X9317

Low Noise, Low Power, 100 Taps, Digitally Controlled Potentiometer (XDCP ${ }^{\text {™ }}$)

The X9317 is a digitally controlled potentiometer (XDCPTM). The device consists of a resistor array, wiper switches, a control section, and nonvolatile memory. The wiper position is controlled by a 3 -wire interface.

The potentiometer is implemented by a resistor array composed of 99 resistive elements and a wiper switching network. Between each element and at either end are tap points accessible to the wiper terminal. The position of the wiper element is controlled by the $\overline{\mathbf{C S}}, \mathrm{U} / \overline{\mathrm{D}}$, and $\overline{\mathrm{INC}}$ inputs. The position of the wiper can be stored in nonvolatile memory and then be recalled upon a subsequent power-up operation.

The device can be used as a three-terminal potentiometer for voltage control or as a two-terminal variable resistor for current control in a wide variety of applications.

Applications

- LCD bias control
- DC bias adjustment
- Gain and offset trim
- Laser diode bias control
- Voltage regulator output control

Features

- Solid-state potentiometer
- 3-wire serial up/down interface
- 100 wiper tap points
- Wiper position stored in nonvolatile memory and recalled on power-up
- 99 resistive elements
- Temperature compensated
- End-to-end resistance range $\pm 20 \%$
- Low power CMOS
- $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V , and $5 \mathrm{~V} \pm 10 \%$
- Standby current < $5 \mu \mathrm{~A}$
- High reliability
- Endurance, 100,000 data changes per bit
- Register data retention, 100 years
- $\mathrm{R}_{\text {TOTAL }}$ values $=10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$
- Packages
- 8 Ld SOIC, TSSOP, and MSOP
- Pb-free (RoHS compliant)

Ordering Information

PART NUMBER (Notes 1, 2, $\underline{3}$)	PART MARKING	V_{CC} LIMITS (V)	$\mathrm{R}_{\text {TOTAL }}$ (k Ω)	PACKAGE DESCRIPTION (RoHS Compliant)	PKG. DWG. \#	CARRIER TYPE	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)
X9317WM8Z	DCW	$5 \pm 10 \%$	10	8 Ld MSOP	M8.118	Tube	0 to +70
X9317WM8ZT1						Reel, 2.5k	
X9317WM8IZ	DCT			8 Ld MSOP	M8.118	Tube	-40 to +85
X9317WM8IZT1						Reel, 2.5k	
X9317WS8Z	$\begin{aligned} & \text { X9317W } \\ & \text { Z } \end{aligned}$			8 Ld SOIC	M8.15E	Tube	0 to +70
X9317WS8ZT1						Reel, 2.5k	
X9317WS8IZ	$\begin{aligned} & \text { X9317W } \\ & \text { ZI } \end{aligned}$			8 Ld SOIC	M8.15E	Tube	-40 to +85
X9317WS8IZT1						Reel, 2.5k	
X9317WV8Z	$\begin{aligned} & 9317 W \\ & Z \end{aligned}$			8 Ld TSSOP	M8.173	Tube	0 to +70
X9317WV8ZT1						Reel, 2.5k	
X9317WV8IZ	$\begin{aligned} & \text { 9317W } \\ & \text { IZ } \end{aligned}$			8 Ld TSSOP	M8.173	Tube	-40 to +85
X9317WV8IZT1						Reel, 2.5k	
X9317US8Z	$\begin{aligned} & \text { X9317U } \\ & \text { Z } \end{aligned}$		50	8 Ld SOIC	M8.15E	Tube	0 to +70
X9317US8ZT1						Reel, 2.5k	
X9317US8IZ	$\begin{aligned} & \text { X9317U } \\ & \text { ZI } \end{aligned}$			8 Ld SOIC	M8.15E	Tube	-40 to +85
X9317US8IZT1						Reel, 2.5k	
X9317UV8Z	$\begin{aligned} & 9317 U \\ & Z \end{aligned}$			8 Ld TSSOP	M8.173	Tube	0 to +70
X9317UV8ZT1						Reel, 2.5k	
X9317UV8IZ	$\begin{aligned} & 9317 U \\ & \text { IZ } \end{aligned}$			8 Ld TSSOP	M8.173	Tube	-40 to +85
X9317UV8IZT1						Reel, 2.5k	
X9317WM8Z-2.7	DCX	2.7 to 5.5	10	8 Ld MSOP	M8.118	Tube	0 to +70
X9317WM8Z-2.7T1						Reel, 2.5k	
X9317WM8IZ-2.7	DCU			8 Ld MSOP	M8.118	Tube	-40 to +85
X9317WM8IZ-2.7T1						Reel, 2.5k	
X9317WS8Z-2.7	$\begin{aligned} & \text { X9317W } \\ & \text { ZF } \end{aligned}$			8 Ld SOIC	M8.15E	Tube	0 to +70
X9317WS8Z-2.7T1						Reel, 2.5k	
X9317WS8IZ-2.7	$\begin{aligned} & \text { X9317W } \\ & \text { ZG } \end{aligned}$			8 Ld SOIC	M8.15E	Tube	-40 to +85
X9317WS8IZ-2.7T1						Reel, 2.5k	
X9317WV8Z-2.7	$\begin{aligned} & 9317 W \\ & \text { FZ } \end{aligned}$			8 Ld TSSOP	M8.173	Tube	0 to +70
X9317WV8Z-2.7T1						Reel, 2.5k	
X9317WV8IZ-2.7	AKZ			8 Ld TSSOP	M8.173	Tube	-40 to +85
X9317WV8IZ-2.7T1						Reel, 2.5k	

