DATASHEET

X9110

FN8158
Rev 5.00
Dual Supply/Low Power/1024-Tap/SPI Bus, Single Digitally-Controlled (XDCP ${ }^{\text {TM }}$) Potentiometer

The X 9110 integrates a Single Digitally Controlled Potentiometer (XDCP) on a monolithic CMOS integrated circuit.

The digital controlled potentiometer is implemented using 1023 resistive elements in a series array. Between each element are tap points connected to the wiper terminal through switches. The position of the wiper on the array is controlled by the user through the SPI bus interface. The potentiometer has associated with it a volatile Wiper Counter Register (WCR) and four nonvolatile data registers that can be directly written to, and read by, the user. The contents of the WCR controls the position of the wiper on the resistor array though the switches. Power-up recalls the contents of the default data register (DRO) to the WCR.

The XDCP can be used as a three-terminal potentiometer or as a two terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing.

Related Literature

- For a full list of related documents, visit our website
- X9110 product page

Features

- 1024 resistor taps - 10-bit resolution
- SPI serial interface for write, read, and transfer operations of the potentiometer
- Wiper resistance, 40Ω typical at 5 V
- Four nonvolatile data registers
- Nonvolatile storage of multiple wiper positions
- Power-on recall, loads saved wiper position on power-up
- Standby current <5 \quad A maximum
- System V_{Cc} : 2.7 V to 5.5 V operation
- Analog V+/V-: -5V to +5 V
- $100 \mathrm{k} \Omega$ end-to-end resistance
- 100 year data retention
- Endurance: 100,000 data changes per bit per register
- 14 Ld TSSOP
- Dual supply version of the X9111
- Low power CMOS
- Pb-free (RoHS compliant)

FIGURE 1. FUNCTIONAL DIAGRAM

Applications

Circuit Level Applications

- Vary the gain of a voltage amplifier
- Provide programmable DC reference voltages for comparators and detectors
- Control the volume in audio circuits
- Trim out the offset voltage error in a voltage amplifier circuit
- Set the output voltage of a voltage regulator
- Trim the resistance in Wheatstone bridge circuits
- Control the gain, characteristic frequency and Q-factor in filter circuits
- Set the scale factor and zero point in sensor signal conditioning circuits
- Vary the frequency and duty cycle of timer ICs
- Vary the DC biasing of a pin diode attenuator in RF circuits
- Provide a control variable (I, V, or R) in feedback circuits

System Level Applications

- Adjust the contrast in LCD displays
- Control the power level of LED transmitters in communication systems
- Set and regulate the DC biasing point in an RF power amplifier in wireless systems
- Control the gain in audio and home entertainment systems
- Provide the variable DC bias for tuners in RF wireless systems
- Set the operating points in temperature control systems
- Control the operating point for sensors in industrial systems
- Trim offset and gain errors in artificial intelligent systems

Ordering Information

PART NUMBER (Notes 2, 3)	PART MARKING	VCc LIMITS (V)	POTENTIOMETER RANGE (kS)	TEMP RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE (RoHS COMPLIANT)	PKG. DWG. \#

NOTES:

1. Add "T1" suffix for 2.5 k unit tape and reel option.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), see product information page for X9110. For more information on MSL, see tech brief TB363.

Detailed Functional Diagram

FIGURE 2. DETAILED FUNCTIONAL DIAGRAM

Pin Configuration

Pin Descriptions

PIN (TSSOP)	SYMBOL	FUNCTION
1	V+	Analog Supply Voltage
2	SO	Serial Data Output
3	AO	Device Address
4	SCK	Serial Clock
5	$\overline{\text { WP }}$	Hardware Write Protect
6	SI	Serial Data Input
7	VSS $_{\text {SS }}$	System Ground
8	V-	Analog Supply Voltage
9	$\overline{\mathrm{CS}}$	Chip Select
10	$\overline{\text { HOLD }}$	Device Select. Pause the Serial Bus

Pin Descriptions (contunua)

PIN (TSSOP)	SYMBOL	FUNCTION
11	R_{W}	Wiper Terminal of the Potentiometer
12	R_{H}	High Terminal of the Potentiometer
13	R_{L}	Low Terminal of the Potentiometer
14	$\mathrm{~V}_{\mathrm{CC}}$	System Supply Voltage

Bus Interface Pins

SERIAL OUTPUT (SO)

SO is a serial data output pin. During a read cycle, data is shifted out on this pin. Data is clocked out on the falling edge of the serial clock.

