The X9259 integrates four digitally controlled potentiometers (XDCP) on a monolithic CMOS integrated circuit.

The digitally controlled potentiometers are implemented with a combination of resistor elements and CMOS switches. The position of the wipers are controlled by the user through the 2-wire bus interface. Each potentiometer has associated with it a volatile Wiper Counter Register (WCR) and four nonvolatile Data Registers that can be directly written to and read by the user. The content of the WCR controls the position of the wiper. At power-up, the device recalls the content of the default Data Registers of each DCP (DR00, DR10, DR20, and DR30) to the corresponding WCR.

The XDCP can be used as a three-terminal potentiometer or as a two-terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing.

Features

- Four separate potentiometers in one package
- 256 resistor taps -0.4% resolution
- 2-wire serial interface for write, read, and transfer operations of the potentiometer
- Wiper resistance: 100Ω typical at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- 4 nonvolatile data registers for each potentiometer
- Nonvolatile storage of multiple wiper positions
- Standby current $<5 \mu \mathrm{~A}$ max
- $\mathrm{V}_{\mathrm{Cc}}: 2.7 \mathrm{~V}$ to 5.5 V operation
- $50 \mathrm{k} \Omega$ version of total resistance
- Endurance: 100,000 data changes per bit per register
- 100 year data retention
- Single supply version of X9258
- 24 Ld SOIC, 24 Ld TSSOP
- Low power CMOS
- Pb-Free (RoHS compliant)

Functional Diagram

Ordering Information

PART NUMBER (Notes 1, 3)	PART MARKING	V_{CC} LIMITS (V)	$\mathrm{R}_{\text {TOTAL }}$ (k Ω)	TEMP RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (RoHS Compliant)	PKG. DWG. \#
X9259US24Z (Note 2)	X9259US Z	$5 \pm 10 \%$	50	0 to +70	24 Ld SOIC	M24.3
X9259UV24Z	X9259UV Z			0 to +70	24 Ld TSSOP	M24.173
X9259US24IZ (Note 2)	X9259US ZI			-40 to +85	24 Ld SOIC	M24.3
X9259UV24IZ (Note 2)	X9259UV ZI			-40 to +85	24 Ld TSSOP	M24.173
X9259US24Z-2.7 (Note 2)	X9259US ZF	2.7 to 5.5		0 to +70	24 Ld SOIC	M24.3
X9259US24IZ-2.7 (Note 2)	X9259US ZG			-40 to +85	24 Ld SOIC	M24.3
X9259UV24Z-2.7	X9259UV ZF			0 to +70	24 Ld TSSOP	M24.173
X9259UV24IZ-2.7 (Note 2)	X9259UV ZG			-40 to +85	24 Ld TSSOP	M24.173

NOTES:

1. Intersil Pb-free plus anneal products employ special Pb -free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
2. Add "T1" suffix for tape and reel.
3. For Moisture Sensitivity Level (MSL), please see product information page for X9259. For more information on MSL, please see tech brief TB363.

Circuit Level Applications

- Vary the gain of a voltage amplifier
- Provide programmable DC reference voltages for comparators and detectors
- Control the volume in audio circuits
- Trim out the offset voltage error in a voltage amplifier circuit
- Set the output voltage of a voltage regulator
- Trim the resistance in Wheatstone bridge circuits
- Control the gain, characteristic frequency and Q-factor in filter circuits
- Set the scale factor and zero point in sensor signal conditioning circuits
- Vary the frequency and duty cycle of timer ICs
- Vary the DC biasing of a pin diode attenuator in RF circuits
- Provide a control variable (l, V, or R) in feedback circuits

System Level Applications

- Adjust the contrast in LCD displays
- Control the power level of LED transmitters in communication systems
- Set and regulate the DC biasing point in an RF power amplifier in wireless systems
- Control the gain in audio and home entertainment systems
- Provide the variable DC bias for tuners in RF wireless systems
- Set the operating points in temperature control systems
- Control the operating point for sensors in industrial systems
- Trim offset and gain errors in artificial intelligent systems