Ordering Information (continuoa)

PART NUMBER (Notes 1, 2, 3)	PART MARKING	V_{CC} LIMITS (V)	$\mathrm{R}_{\text {TOTAL }}$ (k Ω)	PACKAGE DESCRIPTION (RoHS Compliant)	PKG. DWG. \#	CARRIER TYPE	TEMPERATURE RANGE (${ }^{\circ}$ C)
X9317US8Z-2.7	$\begin{aligned} & \text { X9317U } \\ & \text { ZF } \end{aligned}$	2.7 to 5.5	50	8 Ld SOIC	M8.15E	Tube	0 to +70
X9317US8Z-2.7T1						Reel, 2.5k	
X9317US8IZ-2.7	$\begin{aligned} & \text { X9317U } \\ & \text { ZG } \end{aligned}$			8 Ld SOIC	M8.15E	Tube	-40 to +85
X9317US8IZ-2.7T1						Reel, 2.5k	
X9317UV8Z-2.7	$\begin{array}{\|l\|} \hline 9317 U \\ \text { FZ } \end{array}$			8 Ld TSSOP	M8.173	Tube	0 to +70
X9317UV8Z-2.7T1						Reel, 2.5k	
X9317UV8IZ-2.7	$\begin{aligned} & \text { 9317U } \\ & \text { GZ } \end{aligned}$			8 Ld TSSOP	M8.173	Tube	-40 to +85
X9317UV8IZ-2.7T1						Reel, 2.5k	

NOTES:

1. Refer to TB347 for details on reel specifications.
2. These Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), see the X9317 product information page. For more information about MSL, refer to TB363.

Pin Configurations

X9317
(8 LD TSSOP)
TOP VIEW

X9317
(8 LD SOIC, 8 LD MSOP) TOP VIEW

Pin Descriptions

SOIC/MSOP	TSSOP	SYMBOL	BRIEF DESCRIPTION
1	3	$\overline{\mathrm{INC}}$	Increment Toggling $\overline{\mathrm{INC}}$ while $\overline{\mathrm{CS}}$ is low moves the wiper either up or down.
2	4	$\mathrm{U} / \overline{\mathrm{D}}$	Up/Down The U/ $\overline{\mathrm{D}}$ input controls the direction of the wiper movement.
3	5	R_{H}	The high terminal is equivalent to one of the fixed terminals of a mechanical potentiometer.
4	6	$\mathrm{~V}_{\mathrm{SS}}$	Ground
5	7	R_{W}	The wiper terminal is equivalent to the movable terminal of a mechanical potentiometer.
6	8	R_{L}	The low terminal is equivalent to one of the fixed terminals of a mechanical potentiometer.
7	1	$\overline{\mathrm{CS}}$	Chip Select The device is selected when the $\overline{\mathrm{CS}}$ input is LOW, and de-selected when $\overline{\mathrm{CS}}$ is high.
$\mathbf{8}$	$\mathbf{2}$	V_{CC}	Supply Voltage

Absolute Maximum	
I_{W} (10s)	. $\pm 8.8 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{H}}, \mathrm{R}_{\mathrm{W}}, \mathrm{R}_{\mathrm{L}}$ to Ground.	+6V
Voltage on $\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ and V_{CC} with Respect to V_{SS}.	

