Triple Channel PWM Controller with Integrated Driver for IMVP8 Mobile CPU Core Power Supply

General Description

The RT3601BC is an IMVP8 compliant CPU power controller which includes three voltage rails : a single phase synchronous Buck controller, the main VR, a 2/1 phase synchronous Buck controller, the auxiliary VR, and a single phase synchronous Buck controller, the VCCSA VR. The RT3601BC adopts G-NAVP[™] (Green Native AVP) which is Richtek's proprietary topology derived from finite DC gain of EA amplifier with current mode control, making it easy to set the droop to meet all Intel CPU requirements of AVP (Adaptive Voltage Positioning). Based on the G-NAVP[™] topology, the RT3601BC also features a quick response mechanism for optimized AVP performance during load transient. The RT3601BC supports mode transition function with various operating states. A serial VID (SVID) interface is built in the RT3601BC to communicate with Intel IMVP8 compliant CPU. The RT3601BC supports VID on-the-fly function with three different slew rates : Fast, Slow and Decay. By utilizing the G-NAVPTM topology, the operating frequency of the RT3601BC varies with VID, load and input voltage to further enhance the efficiency even in CCM. Moreover, the G-NAVP[™] with CCRCOT (Constant Current Ripple COT) technology provides superior output voltage ripple over the entire input/output range. The built-in high accuracy DAC converts the SVID code ranging from 0.25V to 1.52V with 5mV per step. The RT3601BC integrates a high accuracy ADC for platform setting functions, such as quick response trigger level. Besides, the setting function also supposes this two rails address exchange. The RT3601BC provides VR ready output signals. It also features complete fault protection functions including over-voltage (OV), negative voltage (NV), over-current (OC) and under-voltage lockout (UVLO). The RT3601BC is available in the WQFN-52L 6x6 small foot print package.

Features

- Intel IMVP8 Serial VID Interface Compatible Power Management States
- Single Phase (Main VR) + 2/1 Phase (Auxiliary VR) + Single Phase (VCCSA VR) PWM Controller
- 1 Embedded MOSFET Driver at the Main VR, 1 Embedded MOSFET Driver at the Auxiliary VR, and Embedded MOSFET Driver at the VCCSA VR
- G-NAVP[™] (Green Native Adaptive Voltage Positioning) Topology
- 0.5% DAC Accuracy
- Differential Remote Voltage Sensing
- Built-in ADC for Platform Programming
- Accurate Current Balance
- System Thermal Compensated AVP
- Diode Emulation Mode at Light Load Condition for Multiple or Single Phase Operation
- Fast Transient Response
- VR Ready Indicator
- Thermal Throttling
- Current Monitor Output
- OVP, OCP, NVP, UVLO
- Slew Rate Setting/Address Flip Function
- DVID Enhancement

Applications

- IMVP8 Intel Core Supply
- Notebook/ Desktop Computer/ Servers Multi-phase CPU Core Supply
- AVP Step-Down Converter

Simplified Application Circuit

Functional Pin Description

Pin No	Pin Name	Pin Function
1	IMON_AUXI	Auxiliary rail VR current monitor output. This pin outputs a voltage proportional to the output current.
2	SET1	Platform setting. Platform can use this pin to set switching frequency, ki gain, QRTH and QR width and for Main VR. Connect the SET1 pin to 5V and turn-on the EN pin, if the soldering is good, VSEN_MAIN = VSEN_AUXI = 0.8V and VSEN_SA = 1V
3	FB_AUXI	Negative input of the error amplifier. This pin is for Auxiliary rail VR output voltage feedback to controller.
4	COMP_AUXI	Auxiliary rail VR compensation. This pin is error amplifier output pin.
5	SET2	Platform setting. Platform can use this pin to set switching frequency, ki gain, QRTH and QR width for Auxiliary VR.
6	SET3	Platform setting. Platform can use this pin to set switching frequency, ki gain zero load-line, QRTH and QR width for VCCSA rail. And it can be set Enable/Disable anti-overshoot function for each rail.
7, 8	ISEN[1:2]N_AUXI	Negative current sense inputs of multi-phase auxiliary rail VR Channel 1 and 2.
10, 9	ISEN[1:2]P_AUXI	Positive current sense inputs of multi-phase auxiliary rail VR Channel 1 and 2.
11	TSEN_AUXI	Thermal sense input for VR.

Pin No	Pin Name	Pin Function
12	VIN	VIN input pin. Connect a low pass filter to this pin to set on-time.
13	VCC	Controller power supply. Connect this pin to 5V and place a decoupling capacitor 2.2μ F at least. The decoupling capacitor is as close PWM controller as possible.
14	BOOT_AUXI	Bootstrap supply for high-side gate MOSFET driver for auxiliary rail VR.
15	UGATE_AUXI	High-side driver output for auxiliary rail VR. Connect the pin to the gate of high-side MOSFET.
16	PHASE_AUXI	Switch node of high-side driver for auxiliary rail VR. Connect the pin to high- side MOSFE source together with the low-side MOSFET drain and inductor.
17	LGATE_AUXI	Low-side driver output for auxiliary rail VR. This pin drives the gate of low-side MOSFET.
18	PVCC	Driver power supply input. Connect this pin to GND by a minimum $2.2\mu\text{F}$ ceramic Capacitor.
19	LGATE_SA	Low-side driver output for VCCSA VR. This pin drives the gate of low-side MOSFET.
20	PHASE_SA	Switch node of high-side driver for VCCSA VR. Connect the pin to high-side MOSFE source together with the low-side MOSFET drain and inductor.
21	UGATE_SA	High-side driver output for VCCSA VR. Connect the pin to the gate of high-side MOSFET.
22	BOOT_SA	Bootstrap supply for high-side gate MOSFET driver for VCCSA VR.
23	LGATE_MAIN	Low-side driver output for main rail VR. This pin drives the gate of low-side MOSFET.
24	PHASE_MAIN	Switch node of high-side driver for main rail VR. Connect the pin to high-side MOSFE source together with the low-side MOSFET drain and inductor.
25	UGATE_MAIN	High-side driver output for main rail VR. Connect the pin to the gate of high-side MOSFET.
26	BOOT_MAIN	Bootstrap supply for high-side gate MOSFET driver for main rail VR.
27	TSEN_MAIN	Thermal sense input for main rail VR.
28	FB_MAIN	Negative input of the error amplifier. This pin is for main rail VR output voltage feedback to controller.
29	RGND_MAIN	Return ground for main rail VR. This pin is the negative node of the differential remote voltage sensing.
30	COMP_MAIN	Main rail VR compensation. This pin is error amplifier output pin.
31	VSEN_MAIN	Main VR voltage sense input. This pin is connected to the terminal of Main VR output voltage.
32	ISENN_MAIN	Negative current sense input of single-phase main rail.
33	ISENP_MAIN	Positive current sense input of single-phase main rail.
34	IMON_MAIN	Main rail VR current monitor output. This pin outputs a voltage proportional to the output current.
35	VR_HOT	Thermal monitor output, this pin is active low.
36	VDIO	VR and CPU data transmission interface.
37	ALERT	SVID alert. (Active low)

Pin No	Pin Name	Pin Function							
38	VCLK	Synchronous clock from the CPU.							
39	DRVEN	External driver enable control. Connecting to driver enable pin.							
40	PWM_AUXI	PWM outputs for auxiliary VR.							
41	EN	VR enable control input.							
42	VR_READY	VR ready indicator.							
43	IMON_SA	/CCSA rail VR current monitor output. This pin outputs a voltage proportional to the output current.							
44	ISENP_SA	Positive current sense input of single-phase VCCSA rail VR.							
45	ISENN_SA	Negative current sense input of single-phase VCCSA rail VR.							
46	VREF06/PSET	Fixed 0.6V output reference voltage. This voltage is used to offset the output voltage of IMON pin. Between this pin and GND must be placed an exact 0.47μ F decoupling capacitor and 1Ω resistor.							
47	COMP_SA	VCCSA rail VR compensation. This pin is error amplifier output pin.							
48	RGND_SA	Return ground for VCCSA rail VR. This pin is the negative node of the differential remote voltage sensing.							
49	FB_SA	Negative input of the error amplifier. This pin is for VCCSA rail VR output voltage feedback to controller.							
50	PSYS	System input power monitor. Place the PSYS resistor as close to the IC as possible.							
51	VSEN_AUXI	Auxiliary VR voltage sense input. This pin is connected to the terminal of auxiliary VR output voltage.							
52	RGND_AUXI	Return ground for auxiliary rail VR. This pin is the negative node of the differential remote voltage sensing.							
53 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.							