SERIAL INPUT (SI)

SI is the serial data input pin. All opcodes, byte addresses and data to be written to the potentiometer pot registers are input on this pin. Data is latched by the rising edge of the serial clock.

SERIAL CLOCK (SCK)

The SCK input is used to clock data into and out of the X9110.

HOLD (HOLD)

$\overline{\mathrm{HOLD}}$ is used in conjunction with the $\overline{\mathrm{CS}}$ pin to select the device. Once the part is selected and a serial sequence is underway, HOLD may be used to pause the serial communication with the controller without resetting the serial sequence. To pause, $\overline{\mathrm{HOLD}}$ must be brought LOW while SCK is LOW. To resume communication, $\overline{\text { HOLD }}$ is brought HIGH, again while SCK is LOW.

FIGURE 3. DETAILED POTENTIOMETER BLOCK DIAGRAM

If the pause feature is not used, $\overline{\text { HOLD }}$ should be held HIGH at all times.

DEVICE ADDRESS (AO)

The address input is used to set the 8 -bit slave address. A match in the slave address serial data stream AO must be made with the address input (AO) in order to initiate communication with the X 9110.

CHIP SELECT ($\overline{\mathbf{C S}}$)

When $\overline{\mathbf{C S}}$ is HIGH, the X9110 is deselected and the SO pin is at high impedance, and (unless an internal write cycle is underway) the device will be in the standby state. CS LOW enables the X9110, placing it in the active power mode. It should be noted that after a power-up, a HIGH to LOW transition on $\overline{\mathrm{CS}}$ is required prior to the start of any operation.

HARDWARE WRITE PROTECT INPUT (WP)

The $\overline{\mathrm{WP}}$ pin when LOW prevents nonvolatile writes to the Data Registers.

Potentiometer Pins

$\mathbf{R}_{\mathbf{H}}, \mathbf{R}_{\mathbf{L}}$

The R_{H} and R_{L} pins are equivalent to the terminal connections on a mechanical potentiometer.

$\mathbf{R}_{\mathbf{W}}$

The wiper pin are equivalent to the wiper terminal of a mechanical potentiometer.

Bias Supply Pins

SYSTEM SUPPLY VOLTAGE (Vcc) AND SUPPLY GROUND (VSS)

The V_{CC} pin is the system supply voltage. The V_{SS} pin is the system ground.

ANALOG SUPPLY VOLTAGES (V+ AND V-)

These supplies are the analog voltage supplies for the potentiometer. The V+ supply is tied to the wiper switches while the V-supply is used to bias the switches and the internal P+ substrate of the integrated circuit. Both of these supplies set the voltage limits of the potentiometer.

Principles of Operation

Device Description

SERIAL INTERFACE

The X9110 supports the SPI interface hardware conventions. The device is accessed via the SI input with data clocked-in on the rising SCK. $\overline{\mathrm{CS}}$ must be LOW and the $\overline{\mathrm{HOLD}}$ and $\overline{\mathrm{WP}}$ pins must be HIGH during the entire operation.

The SO and SI pins can be connected together, since they have three state outputs. This can help to reduce system pin count.

ARRAY DESCRIPTION

The X9110 is comprised of a resistor array (Figure 3). The array contains the equivalent of 1023 discrete resistive segments that are connected in series. The physical ends of each array are equivalent to the fixed terminals of a mechanical potentiometer (R_{H} and R_{L} inputs).

At both ends of each array and between each resistor segment is a CMOS switch connected to the wiper (R_{W}) output. Within the individual array only one switch may be turned on at a time.

These switches are controlled by a Wiper Counter Register (WCR). The 10-bits of the WCR (WCR[9:0]) are decoded to select, and enable, one of 1024 switches.

WIPER COUNTER REGISTER (WCR)

The X9110 contains a Wiper Counter Register (see Table 1) for the XDCP potentiometer. The WCR is equivalent to a serial-in, parallel-out register/counter with its outputs decoded to select one of 1024 switches along its resistor array. The content of the WCR can be altered in one of three ways: (1) it may be written directly by the host via the write Wiper Counter Register instruction (serial load); (2) it may be written indirectly by transferring the content of one of four associated Data Registers via the XFR Data Register; (3) it is loaded with the content of its data register zero (DRO) upon power-up.

The Wiper Counter Register is a volatile register; that is, its content is lost when the X9110 is powered-down. Although the register is automatically loaded with the value in DRO upon power-up, this may be different from the value present at power-down. Power-up guidelines are recommended to ensure proper loadings of the DRO value into the WCR.