Thermal Information

Thermal Resistance (Typical)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\theta_{\text {Jc }}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$
SOIC Package (Notes 4, $\underline{\text {) }}$	115	60
MSOP Package (Notes 4, ${ }^{\text {5 }}$)	145	55
TSSOP Package (Notes 4, 5).	155	49
Junction Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$	
Storage Temperature.	.$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Pb-Free Reflow Profile		see TB493

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

4. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See TB379 for details.
5. For θ_{JC}, the "case temp" location is taken at the package top center.

Potentiometer Specifications $V_{C C}=$ full range. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial).

SYMBOL	PARAMETER	TEST CONDITIONS/NOTES	MIN (Note 13)	TYP (Note 9)	MAX (Note 13)	UNIT
$\mathrm{R}_{\text {TOTAL }}$	End-to-end Resistance Tolerance	See "Ordering Information" on page 2 for values	-20	-	+20	\%
$\mathrm{V}_{\mathrm{RH}} / \mathrm{RL}$	$\mathrm{R}_{\mathrm{H}} / \mathrm{R}_{\mathrm{L}}$ Terminal Voltage	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	$\mathbf{V}_{\mathbf{S S}}$	-	$\mathrm{V}_{\text {cc }}$	V
	Power Rating	$\mathrm{R}_{\text {TOTAL }} \geq 10 \mathrm{k} \Omega$	-	-	10	mW
R_{W}	Wiper Resistance	$\mathrm{I}_{\mathrm{W}}=\left[\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)\right] / \mathrm{R}_{\text {TOTAL }}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	200	400	Ω
		$\mathrm{I}_{\mathrm{W}}=\left[\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)\right] / \mathrm{R}_{\text {TOTAL }}, \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	400	1000	Ω
${ }^{\prime}$ W	Wiper Current (Note 10)	See "Test Circuit" on page 5	-4.4	-	+4.4	mA
	Noise (Note 12)	Ref: 1kHz	-	-120	-	dBV
	Resolution	-	-	1	-	\%
	Absolute Linearity (Note 6)	$\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)=0 \mathrm{~V}$	-1	-	+1	MI (Note 8)
	Relative Linearity (Note 7)	$\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)=0 \mathrm{~V}$	-0.2	-	+0.2	MI (Note 8)
	RTOTAL Temperature Coefficient (Note 10)	$\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)=0 \mathrm{~V}$	-	± 300	-	ppm $/{ }^{\circ} \mathrm{C}$
	Ratiometric Temperature Coefficient (Notes 10, 11)	-	-	± 20	-	ppm/ $/{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}}$ (Note 10)	Potentiometer Capacitances	See "Equivalent Circuit" on page 5	-	10/10/25	-	pF
V_{CC}	Supply Voltage	X9317	4.5	-	5.5	V
		X9317-2.7	2.7	-	5.5	V

DC Electrical Specifications $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial).

| SYMBOL | PARAMETER | MIN
 TEST CONDITIONS | TYP
 (Note 9$)$ | MAX
 (Note 13) | UNIT |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |

Endurance and Data Retention $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Full Operating Temperature Range.

PARAMETER	MIN	UNIT
Minimum Endurance	100,000	Data changes per bit
Data Retention	100	Years

Test Circuit

Equivalent Circuit

AC Conditions of Test

Input pulse levels	0 V to 3 V
Input rise and fall times	10 ns
Input reference levels	1.5 V

AC Electrical Specifications $V_{C C}=5 \mathrm{~V} \pm 10 \%$. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial).

SYMBOL	PARAMETER	MIN (Note 13)	TYP (Note 9)	MAX (Note 13)	UNIT
t_{Cl}	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{INC}}$ Setup	50	-	-	ns
$\mathrm{t}_{\text {ID }}$ (Note 10)	$\overline{\text { INC }}$ HIGH to U/D Change	100	-	-	ns
$\mathrm{t}_{\text {DI }}(\underline{\text { Note 10) }}$	U/ $\overline{\mathrm{D}}$ to INC Setup	1	-	-	$\mu \mathrm{s}$
$t_{\text {IL }}$	$\overline{\text { INC L L }}$ L Period	960	-	-	ns
$t_{\text {IH }}$	$\overline{\text { INC }}$ HIGH Period	960	-	-	ns
$\mathrm{t}_{\text {IC }}$	$\overline{\text { INC }}$ Inactive to $\overline{\mathbf{C S}}$ Inactive	1	-	-	μs
${ }^{\text {c CPHS }}$	$\overline{\mathrm{CS}}$ Deselect Time (STORE)	10	-	-	ms
${ }^{t}$ CPHNS (Note 10)	$\overline{\mathrm{CS}}$ Deselect Time (NO STORE)	100	-	-	ns
t_{IW}	$\overline{\text { INC }}$ to R_{W} Change	-	1	5	μs
${ }^{\text {c }}$ CYC	$\overline{\text { INC Cycle Time }}$	2	-	-	$\mu \mathrm{s}$

