the peripheral bus are asynchronous, unexpected illegal data may be passed if an access to the CPU conflicts with an access to the peripheral hardware.

When accessing the peripheral hardware that may cause a conflict, therefore, the CPU repeatedly executes processing, until the correct data is passed.

As a result, the CPU does not start the next instruction processing but waits. If this happens, the number of execution clocks of an instruction increases by the number of wait clocks (for the number of wait clocks, see Tables 36-1 and 36-2). This must be noted when real-time processing is performed.

36.2 Peripheral Hardware That Generates Wait

Table 36-1 lists the registers that issue a wait request when accessed by the CPU, and the number of CPU wait clocks and Table 36-2 lists the RAM accesses that issue a wait request and the number of CPU wait clocks.

Table 36-1. Registers That Generate Wait and Number of CPU Wait Clocks

Peripheral Hardware	Register	Access	Number of Wait Clocks
Serial interface UARTO	ASIS0	Read	1 clock (fixed)
Serial interface UART6	ASIS6	Read	1 clock (fixed)
Serial interface IICO	IICSO	Read	1 clock (fixed)
A/D converter	ADM	Write	$\begin{aligned} & 1 \text { to } 5 \text { clocks (when } f_{A D}=f_{P R S} / 2 \text { is selected) } \\ & 1 \text { to } 7 \text { clocks (when } f_{A D}=f_{P R S} / 3 \text { is selected) } \\ & 1 \text { to } 9 \text { clocks (when } f_{A D}=f_{P R S} / 4 \text { is selected) } \\ & 2 \text { to } 13 \text { clocks (when } f_{A D}=f_{P R S} / 6 \text { is selected) } \\ & 2 \text { to } 17 \text { clocks (when } f_{A D}=f_{P R S} / 8 \text { is selected) } \\ & 2 \text { to } 25 \text { clocks (when } f_{A D}=f_{P R S} / 12 \text { is selected) } \end{aligned}$
	ADS	Write	
	ADPC	Write	
	ADCR	Read	
	The above number of clocks is when the same source clock is selected for fcPu and fPrs. The number of wait clocks can be calculated by the following expression and under the following conditions. <Calculating number of wait clocks> - Number of wait clocks $=\frac{2 \mathrm{f}_{\mathrm{CPU}}}{\mathrm{f}_{\mathrm{AD}}}+1$ * Fraction is truncated if the number of wait clocks ≤ 0.5 and rounded up if the number of wait clocks >0.5. $f_{A D}$: A/D conversion clock frequency (fprs/2 to fPRs/12) fcpu: CPU clock frequency fPRs: Peripheral hardware clock frequency fxp: Main system clock frequency <Conditions for maximum/minimum number of wait clocks> - Maximum number of times: Maximum speed of CPU (fxP), lowest speed of A/D conversion clock (fPRs/12) - Minimum number of times: Minimum speed of CPU (fsub/2), highest speed of A/D conversion clock (fprs/2)		

Caution When the peripheral hardware clock (fPRS) is stopped, do not access the registers listed above using an access method in which a wait request is issued.

Remark The clock is the CPU clock (fcpu).

Table 36-2. RAM Accesses That Generate Wait and Number of CPU Wait Clocks (78K0/KF2 only)

Area	Access	Number of Wait Clocks
Buffer RAM	Write	1 to 81 clocks ${ }^{\text {No}}$
<Calculating maximum number of wait clocks> - Maximum number of wait clocks $=\frac{5 \mathrm{fcPu}}{\mathrm{fw}}+1$ * Fraction is truncated if the number of wait clocks multiplied by $(1 / f c P u)$ is equal or lower than tcpul and rounded up if higher than tcpul. fw: Frequency of base clock selected by CKSO0 bit of CSIS0 register (CKS00 = 0: fprs, $\mathrm{CKSO0}=1: \mathrm{fprs} / 2$) fcpu: CPU clock frequency tcpuL: CPU clock low-level width fPRS: Peripheral hardware clock frequency		

Note No waits are generated when five CSIAO operating clocks or more are inserted between writing to the RAM from the CSIAO and writing to the buffer RAM from the CPU.

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers.

Figure $\mathrm{A}-1$ shows the development tool configuration.

Figure A-1. Development Tool Configuration (1/2)

(1) When using the in-circuit emulator QB-78KOKX2

Notes 1. Download the device file for $78 \mathrm{KO} / \mathrm{Kx2}$ microcontrollers (DF780547) and the integrated debugger ID78K0QB from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).
2. $\mathrm{SM}+$ for 78 KO (instruction simulation version) is included in the software package. SM+ for $78 \mathrm{KO} / \mathrm{Kx} 2$ (instruction + peripheral simulation version) is not included.
3. The project manager $\mathrm{PM}+$ is included in the assembler package. PM+ cannot be used other than with Windows ${ }^{\mathrm{TM}}$.
4. QB-78KOKX2 is supplied with the integrated debugger ID78K0-QB, a USB interface cable, the on-chip debug emulator with programming function QB-MINI2, connection cables (10-pin and 16-pin cables), and the 78K0-OCD board. Any other products are sold separately.

Figure A-1. Development Tool Configuration (2/2)
(2) When using the on-chip debug emulator with programming function QB-MINI2

Notes 1. Download the device file for $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers (DF780547) and the integrated debugger ID78K0QB from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).
2. $\mathrm{SM}+$ for 78 KO (instruction simulation version) is included in the software package. $\mathrm{SM}+$ for $78 \mathrm{KO} / \mathrm{Kx} 2$ (instruction + peripheral simulation version) is not included.
3. The project manager $\mathrm{PM}+$ is included in the assembler package. PM+ cannot be used other than with Windows.
4. QB-MINI2 is supplied with USB interface cable, connection cables (10-pin cable and 16-pin cable), and 78K0-OCD board. Any other products are sold separately. In addition, download the software for operating the QB-MINI2 from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).

A. 1 Software Package

SP78K0 $78 K 0$ microcontroller software package	Development tools (software) common to the 78 K 0 microcontrollers are combined in this package.

A. 2 Language Processing Software

RA78K0 ${ }^{\text {Note } 1}$ Assembler package	This assembler converts programs written in mnemonics into object codes executable with a microcontroller. This assembler is also provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler should be used in combination with a device file (DF780547). <Precaution when using RA78K0 in PC environment> This assembler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager ($\mathrm{PM}+$) on Windows. PM+ is included in assembler package.
CC78KO ${ }^{\text {Note } 1}$ C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler should be used in combination with an assembler package and device file. <Precaution when using CC78K0 in PC environment> This C compiler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (PM+) on Windows. PM+ is included in assembler package.
DF780547 ${ }^{\text {Note } 2}$ Device file	This file contains information peculiar to the device. This device file should be used in combination with a tool (RA78K0, CC78K0, ID78K0QB, and the system simulator). The corresponding OS and host machine differ depending on the tool to be used.

Notes 1. If the versions of RA78K0 and CC78K0 are Ver.4.00 or later, different versions of RA78K0 and CC78K0 can be installed on the same machine.
2. The DF780547 can be used in common with the RA78K0, CC78K0, ID78K0-QB, and the system simulator. Download the DF780547 from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).

A. 3 Flash Memory Programming Tools

A.3.1 When using flash memory programmer FG-FP5, FL-PR5, FG-FP4, and FL-PR4

FG-FP5, FL-PR5,	Flash memory programmer dedicated to microcontrollers with on-chip flash memory.
PG-FP4 Note, FL-PR4	
Flash memory programmer	
FA-xxxx	
Flash memory programming adapter	Nlash memory programming adapter used connected to the flash memory programmer for use.

Notes 1. Phase-out
2. The part numbers of the flash memory programming adapter and the packages of the target device are described below.

Package		Flash Memory Programming Adapter
78K0/KB2	30-pin plastic SSOP (MC-5A4 and MC-CAB types)	FA-30MC-CAB-B, FA-78F0503MC-5A4-RX
	36-pin plastic FLGA (FC-AA3 type)	FA-36FC-AA3-B, FA-78F0503FC-AA3-RX
78K0/KC2	38-pin plastic SSOP (MC-GAA type)	FA-38MC-GAA-B
	44-pin plastic LQFP (GB-UES and GB-GAF types)	FA-44GB-GAF-B, FA-78F0513GB-UES-RX
	48-pin plastic LQFP (GA-8EU and GA-GAM types)	FA-48GA-GAM-B, FA-78F0515GA-8EU-RX
78K0/KD2	52-pin plastic LQFP (GB-UET and GB-GAG types)	FA-52GB-GAG-B, FA-78F0527GB-UET-RX
78K0/KE2	64-pin plastic LQFP (GB-UEU and GB-GAH types)	FA-64GB-GAH-B, FA-78F0537GB-UEU-RX
	64-pin plastic LQFP (GC-UBS and GC-GAL types)	FA-64GC-GAL-B, FA-78F0537GC-UBS-RX
	64-pin plastic LQFP (GK-UET and GK-GAJ types)	FA-64GK-GAJ-B, FA-78F0537GK-UET-RX
	64-pin plastic TQFP (GA-9EV and GA-HAB types)	FA-64GA-8EV-B, FA-64GA-HAB-B, FA-78F0537GA-9EV-RX
	64-pin plastic FLGA (FC-AA1 type)	FA-78F0537FC-AA1-RX
78K0/KF2	80-pin plastic LQFP (GC-UBT and GC-GAD types)	FA-80GC-GAD-B, FA-78F0547GC-UBT-RX
	80-pin plastic LQFP (GK-8EU and GK-GAK types)	FA-80GK-GAK-B, FA-78F0547GK-8EU-RX

Remarks 1. FL-PR5, FL-PR4, and FA-xxxx are products of Naito Densei Machida Mfg. Co., Ltd (http://www.ndk-m.co.jp/, TEL: +81-42-750-4172).
2. Use the latest version of the flash memory programming adapter.

A.3.2 When using on-chip debug emulator with programming function QB-MINI2

QB-MINI2	This is a flash memory programmer dedicated to microcontrollers with on-chip flash
On-chip debug emulator with	
programming function	memory. It is available also as on-chip debug emulator which serves to debug hardware and software when developing application systems using the $78 \mathrm{KO} / \mathrm{Kx} 2$ microcontrollers. When using this as flash memory programmer, it should be used in combination with a connection cable (16-pin cable) and a USB interface cable that is used to connect the host machine.
Target connector specifications	16-pin general-purpose connector (2.54 mm pitch)

Remarks 1. The QB-MINI2 is supplied with a USB interface cable and connection cables (10-pin cable and 16-pin cable), and the 78K0-OCD board. A connection cable (10-pin cable) and the 78K0-OCD board are used only when using the on-chip debug function.
2. Download the software for operating the QB-MINI2 from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).

A. 4 Debugging Tools (Hardware)

A.4.1 When using in-circuit emulator QB-78K0KX2

QB-78K0KX2 In-circuit emulator	This in-circuit emulator serves to debug hardware and software when developing application systems using the 78K0/Kx2 microcontrollers. It supports to the integrated debugger (ID78K0QB). This emulator should be used in combination with a power supply unit and emulation probe, and the USB is used to connect this emulator to the host machine.
QB-144-CA-01 Check pin adapter	This check pin adapter is used in waveform monitoring using the oscilloscope, etc.
QB-80-EP-01T Emulation probe	This emulation probe is flexible type and used to connect the in-circuit emulator and target system.
QB-xxxx-EA-xxx ${ }^{\text {Note }}$ Exchange adapter	This exchange adapter is used to perform pin conversion from the in-circuit emulator to target connector.
$\text { QB-xxxx-YS-xxx }{ }^{\text {Note }}$ Space adapter	This space adapter is used to adjust the height between the target system and in-circuit emulator.
$\text { QB-xxxx-YQ-xxx }{ }^{\text {Note }}$ YQ connector	This YQ connector is used to connect the target connector and exchange adapter.
$\text { QB-xxxx-HQ-xxx }{ }^{\text {Note }}$ Mount adapter	This mount adapter is used to mount the target device with socket.
$\begin{aligned} & \text { QB-xxxx-NQ-xxx }{ }^{\text {Note }} \text {, } \\ & \text { Target connector } \end{aligned}$	This target connector is used to mount on the target system.

(Note and Remarks are listed on the next page or later.)

Note The part numbers of the exchange adapter, space adapter, YQ connector, mount adapter, and target connector and the packages of the target device are described below.

Package		Exchange Adapter	Space Adapter	YQ Connector	Mount Adapter	Target Connector
78K0/KB2	30-pin plastic SSOP (MC-5A4 and MC-CAB types)	QB-30MC- EA-02T	QB-30MC-YS-01T	$\begin{aligned} & \text { QB-30MC- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-30MC- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l} \hline \text { QB-30MC- } \\ \text { NQ-01T } \end{array}$
	36-pin plastic FLGA (FC-AA3 type)	QB-36FC- EA-01T	None	None	None	$\begin{array}{\|l} \hline \text { QB-36FC- } \\ \text { NQ-01T } \end{array}$
78KO/KC2	38-pin plastic SSOP (MC-GAA type)	QB-38MC- EA-01T	$\begin{aligned} & \text { QB-38MC- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-38MC- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-38MC- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l} \text { QB-38MC- } \\ \text { NQ-01T } \end{array}$
	44-pin plastic LQFP (GB-UES and GBGAF types)	QB-44GB- EA-03T	QB-44GB- YS-01T	$\begin{aligned} & \text { QB-44GB- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-44GB- } \\ & \text { HQ-01T } \end{aligned}$	QB-44GB- NQ-01T
	48-pin plastic LQFP (GA-8EU and GAGAM types)	QB-48GA- EA-02T	QB-48GA- YS-01T	$\begin{aligned} & \text { QB-48GA- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-48GA- } \\ & \text { HQ-01T } \end{aligned}$	QB-48GA- NQ-01T
78K0/KD2	52-pin plastic LQFP (GB-UET and GBGAG types)	QB-52GB- EA-02T	QB-52GB-YS-01T	$\begin{aligned} & \text { QB-52GB- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-52GB- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { QB-52GB- } \\ \text { NQ-01T } \end{array}$
78K0/KE2	64-pin plastic LQFP (GB-UEU and GBGAH types)	QB-64GB- EA-04T	QB-64GB-YS-01T	$\begin{aligned} & \text { QB-64GB- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-64GB- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { QB-64GB- } \\ \text { NQ-01T } \end{array}$
	64-pin plastic LQFP (GC-UBS and GCGAL types)	$\begin{array}{\|l\|l} \hline \text { QB-64GC- } \\ \text { EA-03T } \end{array}$	$\begin{aligned} & \text { QB-64GC- } \\ & \text { YS-01T } \end{aligned}$	$\begin{aligned} & \text { QB-64GC- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-64GC- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l} \mid \text { QB-64GC- } \\ \text { NQ-01T } \end{array}$
	64-pin plastic LQFP (GK-UET and GKGAJ types)	QB-64GK- EA-04T	QB-64GK- YS-01T	$\begin{aligned} & \text { QB-64GK- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-64GK- } \\ & \text { HQ-01T } \end{aligned}$	QB-64GK- NQ-01T
	64-pin plastic TQFP (GA-9EV and GAHAB types)	$\begin{array}{\|l} \text { QB-64GA- } \\ \text { EA-01T } \end{array}$	$\begin{aligned} & \text { QB-64GA- } \\ & \text { YS-01T } \end{aligned}$	$\begin{aligned} & \text { QB-64GA- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-64GA- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l} \hline \text { QB-64GA- } \\ \text { NQ-01T } \end{array}$
	64-pin plastic FLGA (FC-AA1 type)	QB-64FC- EA-01T	None	None	None	$\begin{array}{\|l} \hline \text { QB-64FC- } \\ \text { NQ-01T } \end{array}$
78K0/KF2	80-pin plastic LQFP (GC-UBT and GCGAD types)	QB-80GC- EA-01T	$\begin{aligned} & \text { QB-80GC- } \\ & \text { YS-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GC- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GC- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l} \text { QB-80GC- } \\ \text { NQ-01T } \end{array}$
	80-pin plastic LQFP (GK-8EU and GKGAK type)	QB-80GK- EA-01T	$\begin{aligned} & \text { QB-80GK- } \\ & \text { YS-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GK- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GK- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{array}{\|l} \hline \text { QB-80GK- } \\ \text { NQ-01T } \end{array}$

Remarks 1. The QB-78K0KX2 is supplied with the integrated debugger ID78K0-QB, a USB interface cable, the onchip debug emulator QB-MINI2, connection cables (10-pin and 16-pin cables), and the 78K0-OCD board. Download the software for operating the QB-MINI2 from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html) when using the QB-MINI2.
2. The packed contents of QB-78KOKX2 differ depending on the part number, as follows.