DATA REGISTERS (DR)

The potentiometer has four 10-bit nonvolatile Data Registers. These can be read or written directly by the host. Data can also be transferred between any of the four Data Registers and the Wiper Counter Register. All operations changing data in one of the Data Registers is a nonvolatile operation and will take a maximum of 10 ms .

If the application does not require storage of multiple settings for the potentiometer, the Data Registers can be used as regular memory locations for system parameters or user preference data.

DR[9:0] is used to store one of the 1024 wiper position (0~1023) (see Table 2).

STATUS REGISTER (SR)

This 1-bit status register is used to store the system status (see Table 3).

WIP: Write In Progress status bit, read only.

- When WIP $=1$, indicates that high-voltage write cycle is in progress.
- When WIP $=0$, indicates that no high-voltage write cycle is in progress.

TABLE 1. WIPER CONTROL REGISTER, WCR (10-BIT), WCR9-WCRO: Used to store the current wiper position (Volatile, V)

WCR9	WCR8	WCR7	WCR6	WCR5	WCR4	WCR3	WCR2	WCR1	WCRO
V	V	V	V	V	V	V	V	V	V
(MSB)									(LSB)

TABLE 2. DATA REGISTER, DR (10-BIT), BIT 9-BIT 0 : Used to store wiper positions or data (Nonvolatile, NV)

BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
NV									
(MSB)									(LSB)

TABLE 3. STATUS REGISTER, SR (1-BIT)
WIP
(LSB)

TABLE 4. IDENTIFICATION BYTE FORMAT

TABLE 5. INSTRUCTION BYTE FORMAT

Device Instructions

Identification Byte (ID and A)

The first byte sent to the X9110 from the host, following a $\overline{\mathbf{C S}}$ going HIGH to LOW, is called the Identification byte. The most significant four bits of the slave address are a device type identifier. The ID[3:0] bits is the device ID for the X9110; this is fixed as 0101[B] (refer to Table 4).

The AO bit in the ID byte is the internal slave address. The physical device address is defined by the state of the AO input pin. The slave address is externally specified by the user. The X9110 compares the serial data stream with the address input state; a successful compare of the address bit is required for the X9110 to successfully continue the command sequence. Only the device whose slave address matches the incoming device address sent by the master executes the instruction. The AO input can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS}. The $R / \overline{\mathbf{W}}$ bit is used to set the device to either read or write mode.

Instruction Byte and Register Selection

The next byte sent to the X9110 contains the instruction and register pointer information. The three most significant bits are used provide the instruction opcode (I[2:0]). The RB and RA bits point to one of the four registers. The format is shown in Table 5.

Five of the seven instructions are four bytes in length. These instructions are:

1. Read Wiper Counter Register - This register reads the current wiper position of the selected pot.
2. Write Wiper Counter Register - This register changes current wiper position of the selected pot.
3. Read Data Register - This register reads the contents of the selected data register.
4. Write Data Register - This register writes a new value to the selected data register.
5. Read Status - This command returns the contents of the WIP bit, which indicates if the internal write cycle is in progress.
The basic sequence of the four byte instructions is illustrated in Figure 5 on page 7. These four-byte instructions exchange data between the WCR and one of the Data Registers. A transfer from a Data Register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action will be delayed by $t_{\text {WRL }}$. A transfer from the WCR (current wiper position), to a Data Register is a write to nonvolatile memory and takes a minimum of $t_{W R}$ to complete. The transfer can occur between the potentiometer and
one of its associated registers. The Read Status Register instruction is the only unique format (see Figure 6 on page 7).

Two instructions require a two-byte sequence to complete (see Figure 4 on page 7). These instructions transfer data between the host and the X9110; either between the host and one of the Data Registers or directly between the host and the Wiper Counter Register. These instructions are:

1. XFR Data Register to Wiper Counter Register - This register transfers the content of one specified Data Register to the associated Wiper Counter Register.
2. XFR Wiper Counter Register to Data Register - This register transfers the content of the specified Wiper Counter Register to the specified associated Data Register.

See "Instruction Format" on page 8 for more details.

Write in Process (WIP bit)

The content of the Data Registers are saved to nonvolatile memory when the $\overline{\mathbf{C S}}$ pin goes from LOW to HIGH after a complete write sequence is received by the device. The progress of this internal write operation can be monitored by a Write In Process (WIP) bit. The WIP bit is read with a Read Status command (see Figure 6).