AC Electrical Specifications $V_{C C}=5 \mathrm{~V} \pm 10 \%$. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial) and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Commercial). (Continued)

SYMBOL	PARAMETER	$\begin{gathered} \text { MIN } \\ \text { (Note 13) } \end{gathered}$	$\begin{gathered} \text { TYP } \\ \text { (Note 9) } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { (Note 13) } \end{gathered}$	UNIT
$\begin{gathered} \mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}} \\ (\text { Note 10) } \end{gathered}$	$\overline{\mathrm{INC}}$ Input Rise and Fall Time	-	-	500	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PU }}$ (Note 10)	Power-up to Wiper Stable	-	-	5	$\mu \mathrm{s}$
$\begin{gathered} t_{\mathrm{R}} \mathrm{~V}_{\mathrm{CC}} \\ \text { (Note 10) } \end{gathered}$	$\mathrm{V}_{\text {CC }}$ Power-up Rate	0.2	-	50	V/ms
$t_{\text {WR }}$	Store Cycle	-	5	10	ms

NOTES:
6. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage $=\left[\mathrm{V}\left(\mathrm{R}_{\mathrm{W}(\mathrm{n})(\text { actual })}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{W}(\mathrm{n})(\text { expected })}\right)\right] / \mathrm{MI}$ $\mathrm{V}\left(\mathrm{R}_{\mathrm{W}(\mathrm{n})}(\right.$ expected $\left.)\right)=\mathrm{n}\left(\mathrm{V}\left(\mathrm{R}_{\mathrm{H}}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)\right) / 99+\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)$, with n from 0 to 99 .
7. Relative linearity is a measure of the error in step size between taps $=\left[V_{\left(R_{W(n+1)}\right)}-\left(V\left(R_{W(n)}\right)-M I\right)\right] / M I$.
8. $1 \mathbf{M I}=$ Minimum Increment $=\left[V\left(R_{H}\right)-\mathrm{V}\left(\mathrm{R}_{\mathrm{L}}\right)\right] / 99$.
9. Typical values are for $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and nominal supply voltage.
10. This parameter is not 100% tested.
11. Ratiometric temperature coefficient $=\left(V\left(R_{W}\right)_{T 1(n)}-\mathrm{V}\left(R_{W}\right)_{T 2}(n) /\left[V_{\left(R_{W}\right.}\right)_{T 1(n)}(T 1-T 2) \times 10^{6}\right]$, with $T 1$ and $T 2$ being 2 temperatures, and n from 0 to 99 .
12. Measured with wiper at tap position $99, R_{L}$ grounded, using test circuit.
13. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Power-up and Down Requirements

The recommended power-up sequence is to apply $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{SS}}$ first, then the potentiometer voltages. During power-up, the data sheet parameters for the DCP do not fully apply until 1 ms after V_{CC} reaches its final value. The V_{CC} ramp spec is always in effect. In order to prevent unwanted tap position changes, or an inadvertent store, bring the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{INC}}$ high before or concurrently with the V_{CC} pin on power-up.

AC Timing

Typical Performance Characteristic

FIGURE 2. TYPICAL TOTAL RESISTANCE TEMPERATURE COEFFICIENT

Pin Descriptions

$\mathbf{R}_{\mathbf{H}}$ and $\mathbf{R}_{\mathbf{L}}$

The high $\left(R_{H}\right)$ and low $\left(R_{L}\right)$ terminals of the $X 9317$ are equivalent to the fixed terminals of a mechanical potentiometer. The terminology of R_{L} and R_{H} references the relative position of the terminal in relation to wiper movement direction selected by the $U / \overline{\mathrm{D}}$ input and not the voltage potential on the terminal.