Racked Contents Part Number	In-Circuit Emulator	Emulation Probe	Exchange Adapter	YQ Connector	Target Connector
QB-78K0KX2-ZZZ	QB-78K0KX2	None			
QB-78K0KX2-T30MC		QB-80-EP-01T	QB-30MC-EA-02T	QB-30MC-YQ-01T	QB-30MC-NQ-01T
QB-78K0KX2-T36FC			QB-36FC-EA-01T	None	QB-36FC-NQ-01T
QB-78K0KX2-T38MC			QB-38MC-EA-01T	QB-38MC-YQ-01T	QB-38MC-NQ-01T
QB-78K0KX2-T44GB			QB-44GB-EA-03T	QB-44GB-YQ-01T	QB-44GB-NQ-01T
QB-78K0KX2-T48GA			QB-48GA-EA-02T	QB-48GA-YQ-01T	QB-48GA-NQ-01T
QB-78K0KX2-T52GB			QB-52GB-EA-02T	QB-52GB-YQ-01T	QB-52GB-NQ-01T
QB-78K0KX2-T64GB			QB-64GB-EA-04T	QB-64GB-YQ-01T	QB-64GB-NQ-01T
QB-78K0KX2-T64GC			QB-64GC-EA-03T	QB-64GC-YQ-01T	QB-64GC-NQ-01T
QB-78K0KX2-T64GK			QB-64GK-EA-04T	QB-64GK-YQ-01T	QB-64GK-NQ-01T
QB-78K0KX2-T64GA			QB-64GA-EA-01T	QB-64GA-YQ-01T	QB-64GA-NQ-01T
QB-78K0KX2-T64FC			QB-64FC-EA-01T	None	QB-64FC-NQ-01T
QB-78K0KX2-T80GC			QB-80GC-EA-01T	QB-80GC-YQ-01T	QB-80GC-NQ-01T
QB-78K0KX2-T80GK			QB-80GK-EA-01T	QB-80GK-YQ-01T	QB-80GK-NQ-01T

Note Under development

A.4.2 When using on-chip debug emulator with programming function QB-MINI2

QB-MINI2 On-chip debug emulator with programming function	This on-chip debug emulator serves to debug hardware and software when developing application systems using the $78 \mathrm{KO} / \mathrm{Kx2}$. It is available also as flash memory programmer dedicated to microcontrollers with on-chip flash memory. When using this as on-chip debug emulator, it should be used in combination with a connection cable (10- pin cable or 16-pin cable), a USB interface cable that is used to connect the host machine, and the 78K0-OCD board.
Target connector specifications	$10-\mathrm{pin}$ general-purpose connector (2.54 mm pitch) or 16-pin general-purpose connector $(2.54$ mm pitch)

Remarks 1. The QB-MINI2 is supplied with a USB interface cable and connection cables (10-pin cable and 16-pin cable), and the $78 \mathrm{KO}-O C D$ board. A connection cable (10-pin cable) and the $78 \mathrm{KO} 0-\mathrm{OCD}$ board are used only when using the on-chip debug function.
2. Download the software for operating the QB-MINI2 from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).

A. 5 Debugging Tools (Software)

ID78K0-QB ${ }^{\text {Note }}$ Integrated debugger	This debugger supports the in-circuit emulators for the 78 K 0 microcontrollers. The ID78K0-QB is Windows-based software. It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates the source program, disassemble display, and memory display with the trace result. It should be used in combination with the device file (DF780547).
SM+ for 78K0 SM+ for 78K0/Kx2 System simulator	System simulator is Windows-based software. It is used to perform debugging at the C source level or assembler level while simulating the operation of the target system on a host machine. Use of system simulator allows the execution of application logical testing and performance testing on an independent basis from hardware development, thereby providing higher development efficiency and software quality. System simulator should be used in combination with the device file (DF780547). The following two types of system simulators supporting the $78 \mathrm{~K} 0 / \mathrm{Kx} 2$ microcontrollers are available. - SM+ for 78 KO (instruction simulation version) This can only simulate a CPU. It is included in the software package. - SM+ for 78K0/ Kx2 (instruction + peripheral simulation version) This can simulate a CPU and peripheral hardware (ports, timers, serial interfaces, etc.). It is sold separately from the software package.

Note Download the ID78K0-QB from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).

APPENDIX B NOTES ON TARGET SYSTEM DESIGN

This chapter shows areas on the target system where component mounting is prohibited and areas where there are component mounting height restrictions when the QB-78KOKX2 is used.

Figure B-1. For 30-Pin MC Package
Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-2. For 36-Pin FC Package

\square : Exchange adapter area: Components up to 2.5 mm in height can be mounted
\square : Emulation probe tip area: Components up to 4.5 mm in height can be mounted

Figure B-3. For 44-Pin GB Package

\square : Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$
Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-4. For 48-Pin GA Package

\square : Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$
Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-5. For 52-Pin GB Package
Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-6. For 64-Pin FC Package
: Exchange adapter area (connector part): Components up to 2.45 mm in height can be mounted: Exchange adapter area (probe part): Components up to 4.5 mm in height can be mounted

Figure B-7. For 64-Pin GA Package
Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$
Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-8. For 64-Pin GB Package

\square : Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-9. For 64-Pin GC Package

\square : Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-10. For 64-Pin GK Package

\square : Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-11. For 80-Pin GC Package

\square : Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$
\square : Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Figure B-12. For 80-Pin GK Package

Exchange adapter area: Components up to 17.45 mm in height can be mounted ${ }^{\text {Note }}$Emulation probe tip area: Components up to 24.45 mm in height can be mounted ${ }^{\text {Note }}$

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

APPENDIX C REGISTER INDEX

C. 1 Register Index (In Alphabetical Order with Respect to Register Names)

[A]
A/D converter mode register (ADM) 412
A/D port configuration register (ADPC) 219, 419
Analog input channel specification register (ADS) 418
Asynchronous serial interface control register 6 (ASICL6) 466
Asynchronous serial interface operation mode register 0 (ASIMO), 436
Asynchronous serial interface operation mode register 6 (ASIM6) 460
Asynchronous serial interface reception error status register 0 (ASISO) 438
Asynchronous serial interface reception error status register 6 (ASIS6) 462
Asynchronous serial interface transmission status register 6 (ASIF6) 463
Automatic data transfer address count register 0 (ADTC0) 523
Automatic data transfer address point specification register 0 (ADTPO) 521
Automatic data transfer interval specification register 0 (ADTIO) 522
[B]
Baud rate generator control register 0 (BRGC0) 439
Baud rate generator control register 6 (BRGC6) 465
[C]
Capture/compare control register 00 (CRC00) 280
Capture/compare control register 01 (CRC01) 280
Clock operation mode select register (OSCCTL) 229
Clock output selection register (CKS) 404
Clock selection register 6 (CKSR6) 463
[D]
Divisor selection register 0 (BRGCA0) 520
[E]
8-bit A/D conversion result register (ADCRH) 417
8 -bit timer compare register 50 (CR50) 347
8 -bit timer compare register 51 (CR51) 347
8-bit timer counter 50 (TM50) 347
8 -bit timer counter 51 (TM51) 347
8 -bit timer H carrier control register 1 (TMCYC1) 371
8-bit timer H compare register 00 (CMP00) 366
8-bit timer H compare register 01 (CMP01) 366
8-bit timer H compare register 10 (CMP10) 366
8 -bit timer H compare register 11 (CMP11) 366
8 -bit timer H mode register 0 (TMHMD0) 367
8 -bit timer H mode register 1 (TMHMD1) 367
8 -bit timer mode control register 50 (TMC50) 351
8 -bit timer mode control register 51 (TMC51) 351
External interrupt falling edge enable register (EGN) 652
External interrupt rising edge enable register (EGP) 652
[I]
IIC clock selection register 0 (IICCLO) 565
IIC control register 0 (IICCO) 556
IIC flag register 0 (IICFO) 563
IIC function expansion register 0 (IICXO). 566
IIC shift register 0 (IICO) 553
IIC status register 0 (IICSO) 561
Input switch control register (ISC) 468
Internal expansion RAM size switching register (IXS) 722
Internal memory size switching register (IMS) 721
Internal oscillation mode register (RCM) 235
Interrupt mask flag register $0 \mathrm{H}(\mathrm{MKOH})$ 643
Interrupt mask flag register OL (MKOL) 643
Interrupt mask flag register 1H (MK1H) 643
Interrupt mask flag register 1L (MK1L) 643
Interrupt request flag register OH (IFOH) 637
Interrupt request flag register OL (IFOL) 637
Interrupt request flag register 1H (IF1H) 637
Interrupt request flag register 1L (IF1L) 637
[K]
Key return mode register (KRM). 665
[L]
Low-voltage detection level selection register (LVIS) 701
Low-voltage detection register (LVIM) 699
[M]
Main clock mode register (MCM) 237
Main OSC control register (MOC) 236
Memory Bank Select Register (BANK) 150
Multiplication/division data register AO (MDAOH, MDAOL) 623
Multiplication/division data register B0 (MDBO) 624
Multiplier/divider control register 0 (DMUC0) 625
[0]
Oscillation stabilization time counter status register (OSTC) 238, 667
Oscillation stabilization time select register (OSTS) 239, 668
[P]
Port mode register 0 (PM0) 205, 288, 498
Port mode register 1 (PM1) 205, 353, 372, 440, 468, 498
Port mode register 2 (PM2) 205, 420
Port mode register 3 (PM3) 205, 353
Port mode register 4 (PM4) 205
Port mode register 5 (PM5) 205
Port mode register 6 (PM6) 205, 568
Port mode register 7 (PM7) 205
Port mode register 12 (PM12) 205, 702
Port mode register 14 (PM14) 205, 407, 523
Port register 0 (PO) 210
Port register 1 (P1) 210
Port register 2 (P2) 210
Port register 3 (P3) 210
Port register 4 (P4) 210
Port register 5 (P5) 210
Port register 6 (P6) 210
Port register 7 (P7) 210
Port register 12 (P12) 210
Port register 13 (P13) 210
Port register 14 (P14) 210
Prescaler mode register 00 (PRM00) 285
Prescaler mode register 01 (PRM01) 285
Priority specification flag register 0 H (PROH) 648
Priority specification flag register OL (PROL) 648
Priority specification flag register 1H (PR1H) 648
Priority specification flag register 1L (PR1L) 648
Processor clock control register (PCC) 232
Pull-up resistor option register 0 (PUO) 215
Pull-up resistor option register 1 (PU1) 215
Pull-up resistor option register 3 (PU3) 215
Pull-up resistor option register 4 (PU4) 215
Pull-up resistor option register 5 (PU5) 215
Pull-up resistor option register 6 (PU6) 215
Pull-up resistor option register 7 (PU7) 215
Pull-up resistor option register 12 (PU12) 215
Pull-up resistor option register 14 (PU14) 215
[R]
Receive buffer register 0 (RXB0) 435
Receive buffer register 6 (RXB6) 459
Receive shift register 0 (RXSO) 435
Receive shift register 6 (RXS6) 459
Remainder data register 0 (SDR0) 623
Reset control flag register (RESF) 691
[S]
Serial clock selection register 10 (CSIC10) 495
Serial clock selection register 11 (CSIC11) 495
Serial I/O shift register 0 (SIOAO) 515
Serial I/O shift register 10 (SIO10) 492
Serial I/O shift register 11 (SIO11) 492
Serial operation mode register 10 (CSIM10) 493
Serial operation mode register 11 (CSIM11) 493
Serial operation mode specification register 0 (CSIMAO) 515
Serial status register 0 (CSISO) 517
Serial trigger register 0 (CSITO) 519
Slave address register 0 (SVAO) 553
16-bit timer capture/compare register 000 (CR000) 273
16-bit timer capture/compare register 001 (CR001) 273
16-bit timer capture/compare register 010 (CR010) 273
16-bit timer capture/compare register 011 (CR011) 273
16-bit timer counter 00 (TMOO) 272
16-bit timer counter 01 (TM00) 272
16-bit timer mode control register 00 (TMC00) 277
16-bit timer mode control register 01 (TMC01) 277
16-bit timer output control register 00 (TOCOO) 282
16-bit timer output control register 01 (TOC01) 282
[T]
Timer clock selection register 50 (TCL50) 348
Timer clock selection register 51 (TCL51) 348
10-bit A/D conversion result register (ADCR) 416
Transmit buffer register 10 (SOTB10) 492
Transmit buffer register 11 (SOTB11) 492
Transmit buffer register 6 (TXB6) 459
Transmit shift register 0 (TXSO) 435
Transmit shift register 6 (TXS6) 459
[W]
Watch timer operation mode register (WTM) 391
Watchdog timer enable register (WDTE) 398

C. 2 Register Index (In Alphabetical Order with Respect to Register Symbol)

[A]
ADCR: \quad 10-bit A/D conversion result register. 416
ADCRH: 8-bit A/D conversion result register 417
ADM: A/D converter mode register 412
ADPC: A/D port configuration register 219, 419
ADS: Analog input channel specification register 418
ADTC0: Automatic data transfer address count register 0 523
ADTIO: Automatic data transfer interval specification register 0 522
ADTPO: Automatic data transfer address point specification register 0. 521
ASICL6: Asynchronous serial interface control register 6 466
ASIF6: Asynchronous serial interface transmission status register 6 463
ASIM0: Asynchronous serial interface operation mode register 0 436
ASIM6: Asynchronous serial interface operation mode register 6 460
ASISO: Asynchronous serial interface reception error status register 0 438
ASIS6: Asynchronous serial interface reception error status register 6 462
[B]
BANK: Memory Bank Select Register 150
BRGCO: Baud rate generator control register 0 439
BRGC6: Baud rate generator control register 6 465
BRGCAO: Divisor selection register 0 520
[C]
CKS: Clock output selection register 404
CKSR6: Clock selection register 6 463
CMP00: 8 -bit timer H compare register 00 366
CMP01: $\quad 8$-bit timer H compare register 01 366
CMP10: 8 -bit timer H compare register 10 366
CMP11: 8 -bit timer H compare register 11 366
CR000: 16-bit timer capture/compare register 000 273
CR001: 16-bit timer capture/compare register 000 273
CR010: 16-bit timer capture/compare register 010 273
CR011: 16-bit timer capture/compare register 011 273
CR50: $\quad 8$-bit timer compare register 50 347
CR51: 8-bit timer compare register 51 347
CRC00: Capture/compare control register 00 280
CRC01: Capture/compare control register 01 280
CSIC10: Serial clock selection register 10 495
CSIC11: Serial clock selection register 11 495
CSIM10: Serial operation mode register 10 493
CSIM11: Serial operation mode register 11 493
CSIMAO: Serial operation mode specification register 0 515
CSISO: Serial status register 0 517
CSITO: Serial trigger register 0 519
[D]
DMUC0: Multiplier/divider control register 0 625
[E]
EGN: External interrupt falling edge enable register 652
EGP: External interrupt rising edge enable register 652
[I]
IFOH: Interrupt request flag register OH 637
IFOL: Interrupt request flag register OL 637
IF1H: Interrupt request flag register 1 H 637
IF1L: Interrupt request flag register 1L 637
IICO: IIC shift register 0 553
IICCO: IIC control register 0 556
IICCLO: IIC clock selection register 0 565
IICFO: IIC flag register 0 563
IICSO: IIC status register 0 561
IICXO: IIC function expansion register 0 566
IMS: Internal memory size switching register. 721
ISC: Input switch control register. 468
IXS: Internal expansion RAM size switching register 722
[K]
KRM: Key return mode register 665
[L]
LVIM: Low-voltage detection register 699
LVIS: Low-voltage detection level selection register 701
[M]
MCM: Main clock mode register 237
MDAOH: Multiplication/division data register AO 623
MDAOL: Multiplication/division data register AO 623
MDBO: Multiplication/division data register BO 624
MKOH : Interrupt mask flag register OH 643
MKOL: Interrupt mask flag register OL 643
MK1H: Interrupt mask flag register 1 H 643
MK1L: Interrupt mask flag register 1L 643
MOC: Main OSC control register 236
[0]
OSCCTL: Clock operation mode select register 229
OSTC: Oscillation stabilization time counter status register 238, 667
OSTS: Oscillation stabilization time select register 239, 668
[P]
P0: Port register 0 210
P1: Port register 1 210
P2: Port register 2 210
P3: Port register 3 210
P4: Port register 4 210
R01UH0008EJ0401 Rev.4.01941
P5: Port register 5 210
P6: Port register 6 210
P7: \quad Port register 7 210
P12: Port register 12 210
P13: Port register 13 210
P14: Port register 14 210
PCC: Processor clock control register 232
PMO: Port mode register 0 205, 288, 498
PM1: Port mode register 1 205, 353, 372, 440, 468, 498
PM2: Port mode register 2 205, 420
PM3: Port mode register 3 205, 353
PM4: Port mode register 4 205
PM5: Port mode register 5 205
PM6: Port mode register 6 205, 568
PM7: Port mode register 7 205
PM12: Port mode register 12 205, 702
PM14: Port mode register 14 205, 407, 523
$\mathrm{PROH}: \quad$ Priority specification flag register OH 648
PROL: Priority specification flag register OL 648
PR1H: Priority specification flag register 1 H 648
PR1L: Priority specification flag register 1L 648
PRM00: Prescaler mode register 00 285
PRM01: Prescaler mode register 01 285
PUO: Pull-up resistor option register 0 215
PU1: Pull-up resistor option register 1 215
PU3: Pull-up resistor option register 3 215
PU4: Pull-up resistor option register 4 215
PU5: Pull-up resistor option register 5 215
PU6: Pull-up resistor option register 6 215
PU7: Pull-up resistor option register 7 215
PU12: Pull-up resistor option register 12 215
PU14: Pull-up resistor option register 14 215
[R]
RCM: Internal oscillation mode register 235
RESF: Reset control flag register 691
RXBO: Receive buffer register 0 435
RXB6: Receive buffer register 6 459
RXS0: Receive shift register 0 435
RXS6: Receive shift register 6 459
[S]
SDRO: Remainder data register 0 623
SIO10: Serial I/O shift register 10 492
SIO11: Serial I/O shift register 11 492
SIOAO: Serial I/O shift register 0 515
SOTB10: Transmit buffer register 10 492
SOTB11: Transmit buffer register 11 492
SVAO: Slave address register 0 553
[T]
TCL50: Timer clock selection register 50 348
TCL51: Timer clock selection register 51 348
TMOO: 16-bit timer counter 00 272
TM01: 16-bit timer counter 01 272
TM50: 8 -bit timer counter 50 347
TM51: 8-bit timer counter 51 347
TMC00: 16-bit timer mode control register 00 277
TMC01: 16-bit timer mode control register 01 277
TMC50: 8-bit timer mode control register 50 351
TMC51: $\quad 8$-bit timer mode control register 51 351
TMCYC1: 8-bit timer H carrier control register 1 371
TMHMDO: 8-bit timer H mode register 0 367
TMHMD1: 8-bit timer H mode register 1 367
TOC00: 16-bit timer output control register 00 282
TOC01: 16-bit timer output control register 01 282
TXB6: Transmit buffer register 6 459
TXSO: Transmit shift register 0 435
TXS6: Transmit shift register 6 459
[W]
WDTE: Watchdog timer enable register 398
WTM: Watch timer operation mode register 391

