

SAW filters for infrastructure systems

Series/Type: B3807

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39331B3807U310		2012-01-13	2012-12-31	2013-03-30

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

SAW Components	B3807
Low-Loss Filter	326,4 MHz

Features

- Low-loss IF filter for W-CDMA base station
- Usable bandwidth 15 MHz
- Ceramic SMD package

Terminals

Gold plated

Ceramic package QCC8C

Dimensions in mm, approx. weight 0,10 g

Pin configuration

7	Input
6	Input Ground
3	Output
2	Output Ground
1, 4, 5, 8	Ground

Туре	Ordering code	Marking and Package	Packing	
		according to	according to	
B3807	B39331-B3807-U310	C61157-A7-A56	F61074-V8070-Z000	

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	-40/ +85	°C
Storage temperature range	$T_{\rm sta}$	-40/ +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	$P_{\rm s}^{-1}$	15	dBm

SAW Components						33807
Low-Loss Filter					326,4	4 MHz
Data Sheet Characteristics						
Operating topporature:	τ-	10 19	۶0 °C			
	7 = -	-10+0	50 C			
Terminating source impedance:	Z _S =	$50 \ \Omega$ an	id matching	g network		
Terminating load impedance:	Z _S =	50 Ω an	d matching network			
			min.	typ.	max.	
Nominal frequency		f _N	—	326,4	_	MHz
Minimum insertion attenuation		$lpha_{min}$	—	2,0	4,0	dB
Amplitude ripple (p-p)		Δα				
f _N -2,5 I	MHzf _N +2,5 MHz		—	0,3	0,5	dB
f _N -7,5 I	MHzf _N +7,5 MHz		—	1,0	3,0	dB
Pass bandwidth		B _{1,0dB}				
	$\alpha_{rel} \le 1,0 \text{ dB}$		—	15	—	MHz
	$\alpha_{rol} \leq 10 \text{ dB}$	B _{10dB}	_	20	_	MHz
	ollel					
Relative attenuation (relative to α_{min})		α_{rel}				
10,0 MHz	f _N – 18,0 MHz		40	50	—	dB
f _N -38,395 MHz	f _N -38,405 MHz		43	50	—	dB
f _N –19,195 MHz …	f _N -19,205 MHz		43	50	—	dB
f _N - 18,0 MHz	f _N – 12,5 MHz		13	15	—	dB
f _N + 12,5 MHz	f _N + 30,0 MHz		11	13	—	dB

Temperature coefficient of frequency	TC _f —	- 70	_	ppm/K
Output: Z _{OUT} = R _{OUT} C _{OUT}	—	73 0,2		Ω pF
input: $Z_{IN} = R_{IN} C_{IN}$	_	12 0,4	-	Ω∥p⊢
		70 11 0 4		
Impedance at f. (without matching)1				
f _N -7,5 MHzf _N +7,5 MHz	5	8		dB
r _N -7,0 MHZr _N +7,0 MHZ	8	10		uв
1_{N} = 2,5 1011 = 21 N = 2,5 1011 = 42 0 MU =	0	10		
f2.5 MHz f. +2.5 MHz	10	11	_	dB
Return Loss				
t _N +2,5 MHzt _N +7,5 MHz	_	50	65	ns
IN-2,5 MHZIN+2,5 MHZ	_	10	25	115
$f_{N} = 25 \text{ MHz} + f_{1} + 25 \text{ MHz}$		15	25	0
f 75 MHz f 25 MHz	_	90	110	ns
Group delay ripple (p-p)	Δτ			
f _N + 30,0 MHz f _N + 450,0 MHz	25	30	_	dB
t _N + 12,5 MHz t _N + 30,0 MHz	11	13	_	dB
$1_{\rm N}$ 10,0 1012 $1_{\rm N}$ 12,0 1012	13	15	_	

¹(port extensions directly at filter)

SAW Components	B3807
Low-Loss Filter	326,4 MHz

Matching network to 50 Ω

(Element values depend upon PCB layout)

L _{s1} = 22 nH	C _{p3} = 2,7 pF
C _{p2} = 2,7 pF	L _{s4} = 22 nH

4

SAW components	B3607
Low-Loss Filter	326,4 MHz

Normalized frequency response

Normalized frequency response (pass band)

SAW Components	B3807
Low-Loss Filter	326,4 MHz

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Signal Conditioning category:

Click to view products by RF360 manufacturer:

Other Similar products are found below :

MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50-T3 B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 40287 41180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C PD0922J5050D2HF 1E1305-3 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 TP-103-PIN BD1222J50200AHF BD1722J50100AHF