ZL6100EVAL1Z
Evaluation Board

The ZL6100 is an integrated mixed-signal power conversion and management IC that combines an efficient step-down DC/DC converter with key power and thermal management functions in a single package. The ZL6100 incorporates current sharing and adaptive efficiency-optimization algorithms to provide a flexible, efficient power IC building block.

The ZL6100EVAL1Z platform is a 4-layer board demonstrating a 15A synchronous buck converter. Sequencing, tracking, margining, plus other features can be evaluated using this board.
A USB to SMBus adapter board can be used to connect the evaluation board to a PC. The PMBus command set is accessed by using the Zilker Labs PowerNavigator ${ }^{\text {m }}$ evaluation software from a PC running Microsoft Windows.

Key Features

- 15A Synchronous Buck Converter
- Optimized for Small Circuit Footprint and Dynamic Response
- Configurable through SMBus
- Onboard Enable Switch
- Power-Good Indicator

Ordering Information

PART NUMBER	DESCRI PTI ON
ZL6100EVAL1Z	ZL6100 Evaluation Kit (EVB, USB Adapter, Cable, Software)

Target Specifications

- $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$
- $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V} / 15 \mathrm{~A}$ (20A max)
- $\mathrm{f}_{\mathrm{sw}}=400 \mathrm{kHz}$
- Efficiency: 86% at 10 A
- Output Ripple: $\pm 1 \%$
- Dynamic Response: $\pm 3 \%$
(50\% to 100% to 50% load step, $\mathrm{di} / \mathrm{dt}=2.5 \mathrm{~A} / \mu \mathrm{s}$)
- Board Temperature: $+25^{\circ} \mathrm{C}$

Functional Description

The ZL6100EVAL1Z provides all circuitry required to demonstrate the features of the ZL6100. The ZL6100EVAL1Z has a functionally-optimized ZL6100 circuit layout that allows efficient operation up to the maximum output current. Power and load connections are provided through plug-in sockets.

A majority of the features of the ZL6100 such as soft-start delay and ramp times, supply sequencing, voltage tracking, and voltage margining are available on this evaluation board. For voltage tracking and sequencing evaluation, the board can be connected to any other Zilker Labs evaluation board that supports the Digital DC (DDC) bus.
Figure 1 shows a functional block diagram of the ZL6100EVAL1Z board. The SMBus address is selectable through a jumper on the top side of the board. All power to the board (VIN and I ${ }^{2} \mathrm{C}$ bus) must be removed before changing the jumpers.

FIGURE 1. ZL6100EVALIZ BLOCK DI AGRAM

The hardware enable function is controlled by a toggle switch on the ZL6100EVAL1Z board. The power-good (PG) LEDs indicate the correct state of PG when external power is applied to the ZL6100EVAL1Z board. The right angle headers at opposite ends of the board are for connecting a USB to SMBus adapter board or for daisy chaining of multiple evaluation boards.
Figure 2 shows the operational circuit. The circuit consists of the ZL6100 IC with its minimal component count to realize a 15A buck converter. The board layout has been optimized for thermal performance. Figure 3 is the board interface circuitry and Figures 4 through 8 demonstrate the PCB Board Layout, which includes the board fabrication notes.

The Bill of Materials (BOM) and configuration file are also included for reference beginning on page 10.

Operation

PMBus Operation

The ZL6100 utilizes the PMBus protocol. The PMBus functionality can be controlled via USB from a PC running the PowerNavigator evaluation software in a Windows XP or Windows 2000/NT operating system.
Install the evaluation software using the CD included in the ZL6100EVAL1Z kit.
For board operation, connect the included USB-to-SMBus adapter board to J 10 of the ZL6100EVAL1Z board. Connect the desired load and an appropriate power supply to the input and connect the included USB cable to the PC running the PowerNavigator evaluation software. Place the ENABLE switch in "DISABLE" and turn on the power.
The evaluation software allows modification of all ZL6100 PMBus parameters. The ZL6100 device on the board has been pre-configured as described in this document, but the user may modify the operating parameters through the evaluation software or by loading a predefined scenario from a configuration file.
Use the mouse-over pop-ups for PowerNavigator help. Refer to Zilker Labs application note AN2033 for PMBus details.
The ENABLE switch can then be moved to "ENABLE" and the ZL6100EVAL1Z board can be tested. Alternately, the PMBus ON-OFF CONFIG and OPERATION commands may be used.