APPENDIX D LIST OF CAUTIONS

This appendix lists cautions described in this document.
"Classification (hard/soft)" in table is as follows.
Hard: Cautions for microcontroller internal/external hardware
Soft: Cautions for software such as register settings or programs
(1/30)

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 믄 } \\ & \text { 조 } \end{aligned}$	Pin function	AVss	Make AV ss the same potential as V ss.	$\begin{aligned} & \text { pp. } 42, \\ & 44 \text { to } 47 \end{aligned}$
			AVss, EVss	Make AV ss and EVss the same potential as Vss.	$\begin{aligned} & \text { pp. } 43, \\ & 48 \text { to } 50 \end{aligned}$
			EVdo	Make EVdo the same potential as Vdd.	$\begin{aligned} & \text { pp. } 43, \\ & 48 \text { to } 50 \end{aligned} \square$
			REGC	Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F})$.	$\begin{aligned} & \text { pp. } 42 \text { to } \\ & 50 \end{aligned}$
			ANIO/P20 to ANIn/P2n	ANIO/P20 to ANIn/P2n are set in the analog input mode after release of reset.	$\begin{aligned} & \text { pp. } 42 \text { to } \square \\ & 50 \end{aligned}$
		Pin function	ANIO/P20 to ANI7/P27	ANIO/P20 to ANI7/P27 are set in the analog input mode after release of reset.	p. 81
			$\begin{aligned} & \text { P31/INTP2/ } \\ & \text { OCD1A } \end{aligned}$	In the product with an on-chip debug function (μ PD78F05xxD and 78F05xxDA), be sure to pull the P31/INTP2/OCD1A pin down before a reset, release to prevent malfunction.	p. $82 \quad \square$
				Process the P31/INTP2/OCD1A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator (see the table on p.83).	p. $83 \quad \square$
			P121/X1/OCD0A	Process the P121/X1/OCD0A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator (see the table on p.87).	p. $87 \quad \square$
			REGC pin	Keep the wiring length as short as possible for the broken-line part in the above figure.	p. $90 \quad \square$
	$\begin{aligned} & \text { N } \\ & \hline 0 \\ & \hline \end{aligned}$	Memory space	IMS, IXS: Internal memory size switching register, internal expansion RAM size switching register	Regardless of the internal memory capacity, the initial values of the internal memory size switching register (IMS) and internal expansion RAM size switching register (IXS) of all products in the 78K0/Kx2 microcontrollers are fixed (IMS = CFH, IXS = 0 CH). Therefore, set the value corresponding to each product as indicated below.	p. $96 \quad \square$
				To set the memory size, set IMS and then IXS. Set the memory size so that the internal ROM and internal expansion RAM areas do not overlap.	p. $96 \quad \square$
			Memory bank	Instructions cannot be fetched between different memory banks.	p. 113
				Branch and access cannot be directly executed between different memory banks. Execute branch or access between different memory banks via the common area.	p. $113 \quad \square$
				Allocate interrupt servicing in the common area.	p. 113
				An instruction that extends from 7FFFH to 8000 H can only be executed in memory bank 0.	p. $113 \quad \square$
			SFR: Special function register	Do not access addresses to which SFRs are not assigned.	p. $116 \quad \square$
			SP: Stack pointer	Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.	p. $126 \quad \square$

¢		Function	Details of Function	Cautions	Page
	芯	Memory bank switching function (products whose flash memory is at least 96 KB only)	BANK: Memory bank select register	Be sure to change the value of the BANK register in the common area $(0000 \mathrm{H}$ to 7FFFH). If the value of the BANK register is changed in the bank area (8000 H to BFFFH), an inadvertent program loop occurs in the CPU. Therefore, never change the value of the BANK register in the bank area.	p. $150 \quad \square$
			Memory bank	Instructions cannot be fetched between different memory banks.	p. $151 \quad \square$
				Branching and accessing cannot be directly executed between different memory banks. Execute branching or accessing between different memory banks via the common area.	p. $151 \quad \square$
				Allocate interrupt servicing in the common area.	p. 151
				An instruction that extends from 7FFFH to 8000 H can only be executed in memory bank 0.	p. $151 \quad \square$
	$$	Port function	$\begin{aligned} & \mathrm{P} 02 / \mathrm{SO} 11, \\ & \mathrm{P} 04 / \overline{\mathrm{SCK} 11} \end{aligned}$	To use P02/SO11 and P04/SCK11 as general-purpose ports, set serial operation mode register 11 (CSIM11) and serial clock selection register 11 (CSIC11) to the default status $(00 \mathrm{H})$.	p. $164 \quad \square$
			$\begin{aligned} & \mathrm{P} 10 / \overline{\mathrm{SCK} 10} / \mathrm{TxD0}, \\ & \mathrm{P} 12 / \mathrm{SO} 10 \end{aligned}$	To use P10/SCK10/TxD0 and P12/SO10 as general-purpose ports, set serial operation mode register 10 (CSIM10) and serial clock selection register 10 (CSIC10) to the default status (00 H)	p. $175 \quad \square$
			P13/TxD6	To use P13/TxD6 as general-purpose port, clear bit 0 (TXDLV6) of synchronous serial interface control register 6 (ASICL6) to 0 (normal output of TxD6).	p. $175 \quad \square$
	믈 T		Port 2	Make the $A V_{\text {rEF }}$ pin the same potential as the VDD pin when port 2 is used as a digital port.	p. $181 \quad \square$
	¢			For the 38 -pin products of $78 \mathrm{KO} / \mathrm{KC} 2$, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 6 and 7 of P 2 to " 0 ".	p. $182 \quad \square$
	$\begin{array}{\|l} \hline \frac{\bar{V}}{0} \\ \frac{\pi}{\top} \end{array}$		$\begin{aligned} & \text { P31/INTP2/ } \\ & \text { OCD1A } \end{aligned}$	In the product with an on-chip debug function ($\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$ and 78 F 05 xxDA), be sure to pull the P31/INTP2/OCD1A pin down before a reset release, to prevent malfunction.	p. $183 \quad \square$
				Process the P31/INTP2/OCD1A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator (see the table on p.183).	p. $183 \quad \square$
	$\begin{aligned} & \overline{5} \\ & 0 \\ & 0 \end{aligned}$		Port 4	For the 38 -pin products of $78 \mathrm{KO} / \mathrm{KC} 2$, be sure to set bits 0 and 1 of PM4 and P4 to "0".	p. $187 \quad \square$
	$\begin{array}{\|l} \hline \frac{\bar{V}}{0} \\ \bar{T} \end{array}$		P60, P61	A through current flows through P60 and P61 if an intermediate potential is input to these pins, because the input buffer is also turned on when P60 and P61 are in output mode. Consequently, do not input an intermediate potential when P60 and P61 are in output mode.	p. $190 \quad \square$
			P62	A through current flows through P62 if an intermediate potential is input to this pin, because the input buffer is also turned on when P62 is in output mode. Consequently, do not input an intermediate potential when P62 is in output mode.	p. $191 \quad \square$
	¢		Port 7	For the 38 -pin products of $78 \mathrm{K0} / \mathrm{KC2}$, be sure to set bits 2 and 3 of PM7 and P7 to "0".	p. $195 \quad \square$