Functional Block Diagram

Operation

The RT3601BC adopts G-NAVPTM (Green Native AVP) which is Richtek's proprietary topology derived from finite DC gain of EA amplifier with current mode control, making it easy to set the droop to meet all Intel CPU requirements of AVP (Adaptive Voltage Positioning).

The G-NAVPTM controller is one type of current mode constant on-time control with DC offset cancellation. The approach can not only improve DC offset problem for increasing system accuracy but also provide fast transient response. When current feedback signal reaches COMP signal, the RT3601BC generates an on-time width to achieve PWM modulation.

TON GEN/Driver Interface PWMx

Generate the sequentially according to the phase control signal from the Loop Control/Protection Logic. Pulse width is determined by current balance result and pin setting. Once quick response mechanism is triggered, VR will allow all PWM to turn on at the same time. PWM status is also controlled by Protection Logic. Different protections may cause different PWM status (Both High-Z or LG turn-on).

SVID Interface/Configuration Registers/Control Logic

The interface receives the SVID signal from CPU and sends the relative signals to Loop Control/Protection Logic for loop control to execute the action by CPU. The registers save the pin setting data from ADC output. The Control Logic controls the ADC timing, generates the digital code of the VID for VSEN voltage.

Loop Control/Protection Logic

It controls the power on sequence, the protection behavior, and the operational phase number.

MUX and ADC

The MUX supports the inputs from SET1, SET2, SET3, IMON_MAIN, IMON_AUXI, TSEN_MAIN and TSEN_AUXI. The ADC converts these analog signals to digital codes for reporting or performance adjustment.

Current Balance

Each phase current sense signal is sent to the current balance circuit which adjusts the on-time of each phase to optimize current sharing.

Offset Cancellation

Cancel the current/voltage ripple issue to get the accurate VSEN.

UVLO

Detect the VCC voltage and issue POR signal as they are high enough.

DAC

Generate an analog signal according to the digital code generated by Control Logic.

Soft-Start & Slew Rate Control

Control the Dynamic VID slew rate of VSEN according to the SetVID fast or SetVID slow.

Error Amp

Error amplifier generates COMP_MAIN/COMP_AUXI/ COMP_SA signal by the difference between output of Main/Auxiliary/SA rail and FB_MAIN/FB_AUXI/FB_SA.

PWM CMP

The PWM comparator compares COMP signal and current feedback signal to generate a signal for TON trigger.

IMON Filter

IMON Filter is used for average sum current signal by analog RC filter.

			-						
VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	Voltage (V)
0	0	0	0	0	0	0	1	01	0.25
0	0	0	0	0	0	1	0	02	0.255
0	0	0	0	0	0	1	1	03	0.26
0	0	0	0	0	1	0	0	04	0.265
0	0	0	0	0	1	0	1	05	0.27
0	0	0	0	0	1	1	0	06	0.275
0	0	0	0	0	1	1	1	07	0.28
0	0	0	0	1	0	0	0	08	0.285
0	0	0	0	1	0	0	1	09	0.29
0	0	0	0	1	0	1	0	0A	0.295
0	0	0	0	1	0	1	1	0B	0.3
0	0	0	0	1	1	0	0	0C	0.305
0	0	0	0	1	1	0	1	0D	0.31
0	0	0	0	1	1	1	0	0E	0.315
0	0	0	0	1	1	1	1	0F	0.32
0	0	0	1	0	0	0	0	10	0.325
0	0	0	1	0	0	0	1	11	0.33
0	0	0	1	0	0	1	0	12	0.335
0	0	0	1	0	0	1	1	13	0.34
0	0	0	1	0	1	0	0	14	0.345
0	0	0	1	0	1	0	1	15	0.35
0	0	0	1	0	1	1	0	16	0.355
0	0	0	1	0	1	1	1	17	0.36
0	0	0	1	1	0	0	0	18	0.365
0	0	0	1	1	0	0	1	19	0.37
0	0	0	1	1	0	1	0	1A	0.375
0	0	0	1	1	0	1	1	1B	0.38
0	0	0	1	1	1	0	0	1C	0.385
0	0	0	1	1	1	0	1	1D	0.39
0	0	0	1	1	1	1	0	1E	0.395
0	0	0	1	1	1	1	1	1F	0.4
0	0	1	0	0	0	0	0	20	0.405
0	0	1	0	0	0	0	1	21	0.41
0	0	1	0	0	0	1	0	22	0.415
0	0	1	0	0	0	1	1	23	0.42
0	0	1	0	0	1	0	0	24	0.425

Table 1. IMVP8 VID Code Table

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	Voltage (V)
0	0	1	0	0	1	0	1	25	0.43
0	0	1	0	0	1	1	0	26	0.435
0	0	1	0	0	1	1	1	27	0.44
0	0	1	0	1	0	0	0	28	0.445
0	0	1	0	1	0	0	1	29	0.45
0	0	1	0	1	0	1	0	2A	0.455
0	0	1	0	1	0	1	1	2B	0.46
0	0	1	0	1	1	0	0	2C	0.465
0	0	1	0	1	1	0	1	2D	0.47
0	0	1	0	1	1	1	0	2E	0.475
0	0	1	0	1	1	1	1	2F	0.48
0	0	1	1	0	0	0	0	30	0.485
0	0	1	1	0	0	0	1	31	0.49
0	0	1	1	0	0	1	0	32	0.495
0	0	1	1	0	0	1	1	33	0.5
0	0	1	1	0	1	0	0	34	0.505
0	0	1	1	0	1	0	1	35	0.51
0	0	1	1	0	1	1	0	36	0.515
0	0	1	1	0	1	1	1	37	0.52
0	0	1	1	1	0	0	0	38	0.525
0	0	1	1	1	0	0	1	39	0.53
0	0	1	1	1	0	1	0	3A	0.535
0	0	1	1	1	0	1	1	3B	0.54
0	0	1	1	1	1	0	0	3C	0.545
0	0	1	1	1	1	0	1	3D	0.55
0	0	1	1	1	1	1	0	3E	0.555
0	0	1	1	1	1	1	1	3F	0.56
0	1	0	0	0	0	0	0	40	0.565
0	1	0	0	0	0	0	1	41	0.57
0	1	0	0	0	0	1	0	42	0.575
0	1	0	0	0	0	1	1	43	0.58
0	1	0	0	0	1	0	0	44	0.585
0	1	0	0	0	1	0	1	45	0.59
0	1	0	0	0	1	1	0	46	0.595
0	1	0	0	0	1	1	1	47	0.6
0	1	0	0	1	0	0	0	48	0.605
0	1	0	0	1	0	0	1	49	0.61