Quick Start Guide

Stand Alone Operation

1. Set ENABLE switch to "DISABLE"
2. Apply load to $\mathrm{V}_{\mathrm{OUT}+} / \mathrm{V}_{\text {OUT- }}$
3. Connect the USB to SMBus adapter board to J 10 of ZL6100EVAL1Z (Optional: provides power for onboard LED's so that LED power does not detract from efficiency measurement)
4. Connect supplied USB cable from computer to USB to SMBus adapter board (Optional: provides power for onboard LED's so that LED power does not detract from efficiency measurement)
5. Connect power supply to $\mathrm{V}_{\mathrm{IN}+} / \mathrm{V}_{\mathrm{IN}}$ (supply turned off)
6. Turn power supply on
7. Set ENABLE switch to "ENABLE"
8. Monitor ZL6100EVAL1Z board operation using an oscilloscope

USB (PMBus) Operation

1. Set ENABLE switch to "DISABLE"
2. Apply load to $\mathrm{V}_{\mathrm{OUT}+} / \mathrm{V}_{\text {OUT- }}$
3. Connect power supply to $\mathrm{V}_{\mathrm{IN}+} / \mathrm{V}_{\mathrm{IN}}$ (supply turned off)
4. Turn power supply on
5. Insert the Zilker Labs Eval Kit CD
6. Connect USB to SMBus adapter board to J10 of ZL6100EVAL1Z
7. Connect supplied USB cable from computer to USB to SMBus adapter board.

- Upon first-time connection, the Found New Hardware Wizard will appear.
- Windows XP users: Select ‘No’ at prompt to search the Internet for drivers.
- Follow the steps on the screen to install the drivers from the CD.

8. Install the PowerNavigator evaluation software by running setup.exe from the
PowerNavigator_installer folder on the CD.
9. Set ENABLE switch on EVB to "ENABLE"
10. Monitor and configure the ZL6100EVAL1Z board using PMBus commands in the evaluation software
11. Test the ZL6100EVAL1Z operation using an oscilloscope and the evaluation software.

ZL6100EVAL1Z BOARD SCHEMATICS

Notes:
Notes:

1) Frequency response measurement components. (backside)
Substitute with 49.9 Onm resistors for loop ininection.
2) Vout is pinstrapped to $3.3 V$. .verride with PMBus.
3) Vout is pinstrapped to 3.3 . Override with PMBus.
Pinstrap output voltage can be modified to reduce the max output voltage.

The reference designs contained in this document are for reference and example purpose only.
THE REFERENCE DESIGNS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS" AND ZILKER THE REFERENCE DESIGNS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS" AND ZILKE
LABS DISCLMAES ALL WARANTISS, WHETHER DREC, INDIRECT, CONSEUENTAL
(INCLUDING LOSS OF PROFITS), OR OTHERWISE, RESULTING FROM THE REFERENCE ny use ot ANY USE THEREOF

FIGURE 2. OPERATI ONAL CI RCUIT

ZL6100EVAL1Z BOARD SCHEMATICS（Continued）

Board to Board Interface

ZL6100EVAL1Z BOARD LAYOUT - 4 LAYERS

FIGURE 4. PCB - TOP LAYER

ZL6100EVAL1Z BOARD LAYOUT - 4 LAYERS (continued)

FIGURE 5. PCB - INNER LAYER 1 (TOP VIEW)

ZL6100EVAL1Z BOARD LAYOUT - 4 LAYERS (continued)

FIGURE 6. PCB - INNER LAYER 2 (TOP VIEW)

ZL6100EVAL1Z BOARD LAYOUT - 4 LAYERS (continued)

ZL6100EVAL1Z BOARD LAYOUT - 4 LAYERS (continued)

NOTES UNLESS \quad THERWISE SPECIFIED:

1. FABRICATE USING ARTWDRK aND DRILL FILES PER TAbLE beldW.
2. FINISHED HDARDS MUST CONFDAM TI ZILKEA LABS QUALITY PROCEDURE SRAS-OOZ-PCBRER.
3. MATERIAL: NEMA GRADE FR-4: MINIMUM UL FLAMMABILITY RATING 94 v-