Pin Configuration

Pin Descriptions

PIN \#	PIN NAME	DESCRIPTION
2	AO	Device Address for 2-wire bus. (See Note 4)
3	$\mathrm{R}_{\mathrm{W} 3}$	Wiper Terminal of DCP3
4	$\mathrm{R}_{\mathrm{H} 3}$	High Terminal of DCP3
5	$\mathrm{R}_{\mathrm{L} 3}$	Low Terminal of DCP3
7	V_{CC}	System Supply Voltage
8	$\mathrm{R}_{\mathrm{L} 0}$	Low Terminal of DCPO
9	R_{HO}	High Terminal of DCPO
10	R ${ }_{\text {W0 }}$	Wiper Terminal of DCPO
11	A2	Device Address for 2-wire bus. (See Note 4)
12	$\overline{\mathrm{WP}}$	Hardware Write Protect - Active Low
13	SDA	Serial Data Input/Output for 2-wire bus.
14	A1	Device Address for 2-wire bus. (See Note 4)
15	$\mathrm{R}_{\mathrm{L} 1}$	Low Terminal of DCP1
16	$\mathrm{R}_{\mathrm{H} 1}$	High Terminal of DCP1
17	$\mathrm{R}_{\mathrm{W} 1}$	Wiper Terminal of DCP1
18	$\mathrm{V}_{\text {SS }}$	System Ground
20	$\mathrm{R}_{\mathrm{W} 2}$	Wiper Terminal of DCP2
21	$\mathrm{R}_{\mathrm{H} 2}$	High Terminal of DCP2
22	$\mathrm{R}_{\mathrm{L} 2}$	Low Terminal of DCP2
23	SCL	Serial Clock for 2-wire bus.
24	A3	Device Address for 2-wire bus. (See Note 4)
6, 19	NC	No Connect
1	DNC	Do Not Connect

NOTE:
4. A0 through A3 Device address pins must be tied to a logic level.

Functional Pin Descriptions

Bus Interface Pins

SERIAL DATA INPUT/OUTPUT (SDA)

The SDA is a bidirectional serial data input/output pin for a 2-wire slave device and is used to transfer data into and out of the device. It receives device address, opcode, wiper register address and data sent from a 2-wire master at the rising edge of the serial clock SCL, and it shifts out data after each falling edge of the serial clock SCL.

It is an open-drain output and may be wire-ORed with any number of open drain or open collector outputs. An open-drain output requires the use of a pull-up resistor.

SERIAL CLOCK (SCL)

This input is used by a 2 -wire master to supply a 2 -wire serial clock to the X9259.

DEVICE ADDRESS (A3 THROUGH AO)

The Address inputs are used to set the least significant 4 bits of the 8 -bit slave address. A match in the slave address serial data stream must be made with the address input in order to initiate communication with the X9259. A maximum of 16 devices may occupy the 2 -wire serial bus. Device pins A3 through AO must be tied to a logic level, which specifies the external address of the device, see Figures 3, 4, and 5 .

Potentiometer Pins

$\mathbf{R}_{\mathbf{H}}, \mathbf{R}_{\mathbf{L}}$

The R_{H} and R_{L} pins are equivalent to the terminal connections on a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R_{H} and R_{L} such that $R_{H O}$ and $R_{L O}$ are the terminals of DCPO and so on.

$\mathbf{R}_{\mathbf{W}}$

The wiper pin are equivalent to the wiper terminal of a mechanical potentiometer. Since there are 4 potentiometers, there are 4 sets of R_{W} such that $R_{W O}$ is the terminal of DCPO and so on.

Bias Supply Pins

SYSTEM SUPPLY VOLTAGE (Vcc) AND SUPPLY GROUND ($\mathbf{V}_{\mathbf{S S}}$)

The $V_{C C} p i n$ is the system supply voltage. The $V_{S S}$ pin is the system ground.

Other Pins

NO CONNECT

No connect pins should be left open. These pins are used for Intersil manufacturing and testing purposes.

HARDWARE WRITE PROTECT INPUT ($\overline{W P}$)

The $\overline{\mathrm{WP}}$ pin when LOW, prevents nonvolatile writes to the Data Registers.

One of Four Potentiometers

FIGURE 1. DETAILED POTENTIOMETER BLOCK DIAGRAM

Principles of Operation

The X9259 is an integrated circuit incorporating four DCPs and their associated registers and counters, and the serial interface providing direct communication between a host and the potentiometers.

DCP Description

Each DCP is implemented with a combination of resistor elements and CMOS switches. The physical ends of each DCP are equivalent to the fixed terminals of a mechanical potentiometer (R_{H} and R_{L} pins). The RW pin is an intermediate node, equivalent to the wiper terminal of a mechanical potentiometer.

The position of the wiper terminal within the DCP is controlled by an 8-bit volatile Wiper Counter Register (WCR).

Power Up and Down Recommendations

There are no restrictions on the power-up or power-down conditions of V_{CC} and the voltages applied to the potentiometer pins provided that V_{CC} is always more positive than or equal to $\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}$, and V_{W}, i.e., $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{W}}$. The V_{CC} ramp rate specification is always in effect.

Wiper Counter Register (WCR)

The X9259 contains four Wiper Counter Registers, one for each potentiometer. The Wiper Counter Register can be envisioned as a 8-bit parallel and serial load counter with its outputs decoded to select one of 256 wiper positions along its resistor array. The contents of the WCR can be altered in four ways: it may be written directly by the host via the Write Wiper Counter Register instruction (serial load); it may be written indirectly by
transferring the contents of one of four associated data registers via the XFR Data Register instruction (parallel load); it can be modified one step at a time by the Increment/Decrement instruction (see "Instructions" section on page 8 for more details). Finally, it is loaded with the contents of its data register zero (DR\#O) upon power-up, (see Figure 1 on page 4).