Power-Up and Power-Down Requirements

At all times, the $\mathrm{V}+$ voltage must be greater than or equal to the voltage at R_{H} or R_{L}, and the voltage at R_{H} or R_{L} must be greater than or equal to the voltage at V -. During power-up and power-down, $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}+$, and V - must reach their final values within 1 ms of each other.

FIGURE 4. TWO-BYTE INSTRUCTION SEQUENCE

FIGURE 5. FOUR-BYTE INSTRUCTION SEQUENCE (WRITE OR READ FOR WCR OR DATA REGISTERS)

FIGURE 6. FOUR-BYTE INSTRUCTION SEQUENCE (READ STATUS REGISTERS)

TABLE 6. INSTRUCTION SET

INSTRUCTION		INSTRUCTION SET								OPERATION
	R/W	I_{2}	l_{1}	I_{0}	0	RB	RA	0	0	
Read Wiper Counter Register	1	1	0	0	0	0	0	0	0	Read the contents of the Wiper Counter Register
Write Wiper Counter Register	0	1	0	1	0	0	0	0	0	Write new value to the Wiper Counter Register
Read Data Register	1	1	0	1	0	1/0	1/0	0	0	Read the contents of the Data Register pointed to RB-RA
Write Data Register	0	1	1	0	0	1/0	1/0	0	0	Write new value to the Data Register pointed to RB-RA
XFR Data Register to Wiper Counter Register	1	1	1	0	0	1/0	1/0	0	0	Transfer the contents of the Data Register pointed to by RB-RA to the Wiper Counter Register
XFR Wiper Counter Register to Data Register	0	1	1	1	0	1/0	1/0	0	0	Transfer the contents of the Wiper Counter Register to the Data Register pointed to by RB-RA
Read Status (WIP bit)	1	0	1	0	0	0	0	0	1	Read the status of the internal write cycle, by checking the WIP bit (read status register).

NOTE: $1 / 0=$ data is one or zero

Instruction Format

Read Wiper Counter Register (WCR)

$\begin{gathered} \overline{\mathbf{C S}} \\ \text { Falling } \end{gathered}$	Device Type Identifier				Device Addresses				Instruction Opcode				Register Addresses				Wiper Position (Sent by X9110 on SO)								Wiper Position (sent by X9110 on S0)								$\overline{\mathrm{CS}}$ Rising Edge
Edge	0	1	0	1	0	0	AO	-	1	0	0	0	0	0	0	0	X	X	X	X	X	X	W C R 9	W C R 8	W C R 7	W C R 6	W C R 5	W C R 4	W C R 3	W C R 2	W C R 1	W C R 0	

Write Wiper Counter Register (WCR)

$\begin{gathered} \overline{\mathbf{C S}} \\ \text { Falling } \end{gathered}$	Device Type Identifier				Device Addresses				Instruction Opcode				Register Addresses				Wiper Position (Sent by Master on SI)								Wiper Position (Sent by Master on SI)								$\overline{\mathrm{CS}}$ Rising Edge
Edge	0	1	0	1	0	0	AO	-	1	0	1	0	0	0	0	0	X	X	X	X	X	X	W C R 9	W C R R 8	W C R 7	W C R 6	W C R 5	W C R 4	W C R 3	W C R 2	W C R 1	$\begin{gathered} \hline \mathrm{W} \\ \mathrm{C} \\ \mathrm{R} \\ 0 \end{gathered}$	

Read Data Register (DR)

$\begin{gathered} \overline{\mathbf{C S}} \\ \text { Falling } \end{gathered}$	Device Type Identifier				Device Addresses				Instruction Opcode				Register Addresses				Wiper Position (Sent by X9110 on SO)								Wiper Position (sent by X9110 on SO)								$\overline{\mathbf{C S}}$ Rising Edge
	0	1	0	1	0	0	AO	-	1	0	1	0	RB	RA	0	0	X	X	X	X	X	X	W C R 9	W C R R 8	W C R 7	W C R 6	W C R 5	W C R 4	W C R 3	W C R 2	W C R 1	W C R 0	

