

AEC-Q200
This component was always
RoHS compliant from the first
date of manufacture.

# **RO3073A**

315.0 MHz SAW Resonator



- Designed for 315.0 MHz Transmitters
- · Very Low Series Resistance
- Quartz Stability
- Surface-mount Ceramic Case
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481

The RO3073A is a one-port surface-acoustic-wave (SAW) resonator packaged in a surface-mount ceramic case. It provides reliable, fundamental-mode quartz frequency stabilization of fixed-frequency transmitters operating at 315.0 MHz. This SAW is designed specifically for remote control and wireless security transmitters.

#### **Absolute Maximum Ratings**

| Rating                                                 | Value      | Units |
|--------------------------------------------------------|------------|-------|
| CW RF Power Dissipation (See: Typical Test Circuit)    | +0         | dBm   |
| DC Voltage Between Terminals (Observe ESD Precautions) | ±30        | VDC   |
| Case Temperature                                       | -40 to +85 | °C    |
| Soldering Temperature (10 seconds / 5 cycles maximum)  | 260        | °C    |

#### **Electrical Characteristics**

| Characteristic                                           |                                      | Sym               | Notes             | Minimum | Typical        | Maximum | Units               |
|----------------------------------------------------------|--------------------------------------|-------------------|-------------------|---------|----------------|---------|---------------------|
| Center Frequency, +25 °C                                 | Absolute Frequency                   | f <sub>C</sub>    |                   | 314.925 |                | 315.075 | MHz                 |
|                                                          | Tolerance from 315.0 MHz             | $\Delta f_{C}$    |                   |         |                | ±75     | kHz                 |
| Insertion Loss                                           |                                      | IL                |                   |         | 1.5            | 2.2     | dB                  |
| Quality Factor                                           | Unloaded Q                           | Q <sub>U</sub>    |                   |         | 8000           |         |                     |
|                                                          | 50 $\Omega$ Loaded Q                 | $Q_L$             |                   |         | 1300           |         |                     |
| Temperature Stability                                    | Turnover Temperature                 | T <sub>O</sub>    |                   | 10      | 25             | 40      | °C                  |
|                                                          | Turnover Frequency                   | f <sub>O</sub>    |                   |         | f <sub>C</sub> |         |                     |
|                                                          | Frequency Temperature Coefficient    | FTC               |                   |         | 0.032          |         | ppm/°C <sup>2</sup> |
| Frequency Aging                                          | Absolute Value during the First Year | f <sub>A</sub>    |                   |         | ≤10            |         | ppm/yr              |
| DC Insulation Resistance between Any Two Terminals       |                                      |                   |                   | 1.0     |                |         | MΩ                  |
| RF Equivalent RLC Model                                  | Motional Resistance                  | R <sub>M</sub>    |                   |         | 19.4           |         | Ω                   |
|                                                          | Motional Inductance                  | L <sub>M</sub>    |                   |         | 78.4           |         | μH                  |
|                                                          | Motional Capacitance                 | C <sub>M</sub>    |                   |         | 3.3            |         | fF                  |
|                                                          | Shunt Static Capacitance             | Co                |                   |         | 4.1            |         | pF                  |
| Test Fixture Shunt Inductance                            |                                      | L <sub>TEST</sub> |                   |         | 64.2           |         | nH                  |
| Lid Symbolization (in addition to Lot and/or Date Codes) |                                      |                   | 656, <u>YYWWS</u> |         |                |         |                     |

# CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.

#### **Electrical Connections**

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.



#### **Typical Test Circuit**

The test circuit inductor,  $L_{TEST}\!_{,}$  is tuned to resonate with the static capacitance,  $C_{O}\!_{,}$  at  $F_{C}\!_{,}$ 



#### POWER TEST



CW RF Power Dissipation = PINCIDENT - P REFLECTED

## **Typical Application Circuits**

#### **Typical Low-Power Transmitter Application**



### **Typical Local Oscillator Applications**



#### **Equivalent RLC Model**



#### **Temperature Characteristics**

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.



#### Case





**PCB Footprint** 

| Dimensions | Millimeters |      |      | Inches |       |       |
|------------|-------------|------|------|--------|-------|-------|
|            | Min         | Nom  | Max  | Min    | Nom   | Max   |
| Α          | 4.87        | 5.00 | 5.13 | 0.191  | 0.196 | 0.201 |
| В          | 3.37        | 3.50 | 3.63 | 0.132  | 0.137 | 0.142 |
| С          | 1.45        | 1.53 | 1.60 | 0.057  | 0.060 | 0.062 |
| D          | 1.35        | 1.43 | 1.50 | 0.040  | 0.057 | 0.059 |
| E          | 0.67        | 0.80 | 0.93 | 0.026  | 0.031 | 0.036 |
| F          | 0.37        | 0.50 | 0.63 | 0.014  | 0.019 | 0.024 |
| G          | 1.07        | 1.20 | 1.33 | 0.042  | 0.047 | 0.052 |

## **Recommended Reflow Profile**

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.



# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resonators category:

Click to view products by RFMi manufacturer:

Other Similar products are found below:

146-32.768-12.5-20-20/A 1C209830BC0C 1C210000BB0C 2520-16.00-9-10-10/A 2520-26.00-12-10-10/A 2520-26.00-9-10-10/A 3225-16.00-12-10-10/A 3225-16.00-12-10-10/A 3225-19.2-12-10-10/A 3225-24.00-10-10-10/A 3225-24.00-12-10-10/A 3225-24.00-12-10-10/A 3225-25.00-10-10-10/A 3225-25.00-10-10-10/A 3225-25.00-10-10-10/A 3225-25.00-10-10-10/A 3225-25.00-10-10-10/A 3225-8.00-20-10-10/A 3225-8.00-20-10-10/A 3225-8.00-20-10-10/A 3225-8.00-20-10-10/A 3225-8.00-20-10-10/A 3225-8.00-8-10-10/A 416626X 416627H 436236G 49MD-13.52127-7-10-10/B 49MD-38.000-20-10-10/B 49MD-4.433618-30-10-10/B 49MD-4.825-9-10-10/B 49MD-4.9152-20-10-10/B 49MD-6.063-12-10-10/B 49MD-8.192-20-10-10/B 49S-12.288-20-10-10/B 49S-13.52127-10-10-10/B 49S-13.52127-7-10-10/B 49S-4.9152-20-10-10/B 49S-4.9152-30-10-10/B 49S-4.9152-30-1