		Function	Details of Function	Cautions	Page
10 \vdots \vdots 0 0 0	$\begin{aligned} & \text { 亡 } \\ & \text { © } \end{aligned}$	Port function	P121/X1/OCD0A, P122/X2/EXCLK/O CD0B, P123/XT1, P124/XT2/EXCLKS	When using the P121 to P124 pins to connect a resonator for the main system clock (X1, X2) or subsystem clock (XT1, XT2), or to input an external clock for the main system clock (EXCLK) or subsystem clock (EXCLKS), the X1 oscillation mode, XT1 oscillation mode, or external clock input mode must be set by using the clock operation mode select register (OSCCTL) (for details, see 6.3 (1) Clock operation mode select register (OSCCTL) and (3) Setting of operation mode for subsystem clock pin). The reset value of OSCCTL is 00 H (all of the P121 to P 124 pins are I/O port pins). At this time, setting of the PM121 to PM124 and P121 to P124 pins is not necessary.	p. $196 \quad \square$
				Process the P121/X1/OCD0A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator (see the table on p.197).	p. $197 \quad \square$
			Port mode registers	Be sure to set bits 2 to 7 of PM0, bits 4 to 7 of PM2, bits 4 to 7 of PM3, bits 2 to 7 of PM6, bits 3 to 7 of PM12 to 1. (78K0/KB2)	p. $205 \quad \square$
				For the 38 -pin products, be sure to set bits 2 to 7 of PM0, bits 6 and 7 of PM2, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 4 to 7 of PM6, bits 4 to 7 of PM7, and bits 5 to 7 of PM12 to " 1 ". Also, be sure to set bits 0 and 1 of PM4, and bits 2 and 3 of PM7 to "0". For the 44-pin products, be sure to set bits 2 to 7 of PMO, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 4 to 7 of PM6, bits 4 to 7 of PM7, and bits 5 to 7 of PM12 to "1". For the 48-pin products, be sure to set bits 2 to 7 of PMO, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 4 to 7 of PM6, bits 6 and 7 of PM7, bits 5 to 7 of PM12, and bits 1 to 7 of PM14 to "1". (78K0/KC2)	p. 206
				Be sure to set bits 4 to 7 of PM0, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 4 to 7 of PM6, bits 5 to 7 of PM12, and bits 1 to 7 of PM14 to 1. (78K0/KD2)	p. 207
				Be sure to set bit 7 of PM0, bits 4 to 7 of PM3, bits 4 to 7 of PM4, bits 4 to 7 of PM5, bits 4 to 7 of PM6, bits 5 to 7 of PM12, and bits 2 to 7 of PM14 to "1". (78K0/KE2)	p. $208 \quad \square$
				Be sure to set bit 7 of PM0, bits 4 to 7 of PM3, bits 5 to 7 of PM12, and bits 6 and 7 of PM14 to "1". (78K0/KF2)	p. $209 \quad \square$
			Port register (78K0/KC2)	For the 38 -pin products, be sure to set bits 6 and 7 of P2, bits 0 and 1 of P4, and bits 2 and 3 of P7 to " 0 ".	p. $211 \quad \square$
			ADPC: A/D port configuration register	Set the channel used for A / D conversion to the input mode by using port mode register 2 (PM2).	p. $220 \quad \square$
				If data is written to ADPC, a wait cycle is generated. Do not write data to ADPC when the peripheral hardware clock is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $220 \quad \square$
			```1-bit manipulation instruction for port register n (Pn)```	When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit. Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.	p. 224
	$\begin{aligned} & \text { 芯 } \\ & 0 \end{aligned}$	Clock generator	OSCCTL: Clock operation mode select register	Be sure to set AMPH to 1 if the high-speed system clock oscillation frequency exceeds 10 MHz .	$\begin{aligned} & \text { pp. 230, } \square \\ & 231 \end{aligned}$
				Set AMPH before setting the main clock mode register (MCM).	$\begin{aligned} & \text { pp. 230, } \square \\ & 231 \end{aligned}$

(4/30)

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \stackrel{\pi}{0} \\ & 0 \end{aligned}$	Clock generator	OSCCTL: Clock operation mode select register	Set AMPH before setting the peripheral functions after a reset release. The value of AMPH can be changed only once after a reset release. When the high-speed system clock (X1 oscillation) is selected as the CPU clock, supply of the CPU clock is stopped for 4.06 to $16.12 \mu$ s after AMPH is set to 1 . When the high-speed system clock (external clock input) is selected as the CPU clock, supply of the CPU clock is stopped for the duration of 160 external clocks after AMPH is set to 1.	$\begin{aligned} & \text { pp. 230, } \square \\ & 231 \end{aligned}$
				If the STOP instruction is executed when AMPH $=1$, supply of the CPU clock is stopped for 4.06 to $16.12 \mu$ s after the STOP mode is released when the internal highspeed oscillation clock is selected as the CPU clock, or for the duration of 160 external clocks when the high-speed system clock (external clock input) is selected as the CPU clock. When the high-speed system clock (X1 oscillation) is selected as the CPU clock, the oscillation stabilization time is counted after the STOP mode is released.	$\begin{aligned} & \text { pp. 230, } \square \\ & 231 \end{aligned}$
				To change the value of EXCLK and OSCSEL, be sure to confirm that bit 7 (MSTOP) of the main OSC control register (MOC) is 1 (the X1 oscillator stops or the external clock from the EXCLK pin is disabled).	$\begin{aligned} & \text { pp. 230, } \square \\ & 231 \end{aligned}$
				Be sure to clear bits 1 to 5 to 0. (78K0/KB2)	$\begin{aligned} & \text { pp. 230, } \quad \square \\ & 231 \end{aligned}$
			PCC: Processor clock control register	Be sure to clear bits 1 to 3 to 0. (78K0/KC2 to $78 \mathrm{K0} / \mathrm{KF} 2)$	p. 232
				Be sure to clear bits 3 and 7 to " 0 ". ( $78 \mathrm{KO} / \mathrm{KC2} 2$ to $78 \mathrm{KO} / \mathrm{KF} 2$ )	p. 233
				The peripheral hardware clock (fPRs) is not divided when the division ratio of the PCC is set.	$\begin{aligned} & \text { pp. 232, } \\ & 233 \end{aligned}$
				Confirm that bit 5 (CLS) of the processor clock control register (PCC) is 0 (CPU is operating with main system clock) when changing the current values of XTSTART, EXCLKS, and OSCSELS.	p. $234 \square$
			RCM: Internal oscillation mode register	When setting RSTOP to 1 , be sure to confirm that the CPU operates with a clock other than the internal high-speed oscillation clock. Specifically, set under either of the following conditions.   <1> 78K0/KB2   - When MCS $=1$ (when CPU operates with the high-speed system clock) <2> 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2   - When MCS $=1$ (when CPU operates with the high-speed system clock)   - When CLS = 1 (when CPU operates with the subsystem clock)   In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock before setting RSTOP to 1 .	p. $235 \quad \square$
			MOC: Main OSC control register	When setting MSTOP to 1, be sure to confirm that the CPU operates with a clock other than the high-speed system clock. Specifically, set under either of the following conditions.   <1> 78K0/KB2   - When MCS $=0$ (when CPU operates with the internal high-speed oscillation clock)   <2> 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2   - When MCS $=0$ (when CPU operates with the internal high-speed oscillation clock)   - When CLS = 1 (when CPU operates with the subsystem clock)   In addition, stop peripheral hardware that is operating on the high-speed system clock before setting MSTOP to 1.	p. $236 \quad \square$
				Do not clear MSTOP to 0 while bit 6 (OSCSEL) of the clock operation mode select register (OSCCTL) is 0 ( $1 / \mathrm{O}$ port mode).	p. $236 \quad \square$
				The peripheral hardware cannot operate when the peripheral hardware clock is stopped. To resume the operation of the peripheral hardware after the peripheral hardware clock has been stopped, initialize the peripheral hardware.	p. $236 \quad \square$

(5/30)

¢		Function	Details of Function	Cautions	Page
	c	Clock generator	MCM: Main clock mode register	XSEL can be changed only once after a reset release.	p. 237
				Do not rewrite MCM0 when the CPU clock operates with the subsystem clock.	p. 237
				A clock other than fPRs is supplied to the following peripheral functions regardless of the setting of XSEL and MCMO.   - Watchdog timer (operates with internal low-speed oscillation clock)   - When "frL", "frL/ 2 ", or "frL/ 2 " is selected as the count clock for 8 -bit timer H1 (operates with internal low-speed oscillation clock)   - Peripheral hardware selects the external clock as the clock source (Except when the external count clock of TMOn $(n=0,1)$ is selected (TIOOn pin valid edge))	p. $237 \quad \square$
	$\begin{aligned} & \pm \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		OSTC: Oscillation stabilization time	After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.	p. $238 \quad \square$
			counter status register	The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.   - Desired OSTC oscillation stabilization time $\leq$ Oscillation stabilization time set by OSTS   Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. $238 \quad \square$
	믄			The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).	p. $238 \quad \square$
	$\begin{aligned} & \hline \begin{array}{l} \mathrm{J} \\ 0 \end{array} \end{aligned}$		OSTS: Oscillation stabilization time	To set the STOP mode when the X1 clock is used as the CPU clock, set OSTS before executing the STOP instruction.	p. $239 \quad \square$
			select register	Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.	p. $239 \quad \square$
				The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.   - Desired OSTC oscillation stabilization time $\leq$ Oscillation stabilization time set by OSTS   Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. $239 \quad \square$
				The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).	p. $239 \quad \square$
		X1/XT1 oscillator	-	When using the X 1 oscillator and XT 1 oscillator, wire as follows in the area enclosed by the broken lines in the Figures 6-12 and 6-13 to avoid an adverse effect from wiring capacitance.   - Keep the wiring length as short as possible.   - Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.   - Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.   - Do not fetch signals from the oscillator.   Note that the XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption.	p. $241 \quad \square$
				When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT1, resulting in malfunctioning.	p. $242 \quad \square$

$(6 / 30)$

产		Function	Details of Function	Cautions	Page
$\begin{aligned} & \hline \stackrel{0}{0} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\rightharpoonup}{0} \\ & \vdots \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{\bar{V}}{\bar{T}} \\ \frac{1}{2} \end{array}$	Clock generator operation when power supply voltage is turned on	-	It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK and EXCLKS pins is used.	$\begin{aligned} & \text { pp. 246, } \square \\ & 247 \end{aligned}$
				A voltage oscillation stabilization time of 1.93 to 5.39 ms is required after the power supply voltage reaches 1.59 V (TYP.). If the supply voltage rises from 1.59 V (TYP.) to 2.7 V (TYP.) within 1.93 ms , the power supply oscillation stabilization time of 0 to 5.39 ms is automatically generated before reset processing.	p. $247 \quad \square$
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \omega \end{aligned}$	Controlling high-speed system clock	X1/P121 and   X2/EXCLK/P122	The X1/P121 and X2/EXCLK/P122 pins are in the I/O port mode after a reset release.	p. $248 \quad \square$
				Do not change the value of EXCLK and OSCSEL while the X1 clock is operating.	p. 249
				Set the X1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS : $\mathrm{T}_{\mathrm{A}}=\bullet 40$ to $\left.+125^{\circ} \mathrm{C}\right)$ ).	p. $249 \quad \square$
			External main system clock	Do not change the value of EXCLK and OSCSEL while the external main systerm clock is operating.	p. $249 \quad \square$
				Set the external main system clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS : $\mathrm{T}_{\mathrm{A}}=\bullet 40$ to $\left.+125^{\circ} \mathrm{C}\right)$ ).	p. $249 \quad \square$
			Main system clock	If the high-speed system clock is selected as the main system clock, a clock other than the high-speed system clock cannot be set as the peripheral hardware clock.	p. $250 \quad \square$
			High-speed system clock	Be sure to confirm that MCS $=0$ or CLS $=1$ when setting MSTOP to 1 . In addition, stop peripheral hardware that is operating on the high-speed system clock.	p. $251 \quad \square$
			Internal highspeed oscillation clock	Be sure to confirm that MCS = 1 or CLS = 1 when setting RSTOP to 1 . In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock.	p. $253 \quad \square$
			$\begin{array}{\|l\|} \hline \text { XT1/P123, } \\ \text { XT2/EXCLKS/ } \\ \text { P124 } \\ \hline \end{array}$	The XT1/P123 and XT2/EXCLKS/P124 pins are in the I/O port mode after a reset release.	p. $254 \quad \square$
			External clock from peripheral hardware pins	Do not start the peripheral hardware operation with the external clock from peripheral hardware pins when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.	p. $254 \quad \square$
			XT1 clock, external subsystem clock	Do not change the value of XTSTART, EXCLKS, and OSCSELS while the subsystem clock is operating.	p. $254 \quad \square$
			Subsystem clock	Be sure to confirm that CLS $=0$ when clearing OSCSELS to 0 . In addition, stop the watch timer if it is operating on the subsystem clock.	p. $255 \quad \square$
				The subsystem clock oscillation cannot be stopped using the STOP instruction.	p. $255 \quad \square$
		Controlling internal lowspeed oscillation clock	Internal lowspeed oscillation clock	If "Internal low-speed oscillator cannot be stopped" is selected by the option byte, oscillation of the internal low-speed oscillation clock cannot be controlled.	p. $256 \quad \square$

(7/30)

¢		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \dot{N} \\ & \dot{O} \end{aligned}$	CPU clock	-	Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS : $\mathrm{T}_{\mathrm{A}}=\bullet 40$ to $\left.+125^{\circ} \mathrm{C}\right)$ ).	$\begin{aligned} & \hline \text { pp. 260, } \\ & 261,263 \end{aligned} \square$
				Selection of the main system clock cycle division factor (PCC0 to PCC2) and switchover from the main system clock to the subsystem clock (changing CSS from 0 to 1) should not be set simultaneously.   Simultaneous setting is possible, however, for selection of the main system clock cycle division factor (PCC0 to PCC2) and switchover from the subsystem clock to the main system clock (changing CSS from 1 to 0 ).	p. $266 \quad \square$
				When switching the internal high-speed oscillation clock to the high-speed system clock, bit 2 (XSEL) of MCM must be set to 1 in advance. The value of XSEL can be changed only once after a reset release.	p. $267 \quad \square$
				Do not rewrite MCM0 when the CPU clock operates with the subsystem clock.	p. 267
	$\begin{array}{\|l\|} \hline \frac{0}{\bar{T}} \\ \frac{1}{1} \end{array}$	16-bit timer/event counters 00, 01	-	The valid edge of TIO10 and timer output (TO00) cannot be used for the P01 pin at the same time, and the valid edge of TIO11 and timer output (TO01) cannot be used for the P06 pin at the same time. Select either of the functions.	p. $272 \quad \square$
	$\begin{aligned} & \bar{J} \\ & \hline \stackrel{0}{0} \\ & \hline \end{aligned}$			If clearing of bits 3 and 2 (TMCOn3 and TMCOn2) of 16-bit timer mode control register $0 n$ (TMCOn) to 00 and input of the capture trigger conflict, then the captured data is undefined.	p. $272 \quad \square$
				To change the mode from the capture mode to the comparison mode, first clear the TMCOn3 and TMCOn2 bits to 00, and then change the setting. A value that has been once captured remains stored in CR00n unless the device is reset. If the mode has been changed to the comparison mode, be sure to set a comparison value.	p. $272 \quad \square$
			TMOn: 16-bit timer counter On	Even if TMOn is read, the value is not captured by CR01n.	p. $273 \quad \square$
			CR00n, CR01n:   16-bit timer	CROOn does not perform the capture operation when it is set in the comparison mode, even if a capture trigger is input to it.	p. $274 \quad \square$
			capture/compare registers 00n, 01n	CR01n does not perform the capture operation when it is set in the comparison mode, even if a capture trigger is input to it.	p. $274 \quad \square$
				To capture the count value of the TMOn register to the CR00n register by using the phase reverse to that input to the TIOOn pin, the interrupt request signal (INTTMOOn) is not generated after the value has been captured. If the valid edge is detected on the TIO1n pin during this operation, the capture operation is not performed but the INTTMOOn signal is generated as an external interrupt signal. To not use the external interrupt, mask the INTTMOOn signal.	p. $276 \quad \square$
			TMC0n: 16-bit timer mode control register On	16-bit timer/event counter On starts operation at the moment TMCOn2 and TMCOn3 are set to values other than 00 (operation stop mode), respectively. Set TMCOn2 and TMCOn3 to 00 to stop the operation.	p. $277 \quad \square$
	$\begin{aligned} & \text { 문 } \\ & \text { דָ } \end{aligned}$		CRCOn: Capture/ compare control register On	To ensure that the capture operation is performed properly, the capture trigger requires a pulse two cycles longer than the count clock selected by prescaler mode register On (PRMOn).	$\begin{aligned} & \text { pp. 280, } \square \\ & 281 \end{aligned}$
	$\begin{aligned} & \stackrel{\pi}{\circ} \\ & 0 \end{aligned}$		TOC0n: 16-bit timer output control register On	Be sure to set TOCOn using the following procedure.   $<1>$ Set TOCOn4 and TOCOn1 to 1.   $<2>$ Set only TOEOn to 1.   $<3>$ Set either of LVSOn or LVROn to 1.	p. $282 \quad \square$

(8/30)

产		Function	Details of Function	Cautions	Page
$\begin{aligned} & \hline \hat{N} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{0} \\ & \bar{U} \end{aligned}$	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$	16-bit timer/event counters 00, 01	PRMOn: Prescaler mode register On	Do not apply the following setting when setting the PRMOn1 and PRMOn0 bits to 11 (to specify the valid edge of the TIOOn pin as a count clock).   - Clear \& start mode entered by the TIOOn pin valid edge   - Setting the TIOOn pin as a capture trigger	p. $285 \quad \square$
				If the operation of the 16-bit timer/event counter On is enabled when the TIOOn or TIO1n pin is at high level and when the valid edge of the TIOOn or TIO1n pin is specified to be the rising edge or both edges, the high level of the TIOOn or TIO1n pin is detected as a rising edge. Note this when the TIOOn or TIO1n pin is pulled up. However, the rising edge is not detected when the timer operation has been once stopped and then is enabled again.	p. $285 \quad \square$
	-			The valid edge of TIO10 and timer output (TO00) cannot be used for the P01 pin at the same time, and the valid edge of TIO11 and timer output (TO01) cannot be used for the P06 pin at the same time. Select either of the functions.	p. $285 \quad \square$
	$\begin{aligned} & \hline \begin{array}{c} \mathrm{O} \\ \mathrm{O} \end{array} \end{aligned}$		Clear \& start mode entered by TIOOn pin valid edge input	Do not set the count clock as the valid edge of the TIOOn pin (PRMOn1 and PRMOn0 = 11). When PRMOn1 and PRMOn0 = 11, TMOn may be cleared.	p. $299 \quad \square$
			PPG output	To change the duty factor (value of CR01n) during operation, see 7.5.1 Rewriting CR01n during TMOn operation.	p. $321 \quad \square$
				Set values to CR00n and CR01n such that the condition 0000H $\leq$ CR01n $<$ CR00n $\leq$ FFFFH is satisfied.	p. $323 \quad \square$
			One-shot pulse output	Do not input the trigger again (setting OSPTOn to 1 or detecting the valid edge of the TIOOn pin ) while the one-shot pulse is output. To output the one-shot pulse again, generate the trigger after the current one-shot pulse output has completed.	p. $325 \quad \square$
				To use only the setting of OSPTOn to 1 as the trigger of one-shot pulse output, do not change the level of the TIOOn pin or its alternate function port pin. Otherwise, the pulse will be unexpectedly output.	p. $325 \quad \square$