The Wiper Counter Register is a volatile register; that is, its contents are lost when the X9259 is powered-down. Although the register is automatically loaded with the value in DR\#0 upon power-up, this may be different from the value present at power-down. Power-up guidelines are recommended to ensure proper loadings of the DR\#0 value into the WCR\# (see AN162).

Data Registers (DR)

Each of the four DCPs has four 8-bit nonvolatile Data Registers. These can be read or written directly by the host. Data can also be transferred between any of the four data registers and the associated Wiper Counter Register. All operations changing data in one of the data registers is a nonvolatile operation and takes a maximum of 10 ms .

If the application does not require storage of multiple settings for the potentiometer, the Data Registers can be used as regular memory locations for system parameters or user preference data.

Bit [7:0] are used to store one of the 256 wiper positions ($0 \sim 255$).

TABLE 1. WIPER COUNTER REGISTER, WCR (8-BIT), WCR[7:0]: USED TO STORE THE CURRENT WIPER POSITION (VOLATILE).

WCR7	WCR6	WCR5	WCR4	WCR3	WCR2	WCR1	WCR0
(MSB)							

TABLE 2. DATA REGISTER, DR (8-BIT), BIT [7:0]: USED TO STORE WIPER POSITIONS OR DATA (NONVOLATILE).

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
(MSB)							(LSB)

Serial Interface

The X9259 supports a bidirectional bus oriented protocol. The protocol defines any device that sends data onto the bus as a transmitter and the receiving device as the receiver. The device controlling the transfer is a master and the device being controlled is the slave. The master always initiates data transfers and provide the clock for both transmit and receive operations. Therefore, the X9259 operates as a slave device in all applications.

All 2-wire interface operations must begin with a START, followed by an Identification Byte, that selects the X9259. All
communication over the 2-wire interface is conducted by sending the MSB of each byte of data first.

Clock and Data Conventions

Data states on the SDA line can change only during SCL LOW periods. SDA state changes during SCL HIGH are reserved for indicating START and STOP conditions (see Figure 2). On power-up of the X9259, the SDA pin is in the input mode.

START Condition

All commands to the X9259 are preceded by the start condition, which is a HIGH to LOW transition of SDA while SCL is HIGH. The X9259 continuously monitors the SDA and SCL lines for the START condition and does not respond to any command until this condition is met (see Figure 2).

STOP Condition

All communications must be terminated by a STOP condition, which is a LOW to HIGH transition of SDA while SCL is HIGH, (see Figure 2). The STOP condition is also used to place the device into the Standby Power mode after a Read sequence. A STOP
condition can only be issued after the transmitting device has released the bus.

Acknowledge

An ACK, Acknowledge, is a software convention used to indicate a successful data transfer. The transmitting device, either master or slave, releases the SDA bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDA line LOW to acknowledge the reception of the eight bits of data, (see Figure 3).

The X9259 responds with an ACK after recognition of a START condition followed by a valid Identification Byte, and once again after successful receipt of an Instruction Byte. The X9259 also responds with an ACK after receiving a Data Byte after a Write Instruction.

A valid Identification Byte contains the Device Type Identifier 0101, as the four MSBs, and the Device Address bits matching the logic states of pins A3, A2, A1, and A0, as the four LSBs (see Figure 4 on page 8).

In the Read mode, the device transmits eight bits of data, releases the SDA line, and then monitors the line for an ACK. The device continues transmitting data if an ACK is detected. The device terminates further data transmissions if an ACK is not detected. The master must then issue a STOP condition to place the device into a known state.

During the internal nonvolatile Write operation, the X9259 ignores the inputs at SDA and SCL, and does not issue an ACK after Identification bytes.

FIGURE 2. VALID DATA CHANGES, START, AND STOP CONDITIONS

FIGURE 3. ACKNOWLEDGE RESPONSE FROM RECEIVER

Identification Byte

The first byte sent to the X9259 from the host is called the Identification Byte. The most significant four bits are a Device Type Identifier, ID[3:0] bits, which must be 0101. Refer to Table 3.

Only the device which Slave Address matches the incoming device address sent by the master executes the instruction. The A3-A0 inputs can be actively driven by CMOS input signals or tied to V_{CC} or V_{SS}.

INSTRUCTION BYTE (I)

The next byte sent to the X9259 contains the instruction and register pointer information. The four most significant bits are used provide the instruction opcode I [3:0]. The RB and RA bits point to one of the four data registers of each associated XDCP.

The least two significant bits point to one of four Wiper Counter Registers or DCPs. The format is shown in Table 4.

Data Register Selection

REGISTER	RB	RA
DR\#0	0	0
DR\#1	0	1
DR\#2	1	0
DR\#3	1	1
\#: $0,1,2$, or 3		

The least significant four bits of the Identification Byte are the Slave Address bits, AD[3:0]. To access the X9259, these four bits must match the logic values of pins A3, A2, A1, and A0.