RT3601BC

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	Voltage (V)
0	1	0	0	1	0	1	0	4A	0.615
0	1	0	0	1	0	1	1	4B	0.62
0	1	0	0	1	1	0	0	4C	0.625
0	1	0	0	1	1	0	1	4D	0.63
0	1	0	0	1	1	1	0	4E	0.635
0	1	0	0	1	1	1	1	4F	0.64
0	1	0	1	0	0	0	0	50	0.645
0	1	0	1	0	0	0	1	51	0.65
0	1	0	1	0	0	1	0	52	0.655
0	1	0	1	0	0	1	1	53	0.66
0	1	0	1	0	1	0	0	54	0.665
0	1	0	1	0	1	0	1	55	0.67
0	1	0	1	0	1	1	0	56	0.675
0	1	0	1	0	1	1	1	57	0.68
0	1	0	1	1	0	0	0	58	0.685
0	1	0	1	1	0	0	1	59	0.69
0	1	0	1	1	0	1	0	5A	0.695
0	1	0	1	1	0	1	1	5B	0.7
0	1	0	1	1	1	0	0	5C	0.705
0	1	0	1	1	1	0	1	5D	0.71
0	1	0	1	1	1	1	0	5E	0.715
0	1	0	1	1	1	1	1	5F	0.72
0	1	1	0	0	0	0	0	60	0.725
0	1	1	0	0	0	0	1	61	0.73
0	1	1	0	0	0	1	0	62	0.735
0	1	1	0	0	0	1	1	63	0.74
0	1	1	0	0	1	0	0	64	0.745
0	1	1	0	0	1	0	1	65	0.75
0	1	1	0	0	1	1	0	66	0.755
0	1	1	0	0	1	1	1	67	0.76
0	1	1	0	1	0	0	0	68	0.765
0	1	1	0	1	0	0	1	69	0.77
0	1	1	0	1	0	1	0	6A	0.775
0	1	1	0	1	0	1	1	6B	0.78
0	1	1	0	1	1	0	0	6C	0.785
0	1	1	0	1	1	0	1	6D	0.79
0	1	1	0	1	1	1	0	6E	0.795

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	Voltage (V)
0	1	1	0	1	1	1	1	6F	0.8
0	1	1	1	0	0	0	0	70	0.805
0	1	1	1	0	0	0	1	71	0.81
0	1	1	1	0	0	1	0	72	0.815
0	1	1	1	0	0	1	1	73	0.82
0	1	1	1	0	1	0	0	74	0.825
0	1	1	1	0	1	0	1	75	0.83
0	1	1	1	0	1	1	0	76	0.835
0	1	1	1	0	1	1	1	77	0.84
0	1	1	1	1	0	0	0	78	0.845
0	1	1	1	1	0	0	1	79	0.85
0	1	1	1	1	0	1	0	7A	0.855
0	1	1	1	1	0	1	1	7B	0.86
0	1	1	1	1	1	0	0	7C	0.865
0	1	1	1	1	1	0	1	7D	0.87
0	1	1	1	1	1	1	0	7E	0.875
0	1	1	1	1	1	1	1	7F	0.88
1	0	0	0	0	0	0	0	80	0.885
1	0	0	0	0	0	0	1	81	0.89
1	0	0	0	0	0	1	0	82	0.895
1	0	0	0	0	0	1	1	83	0.9
1	0	0	0	0	1	0	0	84	0.905
1	0	0	0	0	1	0	1	85	0.91
1	0	0	0	0	1	1	0	86	0.915
1	0	0	0	0	1	1	1	87	0.92
1	0	0	0	1	0	0	0	88	0.925
1	0	0	0	1	0	0	1	89	0.93
1	0	0	0	1	0	1	0	8A	0.935
1	0	0	0	1	0	1	1	8B	0.94
1	0	0	0	1	1	0	0	8C	0.945
1	0	0	0	1	1	0	1	8D	0.95
1	0	0	0	1	1	1	0	8E	0.955
1	0	0	0	1	1	1	1	8F	0.96
1	0	0	1	0	0	0	0	90	0.965
1	0	0	1	0	0	0	1	91	0.97
1	0	0	1	0	0	1	0	92	0.975
1	0	0	1	0	0	1	1	93	0.98

RT3601BC

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	Voltage (V)
1	0	0	1	0	1	0	0	94	0.985
1	0	0	1	0	1	0	1	95	0.99
1	0	0	1	0	1	1	0	96	0.995
1	0	0	1	0	1	1	1	97	1
1	0	0	1	1	0	0	0	98	1.005
1	0	0	1	1	0	0	1	99	1.01
1	0	0	1	1	0	1	0	9A	1.015
1	0	0	1	1	0	1	1	9B	1.02
1	0	0	1	1	1	0	0	9C	1.025
1	0	0	1	1	1	0	1	9D	1.03
1	0	0	1	1	1	1	0	9E	1.035
1	0	0	1	1	1	1	1	9F	1.04
1	0	1	0	0	0	0	0	A0	1.045
1	0	1	0	0	0	0	1	A1	1.05
1	0	1	0	0	0	1	0	A2	1.055
1	0	1	0	0	0	1	1	A3	1.06
1	0	1	0	0	1	0	0	A4	1.065
1	0	1	0	0	1	0	1	A5	1.07
1	0	1	0	0	1	1	0	A6	1.075
1	0	1	0	0	1	1	1	A7	1.08
1	0	1	0	1	0	0	0	A8	1.085
1	0	1	0	1	0	0	1	A9	1.09
1	0	1	0	1	0	1	0	AA	1.095
1	0	1	0	1	0	1	1	AB	1.1
1	0	1	0	1	1	0	0	AC	1.105
1	0	1	0	1	1	0	1	AD	1.11
1	0	1	0	1	1	1	0	AE	1.115
1	0	1	0	1	1	1	1	AF	1.12
1	0	1	1	0	0	0	0	B0	1.125
1	0	1	1	0	0	0	1	B1	1.13
1	0	1	1	0	0	1	0	B2	1.135
1	0	1	1	0	0	1	1	B3	1.14
1	0	1	1	0	1	0	0	B4	1.145
1	0	1	1	0	1	0	1	B5	1.15
1	0	1	1	0	1	1	0	B6	1.155
1	0	1	1	0	1	1	1	B7	1.16
1	0	1	1	1	0	0	0	B8	1.165

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	Voltage (V)
1	0	1	1	1	0	0	1	B9	1.17
1	0	1	1	1	0	1	0	BA	1.175
1	0	1	1	1	0	1	1	BB	1.18
1	0	1	1	1	1	0	0	BC	1.185
1	0	1	1	1	1	0	1	BD	1.19
1	0	1	1	1	1	1	0	BE	1.195
1	0	1	1	1	1	1	1	BF	1.2
1	1	0	0	0	0	0	0	C0	1.205
1	1	0	0	0	0	0	1	C1	1.21
1	1	0	0	0	0	1	0	C2	1.215
1	1	0	0	0	0	1	1	C3	1.22
1	1	0	0	0	1	0	0	C4	1.225
1	1	0	0	0	1	0	1	C5	1.23
1	1	0	0	0	1	1	0	C6	1.235
1	1	0	0	0	1	1	1	C7	1.24
1	1	0	0	1	0	0	0	C8	1.245
1	1	0	0	1	0	0	1	C9	1.25
1	1	0	0	1	0	1	0	CA	1.255
1	1	0	0	1	0	1	1	СВ	1.26
1	1	0	0	1	1	0	0	CC	1.265
1	1	0	0	1	1	0	1	CD	1.27
1	1	0	0	1	1	1	0	CE	1.275
1	1	0	0	1	1	1	1	CF	1.28
1	1	0	1	0	0	0	0	D0	1.285
1	1	0	1	0	0	0	1	D1	1.29
1	1	0	1	0	0	1	0	D2	1.295
1	1	0	1	0	0	1	1	D3	1.3
1	1	0	1	0	1	0	0	D4	1.305
1	1	0	1	0	1	0	1	D5	1.31
1	1	0	1	0	1	1	0	D6	1.315
1	1	0	1	0	1	1	1	D7	1.32
1	1	0	1	1	0	0	0	D8	1.325
1	1	0	1	1	0	0	1	D9	1.33
1	1	0	1	1	0	1	0	DA	1.335
1	1	0	1	1	0	1	1	DB	1.34
1	1	0	1	1	1	0	0	DC	1.345
1	1	0	1	1	1	0	1	DD	1.35