Write Data Register (DR)

\begin{tabular}{|c|}
\hline \[
\begin{gathered}
\overline{\mathbf{C S}} \\
\text { Falling }
\end{gathered}
\] \& \multicolumn{4}{|l|}{Device Type Identifier} \& \multicolumn{4}{|c|}{Device Addresses} \& \multicolumn{4}{|l|}{Instruction Opcode} \& \multicolumn{4}{|c|}{Register Address} \& \multicolumn{8}{|c|}{Wiper Position or Data (Sent by Master on SI)} \& \multicolumn{8}{|c|}{Wiper Position or Data (Sent by Master on SI)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\overline{\mathbf{C S}}
\] \\
Rising Edge
\end{tabular}} \& \multirow[t]{2}{*}{} \\
\hline \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& A0 \& 0
11
3
¢ \& 1 \& 1 \& 0 \& 0 \& RB \& RA \& 0 \& 0 \& X \& X \& X \& X \& X \& X \& \begin{tabular}{c}
W \\
C \\
R \\
\hline 9
\end{tabular} \& \begin{tabular}{l}
W \\
\(C\) \\
\(R\) \\
R \\
\\
\hline
\end{tabular} \& W
C
R
7
7 \& W
C
R
6 \& W
C
R
5 \& W
C
R
4 \& W
C
R
3 \& W
C
R
2 \& W
C
R
1 \& W
\(C\)
\(R\)

0 \& \&

\hline
\end{tabular}

Transfer Data Register (DR) to Wiper Counter Register (WCR)

$\overline{\mathbf{C S}}$ Falling Edge	Device Type Identifier				Device Addresses				Instruction Opcode				Register Address				$\overline{\mathbf{C S}}$ Rising Edge
	0	1	0	1	0	0	AO	-	1	1	0	0	RB	RA	0	0	

Transfer Wiper Counter Register (WCR) to Data Register (DR)

$\overline{\mathrm{CS}}$ Falling Edge	Device Type Identifier				Device Addresses				Instruction Opcode				Register Address				$\overline{\mathrm{CS}}$ Rising Edge	HIGH-VOLTAGE WRITE CYCLE
	0	1	0	1	0	0	AO	\%	1	1	1	0	RB	RA	0	0		

Read Status Register (SR)

$\begin{gathered} \overline{\mathbf{C S}} \\ \text { Falling } \end{gathered}$	Device Type Identifier				Device Addresses				Instruction Opcode				Register Addresses				Status Data (Sent by Slave on SO)								Status Data (Sent by Slave on SO)								$\overline{\mathbf{C S}}$ Rising Edge
Edge	0	1	0	1	0	0	AO	-	0	1	0	X	0	0	0	1	X	X	X	X	X	X	X	X	0	0	0	0	0	0	0	WIP	

NOTES:
4. "AO": stands for the device address sent by the master.
5. WCRx refers to wiper position data in the Wiper Counter Register
6. "X": Do not care.

Absolute Maximum Ratings

Voltage on $\mathrm{V}+$ (referenced to V_{SS}) (Note 11) . 10V
Voltage on V- (referenced to V_{SS}) (Note 11) . 10 V
(V+) - (V-) . 12V
Any Voltage on $R_{H} / R_{L} \ldots . .$. + .
Any Voltage on $R_{L} / R_{H} \ldots . .$.
IW (10s) $\pm 6 m A$

Thermal Information

Thermal Resistance (Typical, Note 7)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
14 Lead TSSOP.	90
Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-Free Reflow Profile	. see TB493
Recommended Operati	-ns
Temperature Range	
Commercial.	. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial $.40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) Limits (Note 11)	
X9110	. . 5 V $\pm 10 \%$
	2.7 V to 5

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTE:
7. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Analog Specifications Over recommended industrial (2.7V) operation conditions, unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN (Note 16)	TYP	MAX (Note 16)	UNIT
$\mathrm{R}_{\text {TOTAL }}$	End-to-End Resistance			100		$\mathrm{k} \Omega$
	End-to-End Resistance Tolerance				± 20	\%
	Power Rating	$+25^{\circ} \mathrm{C}$, each potentiometer			50	mW
${ }^{\prime}$ W	Wiper Current				± 3	mA
R_{W}	Wiper Resistance	Wiper current $= \pm 3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$		150	500	Ω
R_{W}	Wiper Resistance	$\mathrm{I}_{\mathrm{W}}= \pm 3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			100	Ω
Vv+	Voltage on V+ Pin	X9110 (Note 11)	+4.5		+5.5	V
		X9110-2.7 (Note 11)	+2.7		+5.5	V
Vv-	Voltage on V- Pin	X9110 (Note 11)	-5.5		-4.5	V
		X9110-2.7 (Note 11)	-5.5		-2.7	V
$\mathrm{V}_{\text {TERM }}$	Voltage on any R_{H} or $\mathrm{R}_{\mathrm{L}} \mathrm{Pin}$	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	V-		V+	V
	Noise	Reference: 1V		-120		dBV
	Resolution			0.1		\%
	Absolute Linearity (Note 8)	$\mathrm{R}_{\mathrm{w}(\mathrm{n}) \text { (actual) }}-\mathrm{R}_{\mathrm{w}(\mathrm{n})(\text { expected) }}$, where $\mathrm{n}=8$ to 1006			± 1	MI (Note 10)
		$R_{w(n)(\text { actual })}-R_{w(n)(\text { expected) }}$ ((ote 12)			± 1.5	MI (Note 10)
	Relative Linearity (Note 9)	$R_{W(m+1)}-\left[R_{w(m)}+M I\right]$, where $m=8$ to 1006			± 0.5	MI (Note 10)
					± 1	MI (Note 10)
	Temperature Coefficient of $\mathrm{R}_{\text {TOTAL }}$			± 300		ppm/ ${ }^{\circ} \mathrm{C}$
	Ratiometric Temperature Coefficient				20	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}}$	Potentiometer Capacitances	See macromodel		10/10/25		pF