$\mathbf{R}_{\mathbf{W}}$

R_{W} is the wiper terminal and is equivalent to the movable terminal of a mechanical potentiometer. The position of the wiper within the array is determined by the control inputs. The wiper terminal series resistance is typically 200Ω.

Up/Down (U/D)

The U/D input controls the direction of the wiper movement and whether the counter is incremented or decremented.

Increment (INC)

The $\overline{\mathrm{INC}}$ input is negative-edge triggered. Toggling $\overline{\mathrm{NC}}$ will move the wiper and either increment or decrement the counter in the direction indicated by the logic level on the U/ $\overline{\mathrm{D}}$ input.

Chip Select ($\overline{\mathbf{C S}}$)

The device is selected when the $\overline{\mathbf{C S}}$ input is LOW. The current counter value is stored in nonvolatile memory when $\overline{\mathrm{CS}}$ is returned HIGH while the $\overline{\mathrm{INC}}$ input is also HIGH. After the store operation is complete, the X9317 will be placed in the low power standby mode until the device is selected once again.

Principles of Operation

There are three sections of the X9317: the control section, the nonvolatile memory, and the resistor array. The control section operates just like an up/down counter. The output of this counter is decoded to turn on a single electronic switch connecting a point on the resistor array to the wiper output. The contents of the counter can be stored in nonvolatile memory and retained for future use. The resistor array is comprised of 99 individual resistors connected in series. Electronic switches at either end of the array and between each resistor provide an electrical connection to the wiper pin, R_{W}.

The wiper acts like its mechanical equivalent and does not move beyond the first or last position. That is, the counter does not wrap around when clocked to either extreme.

The electronic switches on the device operate in a "make before break" mode when the wiper changes tap positions. If the wiper is moved several positions, multiple taps are connected to the wiper for t_{IW} ($\overline{\mathrm{INC}}$ to V_{W} change). The $\mathrm{R}_{\text {TOTAL }}$ value for the device can temporarily be reduced by a significant amount if the wiper is moved several positions.

When the device is powered-down, the last wiper position stored will be maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the wiper is set to the value last stored.

Instructions and Programming

The $\overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ and $\overline{\mathrm{CS}}$ inputs control the movement of the wiper along the resistor array. With $\overline{\mathrm{CS}}$ set LOW, the device is selected and enabled to respond to the U/ $\overline{\mathrm{D}}$ and $\overline{\mathrm{NC}}$ inputs. HIGH-to-LOW transitions on $\overline{\text { INC }}$ will increment or decrement (depending on the state of the U/ $\overline{\mathrm{D}}$ input) a 7 -bit counter. The output of this counter is decoded to select one of one hundred wiper positions along the resistive array.

The value of the counter is stored in nonvolatile memory whenever $\overline{\mathrm{CS}}$ transitions HIGH while the INC input is also HIGH.
The system may select the X9317, move the wiper and deselect the device without having to store the latest wiper position in nonvolatile memory. After the wiper movement is performed as previously described and once the new position is reached, the system must keep $\overline{\text { INC }}$ LOW while taking $\overline{\text { CS }}$ HIGH. The new wiper position will be maintained until changed by the system or until a power-up/down cycle recalls the previously stored data.
This procedure allows the system to always power-up to a preset value stored in nonvolatile memory; then during system operation minor adjustments could be made. The adjustments might be based on user preference, system parameter changes due to temperature drift, etc.
The state of U/D may be changed while $\overline{\mathbf{C S}}$ remains LOW. This allows the host system to enable the device and then move the wiper up and down until the proper trim is attained.

Mode Selection

$\overline{\text { CS }}$	$\overline{\text { INC }}$	U/D	MODE
L	-	H	Wiper up
L	4	L	Wiper down
\checkmark	H	X	Store wiper position to nonvolatile memory
H	x	x	Standby
\checkmark	L	X	No store, return to standby
4	L	H	Wiper up (not recommended)
4	L	L	Wiper down (not recommended)

Applications Information

Electronic digitally controlled (XDCP) potentiometers provide three powerful application advantages:

1. The variability and reliability of a solid-state potentiometer,
2. The flexibility of computer-based digital controls, and
3. The retentivity of nonvolatile memory used for the storage of multiple potentiometer settings or data.