RT3601BC

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	Voltage (V)
1	1	0	1	1	1	1	0	DE	1.355
1	1	0	1	1	1	1	1	DF	1.36
1	1	1	0	0	0	0	0	E0	1.365
1	1	1	0	0	0	0	1	E1	1.37
1	1	1	0	0	0	1	0	E2	1.375
1	1	1	0	0	0	1	1	E3	1.38
1	1	1	0	0	1	0	0	E4	1.385
1	1	1	0	0	1	0	1	E5	1.39
1	1	1	0	0	1	1	0	E6	1.395
1	1	1	0	0	1	1	1	E7	1.4
1	1	1	0	1	0	0	0	E8	1.405
1	1	1	0	1	0	0	1	E9	1.41
1	1	1	0	1	0	1	0	EA	1.415
1	1	1	0	1	0	1	1	EB	1.42
1	1	1	0	1	1	0	0	EC	1.425
1	1	1	0	1	1	0	1	ED	1.43
1	1	1	0	1	1	1	0	EE	1.435
1	1	1	0	1	1	1	1	EF	1.44
1	1	1	1	0	0	0	0	F0	1.445
1	1	1	1	0	0	0	1	F1	1.45
1	1	1	1	0	0	1	0	F2	1.455
1	1	1	1	0	0	1	1	F3	1.46
1	1	1	1	0	1	0	0	F4	1.465
1	1	1	1	0	1	0	1	F5	1.47
1	1	1	1	0	1	1	0	F6	1.475
1	1	1	1	0	1	1	1	F7	1.48
1	1	1	1	1	0	0	0	F8	1.485
1	1	1	1	1	0	0	1	F9	1.49
1	1	1	1	1	0	1	0	FA	1.495
1	1	1	1	1	0	1	1	FB	1.5
1	1	1	1	1	1	0	0	FC	1.505
1	1	1	1	1	1	0	1	FD	1.51
1	1	1	1	1	1	1	0	FE	1.515
1	1	1	1	1	1	1	1	FF	1.52

Absolute Maximum Ratings (Note 1)

VCC to GND	
RGND to GND	0.3V to 0.3V
• VIN to GND	0.3V to 28
PVCC to GND	0.3V to 6.5V
BOOT to PHASE	0.3V to 6.5V
PHASE to GND	
DC	0.3V to 30V
<20ns	10V to 35V
LGATE to GND	
DC	0.3V to (VCC+ 0.3V)
<20ns	2V to (VCC+ 0.3V)
UGATE to GND	
DC	(V _{PHASE} – 0.3V) to (V _{BOOT} + 0.3V)
<20ns	(V _{PHASE} – 2V) to (V _{BOOT} + 0.3V)
Other Pins	
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WQFN-52L 6x6	3.77W
Package Thermal Resistance (Note 2)	
WQFN-52L 6x6, θ_{JA}	26.5°C/W
WQFN-52L 6x6, θ_{JC}	6.5°C/W
Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV

Recommended Operating Conditions (Note 4)

Supply Voltage, VIN	- 4.5V to 24V
Supply Voltage, VCC	- 4.5V to 5.5V
Supply Voltage, PVCC	- 4.5V to 5.5V
Junction Temperature Range	- –40°C to 125°C
Ambient Temperature Range	- –40°C to 85°C

Electrical Characteristics

(V_{CC} = 5V, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Supply Input		•						
Supply Voltage	Vcc		4.5	5	5.5	V		
Supply Current	Ivcc	V _{EN} = 1.05V, No Switching		9	15			
Supply Current at PS4	IVCC_PS4	V _{EN} = 1.05V, No Switching		0.2	0.25			
Shutdown Current	ISHDN	V _{EN} = 0V		10	20	μA		
Driver Supply Voltage	VPVCC		4.5		5.5	V		
Reference and DAC								
V _{DAC} = 0.75V -		V _{DAC} = 0.75V – 1.52V	-0.5%	0	0.5%	% of VID		
DAC Accuracy	Vfb	V_{DAC} = 0.5V – 0.745V	-8	0	8	m\/		
		V_{DAC} = 0.25V - 0.495V	-10	0	10	IIIV		
Slew Rate								
Dynamic VID Slow Pato	90	Set VID Fast	30	34	38	m)//uc		
	JR	Set VID Slow, set slow = 1/2 Fast	15	17	19	πν/μs		
EA Amplifier								
DC Gain	ADC	$R_L = 47 k\Omega$	70	80		dB		
Gain-Bandwidth Product	GBW	C _{LOAD} = 5pF		5		MHz		
Input Offset	VEAOFS		-3		3	mV		
Slew Rate	SREA	C_{LOAD} = 10pF (Gain= -4, R _F = 47k Ω , V _{OUT} =0.5V to -3V)		5		V/μs		
Output Voltage Range	VCOMP	$R_L = 47 k\Omega$	0.3		3.6	V		
Max Source/Sink Current	IOUTEA	V _{COMP} = 2V		5		mA		
Current Sensing Amplifi	er							
Input Offset Voltage	Voscs		-0.4		0.4	mV		
Impedance at Positive Input	RISENxP		1	-		MΩ		
Current Mirror Gain	AMIRROR	IIMON/ISENxN	0.97	1	1.03	A/A		
Input Range	VISEN_IN	V _{DAC} = 1.1V, ISENP_x – ISENN_x	-40		40	mV		
TON Setting								
On-Time Setting	TON	V _{IN} = 10V, V _{DAC} = 1V, Freq. = 400k		250		ns		
Minimum Off time	TOFF	VDAC = 1		180	300	ns		
Protections								
Under-Voltage Lockout VUVLO		Falling edge	3.9	4.1	4.2	V		
Threshold	ΔV_{UVLO}	Rising edge hysteresis	100	170	250	mV		
Over-Voltage Protection	Vov	Respect to VID voltage	VID + 300	VID + 350	VID + 400	mV		
Threshold		Lower limit to 1V	1300	1350	1400	mV		