				Do not set the same value to CR00n and CR01n.	p. 327
			LVSOn, LVRn0	Be sure to set LVSOn and LVROn following steps <1>, <2>, and <3> above. Step <2> can be performed after <1> and before <3>.	p. $339 \quad \square$
			-	Table 7-3 shows the restrictions for each channel.	p. $340 \quad \square$
	$\begin{aligned} & \text { 문 } \\ & \text { 포 } \end{aligned}$		Timer start errors	An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because counting TMOn is started asynchronously to the count pulse.	p. $340 \quad \square$
	$\begin{aligned} & \text { 苟 } \\ & 0 \end{aligned}$		CR00n, CR01n: 16-bit timer capture/compare registers 00n, 01n	Set a value other than 0000 H to CR00n and CR01n in clear \& start mode entered upon a match between TMOn and CROOn (TMOn cannot count one pulse when it is used as an external event counter).	p. $340 \quad \square$
				When the valid edge is input to the TIOOn/TIO1n pin and the reverse phase of the TIOOn pin is detected while CR00n/CR01n is read, CR01n performs a capture operation but the read value of CR00n/CR01n is not guaranteed. At this time, an interrupt signal (INTTM00n/INTTM01n) is generated when the valid edge of the TIOOn/TIO1n pin is detected (the interrupt signal is not generated when the reversephase edge of the TIOOn pin is detected).   When the count value is captured because the valid edge of the TIOOn/TIO1n pin was detected, read the value of CR00n/CR01n after INTTM00n/INTTM01n is generated.	p. $341 \quad \square$
				The values of CR00n and CR01n are not guaranteed after 16-bit timer/event counter On stops.	p. $341 \quad \square$

(9/30)


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \bar{\circ} \\ & \text { © } \end{aligned}$	8-bit timer/event counters 50, 51	TCL50: Timer clock selection register 50	When rewriting TCL50 to other data, stop the timer operation beforehand.	p. 349
				Be sure to clear bits 3 to 7 to "0".	p. 349
			TCL51: Timer clock selection register 51	When rewriting TCL51 to other data, stop the timer operation beforehand.	p. 350
				Be sure to clear bits 3 to 7 to "0".	p. 350
			TMC5n: 8-bit timer mode control register 5n (TMC5n)	The settings of LVS5n and LVR5n are valid in other than PWM mode.	p. 352
				Perform $<1>$ to $<4>$ below in the following order, not at the same time.   $<1>$ Set TMC5n1, TMC5n6: Operation mode setting   <2> Set TOE5n to enable output:   Timer output enable   $<3>$ Set LVS5n, LVR5n (see Caution 1): Timer F/F setting   <4> Set TCE5n	p. $352 \square$
				When TCE5 $n=1$, setting the other bits of TMC5n is prohibited.	p. $352 \quad \square$
				The actual TO50/TI50/P17 and TO51/TI51/P33/INTP4 pin outputs are determined depending on PM17 and P17, and PM33 and P33, besides TO5n output.	p. $352 \square$
			Interval timer	Do not write other values to CR5n during operation.	p. 354
			Square-wave output	Do not write other values to CR5n during operation.	p. 357
			PWM output	In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock selected by TCL5n) or more.	p. 358
				When reading from CR5n between <1> and <2> in Figure 8-15, the value read differs from the actual value (read value: M, actual value of CR5n: N).	p. $361 \quad \square$
			Timer start error	An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 8 -bit timer counters 50 and 51 (TM50, TM51) are started asynchronously to the count clock.	p. $362 \quad \square$
			Reading of TM5n	TM5n can be read without stopping the actual counter, because the count values captured to the buffer are fixed when it is read. The buffer, however, may not be updated when it is read immediately before the counter counts up, because the buffer is updated at the timing the counter counts up.	p. $362 \quad \square$
	$\begin{aligned} & \text { \# } \\ & i \end{aligned}$	8-bit timers$\mathrm{HO}, \mathrm{H} 1$	CMP0n: 8-bit timer H comparer register On (CMPOn)	CMPOn cannot be rewritten during timer count operation. CMPOn can be refreshed (the same value is written) during timer count operation.	p. $366 \quad \square$
			CMP1n: 8-bit timer H compare register 1n (CMP1n)	In the PWM output mode and carrier generator mode, be sure to set CMP1n when starting the timer count operation (TMHEn $=1$ ) after the timer count operation was stopped $(T M H E n=0)$ (be sure to set again even if setting the same value to CMP1n).	p. $366 \quad \square$
			TMHMD0: 8-bit timer H mode register 0	When TMHEO $=1$, setting the other bits of TMHMD0 is prohibited. However, TMHMDO can be refreshed (the same value is written).	p. $369 \quad \square$
				In the PWM output mode, be sure to set the 8-bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHEO $=1$ ) after the timer count operation was stopped $($ TMHE $=0)($ be sure to set again even if setting the same value to CMP10).	p. $369 \quad \square$
				The actual TOH0/P15 pin output is determined depending on PM15 and P15, besides TOHO output.	p. $369 \quad \square$
			TMHMD1: 8-bit timer H mode register 1	When TMHE1 = 1, setting the other bits of TMHMD1 is prohibited. However, TMHMD1 can be refreshed (the same value is written).	p. $371 \quad \square$
				In the PWM output mode and carrier generator mode, be sure to set the 8-bit timer H compare register 11 (CMP11) when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to CMP11).	p. $371 \quad \square$
				When the carrier generator mode is used, set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.	p. $371 \quad \square$
				The actual TOH1/INTP5/P16 pin output is determined depending on PM16 and P16, besides TOH1 output.	p. $371 \quad \square$


		Function	Details of Function	Cautions	Page
	¢	8-bit timers$\mathrm{HO}, \mathrm{H} 1$	TMCYC1: 8-bit timer H carrier register 1	Do not rewrite RMC1 when TMHE = 1. However, TMCYC1 can be refreshed (the same value is written).	p. $371 \quad \square$
	믗		PWM output	The set value of the CMP1n register can be changed while the timer counter is operating. However, this takes a duration of three operating clocks (signal selected by the CKSn2 to CKSn0 bits of the TMHMDn register) from when the value of the CMP1n register is changed until the value is transferred to the register.	p. $377 \quad \square$
	$\begin{aligned} & \text { 亡 } \\ & \text { © } \end{aligned}$			Be sure to set the CMP1n register when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped $(T M H E n=0)$ (be sure to set again even if setting the same value to the CMP1n register).	p. $377 \quad \square$
				Make sure that the CMP1n register setting value (M) and CMPOn register setting value $(\mathrm{N})$ are within the following range.   $00 \mathrm{H} \leq \mathrm{CMP1n}(\mathrm{M})<$ CMPOn $(\mathrm{N}) \leq \mathrm{FFH}$	p. $377 \quad \square$
			Carrier generator (8-bit timer H1 only)	Do not rewrite the NRZB1 bit again until at least the second clock after it has been rewritten, or else the transfer from the NRZB1 bit to the NRZ1 bit is not guaranteed.	p. $383 \square$
				When the 8-bit timer/event counter 51 is used in the carrier generator mode, an interrupt is generated at the timing of <1>. When the 8-bit timer/event counter 51 is used in a mode other than the carrier generator mode, the timing of the interrupt generation differs.	p. $383 \square$
				Be sure to set the CMP11 register when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped $($ TMHE1 $=0$ ) (be sure to set again even if setting the same value to the CMP11 register).	p. $385 \square$
				Set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.	p. $385 \quad \square$
				Set the values of the CMP01 and CMP11 registers in a range of 01H to FFH.	p. 385
				The set value of the CMP11 register can be changed while the timer counter is operating. However, it takes the duration of three operating clocks (signal selected by the CKS12 to CKS10 bits of the TMHMD1 register) since the value of the CMP11 register has been changed until the value is transferred to the register.	p. $385 \square$
				Be sure to set the RMC1 bit before the count operation is started.	p. 385
	$\begin{aligned} & \pm \\ & \hline \\ & 0 \end{aligned}$	Watch timer	WTM: Watch timer operation mode register	Do not change the count clock and interval time (by setting bits 4 to 7 (WTM4 to WTM7) of WTM) during watch timer operation.	p. $393 \square$
	-		Interrupt request	When operation of the watch timer and 5-bit counter is enabled by the watch timer mode control register (WTM) (by setting bits 0 (WTMO) and 1 (WTM1) of WTM to 1 ), the interval until the first interrupt request signal (INTWT) is generated after the register is set does not exactly match the specification made with bits 2 and 3 (WTM2, WTM3) of WTM. Subsequently, however, the INTWT signal is generated at the specified intervals.	p. $395 \square$
	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$	Watchdog timer	WDTE:   Watchdog timer enable register	If a value other than ACH is written to WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.	p. $398 \quad \square$
				If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.	p. $398 \quad \square$
				The value read from WDTE is 9AH/1AH (this differs from the written value (ACH)).	p. $398 \quad \square$
			Operation control	The first writing to WDTE after a reset release clears the watchdog timer, if it is made before the overflow time regardless of the timing of the writing, and the watchdog timer starts counting again.	p. $399 \square$
				If the watchdog timer is cleared by writing "ACH" to WDTE, the actual overflow time may be different from the overflow time set by the option byte by up to 2/frL seconds.	p. $399 \square$


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \pm \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	Watchdog timer	Operation control	The watchdog timer can be cleared immediately before the count value overflows (FFFFH).	p. $399 \quad \square$
				The operation of the watchdog timer in the HALT and STOP modes differs as follows depending on the set value of bit 0 (LSROSC) of the option byte (see Table on p. 402).   If LSROSC $=0$, the watchdog timer resumes counting after the HALT or STOP mode is released. At this time, the counter is not cleared to 0 but starts counting from the value at which it was stopped.   If oscillation of the internal low-speed oscillator is stopped by setting LSRSTOP (bit 1 of the internal oscillation mode register $($ RCM $)=1$ ) when LSROSC $=0$, the watchdog timer stops operating. At this time, the counter is not cleared to 0 .	p. $400 \quad \square$
			Setting overflow time of watchdog timer, Setting window open period of watchdog time	The combination of WDCS2 $=$ WDCS1 $=$ WDCS0 $=0$ and WINDOW1 $=$ WINDOW0 $=0$ is prohibited.	$\begin{aligned} & \text { pp. 400, } \square \\ & 401 \end{aligned}$
				The watchdog timer continues its operation during self-programming and EEPROM emulation of the flash memory. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.	$\begin{aligned} & \text { pp. 400, } \square \\ & 401 \end{aligned}$
			Setting window open period of watchdog timer	Setting WINDOW1 = WINDOW0 $=0$ is prohibited when using the watchdog timer at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$.	p. $401 \quad \square$
				The first writing to WDTE after a reset release clears the watchdog timer, if it is made before the overflow time regardless of the timing of the writing, and the watchdog timer starts counting again.	p. $401 \quad \square$
	$\begin{aligned} & \hline \frac{\pi}{0} \\ & 0 \\ & \hline \end{aligned}$	Clock output/ buzzer output controller	CKS: clock output select register	Set CCS3 to CCS0 while the clock output operation is stopped (CLOE $=0$ ).	$\begin{aligned} & \text { pp. 405, } \square \\ & 407 \end{aligned}$
				Set BCS1 and BCS0 when the buzzer output operation is stopped ( $\mathrm{BZOE}=0$ ) .	p. 407
	$$	A/D converter	ADCR: 10-bit A/D conversion register, ADCRH: 8-bit A/D conversion register	When data is read from ADCR and ADCRH, a wait cycle is generated. Do not read data from ADCR and ADCRH when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. 411
			ADM: A/D converter mode register	A/D conversion must be stopped before rewriting bits FR0 to FR2, LV1, and LV0 to values other than the identical data.	p. $413 \quad \square$
				If data is written to ADM, a wait cycle is generated. Do not write data to ADM when the peripheral hardware clock (fPRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $413 \quad \square$
			A/D conversion timer selection	Set the conversion times with the following conditions. (see pp.414, 415)	$\begin{array}{\|l\|} \hline \text { pp. 414, } \\ 415 \\ \hline \end{array}$
				When rewriting FR2 to FR0, LV1, and LV0 to other than the same data, stop A/D conversion once (ADCS = 0) beforehand.	$\begin{array}{\|l\|} \hline \text { pp. 414, } \\ 415 \end{array}$
				Change LVO from the default value, when $2.3 \mathrm{~V} \leq \mathrm{AVREF}<2.7 \mathrm{~V}$.	$\left\lvert\, \begin{aligned} & \text { pp. 414, } \\ & 415 \end{aligned}\right.$
				The above conversion time does not include clock frequency errors. Select conversion time, taking clock frequency errors into consideration.	$\begin{array}{\|l\|} \hline \text { pp. 414, } \\ 415 \end{array}$
			ADCR: 10-bit A/D conversion register	When writing to the $A / D$ converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.	p. 416
				If data is read from ADCR, a wait cycle is generated. Do not read data from ADCR when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $416 \quad \square$


		Function	Details of Function	Cautions	Page
	$$	A/D converter	ADCRH: 8-bit A/D conversion register	When writing to the A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.	p. $417 \quad \square$
				If data is read from ADCRH, a wait cycle is generated. Do not read data from ADCRH when the peripheral hardware clock (fpRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $417 \quad \square$
			ADS: Analog input channel specification register	Be sure to clear bits 3 to 7 to "0".	p. 418
				If data is written to ADS, a wait cycle is generated. Do not write data to ADS when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. 418
			ADS: Analog input channel specification register, ADPC: A/D port configuration register (ADPC)	Set a channel to be used for A/D conversion in the input mode by using port mode register 2 (PM2).	$\begin{array}{\|l\|} \hline \text { pp. 418, } \\ 419 \end{array}$
			ADPC: A/D port configuration register (ADPC)	If data is written to ADPC, a wait cycle is generated. Do not write data to ADPC when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $419 \quad \square$
			Port mode register 2 (PM2)	For the 38 -pin products of $78 \mathrm{~K} 0 / \mathrm{KC2}$, be sure to set bits 6 and 7 of PM2 to " 1 ", and bits 6 and 7 of P2 to "0".	p. 420
			Basic operations of A/D converter	Make sure the period of $<1>$ to $<5>$ is $1 \mu$ s or more.	p. $421 \quad \square$
			A/D conversion operation	Make sure the period of $\langle 1\rangle$ to $<5\rangle$ is $1 \mu$ s or more.	p. 425
				$<1>$ may be done between <2> and <4>.	p. 425
				$<1>$ can be omitted. However, ignore data of the first conversion after <5> in this case.	p. 425
				The period from <6> to <9> differs from the conversion time set using bits 5 to 1 (FR2 to FR0, LV1, LVO) of ADM. The period from $<8>$ to $<9>$ is the conversion time set using FR2 to FR0, LV1, and LV0.	p. 425
			Operating current in STOP mode	The A/D converter stops operating in the STOP mode. At this time, the operating current can be reduced by clearing bit 7 (ADCS) and bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 . To restart from the standby status, clear bit 0 (ADIF) of interrupt request flag register 1 L (IF1L) to 0 and start operation.	p. $428 \quad \square$
	$\begin{array}{\|l} \hline \frac{\bar{V}}{T} \\ \bar{T} \end{array}$		Input range of ANIO to ANI7	Observe the rated range of the ANIO to ANI7 input voltage. If a voltage of AVref or higher and $A V$ ss or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.	p. $428 \quad \square$
	$$		Conflicting operations	If conflict occurs between $A / D$ conversion result register (ADCR, ADCRH) write and ADCR or ADCRH read by instruction upon the end of conversion, ADCR or ADCRH read has priority. After the read operation, the new conversion result is written to ADCR or ADCRH.	p. 428
				If conflict occurs between ADCR or ADCRH write and A/D converter mode register (ADM) write, analog input channel specification register (ADS), or A/D port configuration register (ADPC) write upon the end of conversion, ADM, ADS, or ADPC write has priority. ADCR or ADCRH write is not performed, nor is the conversion end interrupt signal (INTAD) generated.	p. $428 \quad \square$


		Function	Details of Function	Cautions	Page
	$\begin{array}{\|l} \text { 므́ } \\ \frac{\pi}{\top} \end{array}$	A/D converter	Noise countermeasures	To maintain the 10-bit resolution, attention must be paid to noise input to the $A V_{\text {reF }}$ pin and pins ANIO to ANI7.   - Connect a capacitor with a low equivalent resistance and a good frequency response to the power supply.   - The higher the output impedance of the analog input source, the greater the influence. To reduce the noise, connecting external C as shown in Figure 13-20 is recommended.   - Do not switch these pins with other pins during conversion.   - The accuracy is improved if the HALT mode is set immediately after the start of conversion.	p. 428
			ANIO/P20 to ANI7/P27	The analog input pins (ANI0 to ANI7) are also used as input port pins (P20 to P27). When A/D conversion is performed with any of ANIO to ANI7 selected, do not access P20 to P27 while conversion is in progress; otherwise the conversion resolution may be degraded. It is recommended to select pins used as P20 to P27 starting with the ANIO/P20 that is the furthest from $A V_{\text {ref. }}$	p. 429
				If a digital pulse is applied to the pins adjacent to the pins currently used for A/D conversion, the expected value of the A/D conversion may not be obtained due to coupling noise. Therefore, do not apply a pulse to the pins adjacent to the pin undergoing A/D conversion.	p. 429
			Input impedance of ANIO to ANI7 pins	This A/D converter charges a sampling capacitor for sampling during sampling time. Therefore, only a leakage current flows when sampling is not in progress, and a current that charges the capacitor flows during sampling. Consequently, the input impedance fluctuates depending on whether sampling is in progress, and on the other states.   To make sure that sampling is effective, however, it is recommended to keep the output impedance of the analog input source to within $10 \mathrm{k} \Omega$, and to connect a capacitor of about 100 pF to the ANIO to ANI7 pins (see Figure 13-20).	p. $429 \quad \square$
			AVref pin input impedance	A series resistor string of several tens of $k \Omega$ is connected between the $A V_{\text {rEF }}$ and AVss pins.   Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to the series resistor string between the AVref and AVss pins, resulting in a large reference voltage error.	p. $429 \quad \square$
	$\begin{array}{\|l\|} \hline \frac{\pi}{0} \\ \text { © } \end{array}$		Interrupt request flag (ADIF)	The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed. Therefore, if an analog input pin is changed during $A / D$ conversion, the A/D conversion result and ADIF for the pre-change analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time, when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-change analog input has not ended. When A/D conversion is stopped and then resumed, clear ADIF before the A/D conversion operation is resumed.	p. $430 \quad \square$
			Conversion results just after A/D conversion start	The first $A / D$ conversion value immediately after $A / D$ conversion starts may not fall within the rating range if the ADCS bit is set to 1 within $1 \mu \mathrm{~s}$ after the ADCE bit was set to 1 , or if the ADCS bit is set to 1 with the ADCE bit $=0$. Take measures such as polling the $A / D$ conversion end interrupt request (INTAD) and removing the first conversion result.	p. $430 \quad \square$