TABLE 3. IDENTIFICATION BYTE FORMAT

DEVICE TYPE IDENTIFIER				SLAVE ADDRESS			
ID3	ID2	ID1	IDO	A3	A2	A1	AO
0	1	0	1	Logic value of pins A3, A2, A1, and A0			
(MSB)							(LSB)

TABLE 4. INSTRUCTION BYTE FORMAT

INSTRUCTION OPCODE				REGISTER SELECTION		DCP SELECTION (WCR SELECTION)	
13	12	11	10	RB	RA	P1	PO
(MSB)							(LSB)

TABLE 5. INSTRUCTION SET

INSTRUCTION	INSTRUCTION SET								OPERATION
	13	12	11	10	RB	RA	P1	PO	
Read Wiper Counter Register	1	0	0	1	0	0	1/0	1/0	Read the contents of the Wiper Counter Register pointed to by P1-P0
Write Wiper Counter Register	1	0	1	0	0	0	1/0	1/0	Write new value to the Wiper Counter Register pointed to by P1-P0
Read Data Register	1	0	1	1	1/0	1/0	1/0	1/0	Read the contents of the Data Register pointed to by P1 - P0 and RB - RA
Write Data Register	1	1	0	0	1/0	1/0	1/0	1/0	Write new value to the Data Register pointed to by P1-P0 and RB - RA
XFR Data Register to Wiper Counter Register	1	1	0	1	1/0	1/0	1/0	1/0	Transfer the contents of the Data Register pointed to by P1 - P0 and RB - RA to its associated Wiper Counter Register
XFR Wiper Counter Register to Data Register	1	1	1	0	1/0	1/0	1/0	1/0	Transfer the contents of the Wiper Counter Register pointed to by P1 - P0 to the Data Register pointed to by RB - RA
Global XFR Data Registers to Wiper Counter Registers	0	0	0	1	1/0	1/0	0	0	Transfer the contents of the Data Registers pointed to by RB - RA of all four pots to their respective Wiper Counter Registers
Global XFR Wiper Counter Registers to Data Register	1	0	0	0	1/0	1/0	0	0	Transfer the contents of both Wiper Counter Registers to their respective data Registers pointed to by RB - RA of all four DCPs
Increment/Decrement Wiper Counter Register	0	0	1	0	0	0	1/0	1/0	Enable Increment/decrement of the Control Latch pointed to by P1-P0

NOTE: $1 / 0=$ data is one or zero

Instructions

Four of the nine instructions are three bytes in length. These instructions are:

- Read Wiper Counter Register - read the current wiper position of the selected potentiometer.
- Write Wiper Counter Register - change current wiper position of the selected potentiometer.
- Read Data Register - read the contents of the selected Data Register.
- Write Data Register - write a new value to the selected Data Register.

The basic sequence of the three byte instructions is illustrated in Figure 5. These three-byte instructions exchange data between the WCR and one of the Data Registers. A transfer from a Data Register to a WCR is essentially a write to a static RAM, with the static RAM controlling the wiper position. The response of the wiper to this action is delayed by twRL. A transfer from the WCR (current wiper position), to a Data Register is a write to nonvolatile memory and takes a minimum of $t_{W R}$ to complete. The transfer can occur between one of the four potentiometer's WCR, and one of its associated registers, DRs; or it may occur globally, where the transfer occurs between all potentiometers and one associated register.

Four instructions require a two-byte sequence to complete. These instructions transfer data between the host and the X9259; either between the host and one of the data registers or directly
between the host and the Wiper Counter Register. These instructions are:

- XFR Data Register to Wiper Counter Register - This transfers the contents of one specified Data Register to the associated Wiper Counter Register.
- XFR Wiper Counter Register to Data Register - This transfers the contents of the specified Wiper Counter Register to the specified associated Data Register.
- Global XFR Data Register to Wiper Counter Register - This transfers the contents of all specified Data Registers to the associated Wiper Counter Registers.
- Global XFR Wiper Counter Register to Data Register - This transfers the contents of all Wiper Counter Registers to the specified associated Data Registers.

Increment/Decrement Command

The final command is Increment/Decrement (Figures 6 and 7). The Increment/Decrement command is different from the other commands. Once the command is issued and the X9259 has responded with an Acknowledge, the master can clock the selected wiper up and/or down in one segment steps; thereby, providing a fine tuning capability to the host. For each SCL clock pulse ($t_{\text {HIGH }}$) while SDA is HIGH, the selected wiper moves one wiper position towards the R_{H} terminal. Similarly, for each SCL clock pulse while SDA is LOW, the selected wiper moves one resistor wiper position towards the R_{L} terminal.

See "Instruction Format" on page 10 for more details.