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit	
Under-Voltage Protection	Maria		400	250	200	mV	
Threshold	VUV	Respect to VID voltage	-400	-350	-300	mV	
Negative Voltage Protection Threshold	V _{NV}		-100	-50		mV	
VRON and VR_READY	1	1					
	Viн	Respect to 1V. 70%	0.7			V	
VRON Threshold	Vii	Respect to 1V 30%			0.3	V	
Leakage Current of VRON	VIL		_1		1	цА	
					•	ματ	
PGOOD Pull Low Voltage	Vpgood	I _{VR_Ready} = 10mA			0.13	V	
Serial VID and VR_HOT							
	VIH	Respect to INTEL Spec. with 50mV	0.65			V	
	VIL	hysteresis			0.45	V	
Leakage Current of VCLK, VDIO, ALERT and VR HOT	I _{LEAK_IN}		-1		1	μΑ	
		I _{VDIO} = 10mA			0.13		
VDIO, ALERI and		IALERT = 10mA				V	
Voltage		$I_{VR HOT} = 10 \text{mA}$					
VREF							
VREF06	VREF		0.595	0.6	0.605	V	
ADC	ļ	1					
Digital IMON Set	VIMON	$V_{IMON} - V_{IMON_INI} = 0.8V,$ Auxiliary rail, 2 phase application		255		Decimal	
		VIMON – VIMON_INI = 0.4V, Main rail		255			
Average Period	IIMON			200		μS	
Tmp Zone[7] Transition		100°C		1.092			
TSEN Threshold for		97°C		1.132			
TSEN Threshold for		94°C		1.176			
TSEN Threshold for		91°C		1.226			
TSEN Threshold for	VTSEN			4 000		V	
Tmp_Zone[3] Transition		88°C		1.283			
TSEN Threshold for Tmp Zone[2] Transition		85°C		1.346			
TSEN Threshold for Tmp_Zone[1] Transition		82°C		1.418			
TSEN Threshold for		75°C		1.624			
Average Period	T _{tsen}			800		μs	

RT3601BC

Parameter	Symbol	ol Test Conditions		Тур	Мах	Unit		
Switching Timing								
UGATEx Rising Time	tugater	3nF load		8		ns		
UGATEx Falling Time	tugatef	3nF load		8		ns		
LGATEx Rising Time	t LGATEr	3nF load		8		ns		
LGATEx Falling Time	t LGATEf	3nF load		4	-	ns		
	tUGATEpgh	Output Unloaded		20				
Propagation Dolay	tUGATEpdl	Output Unloaded		35		ns		
Propagation Delay	t LGATEpdh	Output Unloaded		20				
	tLGATEpdl	Output Unloaded		35				
Output								
UGATEx Drive Source	RUGATEsr	V _{BOOT} – V _{PHASE} = 5V, I _{Source} = 100mA		1		Ω		
UGATEx Drive Sink	RUGATEsk	V _{BOOT} – V _{PHASE} = 5V, I _{Sink} = 100mA		1		Ω		
LGATEx Drive Source	RLGATEsr	I _{Source} = 100mA		1		Ω		
LGATEx Drive Sink	RLGATEsk	I _{Sink} = 100mA		0.5		Ω		
ITSEN	ITSEN							
TSEN Source Current	I _{TSEN}	TSEN = 1.6V	79.2	80	80.8	μA		

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Application Circuit

For GT Two Phase Application

Note : R22 to R27, C5 to C10 customer must to tune final parameters on system board at first time.

For GT Single Phase Application

Note : R22 to R27, C5 to C10 customer must to tune final parameters on system board at first time.

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS3601BC-03 June 2017

RT3601BC

Applications information

The RT3601BC includes three voltage rails : a single phase synchronous Buck controller, the main VR, a 2/1 multiphase synchronous Buck controller, the auxiliary VR, and a single phase synchronous Buck controller, the VCCSA VR, designed to meet Intel IMVP8 compatible CPUs specification with a serial SVID control interface. The controller uses an ADC to implement all kinds of settings to save total pin number for easy use and increasing PCB space utilization. The RT3601BC is used in notebooks, desktop computers and servers.

General loop Function

G-NAVP[™] Control Mode

The RT3601BC adopts the G-NAVP[™] controller, which is a current mode constant on-time control with DC offset cancellation. The approach can not only improve DC offset problem for increasing system accuracy but also provide fast transient response. When current feedback signal reaches comp signal, the RT3601BC generates an ontime width to achieve PWM modulation. Figure 1 shows the basic G-NAVP[™] behavior waveforms in continuous conduct mode (CCM).

Figure 1 (a). G-NAVP[™] Behavior Waveforms in CCM in Steady State

Figure 1 (b). G-NAVP[™] Behavior Waveforms in CCM in Load Transient.

Diode Emulation Mode (DEM)

As well-known, the dominate power loss is switching related loss during light load, hence VR needs to be operated in asynchronous mode (or called discontinuous conduct mode, DCM) to reduce switching related loss since switching frequency is dependent on loading in the asynchronous mode. The RT3601BC can operate in diode emulation mode (DEM) to improve light load efficiency. In DEM operation, the behavior of low-side MOSFET(s) needs to work like a diode, that is, the low-side MOSFET(s) will be turned on when the phase voltage is a negative value, i.e. the inductor current follows from Source to Drain of low-side MOSFET(s). And the low-side MOSFET(s) will be turned off when phase voltage is a positive value, i.e. reversed current is not allowed. Figure 2 shows the control behavior in DEM. Figure 3 shows the G-NAVP[™] operation in DEM to illustrate the control behaviors. When the load decreases, the discharge time of output capacitors increases during UGATE and LGATE are turned off. Hence, the switching frequency and switching loss will be reduced to improve efficiency in light load condition.

Figure 2. Diode Emulation Mode (DEM) in Steady State

Figure 3. G-NAVPTM Operation in DEM. (a) : The load is lighter, output capacitor discharge slope is smaller and the switching frequency is lower. (b) : The load is increasing, output capacitor discharge slope is increased and switching

frequency is increased, too.

Phase Interleaving Function

The RT3601BC is a multi-output controller, the AUXI rail of RT3601BC has a phase interleaving function, 180 degree phase shift for 2-phase operation which can help reduce output voltage ripple and EMI problem.

Multi-Function Pin Setting Mechanism

For reducing total pin number of package, SET [1:3], TSEN_Main and TSEN_AUXI pins adopt the multi-function pin setting mechanism in the RT3601BC. Figure 4 illustrates this operating mechanism for SET [1:3]. The voltage at VREF pin will be pulled up to 3.2V after power ready (POR). First, external voltage divider is used to set the Function1, and then internal current source 80μ A is used to set the Function2. The setting voltage of Function1 and Function2 can be represented as

 $V_{Function1} = \frac{R2}{R1 + R2} \times 3.2V$ $V_{Function2} = 80 \mu A \times \frac{R1 \times R2}{R1 + R2}$

All function setting will be done within $500\mu s$ after power ready (POR), and the voltage at VREF pin will be fixed to 0.6V after all function setting over.

If $V_{\text{Function1}}$ and $V_{\text{Function2}}$ are determined, R1 and R2 can be calculated as follows :

 $R1 = \frac{3.2V \times V_{Function2}}{80 \mu A \times V_{Function1}}$ $R2 = \frac{R1 \times V_{Function1}}{3.2V - V_{Function1}}$

Figure 4. Multi-Function Pin Setting Mechanism for SET [1:3]

Connecting a R3 resistor from SETx pin or SETAx pin to the middle node of voltage divider can help to fine tune the set voltage of Function 2, which does not affect the set voltage of Function1. The Figure 5 shows the setting method and the set voltage of Function 1 and Function2 can be represented as :

 $V_{Function1} = \frac{R2}{R1 + R2} \times 3.2V$ $V_{Function2} = 80 \mu A \times \left(R3 + \frac{R1 \times R2}{R1 + R2}\right)$

RT3601BC

Figure 5. Multi-Function Pin Setting Mechanism with a R3 Resistor to Fine Tune the Set Voltage of Function2

Figure 6 shows operating mechanism for TSEN_Main and TSEN_AUXI pins. There is only voltage divider Function to program VR. The internal current source is used to thermal sensing. The Function for program VR can be represented as

Figure 6. Multi-Function Pin Setting Mechanism for TSEN_Main and TSEN_AUXI By the way, Function1 of SET1, SET2 and SET3 pins are used to program T_{ON} factor and ki gain for each VR rail (Main, AUXI and SA). Function2 of SET1, and SET2 pins are used to program QR threshold and QR width for Main and AUXI VR rails, respectively. Function2 of SET3 pin is used to setting enable/disable anti-overshoot function and tri-state delay time for each rail. SET3 pin also can be set enable/disable zero load-line function for SA rail. TSEN_Main and TSEN_AUXI pins are used to setting DVID threshold and ICCMAX for each VR rail. In addition, Richtek provide a Microsoft Excel-based spreadsheet to help design SETx, TSEN_Main and TSEN_AUXI resistor network.