BOARD LAYER SPACING
SPACING EETWEEN 1-2 = . 013 TD . 017
SPACING BETWEEN 3-4 = . 013 TO . 017
TDTAL HDARD THICKNESS $=.062$
4. CDPPER THICKNESS SHALL BE 1 dZ . INNER LAYERS, 1 OZ. PLATED TO 2 ZZ . םUTER LAYERS.
5. REFERENCE POINT 0,0 FDR IRILL FILE LIST ING.
6. all hales plated thraugh tunless atherwise ndted.. PLating in hdLes per zilker labs guality prdcedure saas-doz-pcerea.
7. BOARD CDATING SHALL BE SQLDERMASK DVER BARE COPPER, HDT AIR SDLDER LEVELING.
8. SILDERMASK PER ZILKER LABS GUALITY PROCEDURE SGAS-002-PCBREG. VENDIR IDENTIFICATIUN, UL CDMPLIANCE AND DATE CDDE TI BE PERMANENTLY AFFIMED AND LICATED AS SHIWN, DN BDTTDM TRACE LAYER.
10. ELECTRICAL TEST MARK, QN BDTTIM TRACE LAYER, PER ZILKER LABS RUALITY PROCEDURE SGAS-002-PCBREG.
11. FIDUICALS TDP AND BOTTOM THESE LICATIONS.
12. WARNing: THE MANUFACTURING PROCESSES AND THE MATERIALS ASSICIATED WITH THIS part may require special safety precautions.