FIGURE 4. TWO-BYTE INSTRUCTION SEQUENCE

FIGURE 5. THREE-BYTE INSTRUCTION SEQUENCE 2-WIRE INTERFACE

FIGURE 6. INCREMENT/DECREMENT INSTRUCTION SEQUENCE 2-WIRE INTERFACE

FIGURE 7. INCREMENT/DECREMENT TIMING SPECIFICATION

Instruction Format

Read Wiper Counter Register (WCR)

S	DEVICE TYPE IDENTIFIER				DEVICE ADDRESSES				$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	INSTRUCTION OPCODE				DR/WCR ADDRESSES				$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	WIPER POSITION (SENT BY X9259 ON SDA)								$\begin{aligned} & \text { M } \\ & \text { A } \\ & \text { C } \\ & \text { K } \end{aligned}$	S
$\begin{aligned} & \mathrm{A} \\ & \mathrm{R} \\ & \mathrm{~T} \end{aligned}$	0	1	0	1	A3	A2	A1	A0		1	0	0	1	0	0	P1	P0		$\begin{aligned} & \hline \mathrm{W} \\ & \mathrm{C} \\ & \mathrm{R} \\ & 7 \end{aligned}$	W C R 6	W C R 5	W C R 4	W C R 3	W C R 2	W C R 1	W C R 0		

Write Wiper Counter Register (WCR)

\begin{tabular}{|c|}
\hline S \& \multicolumn{4}{|c|}{DEVICE TYPE IDENTIFIER} \& \multicolumn{4}{|c|}{DEVICE ADDRESSES} \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \mathrm{S} \\
& \mathrm{~A} \\
& \mathrm{C} \\
& \mathrm{~K}
\end{aligned}
$$} \& \multicolumn{4}{|l|}{INSTRUCTION OPCODE} \& \multicolumn{4}{|c|}{DR/WCR ADDRESSES} \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \mathrm{S} \\
& \mathrm{~A} \\
& \mathrm{C} \\
& \mathrm{~K}
\end{aligned}
$$} \& \multicolumn{8}{|c|}{WIPER POSITION (SENT BY MASTER ON SDA)} \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \text { S } \\
& \text { A } \\
& \text { C } \\
& \text { K }
\end{aligned}
$$} \& \multirow[b]{2}{*}{0}

\hline A
R
T \& 0 \& 1 \& 0 \& 1 \& A3 \& A2 \& A1 \& AO \& \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& P1 \& PO \& \& W
C
R
7 \& W
C
R
6 \& W
C
R
R
5 \& W
C
R
4 \& W
C
R

3 \& W
C
R
2 \& W
C
R
1 \& W
C
R
0 \& \&

\hline
\end{tabular}

Read Data Register (DR)

S	DEVICE TYPE IDENTIFIER				DEVICE ADDRESSES				$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	INSTRUCTION OPCODE				DR/WCR ADDRESSES				$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	WIPER POSITION (SENT BY X9259 ON SDA)								$\begin{aligned} & \mathrm{M} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	ST0P
$\begin{aligned} & \mathrm{A} \\ & \mathrm{R} \\ & \mathrm{~T} \end{aligned}$	0	1	0	1	A3	A2	A1	A0		1	0	1	1	RB	RA	P1	P0		$\begin{gathered} \hline \mathrm{W} \\ \mathrm{C} \\ \mathrm{R} \\ 7 \end{gathered}$	$\begin{gathered} \hline W \\ C \\ R \\ 6 \end{gathered}$	W C R 5	$\begin{gathered} \hline \mathrm{W} \\ \mathrm{C} \\ \mathrm{R} \\ 4 \end{gathered}$	W	W C R 2	W C R 1	W C R O		

Write Data Register (DR)

S	DEVICE TYPE IDENTIFIER				DEVICE ADDRESSES				S	INSTRUCTION OPCODE				DR/WCR ADDRESSES				S	WIPER POSITION (SENT BY MASTER ON SDA)								$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	ST0P	
A R T	0	1	0	1	A3	A2	A1	A0	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	1	1	0	0	RB	RA	P1	P0	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \hline \mathrm{W} \\ & \mathrm{C} \\ & \mathrm{R} \\ & 7 \end{aligned}$	W	W C R 5	W C R 4	W	W	W C R 1	W C R 0			

Global XFR Data Register (DR) to Wiper Counter Register (WCR)

S	DEVICE TYPE IDENTIFIER				DEVICE ADDRESSES				$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	INSTRUCTION OPCODE				DR/WCR ADDRESSES				$\begin{aligned} & \text { S } \\ & \text { A } \\ & \text { C } \\ & \text { K } \end{aligned}$	STOP
R T	0	1	0	1	A3	A2	A1	AO		0	0	0	1	RB	RA	0	0		

Global XFR Wiper Counter Register (WCR) to Data Register (DR)

S	DEVICE TYPE IDENTIFIER				DEVICE ADDRESSES				$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	INSTRUCTION OPCODE				DR/WCR ADDRESSES				$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$	ST0P	HIGH-VOLTAGE WRITE CYCLE
R T	0	1	0	1	A3	A2	A1	AO		1	0	0	0	RB	RA	0	0			

Transfer Wiper Counter Register (WCR) to Data Register (DR)