TSEN_Main, TSEN_AUXI and VR_HOT

The VR_HOT signal is an open-drain signal which is used for VR thermal protection. When the sensed voltage in each TSEN pin is less than 1.092, the VR_HOT signal will be pulled-low to notify CPU that the thermal protection needs to work. According to Intel VR definition, VR_HOT signal needs acting if VR power chain temperature exceeds 100°C. Placing an NTC thermistor at the hottest area in the VR power chain and its connection is shown in Figure 7, to design the TSEN network so that V_{TSEN} = 1.092V at 100°C. The resistance accuracy of TSEN network is recommended to be 1% or higher.

 $V_{TSEN_X} = 80 \mu A \times [R1//(R2 + R_{NTC (100^{\circ}C)})]$

Figure 7. VR_HOT Circuit

RICHTEK

Power Ready (POR) Detection

During start-up, the RT3601BC detects the voltage at the voltage input pins : V_{CC} and EN. When V_{CC} > 4.45V, the RT3601BC recognizes the power state of system to be ready (POR = high) and waits for enable command at the EN pin. After POR = high and V_{EN} > 0.7V, the RT3601BC enters start-up sequence. If V_{CC} drops below low threshold (POR = low), the RT3601BC enters power down sequence and all functions will be disabled. Normally, connecting system voltage V_{TT} (1.05V) to the EN pin is recommended. 2ms (max) after the chip has been enabled, the SVID circuitry will be ready. All the protection latches (OVP, OCP, UVP) will be cleared only by V_{CC} . The condition of VEN = low will not clear these latches. Figure 8 and Figure 9 show the POR detection and the timing chart for POR process, respectively.

Under-Voltage Lockout (UVLO)

During normal operation, if the voltage at the VCC pin drops below POR threshold 4.14V (min), the VR triggers UVLO. The UVLO protection forces all high-side MOSFETs and low-side MOSFETs off by shutting down internal PWM logic drivers.

Phase Disable (Before POR)

The number of active phases is determined by the internal circuitry that monitors the ISENxN voltages during startup. Normally, the AUXI rail operates as a 2-phase PWM controller. Pulling ISEN2N to VCC programs a 1-phase operation. Before POR, VR detects whether the voltage of ISEN2N is higher than "VCC – 1V" to decide how many phases should be active. Phase selection is only active during POR. When POR = high, the number of active phases is determined and latched. The unused ISENxP pins are recommended to be connected to VCC and unused PWM pins can be left floating.

Switching Frequency Setting

The RT3601BC is one kind of constant on-time control. The patented CCRCOT (Constant Current Ripple COT) technology can generate an adaptive on-time with input voltage and VID code to obtain a constant current ripple, so that the output voltage ripple can be controlled nearly like a constant as different input and output voltages change.

The Ton equation can be classified as below two regions.

$$\begin{split} V_{DAC} &\geq 0.9 \\ T_{ON} = \frac{1.2 \mu \times V_{DAC}}{k_{TON} \times (V_{IN} - V_{DAC})} + 15n \end{split}$$

$$\begin{split} V_{DAC} &< 0.9 \\ T_{ON} &= \frac{1.08 \mu}{k_{TON} \times (V_{IN} - V_{DAC})} + 15n \end{split}$$

where k_{TON} is a coefficient which can be selected by SET[1:3] pins for each VR rail. Table 2 and Table 3 show the k_{TON} coefficient and ki gain setting for each VR rail on the SET[1:3] pins.

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

r					-		
$V_{SET[1-3]_V} = 3.2V \times \frac{R2}{R1+R2}$			TONSET_X		AI_X		
Min	Тур	Max	Unit	1	Main	GT	SA
24.77419	25.02444	25.27468	mV		NA	NA	NA
74.32258	75.07331	75.82405	mV		20	NA	NA
123.871	125.1222	126.3734	mV	0.0	NA	1	40
173.4194	175.1711	176.9228	mV		80	2	NA
222.9677	225.2199	227.4721	mV		NA	NA	NA
272.5161	275.2688	278.0215	mV		20	NA	NA
322.0645	325.3177	328.5709	mV	0.8	NA	1	40
371.6129	375.3666	379.1202	mV]	80	2	NA
421.1613	425.4154	429.6696	mV		NA	NA	NA
470.7097	475.4643	480.219	mV		20	NA	NA
520.2581	525.5132	530.7683	mV] '.'	NA	1	40
569.8065	575.5621	581.3177	mV		80	2	NA
619.3548	625.6109	631.8671	mV	1.4	NA	NA	NA
668.9032	675.6598	682.4164	mV		20	NA	NA
718.4516	725.7087	732.9658	mV] 1.4	NA	1	40
768	775.7576	783.5152	mV		80	2	NA
817.5484	825.8065	834.0645	mV		NA	NA	NA
867.0968	875.8553	884.6139	mV	17	20	NA	NA
916.6452	925.9042	935.1632	mV	1.7	NA	1	40
966.1935	975.9531	985.7126	mV		80	2	NA
1015.742	1026.002	1036.262	mV		NA	NA	NA
1065.29	1076.051	1086.811	mV		20	NA	NA
1114.839	1126.1	1137.361	mV		NA	1	40
1164.387	1176.149	1187.91	mV		80	2	NA
1213.935	1226.197	1238.459	mV		NA	NA	NA
1263.484	1276.246	1289.009	mV		20	NA	NA
1313.032	1326.295	1339.558	mV	2.5	NA	1	40
1362.581	1376.344	1390.108	mV		80	2	NA
1412.129	1426.393	1440.657	mV		NA	NA	NA
1461.677	1476.442	1491.206	mV	0.4	20	NA	NA
1511.226	1526.491	1541.756	mV	0.4	NA	1	40
1560.774	1576.54	1592.305	mV	1	80	2	NA

Table 2. SET[1-3] Pins Setting for k_{TON} and ki gain

For better efficiency of the given load range, the maximum switching frequency is suggested to be :

$$\frac{VID1 + \frac{IccTDC}{N} \cdot \left(DCR + \frac{R_{ON_LS,max}}{n_{LS}} - N \cdot R_{LL} \right)}{\left[V_{IN(MAX)} + \frac{IccTDC}{N} \cdot \left(\frac{R_{ON_LS,max}}{n_{LS}} - \frac{R_{ON_HS,max}}{n_{HS}} \right) \right] \cdot \left(T_{ON} - T_{D} + T_{ON,VAR} \right) + \frac{IccTDC}{N} \cdot \left(\frac{R_{ON_LS,max}}{n_{LS}} \right) \cdot T_{D} \cdot T_{D}$$

where $F_{SW(MAX)}$ is the maximum switching frequency, VID1 is the typical VID of application, $V_{IN(MAX)}$ is the maximum application input voltage, IccTDC is the thermal design current of application, N is the phase number. The $R_{ON_HS,max}$ is the maximum equivalent high-side $R_{DS(ON)}$, and n_{HS} is the number of high-side MOSFETs; $R_{ON_LS,max}$ is the maximum equivalent low-side $R_{DS(ON)}$, and n_{LS} is the number of low-side MOSFETs. T_D is the summation of the high-side MOSFET delay time and the rising time, $T_{ON, VAR}$ is the T_{ON} variation value. DCR is the inductor DCR, and R_{LL} is the loadline setting. In addition, Richtek provides a Microsoft Excel-based spreadsheet to help design the R_{TON} for the RT3601BC.