FI GURE 8. BOARD FABRICATI ON NOTES

Bill of Materials

PART NUMBER	QTY	UNIT	REFERENCE DESI GNATOR	DESCRIPTI ON	MANUFACTURER	MANUFACTURER PART
$\begin{aligned} & \text { H1045-00101- } \\ & \text { 100V5-T } \end{aligned}$	1	ea	C50	CAP, SMD, 0603, 100pF, 100V, 5\%, NPO, ROHS	PANASONIC	ECJ-1VC2A101J
$\begin{aligned} & \text { H1045-00104- } \\ & \text { 10V10-T } \end{aligned}$	3	ea	C39, C41, C43	CAP, SMD, 0603, $0.01 \mu \mathrm{~F}, 50 \mathrm{~V}, 5 \%$, X7R, ROHS	KEMET	C0603C104K8RACTU
$\begin{aligned} & \mathrm{H} 1045-00104- \\ & 25 \mathrm{~V} 10-\mathrm{T} \end{aligned}$	2	ea	C29, C46	$\begin{aligned} & \text { CAP, SMD, 0603, } 0.1 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% \text {, } \\ & \text { X7R, ROHS } \end{aligned}$	MURATA	GRM39X7R104K025AD
$\begin{aligned} & \mathrm{H} 1045-00105- \\ & 25 \mathrm{~V} 10-\mathrm{T} \end{aligned}$	3	ea	C11, C17, C42	CAP, SMD, 0603, $1 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, X5R, ROHS	MURATA	GRM188R61E105KA12D
$\begin{aligned} & \text { H1045-00106- } \\ & \text { 6R3V20-T } \end{aligned}$	3	ea	C10, C26, C27	$\begin{aligned} & \text { CAP, SMD, } 0603,10 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 20 \% \text {, } \\ & \text { X5R, ROHS } \end{aligned}$	TDK	C1608X5R0J 106M
H1045-DNP	0	ea	C47, C48, C49	CAP, SMD, 0603, DNP-PLACE HOLDER, ROHS		
$\begin{aligned} & \text { H1046-00225- } \\ & \text { 16V10-T } \end{aligned}$	1	ea	C1	CAP, SMD, 0805, $2.2 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \%$, X5R, ROHS	PANASONIC	ECJ-2FB1C225K
$\begin{aligned} & \mathrm{H} 1065-00106- \\ & 25 \mathrm{~V} 10-\mathrm{T} \end{aligned}$	6	ea	$\begin{aligned} & \text { C2, C3, C4, C32, } \\ & \text { C38, C40 } \end{aligned}$	$\begin{aligned} & \text { CAP, SMD, } 1206,10 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% \text {, } \\ & \text { X5R, ROHS } \end{aligned}$	VENKEL	C1206X5R250-106KNE
H1065-DNP	0	ea	C5, C6	CAP, SMD, 1206, DNP-PLACE HOLDER, ROHS		
$\begin{aligned} & \text { H1082-00107- } \\ & \text { 6R3V20-T } \end{aligned}$	5	ea	$\begin{aligned} & \mathrm{C8}, \mathrm{C} 9, \mathrm{C} 15, \mathrm{C} 16, \\ & \mathrm{C} 44 \end{aligned}$	CAP, SMD, 1210, $100 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 20 \%$, X5R, ROHS	TDK	C3225X5R0J 107M
APXA160ARA331MJC OG	1	ea	C30	CAP, SMD, $10 \times 12,330 \mu \mathrm{~F}, 16 \mathrm{~V}, 20 \%$, 14 mW , ALUM.ELEC., ROHS	NIPPON CHEMI-CON	APXA160ARA331MJ C0G
APXA6R3ARA681MJC OG	2	ea	C12, C13	CAP, SMD, $10 \times 12,680 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 20 \%$, 10mW, ALUM.ELEC., ROHS	NIPPON CHEMI-CON	APXA6R3ARA681MJ C0G
APXA6R3ARA681MJC OG	0	ea	DNP (C45)	CAP, SMD, $10 \times 12,680 \mu \mathrm{~F}, 6.3 \mathrm{~V}$, 20\%,10mW, ALUM.ELEC., ROHS	NIPPON CHEMI-CON	APXA6R3ARA681MJ C0G
IHLP4040DZERR36M 11	1	ea	L2	COIL-PWR INDUCTOR, SMD, $11.5 \times 10.3,0.36 \mu \mathrm{H}, 20 \%, 32 \mathrm{~A}$, ROHS	VISHAY	IHLP4040DZERR36M11
108-0740-001	4	ea	P1, P2 (2 EACH)	CONN-JACK, BANANA-SS-SDRLESS, VERTICAL, ROHS	JOHNSON COMPONENTS	108-0740-001
3-644456-4	1	ea	J P1	CONN-HEADER, 1×4, VERTICAL, TIN, WHT NYLON, ROHS	AMP/TYCO	3-644456-4
881545-2	2	ea	J 2-Pins 1 and 2, JP1-Pins 3 and 4	CONN-JUMPER, SHUNT LP W/HANDLE, 2P, 2.54mm, BLK, ROHS	TYCO ELECTRONICS	881545-2
PJ -002A	1	ea	J3	CONN-POWER JACK, TH, 2.1 mm , 16V@2.5A, BLK, R/A, ROHS	CUI, INC	PJ -002A
SSQ-105-02-T-D-RA	1	ea	J5	CONN-SOCKET STRIP, TH, 2×5, 2.54 mm , TIN, R/A, ROHS	SAMTEC	SSQ-105-02-T-D-RA
TSW-102-07-F-S	0	ea	DNP (J 6)	CONN-HEADER, 2×1, BRKAWY, 0.100 , TH, GOLD FLASH, ROHS	SAMTEC	TSW-102-07-F-S
TSW-105-07-T-D	1	ea	J2	CONN-HEADER, 2x5, BRKAWY, $2.54 \mathrm{~mm}, \mathrm{TIN}, \mathrm{ROHS}$	SAMTEC	TSW-105-07-T-D
TSW-105-08-T-D-RA	1	ea	J 4	CONN-HEADER, 2×5, BRKAWY, $2.54 \mathrm{~mm}, \mathrm{TIN}, \mathrm{R} / \mathrm{A}, \mathrm{ROHS}$	SAMTEC	TSW-105-08-T-D-RA
BAT54XV2T1G-T	3	ea	D3, D4, D5	DIODE-SCHOTTKY, SMD, 2P, SOD523, 30V, 200mA, ROHS	ON SEMICONDUCTOR	BAT54XV2T1G
MBR0540T1G-T	1	ea	D1	DIODE-RECTIFIER, SMD, SOD-123, 2P, 40V, 0.5A, ROHS	ON SEMICONDUCTOR	MBR0540T1G
STPS20L45CG	1	ea	D2	DIODE-RECTIFIER, SCHOTTKY, SMD, D2PAK, 45V, 10A, ROHS	STMICROELECTRONICS	STPS20L45CG
CMD17-21VGC/TR8-T	1	ea	D7	LED, SMD, 0805, GREEN, CLEAR, $10 \mathrm{mcd}, 2.1 \mathrm{~V}, 20 \mathrm{~mA}, 570 \mathrm{~mm}$, ROHS	CHICAGO MINIATURE	CMD17-21VGC/TR8
BLM18HD102SN1D-T	3	ea	L1, R18, R19	FERRITE CHIP, SMD, 0603, 1k, 100 MHz , 50mA, ROHS	MURATA	BLM18HD102SN1D
ESDA6V1-4BC6	1	ea	D6	DIODE-TVS, ESD, QUAD BI-DIRECTIONAL, 6P, SOT23-6L, 80W, ROHS	STMICROELECTRONICS	ESDA6V1-4BC6
MIC2920A-3.3WS	1	ea	U2	IC-LDO REGULATOR, 4P, SOT-223, $3.3 \mathrm{~V}, 400 \mathrm{~mA}$, ROHS	MICREL	MIC2920A-3.3WS
SN74AUP1G17DCKR	0	ea	DNP (U4)	IC-BUFFER, SCHMITT TRIGGER, 5P, SC-70-5, 3.6V, 4mA, ROHS	TEXAS INSTRUMENTS	SN74AUP1G17DCKR
SN74AUP1G17DCKR	1	ea	U3	IC-BUFFER,SCHMITT TRIGGER, 5P, SC-70-5, 3.6V, 4mA, ROHS	TEXAS INSTRUMENTS	SN74AUP1G17DCKR