Transfer Data Register (DR) to Wiper Counter Register (WCR)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$	DEVICE TYPE IDENTIFIER				DEVICE ADDRESSES				$\begin{aligned} & \text { S } \\ & \text { A } \\ & \text { C } \\ & \text { K } \end{aligned}$	$\begin{aligned} & \text { INSTRUCTION } \\ & \text { OPCODE } \end{aligned}$				DR/WCR ADDRESSES				SACK	S	
R	0	1	0	1	A3	A2	A1	AO		1	1	0	1	RB	RA	P1	P0			

Increment/Decrement Wiper Counter Register (WCR)

NOTES:
5. "MACK"/"SACK": stands for the acknowledge sent by the Master/Slave.
6. "A3 ~ AO": stands for the device addresses sent by the master.
7. " X ": indicates that it is a " 0 " for testing purpose but physically it is a "don't care" condition.
8. "I": stands for the increment operation, SDA held high during active SCL phase (high).
9. "D": stands for the decrement operation, SDA held low during active SCL phase (high).

Absolute Maximum Ratings

as	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on SCL, SDA, any address input, V_{CC} with respect to V_{SS}	
$\Delta \mathrm{V}=\mathrm{I}\left(\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right) \mathrm{l}$	5.5 V
Lead temperature (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
(10 seconds)	

Recommended Operating Conditions

Temperature (Industrial) . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (VCC) (Note 13) Limits
X9259.
$5 \mathrm{~V} \pm 10 \%$
X9259-2.7.. . . . 2 V to 5.5 V
Wiper current ... $\pm 3 \mathrm{~mA}$
Power rating (each pot) . 50mW
Pb-Free Reflow Profile . see sB493

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

Analog Specifications over recommended industrial (2.7V) operating conditions unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			
			MIN	TYP	MAX	UNITS
$\mathrm{R}_{\text {TOTAL }}$	End-to-End Resistance	U version		50		k Ω
	End-to-End Resistance Tolerance				± 20	\%
R_{W}	Wiper Resistance	$\mathrm{I}_{\mathrm{W}}=\frac{\mathrm{V}\left(\mathrm{~V}_{\mathrm{CC}}\right)}{\mathrm{R}_{\mathrm{TOTAL}}} \text { at } \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			300	Ω
		$\mathrm{I}_{\mathrm{W}}=\frac{\mathrm{V}\left(\mathrm{~V}_{\mathrm{CC}}\right)}{\mathrm{R}_{\mathrm{TOTAL}}} \text { at } \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			220	Ω
$\mathrm{V}_{\text {TERM }}$	Voltage on any R_{H} or R_{L} Pin	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	V_{SS}		V_{CC}	V
	Noise (Note 15)	Ref: 1V		-120		$\mathrm{dB} / \sqrt{ } \mathrm{Hz}$
	Resolution			0.4		\%
	Absolute Linearity (Note 10)	$\mathrm{R}_{\mathrm{w}(\mathrm{n})(\text { actual })}-\mathrm{R}_{\mathrm{w}(\mathrm{n})(\text { expected) }}$ ((${ }^{\text {ate 14) }}$	-1		+1	MI (Note 12)
	Relative Linearity (Note 11)	$\mathrm{R}_{\mathrm{w}(\mathrm{n}+1)}-\left[\mathrm{R}_{\mathrm{W}(\mathrm{n})+\mathrm{MI}]}\right.$ (Note 14)	-0.6		+0.6	MI (Note 12)
	Temperature Coefficient of $\mathrm{R}_{\text {TOTAL }}$ (Note 15)			± 300		ppm/ ${ }^{\circ} \mathrm{C}$
	Ratiometric Temp. Coefficient (Note 15)			± 20		ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}}$	Potentiometer Capacitances (Note 15)	See SPICE Macromodel on page 14.		10/10/25		pF

NOTES:

10. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a potentiometer.
11. Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a potentiometer. It is a measure of the error in step size.
12. $\mathbf{M I}=$ RTOT / 255 or $\left(R_{H}-R_{L}\right) / 255$, single pot
13. During power up $\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}$, and V_{W}.
14. $n=0,1,2, \ldots, 255 ; m=0,1,2, \ldots, 254$.

DC Electrical Specifications Over the recommended operating conditions unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			
			MIN	TYP	MAX	UNITS
$\mathrm{I}_{\mathrm{CC1}}$	V_{CC} supply current (active)	$\mathrm{f}_{\mathrm{SCL}}=400 \mathrm{kHz} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V} ;$ SDA = Open; (for 2-Wire, Active, Read and Volatile Write States only)			3	mA
$\mathrm{I}_{\mathrm{CC} 2}$	$\mathrm{V}_{\text {CC }}$ supply current (nonvolatile write)	$\begin{aligned} & \mathrm{f}_{\mathrm{SCL}}=400 \mathrm{kHz} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V} ; \\ & \text { SDA }=\text { Open; (for 2-Wire, Active, } \\ & \text { Nonvolatile Write State only) } \end{aligned}$			5	mA
${ }^{\text {ISB }}$	V_{CC} current (standby)	$\mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{SDA}=\mathrm{V}_{\mathrm{CC}}$ (for 2-Wire, Standby State only)			5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LI }}$	Input leakage current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
ILO	Output leakage current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
V_{IH}	Input HIGH voltage		$\mathrm{V}_{\text {CC }} \times 0.7$			V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage				$\mathrm{V}_{\mathrm{CC}} \times 0.3$	V
V_{OL}	Output LOW voltage	$\mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}$			0.4	V
V_{OH}	Output HIGH voltage	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \geq+3 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}-0.8$			V
V_{OH}	Output HIGH voltage	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \leq+3 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}-0.4$			V