When load increases, on-time keeps constant. The offtime width will be reduced so that loading can load more power from input terminal to regulate output voltage. Hence, the loading current usually increases in case the switching frequency also increases. Higher switching frequency operation can reduce power components' size and PCB space, trading off the whole efficiency since switching related loss increases, vice versa.

Current Sense

In the RT3601BC, the current signal is used for load-line setting and over-current protection (OCP). The inductor current sense method adopts the lossless current sensing for allowing high efficiency as illustrated in Figure 10. If RC network time constant matches inductor time constant L_X/DCR_X , an expected load transient waveform can be designed. If R_XC_X network time constant is larger than inductor time constant L_X/DCR_X , vcore waveform has a sluggish droop during load transient. If R_XC_X network is smaller than inductor time constant L_X/DCR_X , a worst V_{CORE} waveform will sag to create an undershooting to fail the specification. R_X is highly recommended as two 0603 size resistors in series to enhance the lout reporting accuracy. C_X is suggested X7R type for the application.

Figure 11 shows the variety $R_X C_X$ constant corresponding to the output waveforms.

RICHTEK

For dual phase current sense is demonstrated as Figure 12. It is similar to single phase method and it also can be extended to N phase application. In the RT3601BC design, the resistance of R_{CS} is equal to 2.15k Ω .

Figure 12. Lossless Current Sense Method for Dual Phase

Thermal Compensation for Current Sense

Since the copper wire of inductor has a positive temperature coefficient. And hence, temperature compensation is necessary for the lossless inductor current sense. For single phase thermal compensation, Figure 13. shows a not only simple but also effective way to compensate temperature variation. An NTC thermistor is put in the current sensing network and it can be used to compensate DCR variation due to temperature is changed.

The current sense network equation is as follows :

$$\Delta V_{\text{IMON}} = V_{\text{IMON}} - V_{\text{REF}} = \frac{I_{\text{LX}} \times \text{DCR} \times \frac{R_{\text{S}} + (R_{\text{P}} / / R_{\text{NTC}})}{R_{\text{CS}}} \times R_{\text{IMON}}$$

Usually, R_P is set equal to R_{NTC} (25° C). R_S is selected to linearize the NTC's temperature characteristic. For a given NTC, design is to get R_X and R_S to compensate the temperature variation of the sense resistor.

Let

 $R_{EQU} = R_S + (R_P / / R_{NTC})$

According to current sense network, the corresponding equation is represented as follows :

$$\frac{L_X}{DCR} = C_X \times \frac{R_{EQU} \times R_X}{R_{EQU} + R_X}$$

Next, let

$$m = \frac{L_X}{DCR \times C_X}$$

Then

$$m \times \left(R_{X} + R_{S} + \frac{R_{NTC} \times R_{P}}{R_{NTC} + R_{P}} \right) = R_{X} \times \left(R_{S} + \frac{R_{NTC} \times R_{P}}{R_{NTC} + R_{P}} \right)$$

Step1 : Given the two system temperature T_R and T_H at which are compensated.

Step2 : Two equations can be listed as

$$m(T_R) \times \left(R_X + R_S + \frac{R_{NTC}(T_R) \times R_P}{R_{NTC}(T_R) + R_P}\right) = R_X \times \left(R_S + \frac{R_{NTC}(T_R) \times R_P}{R_{NTC}(T_R) + R_P}\right)$$

 $m(T_{H}) \times \left(R_{X} + R_{S} + \frac{R_{NTC}(T_{H}) \times R_{P}}{R_{NTC}(T_{H}) + R_{P}}\right) = R_{X} \times \left(R_{S} + \frac{R_{NTC}(T_{H}) \times R_{P}}{R_{NTC}(T_{H}) + R_{P}}\right)$

Step3 : Usually R_P is set to equal to R_{NTC} (T_R). And hence, there are two equations and two unknowns, R_X and R_S can be found out.

Above thermal compensation method needs a NTC resistor in each phase. In order to reduce the NTC amount for multiphase application, another thermal compensation method is presented. This method can be applied to multi-phase application and it only needs one NTC resistor. So, the NTC resistor cost can be saved by using this method. Figure 14 shows the thermal compensation method for dual phase.

Figure 14. Thermal Compensation method for dual Phase

The current sense network equation is as follows :

 $V_{IMON} - V_{ref} = \frac{\sum_{X=1}^{2} I_{LX} \times DCR}{R_{CS}} \times \{R_{IMON1} + [R_{IMON2} / / (R_{IMON3} + R_{NTC})]\}$

Please note that V_{IMON} is equal to 1V for single phase application and V_{IMON} is equal to 1.4V for dual phase application under ICCMAX condition.

A resistor network with NTC thermistor compensation connecting between IMON pin and VREF pin is used to compensate the positive temperature coefficient of inductor DC. The design flow is as follows :

Step1: Given the three temperature T_L , T_R and T_H , at which are compensated.

Step 2 : Three equations can be listed as

$$\frac{DCR(T_L)}{R_{CS}} = \sum_{i=1}^{2} I_{Li} \times R_{IMON}(T_L) = 0.4$$
$$\frac{DCR(T_R)}{R_{CS}} = \sum_{i=1}^{2} I_{Li} \times R_{IMON}(T_R) = 0.4$$
$$\frac{DCR(T_H)}{R_{CS}} = \sum_{i=1}^{2} I_{Li} \times R_{IMON}(T_H) = 0.4$$

Where :

(1) The relationship between DCR and temperature is as follows :

 $DCR(T) = DCR(25^{\circ}C) \times [1 + 0.00393(T-25)]$

(2) $R_{IMON}(T)$ is the equivalent resistor of the resistor network with a NTC thermistor

 $R_{IMON}(T) = R_{IMON1} + \{R_{IMON2} / [R_{IMON3} + R_{NTC}(T)]\}$

And the relationship between NTC and temperature is as follows :

$$R_{NTC}(T) = R_{NTC}(25^{\circ}C) \times e^{\beta(\frac{1}{T+273} - \frac{1}{298})}$$

 β is in the NTC thermistor datasheet.

Step 3 : Three equation and three unknowns, R_{IMON1} , R_{IMON2} and R_{IMON3} can be calculated out unique solution.