Bill of Materials (Continued)

PART NUMBER	QTY	UNIT	REFERENCE DESI GNATOR	DESCRIPTI ON	MANUFACTURER	MANUFACTURER PART
ZL6100ALNFT	1	ea	U1	IC-DIGITAL DC/DC CONTROLLER, 36P, QFN, 6x6, ROHS	INTERSIL	ZL6100ALNFT
FDG6301N-T	2	ea	Q4, Q6	TRANSIST-MOS, DUAL N-CHANNEL, SMD, SC70-6, 25V, 220mA, ROHS	FAIRCHILD	FDG6301N
FDG6304P	1	ea	Q5	TRANSIST-MOS,DUAL P-CHANNEL, 6P, SC70-6, -25V, -0.41A, ROHS	FAIRCHILD	FDG6304P
FDMS8670AS	1	ea	Q3	TRANSISTOR-MOS, N-CHANNEL, 8P, POWER56, 30V, 42A, ROHS	FAIRCHILD	FDMS8670AS
FDMS8692	1	ea	Q2	TRANSISTOR-MOS, N-CHANNEL, 8P, POWER56, 30V, 28A, ROHS	FAIRCHILD	FDMS8692
MMBT3904LT1G-T	1	ea	Q1	TRANSISTOR, NPN, SOT-23, 3P, 40V, 0.2A, 0.35W, ROHS	ON SEMICONDUCTOR	MMBT3904LT1G-T
$\begin{aligned} & \text { H2510-00R00- } \\ & 1 / 16 \mathrm{~W}-\mathrm{T} \end{aligned}$	1	ea	R4	RES, SMD, 0402, $0 \Omega, 1 / 16 \Omega, 5 \%$, TF, ROHS	VENKEL	CR0402-16W-00T
$\begin{aligned} & \mathrm{H} 2510-01002- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	7	ea	$\begin{aligned} & \text { R20, R21, R23, R26, } \\ & \text { R28, R29, R32 } \end{aligned}$	RES, SMD, 0402, 10k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF1002X
$\begin{aligned} & \mathrm{H} 2510-01003- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R1	RES, SMD, 0402, 100k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ 2RKF1003
$\begin{aligned} & \mathrm{H} 2510-01102- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R10	RES, SMD, 0402, 11k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF1102V
$\begin{aligned} & \mathrm{H} 2510-01622- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R16	RES, SMD, 0402, 16.2k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF1622
$\begin{aligned} & \mathrm{H} 2510-01962- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R11	RES, SMD, 0402, 19.6k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF1962
$\begin{aligned} & \mathrm{H} 2510-02152- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R12	RES, SMD, 0402, 21.5k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF2152X
$\begin{aligned} & \mathrm{H} 2510-02372- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R13	RES, SMD, 0402, 23.7k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF2372V
$\begin{aligned} & \mathrm{H} 2510-02612- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R14	RES, SMD, 0402, 26.1k, 1/16W, 1\%, TF, ROHS	VENKEL	CR0402-16W-2612FT
$\begin{aligned} & \mathrm{H} 2510-02872- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R15	RES, SMD, 0402, 28.7k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF2872X
$\begin{aligned} & \mathrm{H} 2510-03482- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R17	RES, SMD, 0402, 34.8k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF3482
$\begin{aligned} & \mathrm{H} 2510-04751- \\ & 1 / 16 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R24	RES, SMD, 0402, 4.75k, 1/16W, 1\%, TF, ROHS	PANASONIC	ERJ-2RKF4751X
H2510-DNP	0	ea	R34, R35	RES, SMD, 0402, DNP, DNP, DNP, TF, ROHS		
$\begin{aligned} & \text { H2511-00R00- } \\ & 1 / 10 W-T \end{aligned}$	1	ea	R5	RES, SMD, 0603, 0Ω, 1/10W, TF, ROHS	VENKEL	CR0603-10W-000T
$\begin{aligned} & \text { H2511-01821- } \\ & 1 / 10 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R7	RES, SMD, 0603, 1.82k, 1/10W, 1\%, TF, ROHS	PANASONIC	ERJ-3EKF1821V
$\begin{aligned} & \mathrm{H} 2511-03920- \\ & 1 / 10 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	2	ea	R27, R31	RES, SMD, 0603, 392Ω 1/10W, 1\%, TF, ROHS	PANASONIC	ERJ-3EKF3920V
$\begin{aligned} & \mathrm{H} 2511-04990- \\ & 1 / 10 \mathrm{~W} 1-\mathrm{T} \end{aligned}$	1	ea	R6	RES, SMD, 0603, 499』, 1/10W, 1\%, TF, ROHS	KOA	RK73H1JTTD4990F
$\begin{aligned} & \text { H2511-049R9- } \\ & 1 / 10 W 1-T \end{aligned}$	2	ea	R25, R30	RES, SMD, 0603, 49.9 $1 / 10 \mathrm{~W}, 1 \%$, TF, ROHS	VENKEL	CR0603-10W-49R9FT
H2511-DNP	0	ea	R33, R40-R47	RES, SMD, 0603, DNP-PLACE HOLDER, ROHS		
G13AP-RO	1	ea	SW1 (Note 1)	SWITCH-TOGGLE, THRU-HOLE, 5P, SPDT, 3POS, ON-OFF-ON, ROHS	NKK	G13AP-RO
4-40x1/4-SCREW-SS	4	ea		SCREW, 4-40x1/4in, PAN, SS, PHILLIPS		
4-40×3/4-STANDOFFMETAL	4	ea		STANDOFF, 4-40×3/4in, F/F, HEX, ALUMINUM, ROHS	KEYSTONE	2204 (0.250 OD)
VC-234-8	4	ea	P1, P2 (COVER BOTTOMS OF POST ENDS)	CAPLUG-ROUND VINYL CLOSURE, FLEXIBLE, 0.5×0.234, ROHS	CAPLUGS	VC-234-8