NOTES:

8. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer.
9. Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size.
10. $\mathrm{MI}=\mathrm{RTOT} / 1023$ or $\left(\mathrm{R}_{\mathrm{H}}-\mathrm{R}_{\mathrm{L}}\right) / 1023$, single pot
11. $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}+, \mathrm{V}$ - must reach their final values within 1 ms of each other.
12. $n=0,1,2, \ldots, 1023 ; m=0,1,2, \ldots, 1022$.

DC Operating Specifications over the recommended operating conditions unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN (Note 16)	TYP	MAX (Note 16)	UNIT
${ }^{\text {c CC1 }}$	V_{CC} Supply Current (active)	$\begin{aligned} & \mathrm{f}_{\mathrm{SCK}}=2.5 \mathrm{MHz}, \mathrm{SO}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { Other inputs }=\mathrm{V}_{\mathrm{SS}} \end{aligned}$			400	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} 2}$	V_{CC} Supply Current (nonvolatile write)	$\begin{aligned} & \mathrm{f}_{\mathrm{SCK}}=2.5 \mathrm{MHz}, \mathrm{SO}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { Other inputs }=\mathrm{V}_{\mathrm{SS}} \end{aligned}$		1	5	mA
$\mathrm{I}_{\text {SB }}$	$\mathrm{V}_{\text {CC }}$ Current (standby)	$\begin{aligned} & S C K=S I=V_{S S}, \text { Address }=V_{S S}, \\ & C S=V_{C C}=5.5 V \end{aligned}$			5	$\mu \mathrm{A}$
l_{LI}	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
lo	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
V_{IH}	Input HIGH Voltage		$\mathrm{V}_{\mathrm{CC}} \times 0.7$		$\mathrm{V}_{\mathrm{CC}}+1$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-1		$\mathrm{V}_{\mathrm{CC}} \times 0.3$	v
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{IOL}_{\text {O }}=3 \mathrm{~mA}$			0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \geq+3 \mathrm{~V}$	$\mathrm{v}_{\mathrm{CC}}-0.8$			V
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \leq+3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V

Endurance and Data Retention

PARAMETER	MIN	UNITS
Minimum Endurance	100,000	Data changes per bit per register
Data Retention	100	years

Capacitance

SYMBOL	TEST	TEST CONDITIONS	MAX	UNIT
$\mathrm{C}_{\text {IN/OUT }}($ Notes 11, 13)	Input/Output Capacitance (SI)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	pF
$\mathrm{C}_{\text {OUT }}($ Note 13)	Output Capacitance (SO)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	pF
$\mathrm{C}_{\text {IN }}($ Note 13)	Input Capacitance (AO, $\overline{\mathbf{C S}}, \overline{\mathrm{WP}}, \overline{\mathrm{HOLD}}$, and SCK)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	6	pF

Power-up Timing

SYMBOL	PARAMETER	MIN	MAX
$\mathrm{t}_{\mathrm{r}} \mathrm{V}_{\text {CC }}$ (Note 13)	$\mathrm{V}_{\text {CC }}$ Power-Up Rate	0.2	50
$\mathrm{t}_{\text {PUR }}$ (Notes 13, 14)	Power-Up to Initiation of Read Operation		1
$\mathrm{t}_{\text {PUW }}$ (Note 14)	Power-Up to Initiation of Write Operation		m / ms

NOTES:

13. Limits established by characterization and are not production tested.
14. $t_{P U R}$ and $t_{P U W}$ are the delays required from the time the (last) power supply $\left(\mathrm{V}_{\mathrm{CC}}{ }^{-}\right)$is stable until the specific instruction can be issued.
15. ESD Rating on R_{H}, R_{L}, R_{W} pins is 1.5 kV (HBM, 1.0 $\mu \mathrm{A}$ leakage maximum), ESD rating on all other pins is 2.0 kV .
16. Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Over-temperature limits established by characterization and are not production tested.