			A/D conversion result register (ADCR, ADCRH) read operation	When a write operation is performed to the A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR and ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using a timing other than the above may cause an incorrect conversion result to be read.	p. $430 \quad \square$
			Internal equivalent circuit	The equivalent circuit of the analog input block is shown below. (see Figure 13-22)	p. $431 \quad \square$


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \pm \\ & \text { N } \\ & 0 \end{aligned}$	Serial   interface   UARTO	UART mode	If clock supply to serial interface UART0 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UARTO is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD0 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER0 $=0$, RXEO $=0$, and TXEO $=0$.	p. $432 \quad \square$
				Set POWER0 $=1$ and then set TXEO $=1$ (transmission) or RXE0 $=1$ (reception) to start communication.	p. $432 \quad \square$
				TXEO and RXEO are synchronized by the base clock (fxcLко) set by BRGC0. To enable transmission or reception again, set TXEO or RXEO to 1 at least two clocks of base clock after TXEO or RXEO has been cleared to 0 . If TXEO or RXEO is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.	p. $432 \quad \square$
				Set transmit data to TXS0 at least one base clock (fxclko) after setting TXE0 = 1 .	$\begin{array}{\|l\|} \hline \text { pp. 432, } \\ 435 \end{array}$
			TXS0: Transmit shift register 0	Do not write the next transmit data to TXS0 before the transmission completion interrupt signal (INTSTO) is generated.	p. $435 \quad \square$
			ASIMO:   Asynchronous	To start the transmission, set POWER0 to 1 and then set TXE0 to 1 . To stop the transmission, clear TXEO to 0 , and then clear POWERO to 0 .	p. $437 \quad \square$
			serial interface operation mode	To start the reception, set POWERO to 1 and then set RXE0 to 1 . To stop the reception, clear RXE0 to 0, and then clear POWER0 to 0.	p. $437 \quad \square$
				Set POWER0 to 1 and then set RXE0 to 1 while a high level is input to the RxD0 pin. If POWERO is set to 1 and RXEO is set to 1 while a low level is input, reception is started.	p. $437 \quad \square$
				TXEO and RXE0 are synchronized by the base clock (fxcLкo) set by BRGC0. To enable transmission or reception again, set TXEO or RXEO to 1 at least two clocks of base clock after TXEO or RXEO has been cleared to 0 . If TXEO or RXEO is set within two clocks of base clock, the transmission circuit or reception circuit may not be initialized.	p. $437 \quad \square$
				Set transmit data to TXS0 at least one base clock (fxclko) after setting TXE0 = 1 .	p. $437 \quad \square$
				Clear the TXE0 and RXE0 bits to 0 before rewriting the PS01, PS00, and CL0 bits.	p. 437
				Make sure that TXEO $=0$ when rewriting the SLO bit. Reception is always performed with "number of stop bits = 1", and therefore, is not affected by the set value of the SLO bit.	p. $437 \quad \square$
				Be sure to set bit 0 to 1.	p. 437
			ASISO:   Asynchronous	The operation of the PE0 bit differs depending on the set values of the PS01 and PSOO bits of asynchronous serial interface operation mode register 0 (ASIMO)	p. $438 \quad \square$
			serial interface reception error	Only the first bit of the receive data is checked as the stop bit, regardless of the number of stop bits.	p. $438 \quad \square$
			sta	If an overrun error occurs, the next receive data is not written to receive buffer register 0 (RXB0) but discarded.	p. $438 \quad \square$
				If data is read from ASIS0, a wait cycle is generated. Do not read data from ASIS0 when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $438 \quad \square$
			BRGC0: Baud rate generator	Make sure that bit 6 (TXEO) and bit 5 (RXEO) of the ASIM0 register $=0$ when rewriting the MDL04 to MDL00 bits.	p. $440 \quad \square$
			control register 0	Make sure that bit 7 (POWER0) of the ASIM0 register $=0$ when rewriting the TPS01 and TPSOO bits.	p. $440 \quad \square$
				The baud rate value is the output clock of the 5-bit counter divided by 2.	p. $440 \quad \square$


产		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { \# } \\ & 0 \end{aligned}$	Serial interface UARTO	POWERO, TXE0, RXE0: Bits 7, 6, 5 of ASIMO	Clear POWER0 to 0 after clearing TXEO and RXEO to 0 to set the operation stop mode.   To start the communication, set POWER0 to 1, and then set TXE0 or RXE0 to 1.	p. $441 \quad \square$
			UART mode	Take relationship with the other party of communication when setting the port mode register and port register.	p. $442 \quad \square$
			UART transmission	After transmit data is written to TXS0, do not write the next transmit data before the transmission completion interrupt signal (INTSTO) is generated.	p. $445 \quad \square$
			UART reception	If a reception error occurs, read asynchronous serial interface reception error status register 0 (ASISO) and then read receive buffer register 0 (RXBO) to clear the error flag.   Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.	p. $446 \quad \square$
				Reception is always performed with the "number of stop bits $=1$ ". The second stop bit is ignored.	p. $446 \quad \square$
			Error of baud rate	Keep the baud rate error during transmission to within the permissible error range at the reception destination.	p. $450 \quad \square$
				Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.	p. $450 \quad \square$
			Permissible baud rate range during reception	Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.	p. $451 \quad \square$
	$\begin{gathered} \pm \\ 0 \\ 0 \end{gathered}$	Serial interface UART6	UART mode	The TxD6 output inversion function inverts only the transmission side and not the reception side. To use this function, the reception side must be ready for reception of inverted data.	p. $453 \quad \square$
				If clock supply to serial interface UART6 is not stopped (e.g., in the HALT mode), normal operation continues. If clock supply to serial interface UART6 is stopped (e.g., in the STOP mode), each register stops operating, and holds the value immediately before clock supply was stopped. The TxD6 pin also holds the value immediately before clock supply was stopped and outputs it. However, the operation is not guaranteed after clock supply is resumed. Therefore, reset the circuit so that POWER6 $=0$, RXE6 $=0$, and TXE $6=0$.	p. $453 \quad \square$
				Set POWER6 $=1$ and then set TXE6 $=1$ (transmission) or RXE6 $=1$ (reception) to start communication.	p. $453 \quad \square$
				TXE6 and RXE6 are synchronized by the base clock (fxclk6) set by CKSR6. To enable transmission or reception again, set TXE6 or RXE6 to 1 at least two clocks of the base clock after TXE6 or RXE6 has been cleared to 0 . If TXE6 or RXE6 is set within two clocks of the base clock, the transmission circuit or reception circuit may not be initialized.	p. $453 \quad \square$
				Set transmit data to TXB6 at least one base clock (fxcLk6) after setting TXE6 = 1.	p. $453 \quad \square$
				If data is continuously transmitted, the communication timing from the stop bit to the next start bit is extended two operating clocks of the macro. However, this does not affect the result of communication because the reception side initializes the timing when it has detected a start bit. Do not use the continuous transmission function if the interface is used in LIN communication operation.	p. $453 \quad \square$
			TXB6: Transmit buffer register 6	Do not write data to TXB6 when bit 1 (TXBF6) of asynchronous serial interface transmission status register 6 (ASIF6) is 1.	p. $459 \quad \square$
				Do not refresh (write the same value to) TXB6 by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) are 1 or when bits 7 and 5 (POWER6, RXE6) of ASIM6 are 1).	p. $459 \quad \square$
				Set transmit data to TXB6 at least one base clock (fxcLk6) after setting TXE6 = 1 .	p. $459 \quad \square$


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \stackrel{ \pm}{0} \\ & 0 \end{aligned}$	Serial interface UART6	ASIM6:   Asynchronous serial interface operation mode register 6	To start the transmission, set POWER6 to 1 and then set TXE6 to 1. To stop the transmission, clear TXE6 to 0 , and then clear POWER6 to 0 .	p. $461 \square$
				To start the reception, set POWER6 to 1 and then set RXE6 to 1. To stop the reception, clear RXE6 to 0, and then clear POWER6 to 0.	p. $461 \square$
				Set POWER6 to 1 and then set RXE6 to 1 while a high level is input to the RxD6 pin. If POWER6 is set to 1 and RXE6 is set to 1 while a low level is input, reception is started.	p. $461 \square$
				TXE6 and RXE6 are synchronized by the base clock (fxcLK6) set by CKSR6. To enable transmission or reception again, set TXE6 or RXE6 to 1 at least two clocks of the base clock after TXE6 or RXE6 has been cleared to 0 . If TXE6 or RXE6 is set within two clocks of the base clock, the transmission circuit or reception circuit may not be initialized.	p. $461 \square$
				Set transmit data to TXB6 at least one base clock (fxcLk6) after setting TXE6 = 1.	p. $461 \quad \square$
				Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.	p. 461
				Fix the PS61 and PS60 bits to 0 when used in LIN communication operation.	p. $461 \square$
				Clear TXE6 to 0 before rewriting the SL6 bit. Reception is always performed with "the number of stop bits = 1 ", and therefore, is not affected by the set value of the SL6 bit.	p. $461 \square$
				Make sure that RXE6 $=0$ when rewriting the ISRM6 bit.	p. 461
			ASIS6:   Asynchronous serial interface reception error status register 6	The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of asynchronous serial interface operation mode register 6 (ASIM6).	p. $462 \square$
				For the stop bit of the receive data, only the first bit is checked regardless of the number of stop bits.	p. $462 \square$
				If an overrun error occurs, the next receive data is not written to receive buffer register 6 (RXB6) but discarded.	p. $462 \square$
				If data is read from ASIS6, a wait cycle is generated. Do not read data from ASIS6 when the peripheral hardware clock (fprs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $462 \square$
			ASIF6:   Asynchronous serial interface transmission status register 6	To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. Be sure to check that the TXBF6 flag is " 0 ". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the TXB6 register while the TXBF6 flag is " 1 ", the transmit data cannot be guaranteed.	p. $463 \square$
				To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is "0" after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is " 1 ", the transmit data cannot be guaranteed.	p. $463 \square$
			CKSR6: Clock selection register 6	Make sure POWER6 $=0$ when rewriting TPS63 to TPS60.	p. $465 \square$
			BRGC6: Baud rate generator control register 6	Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register $=0$ when rewriting the MDL67 to MDL60 bits.	p. $465 \square$
	믗			The baud rate is the output clock of the 8-bit counter divided by 2 .	p. $465 \square$
	$$		ASICL6:   Asynchronous serial interface control register 6	ASICL6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 $=1$ or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1). However, do not set both SBRT6 and SBTT6 to 1 by a refresh operation during SBF reception (SBRT6 $=1$ ) or SBF transmission (until INTST6 occurs since SBTT6 has been set (1)), because it may re-trigger SBF reception or SBF transmission.	p. $466 \square$
				In the case of an SBF reception error, the mode returns to the SBF reception mode. The status of the SBRF6 flag is held (1).	p. $467 \square$
				Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1. After setting the SBRT6 bit to 1 , do not clear it to 0 before SBF reception is completed (before an interrupt request signal is generated).	p. $467 \square$


¢		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 士 } \\ & \text { © } \end{aligned}$	Serial interface UART6	ASICL6:   Asynchronous serial interface control register 6	The read value of the SBRT6 bit is always 0 . SBRT6 is automatically cleared to 0 after SBF reception has been correctly completed.	p. $467 \quad \square$
				Before setting the SBTT6 bit to 1, make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1. After setting the SBTT6 bit to 1, do not clear it to 0 before SBF transmission is completed (before an interrupt request signal is generated).	p. $467 \quad \square$
				The read value of the SBTT6 bit is always 0 . SBTT6 is automatically cleared to 0 at the end of SBF transmission	p. $467 \quad \square$
				Do not set the SBRT6 bit to 1 during reception, and do not set the SBTT6 bit to 1 during transmission.	p. $467 \quad \square$
				When the TXDLV6 bit is set to 1 (inverted TxD6 output), the TxD6/SCLA0/P60 pin cannot be used as a general-purpose port, regardless of the settings of POWER6 and TXE6. When using the TxD6/SCLA0/P60 pin as a general-purpose port, clear the TXDLV6 bit to 0 (normal TxD6 output).	p. $467 \quad \square$
				Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.	p. 467
			POWER6, TXE6, RXE6: Bits 7, 6, 5 of ASIM6	Clear POWER6 to 0 after clearing TXE6 and RXE6 to 0 to stop the operation. To start the communication, set POWER6 to 1, and then set TXE6 or RXE6 to 1.	p. $469 \square$
			UART mode	Take relationship with the other party of communication when setting the port mode register and port register.	p. $470 \quad \square$
			Parity types and operation	Fix the PS61 and PS60 bits to 0 when the device is used in LIN communication operation.	p. $473 \square$
			Continuous transmission	The TXBF6 and TXSF6 flags of the ASIF6 register change from " 10 " to " 11 ", and to " 01 " during continuous transmission. To check the status, therefore, do not use a combination of the TXBF6 and TXSF6 flags for judgment. Read only the TXBF6 flag when executing continuous transmission.	p. $475 \square$
				When the device is use in LIN communication operation, the continuous transmission function cannot be used. Make sure that asynchronous serial interface transmission status register 6 (ASIF6) is 00H before writing transmit data to transmit buffer register 6 (TXB6).	p. $475 \square$
				To transmit data continuously, write the first transmit data (first byte) to the TXB6 register. Be sure to check that the TXBF6 flag is " 0 ". If so, write the next transmit data (second byte) to the TXB6 register. If data is written to the TXB6 register while the TXBF6 flag is " 1 ", the transmit data cannot be guaranteed.	p. $475 \quad \square$
				To initialize the transmission unit upon completion of continuous transmission, be sure to check that the TXSF6 flag is "0" after generation of the transmission completion interrupt, and then execute initialization. If initialization is executed while the TXSF6 flag is " 1 ", the transmit data cannot be guaranteed.	p. $475 \square$
				During continuous transmission, the next transmission may complete before execution of INTST6 interrupt servicing after transmission of one data frame. As a countermeasure, detection can be performed by developing a program that can count the number of transmit data and by referencing the TXSF6 flag.	p. $475 \square$
			Normal reception	If a reception error occurs, read ASIS6 and then RXB6 to clear the error flag. Otherwise, an overrun error will occur when the next data is received, and the reception error status will persist.	p. $479 \square$
				Reception is always performed with the "number of stop bits $=1$ ". The second stop bit is ignored.	p. $479 \square$
				Be sure to read asynchronous serial interface reception error status register 6 (ASIS6) before reading RXB6.	p. $479 \square$
			Error of baud rate	Keep the baud rate error during transmission to within the permissible error range at the reception destination.	p. $486 \square$
				Make sure that the baud rate error during reception satisfies the range shown in (4) Permissible baud rate range during reception.	p. $486 \square$
			Permissible baud rate range during reception	Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.	p. $487 \square$




¢ ¢ ¢ ¢ Ј		Function	Details of Function	Cautions	Page
	$$	Serial interface CSIAO	Automatic transmission/ reception suspension and restart	If the HALT instruction is executed during automatic transmission/reception, communication is suspended and the HALT mode is set if during 8-bit data communication. When the HALT mode is cleared, automatic transmission/reception is restarted from the suspended point.	p. $544 \square$
				When suspending automatic transmission/reception, do not change the operating mode to 3-wire serial I/O mode while TSFO $=1$.	p. $544 \square$
			Busy control option	Busy control cannot be used simultaneously with the interval time control function of automatic data transfer interval specification register 0 (ADTIO).	p. $545 \square$
			Busy \& strobe control option	When TSF0 is cleared, the SOA0 pin goes low.	p. $547 \square$
	$\begin{aligned} & \hline \frac{N}{0} \\ & 0 \\ & \hline \end{aligned}$	Serial   interface IICO	-	Do not use serial interface IIC0 and the multiplier/divider simultaneously, because various flags corresponding to interrupt request sources are shared among serial interface IICO and the multiplier/divider.	p. $550 \square$
			IIC0: IIC shift register 0	Do not write data to IIC0 during data transfer.	p. $553 \square$
				Write or read IIC0 only during the wait period. Accessing IIC0 in a communication state other than during the wait period is prohibited. When the device serves as the master, however, IIC0 can be written only once after the communication trigger bit (STTO) is set to 1.	p. $553 \square$
				When communication is reserved, write data to the IICO register after the interrupt triggered by a stop condition is detected.	p. $553 \square$
			IICCO: IIC control register 0	If the operation of $I^{2} C$ is enabled (IICEO $=1$ ) when the SCLO line is high level, the SDA0 line is low level, and the digital filter is turned on (DFC0 of the IICCLO register = 1), a start condition will be inadvertently detected immediately. In this case, set (1) the LRELO bit by using a 1-bit memory manipulation instruction immediately after enabling operation of $I^{2} C(I I C E O=1)$.	p. $557 \square$
				When bit 3 (TRCO) of the IIC status register 0 (IICSO) is set to 1 (transmission status), bit 5 (WRELO) of the IICCO register is set to 1 during the ninth clock and wait is canceled, after which the TRC0 bit is cleared (reception status) and the SDAAO line is set to high impedance. Release the wait performed while the TRC bit is 1 (transmission status) by writing to the IIC shift register.	p. $560 \square$
			IICSO: IIC status register 0	If data is read from IICS0 register, a wait cycle is generated. Do not read data from IICSO register when the peripheral hardware clock (fpRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.	p. $561 \square$
			IICFO: IIC flag register 0	Write to STCEN bit only when the operation is stopped (IICE0 $=0$ ).	p. $564 \square$
				As the bus release status (IICBSY $=0$ ) is recognized regardless of the actual bus status when STCEN = 1, when generating the first start condition (STT0 = 1), it is necessary to verify that no third party communications are in progress in order to prevent such communications from being destroyed.	p. $564 \square$
				Write to IICRSV bit only when the operation is stopped (IICE0 $=0$ ).	p. $564 \square$
			Selection clock setting	Determine the transfer clock frequency of $I^{2} \mathrm{C}$ by using CLXO, SMC0, CL01, and CL00 before enabling the operation (by setting bit 7 (IICEO) of IIC control register 0 (IICC0) to 1). To change the transfer clock frequency, clear IICE0 once to 0.	p. $567 \square$