Endurance and Data Retention

PARAMETER	MIN	UNITS
Minimum endurance	100,000	Data changes per bit per register
Data retention	100	years

Capacitance

SYMBOL	TEST	MAX	UNITS	TEST CONDITIONS
$\mathrm{C}_{\text {IN/OUT (Note 15) }}$	Input / Output capacitance (SDA)	$\mathbf{8}$	pF	
C_{IN} (Note 15)	Input capacitance (SCL, $\overline{\mathrm{WP}, ~ A 2, ~ A 1 ~ a n d ~ A O) ~}$	6	$\mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	

Power-up Timing

SYMBOL	PARAMETER	MIN	MAX
tr VCC (Note 15)	VCC Power-up rate	0.2	
tPUR (Note 16)	Power-up to initiation of read operation		VNITS
tPUW (Note 16)	Power-up to initiation of write operation		ms

AC Test Conditions

Input Pulse Levels	$\mathrm{V}_{\mathrm{CC}} \times 0.1$ to $\mathrm{V}_{\mathrm{CC}} \times 0.9$
Input rise and fall times	10 ns
Input and output timing level	$\mathrm{V}_{\mathrm{CC}} \times 0.5$

NOTES:

15. This parameter is not 100% tested
16. $t_{\text {PUR }}$ and $t_{\text {PUW }}$ are the delays required from the time the power supply $\left(\mathrm{V}_{\mathrm{CC}}\right)$ is stable until the specific instruction can be issued. These parameters are periodically sampled and not 100% tested.

Equivalent AC Load Circuit

AC Timing

SYMBOL	PARAMETER	MIN	MAX	UNITS
$\mathrm{f}_{\text {SCL }}$	Clock Frequency		400	kHz
${ }^{\text {t }} \mathrm{CYC}$	Clock Cycle Time	2500		ns
$\mathrm{t}_{\text {HIGH }}$	Clock High Time	600		ns
$\mathrm{t}_{\text {LOW }}$	Clock Low Time	1300		ns
${ }^{\text {t Su:STA }}$	Start Setup Time	600		ns
$\mathrm{t}_{\text {HD: }}$ STA	Start Hold Time	600		ns
${ }^{\text {tsu:STO }}$	Stop Setup Time	600		ns
$t_{\text {SU: }}$ DAT	SDA Data Input Setup Time	100		ns
$t_{\text {HD: DAT }}$	SDA Data Input Hold Time	30		ns
t_{R}	SCL and SDA Rise Time		300	ns
t_{F}	SCL and SDA Fall Time		300	ns
${ }^{\text {ta }}$	SCL Low to SDA Data Output Valid Time		0.9	$\mu \mathrm{s}$
${ }^{\text {DH }}$	SDA Data Output Hold Time	0		ns
T_{1}	Noise Suppression Time Constant at SCL and SDA inputs	50		ns
$t_{\text {BUF }}$	Bus Free Time (Prior to Any Transmission)	1200		ns
${ }^{\text {t SU:WPA }}$	A0, A1 Setup Time	0		ns
$t_{\text {HD }}$ WPA	A0, A1 Hold Time	0		ns

High-Voltage Write Cycle Timing

SYMBOL	PARAMETER	TYP	MAX
$t_{\text {WR }}$	High-voltage write cycle time (store instructions)	5	10

XDCP Timing

SYMBOL	PARAMETER	MIN	MAX
$t_{\text {WRPO }}$	Wiper response time after the third (last) power supply is stable	5	10
$t_{\text {WRL }}$	Wiper response time after instruction issued (all load instructions)	$\mu \mathrm{s}$	

Symbol Table

WAVEFORM	INPUTS	OUTPUTS		
	Must be steady	Will be steady		
from Low to				
High			\quad	May change
:---				
from High to				
Low Low Low to				
High	\quad	Will change		
:---				
from High to				
Low				

Timing Diagrams

Start and Stop Timing

Input Timing

Output Timing

XDCP Timing (for All Load Instructions)

Write Protect and Device Address Pins Timing

Applications Information

Basic Configurations of Electronic Potentiometers

Three-terminal
Potentiometer;
Variable voltage divider

Two-terminal Variable
Resistor;
Variable current

Application Circuits

Non inverting Amplifier

$\mathrm{V}_{\mathrm{O}}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{V}_{\mathrm{S}}$