AC Test Conditions

Input Pulse Levels	$\mathrm{V}_{\mathrm{CC}} \times 0.1$ to $\mathrm{V}_{\mathrm{CC}} \times 0.9$
Input Rise and Fall Times	10 ns
Input and Output Timing Level	$\mathrm{V}_{\mathrm{CC}} \times 0.5$

Equivalent A.C. Load Circuit

AC Timing

SYMBOL	PARAMETER	MIN	MAX	UNIT
$\mathrm{f}_{\text {SCK }}$	SSI/SPI Clock Frequency		2.5	MHz
$\mathrm{t}_{\mathrm{CYC}}$	SSI/SPI Clock Cycle Time	400		ns
${ }^{\text {W WH }}$	SSI/SPI Clock High Time	150		ns
${ }^{\text {W WL }}$	SSI/SPI Clock Low Time	150		ns
$t_{\text {LEAD }}$	Lead Time	150		ns
$t_{\text {LAG }}$	Lag Time	150		ns
${ }_{\text {t }} \mathrm{U}$	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\text { CS }}$ Input Set-Up Time	50		ns
t_{H}	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\mathrm{CS}}$ Input Hold Time	50		ns
$t_{\text {RI }}$	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\text { CS }}$ Input Rise Time		50	ns
t_{FI}	SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\mathrm{CS}}$ Input Fall Time		50	ns
${ }^{\text {DIS }}$	SO Output Disable Time	0	500	ns
t_{V}	SO Output Valid Time		100	ns
t_{HO}	SO Output Hold Time	0		ns
t_{RO}	SO Output Rise Time		50	ns
t_{FO}	SO Output Fall Time		50	ns
$t_{\text {HOLD }}$	$\overline{\text { HOLD }}$ Time	400		ns
$\mathrm{t}_{\mathrm{HSU}}$	$\overline{\text { HOLD Set-Up Time }}$	50		ns
t_{HH}	$\overline{\text { HOLD }}$ Hold Time	50		ns
$t_{\text {HZ }}$	HOLD Low to Output in High Z		100	ns
$t_{L Z}$	HOLD High to Output in Low Z		100	ns
T_{1}	Noise Suppression Time Constant at SI, SCK, $\overline{\text { HOLD }}$ and $\overline{\text { CS }}$ Inputs		20	ns
${ }^{\text {c }}$ CS	$\overline{\mathbf{C S}}$ Deselect Time	100		ns
${ }^{\text {twPASU }}$	$\overline{\text { WP, AO Set-Up Time }}$	0		ns
$t_{\text {WPAH }}$	$\overline{\text { WP, AO Hold Time }}$	0		ns

High-Voltage Write Cycle Timing

SYMBOL	PARAMETER	TYP	MAX
$t_{\text {WR }}$	High-Voltage Write Cycle Time (store instructions)	5	10

XDCP Timing

SYMBOL	PARAMETER	MIN	MAX	UNIT
$t_{\text {WRPO }}$	Wiper Response Time After the Third (Last) Power Supply is Stable	5	10	μs
$t_{\text {WRL }}$	Wiper Response Time After Instruction Issued (AII Load Instructions)	5	10	μs

Symbol Table

$\left.\begin{array}{lll}\text { WAVEFORM } & \text { INPUTS } & \text { OUTPUTS } \\ & \begin{array}{l}\text { Must be } \\ \text { steady }\end{array} & \begin{array}{l}\text { Will be } \\ \text { steady } \\ \text { May change } \\ \text { from LOW to } \\ \text { HIGH }\end{array}\end{array} \begin{array}{l}\text { Will change } \\ \text { from LOW to } \\ \text { HIGH }\end{array}\right\}$

Timing Diagrams

FIGURE 7. INPUT TIMING

FIGURE 8. OUTPUT TIMING

Timing Diagrams (contunua)

FIGURE 9. HOLD TIMING

FIGURE 10. XDCP TIMING (FOR ALL LOAD INSTRUCTIONS)

FIGURE 11. WRITE PROTECT AND DEVICE ADDRESS PINS TIMING

Applications information

Basic Configurations of Electronic Potentiometers

FIGURE 12. THREE TERMINAL POTENTIOMETER; VARIABLE VOLTAGE DIVIDER

Application Circuits

$v_{\mathrm{O}}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{v}_{\mathrm{S}}$
FIGURE 14. NONINVERTING AMPLIFIER