			When STCEN = 0	Immediately after $I^{2} C$ operation is enabled (IICE $=1$ ), the bus communication status (IICBSY (bit 6 of IICFO) $=1$ ) is recognized regardless of the actual bus status. When changing from a mode in which no stop condition has been detected to a master device communication mode, first generate a stop condition to release the bus, then perform master device communication.   When using multiple masters, it is not possible to perform master device communication when the bus has not been released (when a stop condition has not been detected).   Use the following sequence for generating a stop condition.   - Set IIC clock selection register 0 (IICCLO).   - Set bit 7 (IICEO) of IIC control register 0 (IICCO) to 1.   - Set bit 0 (SPTO) of IICC0 to 1.	p. $584 \square$
			When STCEN = 1	Immediately after ${ }^{2} \mathrm{C}$ operation is enabled (IICE $=1$ ), the bus released status (IICBSY $=0$ ) is recognized regardless of the actual bus status. To generate the first start condition (STT0 (bit 1 of IIC control register $0($ IICCO ) ) = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.	p. $584 \square$



¢		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \pm \\ & \text { © } \end{aligned}$	Interrupt function	$\begin{aligned} & \text { 1FOL, 1F0L, } \\ & \text { 1F1L, 1F1H: } \\ & \text { Interrupt request } \\ & \text { flag registers } \end{aligned}$	When operating a timer, serial interface, or A/D converter after standby release, operate it once after clearing the interrupt request flag. An interrupt request flag may be set by noise.	p. $637 \quad \square$
				When manipulating a flag of the interrupt request flag register, use a 1-bit memory manipulation instruction (CLR1). When describing in C language, use a bit manipulation instruction such as "IFOL. $0=0$;" or "_asm("clr1 IFOL, 0");" because the compiled assembler must be a 1-bit memory manipulation instruction (CLR1).   If a program is described in C language using an 8-bit memory manipulation instruction such as "IFOL \&= 0xfe;" and compiled, it becomes the assembler of three instructions. mov a, IFOL   and a, \#OFEH   mov IFOL, a   In this case, even if the request flag of another bit of the same interrupt request flag register (IFOL) is set to 1 at the timing between "mov a, IFOL" and "mov IFOL, a", the flag is cleared to 0 at "mov IFOL, a". Therefore, care must be exercised when using an 8 -bit memory manipulation instruction in C language.	p. $637 \quad \square$
				Be sure to clear bits 2, 4 to 7 of IF1L and bits 1 to 7 of IF1H to 0. (78K0/KB2)	p. $638 \quad \square$
				Be sure to clear bits 6 and 7 of IF1L to 0 in the 38 -pin and $44-$ pin products. Be sure to clear bit 7 of IF1L to 0 in the 48 -pin products.	p. $639 \square$
				Be sure to clear bits 1 to 7 of IF1H to 0. (78K0/KC2)	p. $639 \square$
				Be sure to clear bit 7 of 1F1L and bits 1 to 7 of IF1H to 0. (78K0/KD2)	p. $640 \square$
				Be sure to clear bits 1 to 7 of IF1H to 0 for the products whose flash memory is less than 32 KB .   Be sure to clear bits 4 to 7 of IF1H to 0 for the products whose flash memory is at least 48 KB. (78K0/KE2)	p. $641 \square$
				Be sure to clear bits 5 to 7 of IF1H to 0. (78K0/KF2)	p. $642 \square$
			MKOL, MKOH, MK1L, MK1H: Interrupt mask flag registers	Be sure to set bits 2, 4 to 7 of MK1L and bits 1 to 7 of MK1H to 1. (78K0/KB2)	p. 643 -
				Be sure to set bits 6 and 7 of MK1L to 1 in the 38 -pin and 44 -pin products. Be sure to set bit 7 of MK1L to 1 in the 48 -pin products.   Be sure to set bits 1 to 7 of MK1H to 1. (78K0/KC2)	p. $644 \square$
				Be sure to set bit 7 of MK1L and bits 1 to 7 of MK1H to 1. (78K0/KD2)	p. $645 \square$
				Be sure to set bits 1 to 7 of MK1H to 1 for the products whose flash memory is less than 32 KB .   Be sure to set bits 4 to 7 of MK1H to 1 for the products whose flash memory is at least 48 KB. (78K0/KE2)	p. $646 \square$
				Be sure to set bits 5 to 7 of MK1H to 1. (78K0/KF2)	p. $647 \quad \square$
			PROL, PROH, PR1L, PR1H:   Priority specification flag registers	Be sure to set bits 2, 4 to 7 of PR1L and bits 1 to 7 of PR1H to 1. (78K0/KB2)	p. $648 \square$
				Be sure to set bits 6 and 7 of PR1L to 1 in the 38 -pin and 44 -pin products. Be sure to set bit 7 of PR1L to 1 in the 48 -pin products.   Be sure to set bits 1 to 7 of PR1H to 1. (78K0/KC2)	p. $649 \square$
				Be sure to set bit 7 of PR1L and bits 1 to 7 of PR1H to 1. (78K0/KD2)	p. $650 \square$
				Be sure to set bits 1 to 7 of PR1H to 1 for the products whose flash memory is less than 32 KB .   Be sure to set bits 4 to 7 of PR1H to 1 for the products whose flash memory is at least 48 KB. (78K0/KE2)	p. $651 \quad \square$
				Be sure to set bits 5 to 7 of PR1H to 1. (78K0/KF2)	p. $652 \square$


产		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \frac{ \pm}{\delta} \\ & 0 \\ & \hline \end{aligned}$	Interrupt function	EGP, EGN:   External interrupt rising edge, falling edge enable registers	Be sure to clear bits 6 and 7 of EGP and EGN to 0 in $78 \mathrm{~K} 0 / \mathrm{KB} 2$, and the 38 -pin and 44-pin products of $78 \mathrm{KO} / \mathrm{KC} 2$.   Be sure to clear bit 7 of EGP and EGN to 0 in $78 \mathrm{KO} / \mathrm{KD} 2$, and the 48 -pin products of 78K0/KC2.	p. $653 \square$
				Select the port mode by clearing EGPn and EGNn to 0 because an edge may be detected when the external interrupt function is switched to the port function.	p. $654 \quad \square$
			Software interrupt request	Do not use the RETI instruction for restoring from the software interrupt.	p. 658
			BRK instruction	The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged.	p. $662 \square$
$\begin{array}{\|l\|} \hline \stackrel{N}{N} \\ \vdots \\ \stackrel{\rightharpoonup}{\circ} \\ \stackrel{\rightharpoonup}{U} \\ \hline \end{array}$	$$	Key interrupt function	KRM: Key return mode register	If any of the KRMn bits used is set to 1, set bit n (PU7n) of the corresponding pull-up resistor register 7 (PU7) to 1.	p. $665 \square$
				If KRM is changed, the interrupt request flag may be set. Therefore, disable interrupts and then change the KRM register. Clear the interrupt request flag and enable interrupts.	p. $665 \square$
				The bits not used in the key interrupt mode can be used as normal ports.	p. $665 \quad \square$
				For the 38 -pin products of $78 \mathrm{KO} / \mathrm{KC} 2$, be sure to set bits 2 to 7 of KRM to " 0 ". For the 44 -pin and 48 -pin products of $78 \mathrm{~K} 0 / \mathrm{KC2}$, be sure to set bits 4 to 7 of KRM to " 0 ".	p. $665 \square$
	$\begin{aligned} & \dot{N} \\ & \text { on } \end{aligned}$	Standby function	Standby function	The STOP mode can be used only when the CPU is operating on the main system clock. The subsystem clock oscillation cannot be stopped. The HALT mode can be used when the CPU is operating on either the main system clock or the subsystem clock.	p. $666 \square$
				When shifting to the STOP mode, be sure to stop the peripheral hardware operation operating with main system clock before executing STOP instruction.	p. $666 \quad \square$
				The following sequence is recommended for operating current reduction of the A/D converter when the standby function is used: First clear bit 7 (ADCS) and bit 0 (ADCE) of the $A / D$ converter mode register (ADM) to 0 to stop the $A / D$ conversion operation, and then execute the STOP instruction.	p. $666 \square$
			OSTC: Oscillation stabilization time counter status register	After the above time has elapsed, the bits are set to 1 in order from MOST11 and remain 1.	p. $668 \quad \square$
				The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal highspeed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.   - Desired OSTC oscillation stabilization time $\leq$ Oscillation stabilization time set by OSTS   Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. $668 \quad \square$
	$\begin{array}{\|l\|} \hline \text { 으́ } \\ \text { 주 } \\ \hline \end{array}$			The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).	p. $668 \quad \square$
	$\begin{aligned} & \text { N } \\ & \hline 0 \end{aligned}$		OSTS: Oscillation stabilization time select register	To set the STOP mode when the X1 clock is used as the CPU clock, set OSTS before executing the STOP instruction.	p. $669 \square$
				Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.	p. $669 \quad \square$
				The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal highspeed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.   - Desired OSTC oscillation stabilization time $\leq$ Oscillation stabilization time set by OSTS   Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. $669 \square$


		Function	Details of Function	Cautions	Page
		Standby function	OSTS:   Oscillation stabilization time select register	The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).	p. $669 \quad \square$
	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$		STOP mode	Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.	p. $674 \quad \square$
				To use the peripheral hardware that stops operation in the STOP mode, and the peripheral hardware for which the clock that stops oscillating in the STOP mode after the STOP mode is released, restart the peripheral hardware.	p. 676
				Even if "internal low-speed oscillator can be stopped by software" is selected by the option byte, the internal low-speed oscillation clock continues in the STOP mode in the status before the STOP mode is set. To stop the internal low-speed oscillator's oscillation in the STOP mode, stop it by software and then execute the STOP instruction.	p. $676 \quad \square$
				To shorten oscillation stabilization time after the STOP mode is released when the CPU operates with the high-speed system clock (X1 oscillation), switch the CPU clock to the internal highspeed oscillation clock before the execution of the STOP instruction using the following procedure.   $<1>$ Set RSTOP to 0 (starting oscillation of the internal high-speed oscillator) $<2>$ Set MCM0 to 0 (switching the CPU from X1 oscillation to internal high-speed oscillation) <3> Check that MCS is 0 (checking the CPU clock) <4> Check that RSTS is 1 (checking internal high-speed oscillation operation) <5> Execute the STOP instruction   Before changing the CPU clock from the internal high-speed oscillation clock to the high-speed system clock (X1 oscillation) after the STOP mode is released, check the oscillation stabilization time with the oscillation stabilization time counter status register (OSTC).	p. $676 \quad \square$
				If the STOP instruction is executed when AMPH $=1$, supply of the CPU clock is stopped for 4.06 to $16.12 \mu$ s after the STOP mode is released when the internal highspeed oscillation clock is selected as the CPU clock, or for the duration of 160 external clocks when the high-speed system clock (external clock input) is selected as the CPU clock.	p. 676
				Execute the STOP instruction after having confirmed that the internal high-speed oscillator is operating stably (RSTS =1).	p. $676 \quad \square$
	$\begin{aligned} & \text { 므 } \\ & \text { 조 } \end{aligned}$	Reset function	-	For an external reset, input a low level for $10 \mu$ s or more to the $\overline{\text { RESET }}$ pin.	p. 681
				During reset input, the X1 clock, XT1 clock, internal high-speed oscillation clock, and internal low-speed oscillation clock stop oscillating. External main system clock input and external subsystem clock input become invalid.	p. $681 \quad \square$
				When the STOP mode is released by a reset, the STOP mode contents are held during reset input. However, the port pins become high-impedance, except for P130, which is set to low-level output.	p. $681 \quad \square$
			Block diagram of reset function	An LVI circuit internal reset does not reset the LVI circuit.	p. $682 \quad \square$
			Watchdog timer overflow	A watchdog timer internal reset resets the watchdog timer.	p. $684 \quad \square$
	$\begin{aligned} & \frac{\pi}{0} \\ & 0 \end{aligned}$		RESF: Reset control flag register	Do not read data by a 1-bit memory manipulation instruction.	p. $691 \quad \square$
	$\begin{aligned} & \frac{\pi}{0} \\ & 0 \end{aligned}$	Power-onclear circuit	-	If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is cleared to 00 H .	p. $692 \quad \square$
$\begin{aligned} & \stackrel{\rightharpoonup}{\widetilde{0}} \\ & \frac{\bar{U}}{} \end{aligned}$				Set the low-voltage detector by software after the reset status is released (see CHAPTER 25 LOW-VOLTAGE DETECTOR).	$\begin{aligned} & \text { pp. 694, } \\ & 695 \end{aligned}$


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$	Power－on－ clear circuit	$\begin{aligned} & \text { In } 2.7 \mathrm{~V} / 1.59 \mathrm{~V} \\ & \text { POC mode } \end{aligned}$	A voltage oscillation stabilization time of 1.93 to 5.39 ms is required after the supply voltage reaches 1.59 V （TYP．）．If the supply voltage rises from 1.59 V （TYP．）to 2.7 V （TYP．）within 1.93 ms ，the power supply oscillation stabilization time of 0 to 5.39 ms is automatically generated before reset processing．	p． $695 \quad \square$
			Cautions for power－on－clear circuit	In a system where the supply voltage（VDD）fluctuates for a certain period in the vicinity of the POC detection voltage（VPoc），the system may be repeatedly reset and released from the reset status．In this case，the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action．	p． $696 \quad \square$
	$\begin{aligned} & \pm \\ & \hline 0 \\ & 0 \end{aligned}$	Low－ voltage detector	LVIM：Low－ voltage detection register	To stop LVI，follow either of the procedures below．   －When using 8－bit memory manipulation instruction：Write 00H to LVIM．   －When using 1－bit memory manipulation instruction：Clear LVION to 0.	p． $700 \quad \square$
	$\begin{aligned} & \text { 미 } \\ & \text { त下丁 } \end{aligned}$			Input voltage from external input pin（EXLVI）must be EXLVI＜V ${ }_{\text {do }}$ ．	p． $700 \quad \square$
	$\begin{aligned} & \text { 士 } \\ & \text { © } \end{aligned}$			When using LVI as an interrupt，if LVION is cleared（0）in a state below the LVI detection voltage，an INTLVI signal is generated and LVIIF becomes 1.	p． $701 \quad \square$
			LVIM and LVIS	With the conventional－specification products（ $\mu$ PD78F05xx and 78F05xxD），after an LVI reset has been generated，do not write values to LVIS and LVIM when LVION $=1$ ．	p． $701 \quad \square$
			LVIS：Low－ voltage detection level selection register	Be sure to clear bits 4 to 7 to＂ 0 ＂．	p． 701
				Do not change the value of LVIS during LVI operation．	p． 701
				When an input voltage from the external input pin（EXLVI）is detected，the detection voltage（VExLvI＝1．21 V（TYP．））is fixed．Therefore，setting of LVIS is not necessary．	p． $701 \quad \square$
				With the conventional－specification products（ $\mu$ PD78F05xx and 78F05xxD），after an LVI reset has been generated，do not write values to LVIS and LVIM when LVION $=1$ ．	p． $701 \quad \square$
			When used as reset（When detecting level of supply voltage （VDD））	$<1>$ must always be executed．When LVIMK $=0$ ，an interrupt may occur immediately after the processing in＜4＞．	p． $703 \quad \square$
				If supply voltage（VDD）$\geq$ detection voltage（VLvi）when LVIMD is set to 1 ，an internal reset signal is not generated．	p． $703 \quad \square$
			When used as reset（When detecting level of input voltage from external input pin （EXLVI））	＜1＞must always be executed．When LVIMK $=0$ ，an interrupt may occur immediately after the processing in＜3＞．	p． $706 \quad \square$
				If input voltage from external input pin（EXLVI）$\geq$ detection voltage（ $\mathrm{V}_{\text {ExLVI }}=1.21 \mathrm{~V}$ （TYP．））when LVIMD is set to 1 ，an internal reset signal is not generated．	p． $706 \quad \square$
	$\begin{array}{\|l} \hline \text { 으주 } \\ \text { 区 } \end{array}$			Input voltage from external input pin（EXLVI）must be EXLVI＜Vdo．	p． $706 \quad \square$
			When used as interrupt（When detecting level of input voltage from external input pin （EXLVI））	Input voltage from external input pin（EXLVI）must be EXLVI＜V $\mathrm{VDD}^{\text {d }}$	p． $711 \quad \square$
	$$		Cautions for low－ voltage detector	In a system where the supply voltage（ $\mathrm{V}_{\mathrm{DD}}$ ）fluctuates for a certain period in the vicinity of the LVI detection voltage（ $\mathrm{V}_{\text {LvI }}$ ），the operation is as follows depending on how the low－voltage detector is used．   （1）When used as reset   The system may be repeatedly reset and released from the reset status． In this case，the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking action（1）below．   （2）When used as interrupt Interrupt requests may be frequently generated．Take（b）of action（2）below．	p． $713 \quad \square$
	$$	Option byte	$\begin{aligned} & 0082 \mathrm{H}, 0083 \mathrm{H} / \\ & 1082 \mathrm{H}, 1083 \mathrm{H} \\ & \hline \end{aligned}$	Be sure to set 00 H to 0082 H and $0083 \mathrm{H}(0082 \mathrm{H} / 1082 \mathrm{H}$ and $0083 \mathrm{H} / 1083 \mathrm{H}$ when the boot swap function is used）．	p． $716 \quad \square$
			0080H／1080H	Set a value that is the same as that of 0080 H to 1080 H because 0080 H and 1080 H are switched during the boot swap operation．	p． $716 \quad \square$


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \begin{array}{l}  \pm \\ \vdots \\ 0 \end{array} \end{aligned}$	Option byte	0081H/1081H	POCMODE can only be written by using a dedicated flash memory programmer. It cannot be set during self-programming or boot swap operation during selfprogramming. However, because the value of 1081 H is copied to 0081 H during the boot swap operation, it is recommended to set a value that is the same as that of 0081 H to 1081 H when the boot swap function is used.	p. $716 \quad \square$
			0084H/1084H	Be sure to set 00 H (disabling on-chip debug operation) to 0084 H for products not equipped with the on-chip debug function ( $\mu$ PD78F05xx and 78F05xxA). Also set 00H to 1084 H because 0084 H and 1084 H are switched during the boot swap operation.	p. $717 \quad \square$
				To use the on-chip debug function with a product equipped with the on-chip debug function ( $\mu$ PD78F05xxD and 78F05xxDA), set 02 H or 03 H to 0084 H . Set a value that is the same as that of 0084 H to 1084 H because 0084 H and 1084 H are switched during the boot swap operation.	p. $717 \quad \square$
			0080H/1080H	The combination of WDCS2 $=$ WDCS1 $=$ WDCS0 $=0$ and WINDOW $1=$ WINDOW0 $=0$ is prohibited.	p. $718 \quad \square$
				Setting WINDOW1 $=$ WINDOW0 $=0$ is prohibited when using the watchdog timer at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$.	p. $718 \quad \square$
				The watchdog timer continues its operation during self-programming and EEPROM emulation of the flash memory. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.	p. $718 \quad \square$
				If LSROSC $=0$ (oscillation can be stopped by software), the count clock is not supplied to the watchdog timer in the HALT and STOP modes, regardless of the setting of bit 0 (LSRSTOP) of the internal oscillation mode register (RCM).   When 8-bit timer H1 operates with the internal low-speed oscillation clock, the count clock is supplied to 8 -bit timer H 1 even in the HALT/STOP mode	p. $718 \quad \square$
				Be sure to clear bit 7 to 0 .	p. 718
			0081H/1081H	Be sure to clear bits 7 to 1 to " 0 ".	p. 719
	$\pm$	Flash memory	IMS: Internal memory size switching register, IXS: internal expansion RAM size switching register	Be sure to set each product to the values shown in Table 27-1 after a reset release.	p. 721
	の			Be sure to set each product to the values shown in Table 27-2 after a reset release.	p. 722
				To set the memory size, set IMS and then IXS. Set the memory size so that the internal ROM and internal expansion RAM areas do not overlap.	$\begin{aligned} & \text { pp. 721, } \quad \square \\ & 723 \end{aligned}$
			Operation clock	Only the internal high-speed oscillation clock (fRH) can be used when CSI10 is used.	p. 731
				Only the X1 clock ( fx ) or external main system clock (fexclk) can be used when UART6 is used.	p. $731 \quad \square$
			Processing of X1, P31 pins	For the product with an on-chip debug function ( $\mu$ PD78F05xxD and 78F05xxDA), connect P31/INTP2/OCD1A and P121/X1/OCD0A as follows when writing the flash memory with a flash memory programmer.   - P31/INTP2/OCD1A: Connect to EVss via a resistor.   - P121/X1/OCD0A: Connect to Vss via a resistor.	p. $731 \quad \square$