Basic Configurations of Electronic Potentiometers

FIGURE 3. THREE TERMINAL POTENTIOMETER; VARIABLE VOLTAGE DIVIDER

Basic Circuits

FIGURE 5. BUFFERED REFERENCE VOLTAGE

$\mathrm{V}_{\mathrm{O}}(\mathrm{REG})=1.25 \mathrm{~V}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)+\mathrm{l}_{\text {adj }} \mathbf{R}_{\mathbf{2}}$
FIGURE 8. VOLTAGE REGULATOR

FIGURE 6. CASCADING TECHNIQUES

FIGURE 9. OFFSET VOLTAGE ADJUSTMENT

FIGURE 7. SINGLE SUPPLY INVERTING AMPLIFIER
$V_{U L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{0}$ (max)
$V_{L L}=\left\{R_{1} /\left(R_{1}+R_{2}\right)\right\} V_{0}(\min)$
FIGURE 10. COMPARATOR WITH HYSTERESIS

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
Mar 22, 2024	10.01	Updated Ordering Information table. Updated POD M8.118 to the latest version, changes are as follows: -Corrected typo in the side view 1 updating package thickness tolerance from ± 010 to ± 0.10.
Dec 17, 2018	10.00	Updated ordering information table by removing EOL parts. Removed About Intersil section. Updated disclaimer.
Nov 4, 2014	9.00	Added Revision History Converted to New Template and added new Intersil Standards. Updated Ordering Information to show all U parts in column for Rtotal ($k \Omega$) to show 50 as the value. Added thermal information (Tja and Tjc).

Package Outline Drawings

For the most recent package outline drawing, see M8.118.
M8.118
8 Lead Mini Small Outline Plastic Package
Rev 5, 5/2021

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensions are in millimeters.
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSEY14.5m-1994.
3. Plastic or metal protrusions of 0.15 mm max per side are not included.
4. Plastic interlead protrusions of 0.15 mm max per side are not included.
5. Dimensions are measured at Datum Plane " H ".
6. Dimensions in () are for reference only.

For the most recent package outline drawing, see M8.173.
M8.173
8 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 2, 01/10

TOP VIEW

SIDE VIEW

TYPICAL RECOMMENDED LAND PATTERN

DETAIL "X"

NOTES:

1. Dimensions are in millimeters.

Dimensions in () for Reference Only.
2. Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
3. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15 per side.
4. Dimensions are measured at datum plane H .
5. Dimensioning and tolerancing per ASME Y14.5M-1994.
6. Dimension on lead width does not include dambar protrusion. Allowable protrusion shall be 0.08 mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm .
7. Conforms to JEDEC MO-153, variation AC. Issue E

For the most recent package outline drawing, see M8.15E.
M8.15E
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 0, 08/09

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
AD5110BCPZ10-RL7 AD5112BCPZ5-500R7 AD5115BCPZ10-500R7 AD5115BCPZ80-500R7 AD5141BCPZ10-RL7 AD5142ABCPZ100-
RL7 AD5142BRUZ10-RL7 AD5160BRJZ100-RL7 AD5160BRJZ10-RL7 AD5160BRJZ50-RL7 AD5160BRJZ5-R2 AD5160BRJZ5-RL7
AD5161BRMZ10-RL7 AD5165BUJZ100-R2 AD5165BUJZ100-R7 AD5175BRMZ-10-RL7 AD5204BRUZ10-REEL7 AD5204BRZ100
AD5206BRUZ100-RL7 AD5207BRUZ10 AD5207BRUZ10-RL7 AD5220BRZ50 AD5227BUJZ100-RL7 AD5227BUJZ10-R2
AD5228BUJZ50-RL7 AD5231BRUZ10-REEL7 AD5231BRUZ50 AD5235BRUZ25 AD5235BRUZ25-RL7 AD5242BRZ10
AD5243BRMZ10-RL7 AD5243BRMZ50-RL7 AD5245BRJZ100-RL7 AD5245BRJZ10-RL7 AD5245BRJZ50-R2 AD5245BRJZ50-RL7
AD5246BKSZ100-RL7 AD5247BKSZ10-RL7 AD5248BRMZ100 AD5252BRUZ10 AD5252BRUZ10-RL7 AD5253BRUZ10-RL7
AD5258BRMZ1 AD5258BRMZ10-R7 AD5258BRMZ50-R7 AD5259BCPZ5-R7 AD5259BRMZ10 AD5259BRMZ100-R7
AD5260BRUZ20-RL7 AD5262BRUZ20-RL7