Offset Voltage Adjustment

Voltage Regulator

$\mathrm{V}_{\mathrm{O}}(\mathrm{REG})=1.25 \mathrm{~V}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)+\mathrm{I}_{\text {adj }} \mathrm{R}_{2}$

Comparator with Hysteresis

$\mathrm{V}_{\mathrm{UL}}=\left\{\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right\} \mathrm{V}_{\mathrm{o}}(\max)$
$R_{L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{0}($ min $)$

Application Circuits (continued)

$\mathrm{V}_{\mathrm{O}}=\mathrm{G} \mathrm{V}_{\mathrm{S}}$
$-1 / 2 \leq \mathrm{G} \leq+1 / 2$

Inverting Amplifier

$\mathrm{V}_{\mathrm{O}}=\mathrm{G} \mathrm{V}_{\mathrm{S}}$ $G=-R_{2} / R_{1}$

Filter

$\mathrm{G}_{\mathrm{O}}=1+\mathrm{R}_{2} / \mathrm{R}_{1}$ $\mathrm{fc}=1 /(2 \pi \mathrm{RC})$

Equivalent L-R Circuit

$$
\begin{aligned}
Z_{I N}= & R_{2}+s R_{2}\left(R_{1}+R_{3}\right) C_{1}=R_{2}+s \text { Leq } \\
& \left(R_{1}+R_{3}\right) \gg R_{2}
\end{aligned}
$$

Function Generator

frequency $\propto \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{C}$
amplitude $\propto \mathbf{R}_{\mathbf{A}}, \mathbf{R}_{\mathbf{B}}$

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
December 12, 2014	FN8169.6	Updated Datasheet to Intersil new standards. Updated Ordering Information Table on page 2, by removing obsoleted parts and 100k adding referenced parts, 3 and changed TSSOP POD references from "MDP0044" to "M24.173". On page 3. in the Pin Descriptions table removed duplicate entry for Pin 6. Added Revision History and About Intersil Verbiage Updated M24.3 POD to the latest revision. "Updated to new POD standard by removing table listing dimensions and putting dimensions on drawing. Added Land Pattern." Replaced MDPOO44 POD with M24.173 POD to update to new format and only show 24LD version.

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support
© Copyright Intersil Americas LLC 2005-2014. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

M24.3

24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE (SOIC)
Rev 2, 3/11

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
2. Package length does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
3. Package width does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
4. The chamfer on the body is optional. If it is not present, a visua index feature must be located within the crosshatched area
5. Terminal numbers are shown for reference only.
6. The lead width as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
7. Controlling dimension: MILLIMETER. Converted inch dimensions in () are not necessarily exact.
8. This outline conforms to JEDEC publication MS-013-AD ISSUE C.

Package Outline Drawing

M24.173

24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 1, 5/10

TOP VIEW

SIDE VIEW

END VIEW

DETAIL "X"

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimension does not include mold flash, protrusions or gate burrs.

Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
2. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side.
3. Dimensions are measured at datum plane H .
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08 mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm .
6. Dimension in () are for reference only.
7. Conforms to JEDEC MO-153.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
AD5110BCPZ10-RL7 AD5112BCPZ5-500R7 AD5115BCPZ10-500R7 AD5115BCPZ80-500R7 AD5141BCPZ10-RL7 AD5142ABCPZ100-
RL7 AD5142BRUZ10-RL7 AD5160BRJZ100-RL7 AD5160BRJZ10-RL7 AD5160BRJZ50-RL7 AD5160BRJZ5-R2 AD5160BRJZ5-RL7
AD5161BRMZ10-RL7 AD5165BUJZ100-R2 AD5165BUJZ100-R7 AD5175BRMZ-10-RL7 AD5204BRUZ10-REEL7 AD5204BRZ100
AD5206BRUZ100-RL7 AD5207BRUZ10 AD5207BRUZ10-RL7 AD5220BRZ50 AD5227BUJZ100-RL7 AD5227BUJZ10-R2
AD5228BUJZ50-RL7 AD5231BRUZ10-REEL7 AD5231BRUZ50 AD5235BRUZ25 AD5235BRUZ25-RL7 AD5242BRZ10
AD5243BRMZ10-RL7 AD5243BRMZ50-RL7 AD5245BRJZ100-RL7 AD5245BRJZ10-RL7 AD5245BRJZ50-R2 AD5245BRJZ50-RL7
AD5246BKSZ100-RL7 AD5247BKSZ10-RL7 AD5248BRMZ100 AD5252BRUZ10 AD5252BRUZ10-RL7 AD5253BRUZ10-RL7
AD5258BRMZ1 AD5258BRMZ10-R7 AD5258BRMZ50-R7 AD5259BCPZ5-R7 AD5259BRMZ10 AD5259BRMZ100-R7
AD5260BRUZ20-RL7 AD5262BRUZ20-RL7