			Selecting communication mode	When UART6 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash memory programmer after the FLMD0 pulse has been received.	p. $733 \quad \square$
	$\begin{array}{\|l} \hline \frac{\bar{V}}{2} \\ \text { דָ } \end{array}$		Security Settings	After the security setting for the batch erase is set, erasure cannot be performed for the device. In addition, even if a write command is executed, data different from that which has already been written to the flash memory cannot be written, because the erase command is disabled.	p. $735 \quad \square$
				If a security setting that rewrites boot cluster 0 has been applied, boot cluster 0 of that device will not be rewritten, and the device will not be erased in batch.	p. $735 \quad \square$


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \frac{\square}{\bar{W}} \\ & \frac{\pi}{\top} \end{aligned}$	Flash memory	E.P.V.   command usage	When executing boot swapping, do not use the E.P.V. command with the dedicated flash memory programmer.	$\begin{aligned} & \text { pp. 737, } \\ & 738,753 \end{aligned} \square$
			Flash memory programming by selfprogramming	The self-programming function cannot be used when the CPU operates with the subsystem clock.	p. 739
				Oscillation of the internal high-speed oscillator is started during self programming, regardless of the setting of the RSTOP flag (bit 0 of the internal oscillation mode register (RCM)). Oscillation of the internal high-speed oscillator cannot be stopped even if the STOP instruction is executed.	p. 739
				Input a high level to the FLMD0 pin during self-programming.	p. 739
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$			Be sure to execute the DI instruction before starting self-programming. The self-programming function checks the interrupt request flags (IFOL, IFOH, IF1L, and IF1H). If an interrupt request is generated, self-programming is stopped.	p. 739
				Self-programming is also stopped by an interrupt request that is not masked even in the DI status. To prevent this, mask the interrupt by using the interrupt mask flag registers (MK0L, MK0H, MK1L, and MK1H).	p. 739
				Allocate the entry program for self-programming in the common area of 0000 H to 7FFFH.	p. 740
	$\begin{aligned} & \text { 무́ } \\ & \frac{1}{1} \end{aligned}$	On-chip debug function ( $\mu$ PD78F 05xxD and 78F05xx DA only)	$\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$ and 78F05xxDA	The $\mu$ PD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	p. 756
			When OCDOA/X1 and OCDOB/X2 are used	Input the clock from the OCDOA/X1 pin during on-chip debugging.	p. 756
				Control the OCD0A/X1 and OCD0B/X2 pins by externally pulling down the OCD1A/P31 pin or by using an external circuit using the P130 pin (that outputs a low level when the device is reset).	p. 756
			When using the port that controls the FLMD0 pin	When using the port that controls the FLMD0 pin, make sure that it satisfies the values of the high-level output current and FLMD0 supply voltage (minimum value: 0.8 VDD ) stated in CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA $=-40$ to $+125^{\circ} \mathrm{C}$ ).	p. 757
	$\begin{aligned} & \frac{\text { D }}{1} \\ & \frac{1}{1} \end{aligned}$	Electrical specificati ons		The $\mu$ PD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	p. 772
			-	The pins mounted depend on the product.	pp. 772,   774 to 777 ,   780 to 783 ,   785 to 802,   804 to 811 ,   813 to 830,   832 to 839 ,   841 to 859,   861 to 868 ,   870 to 887
			Absolute maximum ratings	Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.	$\begin{array}{\|l\|} \hline \text { pp. 774, } \\ 775,804, \\ 805,832, \\ 833,861, \\ 862 \end{array}$


		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 믄 } \\ & \text { 조 } \end{aligned}$	Electrical specifications	Value of the current	The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.	$\begin{array}{\|l\|} \hline \text { pp. 775, } \\ 805,833, \\ 862 \end{array}$
			X1 oscillator characteristics	When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.   - Keep the wiring length as short as possible.   - Do not cross the wiring with the other signal lines.   - Do not route the wiring near a signal line through which a high fluctuating current flows.   - Always make the ground point of the oscillator capacitor the same potential as Vss.   - Do not ground the capacitor to a ground pattern through which a high current flows.   - Do not fetch signals from the oscillator.	$\begin{aligned} & \text { pp. 776, } \\ & 806,834, \\ & 863 \end{aligned}$
				Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.	$\begin{array}{\|l} \hline \text { pp. 776, } \\ 806,834, \\ 863 \end{array}$
			XT1 oscillator characteristics	When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance   - Keep the wiring length as short as possible.   - Do not cross the wiring with the other signal lines.   - Do not route the wiring near a signal line through which a high fluctuating current flows.   - Always make the ground point of the oscillator capacitor the same potential as Vss.   - Do not ground the capacitor to a ground pattern through which a high current flows.   - Do not fetch signals from the oscillator.	$\begin{array}{\|l} \hline \text { pp. 777, } \\ 807,835, \\ 864 \end{array}$
				The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X 1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.	$\begin{aligned} & \hline \text { pp. 777, } \\ & 807,835, \\ & 864 \end{aligned}$
			Recommended oscillator constants	The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0/Kx2 so that the internal operation conditions are within the specifications of the $D C$ and $A C$ characteristics.	$\begin{array}{\|ll\|} \hline \text { pp. 778, } \\ 779 \end{array}$


$\begin{array}{\|l} \stackrel{\Phi}{\Phi} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{ভ} \\ \hline \end{array}$		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 물 } \\ & \frac{\pi}{工} \end{aligned}$	Recommended soldering conditions	$\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxD}$	The $\mu$ PD78F05xxD has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	$\begin{aligned} & \text { pp. 912, } \quad \square \\ & 913 \end{aligned}$
			-	Do not use different soldering methods together (except for partial heating).	$\begin{aligned} & \text { pp. 914, } \quad \square \\ & 916 \end{aligned}$
			$\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xxDA}$	The $\mu$ PD78F05xxDA has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	$\begin{aligned} & \text { pp. 915, } \\ & 916 \end{aligned}$
	$\begin{aligned} & \text { 芯 } \\ & \text { O } \end{aligned}$	Wait	-	When the peripheral hardware clock (fprs) is stopped, do not access the registers listed above using an access method in which a wait request is issued.	p. $918 \quad \square$

## APPENDIX E REVISION HISTORY

## E. 1 Major Revisions in This Edition

Page	Description	Classification
R01UH0008EJ0400 $\rightarrow$ R01UH0008EJ0401		
$\begin{aligned} & \text { pp. 97, 396, } \\ & 399,722,723 \end{aligned}$	Deletion of Note	(c)
p. 93	Change of Recommended Connection of Unused Pins of FLMDO pin in Table 2-3. Pin I/O Circuit Types	(a)
p. 135	Change of Note 2 of Table 3-8. Special Function Register List (5/5)	(c)
U18598JJ3V0UD00 $\rightarrow$ R01UH0008EJ0400		
Throughout	Deletion of "recommended" from Caution "Connect the REGC pin to Vss via a capacitor ( 0.47 to $1 \mu$ F: recommended)."	(c)
CHAPTER 1 OUTLINE		
p. 41	Change of status of 64-pin plastic FBGA (4x4) of $78 \mathrm{K0} / \mathrm{KE2}$ from under development to mass production	(b)
CHAPTER 2 PIN FUNCTIONS		
p. 69	Change of 2.1.3 78K0/KD2 (2) Non-port functions: 78K0/KD2	(c)
pp. 72, 73	Change of 2.1.4 78K0/KE2 (2) Non-port functions: 78K0/KE2	(c)
p. 93	Change of Table 2-3. Pin I/O Circuit Types (3/3)	(c)
CHAPTER 6 CLOCK GENERATOR		
p. 230	Change of Caution 2 in Figure 6-3. Format of Clock Operation Mode Select Register (OSCCTL) (78K0/KB2)	(a)
p. 231	Change of Caution 2 in Figure 6-4. Format of Clock Operation Mode Select Register (OSCCTL) (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)	(a)
p. 259	Change of Figure 6-18. CPU Clock Status Transition Diagram (When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0), 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)	(c)
CHAPTER 7 16-BIT TIMER/EVENT COUNTERS 00 AND 01		
p. 299	Change of Caution in 7.4.4 Operation in clear \& start mode entered by TIOOn pin valid edge input	(c)
CHAPTER 18 SERIAL INTERFACE IICO		
p. 553	Addition of Caution to Figure 18-3. Format of IIC Shift Register 0 (IICO)	(c)
p. 553	Change of description of 18.2 (2) Slave address register 0 (SVA0)	(c)
p. 557	Addition of Note to Figure 18-5. Format of IIC Control Register 0 (IICCO) (1/4) and change of Caution	(c)
p. 559	Change of Figure 18-5. Format of IIC Control Register 0 (IICCO) (3/4)	(c)
p. 560	Change of Figure 18-5. Format of IIC Control Register 0 (IICCO) (4/4)	(c)
p. 562	Change of Figure 18-6. Format of IIC Status Register 0 (IICSO) (2/3)	(c)
CHAPTER 20 INTERRUPT FUNCTIONS		
p. 634	Change of (C) External maskable interrupt (INTKR) in Figure 20-1 Basic Configuration of Interrupt Function	(c)
CHAPTER 22 STANDBY FUNCTION		
p. 673	Addition of Note to Figure 22-4. HALT Mode Release by Reset	(c)
p. 680	Addition of Note to Figure 22-7. STOP Mode Release by Reset	(c)
CHAPTER 27 FLASH MEMORY		
p. 730	Change of description of 27.6.5 REGC pin	(c)
p. 755	Addition of 27.11 Creating ROM Code to Place Order for Previously Written Product	(c)
APPENDIX E REVISION HISTORY		
p. 975	Addition of C. 2 Revision History of Preceding Editions	(c)

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

## <R> E. 2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

Edition	Description	Chapter
3nd Edition	Addition of the conventional-specification products ( $\mu \mathrm{PD} 78 \mathrm{~F} 05 \mathrm{xx}, 78 \mathrm{~F} 05 \mathrm{xx}(\mathrm{A})$, 78F05xx(A2))	Throughout
	Addition of the (A2) grade products of expanded-specification products ( $\mu$ PD78F05xxA(A2))	
	Addition of the 64-pin plastic FBGA (4x4) package	
	Addition of SM+ tor 78K0	
	Deletion of QB-78KOMINI, PG-FPL3, and FP-LITE3 (because of discontinued products)	
	Addition of Differences Between Conventional-specification Products and Expanded-specification Products	INTRODUCTION
	Modification of Related Documents	
	Addition of 1.1 Differences Between Conventional-specification Products ( $\mu$ PD78F05xx and 78F05xxD) and Expanded-specification Products ( $\mu$ PD78F05xxA and 78F05xxDA)	CHAPTER 1 OUTLINE
	Modification of 1.4 Ordering Information	
	Modification of $\mathbf{1 . 8}$ Outline of Functions	
	Modification of Table 3-1 Set Values of Internal Memory Size Switching Register (IMS) ( $78 \mathrm{KO} / \mathrm{KB} 2$, and 38 -pin products and 44 -pin products of the $78 \mathrm{KO} / \mathrm{KC} 2$ ) and Table 3-2 Set Values of Internal Memory Size Switching Register (IMS) and Internal Expansion RAM Size Switching Register (IXS) (48-pin products of the 78KO/KC2, 78KO/KD2, 78K0/KE2, and 78K0/KF2)	CHAPTER 3 CPU ARCHITECTURE
	Addition of description in 3.2.1 (2) Program status word (PSW)	
	Modification of Notes 2 to 4 in Table 3-8 Special Function Register List (5/5)	
	Addition of Caution 2 to 5.2.2 Port 1	CHAPTER 5 PORT FUNCTIONS
	Modification of Caution in Figure 5-17 Block Diagram of P60 and P61 and Figure 5-18 Block Diagram of P62	
	Addition of Caution 2 to Figure 6-3. Format of Clock Operation Mode Select Register (OSCCTL) (78K0/KB2) and Figure 6-4 Format of Clock Operation Mode Select Register (OSCCTL) ( $78 \mathrm{KO} / \mathrm{KC2}, 78 \mathrm{KO} / \mathrm{KD} 2,78 \mathrm{KO} / \mathrm{KE2}$, and 78K0/KF2)	CHAPTER 6 CLOCK GENERATOR
	Modification of Note 1 in and addition of Note 2 to Figure 6-15 Clock Generator Operation When Power Supply Voltage Is Turned On (When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0))	
	Addition of Note to Figure 6-17 CPU Clock Status Transition Diagram (When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0), 78K0/KB2) and Figure 6-18 CPU Clock Status Transition Diagram (When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0), 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)	
	Modification of Note 1 in and addition of Note 3 to Figure 7-13 Format of Prescaler Mode Register 00 (PRM00) and Figure 7-14 Format of Prescaler Mode Register 01 (PRM01)	CHAPTER 7 16-BIT TIMER/EVENT COUNTERS 00 AND 01
	Modification of description in (f) 16-bit capture/compare register 00n (CROOn) in Figure 7-46 Example of Register Settings for PPG Output Operation (2/2)	


Edition	Description	Chapter
3nd Edition	Modification of Note 1 in and addition of Note 4 to Figure 8-5 Format of Timer Clock Selection Register 50 (TCL50) and Figure 8-6 Format of Timer Clock Selection Register 51 (TCL51)	CHAPTER 8 8-BIT TIMER/EVENT COUNTERS 50 AND 51
	Modification of Note 1 in and addition of Note 3 to Figure 9-5 Format of 8-Bit Timer H Mode Register 0 (TMHMDO) and Figure 9-6 Format of 8-Bit Timer H Mode Register 1 (TMHMD1)	CHAPTER 9 8-BIT TIMERS H0 AND H1
	Addition of Note to Figure 10-2 Format of Watch Timer Operation Mode Register (WTM)	CHAPTER 10 WATCH TIMER
	Modification of Note and description in 11.1 Functions of Watchdog Timer	CHAPTER 11 WATCHDOG TIMER
	Modification of Note and description in 11.4.1 Controlling operation of watchdog timer	
	Modification of Remark in 11.4.3 Setting window open period of watchdog timer	
	Modification of Note 1 in Figure 12-3 Format of Clock Output Selection Register (CKS) (78K0/KD2, 48-pin Products of $78 \mathrm{KO} / \mathrm{KC2}$ ) and Figure 12-4 Format of Clock Output Selection Register (CKS) (78K0/KE2, 78K0/KF2)	CHAPTER 12 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER
	Addition of Table 13-2 A/D Conversion Time Selection (Conventionalspecification Products   ( $\mu$ PD78F05xx and 78F05xxD) )	CHAPTER 13 A/D CONVERTER
	Modification of Table 13-3 A/D Conversion Time Selection (Expandedspecification Products   ( $\mu$ PD78F05xxA and 78F05xxDA))	
	Modification of Figure 13-6 Format of 10-Bit A/D Conversion Result Register (ADCR)	
	Modification of Note 1 in Figure 14-4 Format of Baud Rate Generator Control Register 0 (BRGC0)	CHAPTER 14 SERIAL INTERFACE UARTO
	Modification of Note 1 in Table 14-4 Set Value of TPS01 and TPS00	
	Modification of Table 14-5 Set Data of Baud Rate Generator	
	Modification of Note 1 in Figure 15-5 Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (1/2)	CHAPTER 15 SERIAL INTERFACE UART6
	Modification of Note 1 in and addition of Note 3 to Figure 15-8 Format of Clock Selection Register 6 (CKSR6)	
	Addition of Caution 8 to Figure 15-10 Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (2/2)	
	Modification of Note 1 in 15.4.1 (1) Register used	
	Modification of Note 1 in and addition of Note 3 to Table 15-4 Set Value of TPS63 to TPS60	
	Modification of Notes 1 and 2 in Figure 16-5 Format of Serial Clock Selection Register 10 (CSIC10) and Figure 16-6 Format of Serial Clock Selection Register 11 (CSIC11)	CHAPTER 16 SERIAL INTERFACES CSII0 AND CSI11
	Addition of Note 2 in and modification of Table 16-2 Relationship Between Register Settings and Pins	
	Modification of 16.4.2 (5) SO1n output	


Edition	Description	Chapter
3rd Edition	Addition of Notes 2 and 5 to and modification of Note 3 in Figure 17-3 Format of Serial Status Register 0 (CSISO) (1/2)	CHAPTER 17 SERIAL INTERFACE CSIAO
	Modification of Note in Figure 17-5 Format of Divisor Selection Register 0 (BRGCAO)	
	Addition of Note 1 to Table 18-2 Selection Clock Setting	CHAPTER 18 SERIAL INTERFACE IICO
	Modification of Table 18-4 Bit Definitions of Main Extension Code	
	Modification of Figure 18-27 Example of Master to Slave Communication and Figure 18-28 Example of Slave to Master Communication	
	Modification of Note 1 in Figure 22-3 HALT Mode Release by Interrupt Request Generation	CHAPTER 22   STANDBY FUNCTION
	Addition of Caution 5 to Table 22-3 Operating Statuses in STOP Mode	
	Modification of Note 2 in Figure 22-5 Operation Timing When STOP Mode Is Released (When Unmasked Interrupt Request Is Generated)	
	Modification of Note in Figure 22-6 STOP Mode Release by Interrupt Request Generation	
	Modification of Figure 23-1 Block Diagram of Reset Function	CHAPTER 23 RESET FUNCTION
	Modification of Notes 3 and 4 in Table 23-2 Hardware Statuses After Reset Acknowledgment (1/4)	
	Modification of Figure 24-1 Block Diagram of Power-on-Clear Circuit	CHAPTER 24 POWER-ON-CLEAR CIRCUIT
	Modification of Notes 1 and 2 in and addition of Note 3 to Figure 24-2 Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (1/2)	
	Modification of Note 1 in Figure 24-2 Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (2/2)	
	Addition of Note to 25.1 Functions of Low-Voltage Detector	CHAPTER 25 LOWVOLTAGE DETECTOR
	Modification of Note 4 in and addition of Caution 4 in Figure 25-2 Format of LowVoltage Detection Register (LVIM)	
	Addition of Note 2 and Caution 4 to Figure 25-3 Format of Low-Voltage Detection Level Selection Register (LVIS)	
	Modification of Figure 25-9 Example of Software Processing After Reset Release	
	Modification of caution in 26.1 (2) 0081H/1081H	CHAPTER 26 OPTION BYTE
	Modification of Note 1 in "Address: $0081 \mathrm{H} / 1081 \mathrm{H}$ " in Figure 26-1 Format of Option Byte (2/2)	
	Modification of Table 27-1 Internal Memory Size Switching Register Settings	CHAPTER 27 FLASH MEMORY
	Modification of Caution 2 in $\mathbf{2 7 . 2}$ Internal Expansion RAM Size Switching Register	
	Modification of Table 27-2 Internal Expansion RAM Size Switching Register Settings	
	Modification of caution in 27.8 Security Settings	
	Addition of Table 27-13 Processing Time for Self Programming Library (Conventional-specification Products ( $\mu$ PD78F05xx and 78F05xxD))	
	Addition of Table 27-15. Interrupt Response Time for Self Programming Library (Conventional-specification Products ( $\mu$ PD78F05xx and 78F05xxD))	
	Modification of Caution in 28.1 Connecting QB-MINI2 to $\mu$ PD78F0503D and 78F0503DA	CHAPTER 28 ON-   CHIP DEBUG FUNCTION ( $\mu$ PD78F0503D and 78F0503DA ONLY)
	Addition of Caution in Figure 28-3 Connection of FLMDO Pin for Self Programming by Means of On-Chip Debugging	


Edition	Description	Chapter
3rd Edition	Revision of this chapter	CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS)
	Revision of this chapter	CHAPTER 31   ELECTRICAL   SPECIFICATIONS ((A)   GRADE PRODUCTS)
	Addition of this chapter	CHAPTER 32   ELECTRICAL   SPECIFICATIONS   ((A2) GRADE   PRODUCTS: TA = $\mathbf{- 4 0}$   to $+110^{\circ} \mathrm{C}$ )
	Addition of this chapter	CHAPTER 33 ELECTRICAL SPECIFICATIONS   ((A2) GRADE PRODUCTS: $T A=-40$ to $+125^{\circ} \mathrm{C}$ )
	Revision of this chapter	CHAPTER 35 RECOMMENDED SOLDERING CONDITIONS
	Revision of this chapter	APPENDIX A DEVELOPMENT TOOLS
	Addition of this chapter	APPENDIX E REVISION HISTORY

## 78K0/Kx2 User's Manual: Hardware

## Publication Date: Rev.0.01 January 10, 2008

Rev.4.01 July 15, 2010

Published by: Renesas Electronics Corporation

## ReNESAS

Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwa
-
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

## 78K0/Kx2

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Microprocessors - MPU category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MC68302EH20C MC7457RX1000LC MC7457RX1267LC MC7457VG1267LC A2C00010998 A A2C52004004 R5F117BCGNA\#20 R5F52106BDLA\#U0 ADJ3400IAA5DOE MPC8245TVV266D MPC8245TZU300D MPC8260ACVVMHBB MPC8323ECVRAFDCA MPC8536ECVJAVLA BOXNUC5PGYH0AJ 20-668-0024 P1010NSN5DFB P2010NSN2MHC P2020NXE2HHC P5020NSE7QMB

P5020NSE7TNB P5020NSE7VNB LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB A2C00010729 A A2C00039344
T1022NSE7MQB T1022NXN7PQB T1023NSE7MQA T1024NXE7PQA T1042NSE7MQB T1042NSN7MQB T1042NXN7WQB T2080NSE8TTB T2080NSN8PTB T2080NXE8TTB T2081NXN8TTB R5F101AFASP\#V0 MC68302CEH20C MPC8260ACVVMIBB MPC8280CZUUPEA MPC8313ECVRAFFC MPC8313ECVRAGDC MPC8313EVRADDC MPC8313EVRAFFC MPC8313VRADDC MPC8314CVRAGDA MPC8314VRAGDA MPC8315VRAGDA