FIGURE 16. OFFSET VOLTAGE ADJUSTMENT

$\mathrm{V}_{\mathrm{O}}($ REG $)=1.25 \mathrm{~V}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)+\mathrm{l}_{\mathrm{adj}} \mathrm{R}_{2}$
FIGURE 15. VOLTAGE REGULATOR

$V_{U L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{0}($ max $)$
$R_{L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{o}$ (min)
FIGURE 17. COMPARATOR WITH HYSTERESIS

Application Circuits (Continued)

$\mathrm{V}_{\mathrm{O}}=\mathrm{G} \mathrm{V}_{\mathrm{S}}$
$-1 / 2 \leq G \leq+1 / 2$
FIGURE 18. ATTENUATOR

$\mathrm{V}_{\mathrm{O}}=\mathrm{G} \mathrm{V}_{\mathrm{S}}$

$$
G=-R_{2} / R_{1}
$$

FIGURE 20. INVERTING AMPLIFIER

$\mathrm{G}_{\mathrm{O}}=1+\mathrm{R}_{\mathbf{2}} / \mathrm{R}_{1}$
$\mathrm{fc}=1 /(2 \pi R C)$
FIGURE 19. FILTER

$$
\begin{gathered}
Z_{I N}=R_{2}+s R_{2}\left(R_{1}+R_{3}\right) C_{1}=R_{2}+s \text { Leq } \\
\left(R_{1}+R_{3}\right) \gg R_{2}
\end{gathered}
$$

FIGURE 21. EQUIVALENT L-R CIRCUIT

frequency $\propto \mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{C}$ amplitude $\propto \mathbf{R}_{\mathbf{A}}, \mathbf{R}_{\mathbf{B}}$

FIGURE 22. FUNCTION GENERATOR

Revision History
The revision history provided is for informational purposes only and is believed to be accurate, however, not
warranted. Please visit our website to make sure that you have the latest revision.

DATE	REVISION	CHANGE
October 28, 2016	FN8158.5	Added Related Literature section on page 1. Updated fSCK maximum specification on page 12.
August 3, 2016	FN8158.4	Updated entire datasheet applying Intersil's new standards. Updated Note 1 and added Note 3. Changed the maximum limit for parameter Vcc Current (standby) ISB from 3 3 A to 5 5 A on page 11. Added Revision History and About Intersil sections. Updated POD to latest revision changes are as follows: Updated drawing to remove table and added land pattern.

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support.
© Copyright Intersil Americas LLC 2005-2016. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

M14.173

14 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 3, 10/09

SIDE VIEW

TYPICAL RECOMMENDED LAND PATTERN

For the most recent package outline drawing, see M14.173.

DETAIL "X"

NOTES:

1. Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
2. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side.
3. Dimensions are measured at datum plane \mathbf{H}.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.80 mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm .
6. Dimension in () are for reference only.
7. Conforms to JEDEC MO-153, variation AB-1.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G X9C103S CAT5110TBI-50GT3 CAT5112ZI-50-GT3 CAT5111YI-10-GT3 MCP4351-502E/ML MCP4641-502E/ST MCP4162-103E/SN MCP4451-103E/ML MCP4451-502E/ST MCP4532T103E/MF MCP4631-503E/ST MCP4661-502E/ST CAT5113VI-00-GT3 MCP4641T-502E/ML MCP4021-103E/MS MAX5387LAUD+ DS1855E-010+ MAX5160LEUA+T MCP4142-104E/MF AD5260BRUZ200-RL7 CAT5113LI-10-G CAT5113LI-50-G CAT5114LI-00-G AD5245BRJZ5-R2 AD5116BCPZ10-500R7 AD5116BCPZ5-500R7 AD5116BCPZ80-500R7 AD5122ABCPZ100-RL7 AD5122ABRUZ100 AD5122BCPZ10-RL7 AD5143BCPZ10-RL7 AD5253BRUZ10 AD5253BRUZ50 AD5254BRUZ1-RL7 AD5144TRUZ10-EP AD5160BRJZ100-RL7 AD5160BRJZ10-RL7 AD5161BRMZ10 AD5161BRMZ100 AD5161BRMZ5 AD5161BRMZ5-RL7 AD5170BRMZ2.5-RL7 AD5162BRMZ50-RL7 AD5162WBRMZ100-RL7 AD5165BUJZ100-R2 AD5165BUJZ100-R7