NOTE:

1. DO NOT CLEAN-INSTALL AFTER ASSY.

Measured Data The following data was acquired using a ZL6100EVAL1Z Rev 2 evaluation board. Adaptive diode emulation and adaptive frequency modes are disabled for these efficiency measurements.

FIGURE 9. EFFICIENCY, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$

FIGURE 11. RAMP DOWN

FIGURE 10. RAMP UP

FIGURE 12. DYNAMI C RESPONSE, 7A TO 15A LOAD STEP

FIGURE 13. DYNAMI C RESPONSE, 15A TO 7A LOAD STEP
[2] ZL6100 Data Sheet, Zilker Labs, Inc., 2008.
[3] AN2033 - PMBus ${ }^{\text {TM }}$ Command Set, Zilker Labs, Inc., 2008.

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISI ON	
$08 / 14 / 09$	AN1493.0	Converted to new Intersil template from Word document.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

```
Renesas Electronics America Inc
1001 Murphy Ranch Road, Milpitas, CA 95035 , U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
Tel +1-905-237-204, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: \(+44-1628-651-804\)
Renesas Electronics Europe \(\mathbf{G m b H}\)
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No. 27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel. \(+65-6213-0200\), Fax: \(+65-6213-0300\)
Renesas Electronics Malaysia Sdn. Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No. \(777 \mathrm{C}, 100\) Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
```


X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