 $R_{IMON1} = K_{TR} - \frac{R_{IMON2} \times (R_{NTCTR} + R_{IMON3})}{R_{IMON2} + R_{NTCTR} + R_{IMON3}}$

 $R_{IMON2} = \sqrt{[K_{R3}^2 + K_{R3}(R_{NTCTL} + R_{NTCTR}) + R_{NTCTL}R_{NTCTR}]\alpha_{TL}}$

 $R_{IMON3} = -R_{IMON2} + K_{R3}$ Where :

$$\alpha_{TH} = \frac{K_{TH} - K_{TR}}{R_{NTCTH} - R_{NTCTR}}$$

 $\alpha_{TL} = \frac{K_{TL} - K_{TR}}{R_{NTCTL} - R_{NTCTR}}$

$$K_{R3} = \frac{(\alpha_{TH}/\alpha_{TL})R_{NTCTH} - R_{NTCTL}}{1 - (\alpha_{TH}/\alpha_{TL})}$$

$$K_{TL} = \frac{0.4}{\frac{DCR(T_L)}{R_{CS}} \times I_{CCMAX}}$$

$$K_{TR} = \frac{0.4}{\frac{DCR(T_R)}{R_{CS}} \times I_{CCMAX}}$$

$$K_{TH} = \frac{0.4}{\frac{DCR(T_H)}{R_{CS}} \times I_{CCMAX}}$$

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS3601BC-03 June 2017

RICHTEK

Current Monitor, IMON

For each VR rail, the RT3601BC includes a current monitor (IMON) function which can be used to detect over-current protection and maximum processor current ICCMAX, and also sets a part of current gain in the load-line setting. It produces an analog voltage proportional to output current between the IMON and VREF pins.

Load-Line (Droop) Setting

The G-NAVPTM topology can set load-line (droop) via the current loop and voltage loop, the load-line is a slope between load current I_{CC} and output voltage Vsen as shown in Figure 15. Figure 16 shows the voltage control and current loop for Main and SA rails. By using both loops, the load-line (droop) can be set easily. The load-line set equation for Main and SA is :

where $R_{OUT} = R_{CS}$

Figure 17 shows the voltage control and current loop for AUXI rail. By using both loops, the load-line (droop) can be set easily. The load-line set equation for AUXI is :

$$R_{LL} = \frac{A_{I}}{A_{V}} = \frac{\frac{k_{i}}{2} \times \frac{DCR}{R_{CS}} \times R_{IMON}}{\frac{R_{2}}{R_{1}}}$$

Where R_{CS} = 2.15k Ω

Compensator Design

The compensator of the RT3601BC doesn't need a complex type II or type III compensator to optimize control loop performance. It can adopt a simple type I compensator (one pole, one zero) in the G-NAVPTM topology to achieve constant output impedance design for Intel IMVP8 ACLL specification. The one pole one zero compensator is shown as Figure 18. The transfer function of compensator should be design as following transfer function to achieve constant output impedance, i.e. Zo(s) = load-line slope in the entire frequency range :

$$G_{CON}(S) \approx \frac{A_l}{R_{LL}} \frac{1 + \frac{s}{\omega \times fsw}}{1 + \frac{s}{\omega \in SR}}$$

where A_I is current loop gain, R_{LL} is load-line, f_{SW} is switching frequency and ω_{ESR} is a pole that should be located at 1/(C_{OUT} x ESR). Then, the C1 and C2 should be designed as follows :

$$C1 = \frac{1}{R1 \times \pi \times f_{SW}} \qquad C2 = \frac{C_{OUT} \times ESR}{R2}$$

Copyright ©2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com DS3601BC-03 June 2017

RT3601BC

Figure 18. Type I compensator

Differential Remote Sense Setting

The VR provides differential remote-sense inputs to eliminate the effects of voltage drops along the PC board traces, CPU internal power routes and socket contacts for Main and AUXI rails. The CPU contains on-die sense pins, V_{CC_SENSE} and V_{SS_SENSE} . Connect RGND to V_{SS_SENSE} and connect FB to V_{CC_SENSE} with a resistor to build the negative input path of the error amplifier as shown in Figure 19. The V_{DAC} and the precision voltage reference are referred to RGND for accurate remote sensing.

Figure 19. Remote Sensing Circuit

Maximum Processor Current Setting, IMAX

The maximum processor current IMAX for each VR rail can be set by TSEN_Main and TSEN_AUXI pins. Each VR IMAX register is set by an external voltage divider with the multi-function mechanism. Table 4 and Table 5 show the each VR IMAX setting on TSEN_Main and TSEN_ AUXI pins.

System Input Power Monitor, PSYS

The RT3601BC provides PSYS function to monitor total platform system power, and the obtained information will be provided directly to the CPU via the SVID interface. The PSYS function can be described as in Figure 20. When the maximum PSYS voltage V_{PSYS} = 3.2V, the RT3601BC will generate an 8-bit code, FF, which will be stored in the 1Bh register. To choose the resistor value R, for example, if the maximum current from the PSYS "Meter" I = 320µA in conjunction with V_{PSYS} = 3.2V, R = V_{PSYS} / I =10k Ω can be obtained.

Figure 20. PSYS Function Block Diagram

V	TSEN_Main =	$3.2V \times \frac{R1 \times R}{R1 + R}$	2 2	DVIDTH_SA (mV)	IMAX_AUXI (A)	IMAX_SA (A)
Min	Typical	Мах	Unit			
49.5484	50.0489	50.5494	mV		29 (000-22)	6 (OCP=6X)
148.645	150.147	151.648	mV		28 (UCP=3X)	8 (OCP=6X)
247.742	250.244	252.747	mV		26 (000-22)	6 (OCP=6X)
346.839	350.342	353.846	mV	15	30 (UCP-3A)	8 (OCP=6X)
445.935	450.44	454.944	mV	15	60 (OCD-2X)	6 (OCP=6X)
545.032	550.538	556.043	mV		00 (OCP-2A)	8 (OCP=6X)
644.129	650.635	657.142	mV		68 (OCD-2X)	6 (OCP=6X)
743.226	750.733	758.24	mV		00 (UCP-2A)	8 (OCP=6X)
842.323	850.831	859.339	mV		28 (000-22)	6 (OCP=6X)
941.419	950.929	960.438	mV		20 (UCP-3A)	8 (OCP=6X)
1040.52	1051.03	1061.54	mV		26 (OCD-2X)	6 (OCP=6X)
1139.61	1151.12	1162.64	mV	20	30 (OCP-3A)	8 (OCP=6X)
1238.71	1251.22	1263.73	mV			6 (OCP=6X)
1337.81	1351.32	1364.83	mV		00 (001 -27)	8 (OCP=6X)
1436.9	1451.42	1465.93	mV		68 (OCP-2X)	6 (OCP=6X)
1536	1551.52	1567.03	mV			8 (OCP=6X)
1635.1	1651.61	1668.13	mV		28 (OCP=3X)	6 (OCP=6X)
1734.19	1751.71	1769.23	mV			8 (OCP=6X)
1833.29	1851.81	1870.33	mV		36 (OCP=3X)	6 (OCP=6X)
1932.39	1951.91	1971.43	mV	60		8 (OCP=6X)
2031.48	2052	2072.52	mV		60 (OCP=2X)	6 (OCP=6X)
2130.58	2152.1	2173.62	mV		00 (OCF-2A)	8 (OCP=6X)
2229.68	2252.2	2274.72	mV		68 (OCP=2X)	6 (OCP=6X)
2328.77	2352.3	2375.82	mV		00 (001 -27)	8 (OCP=6X)
2427.87	2452.39	2476.92	mV		28 (OCP=3X)	6 (OCP=6X)
2526.97	2552.49	2578.02	mV		20 (001 - 37)	8 (OCP=6X)
2626.06	2652.59	2679.12	mV		36 (OCP=3X)	6 (OCP=6X)
2725.16	2752.69	2780.22	mV	90		8 (OCP=6X)
2824.26	2852.79	2881.31	mV		60 (OCP=2X)	6 (OCP=6X)
2923.35	2952.88	2982.41	mV			8 (OCP=6X)
3022.45	3052.98	3083.51	mV		68 (OCP=2X)	6 (OCP=6X)
3121.55	3153.08	3184.61	mV			8 (OCP=6X)

Table 3. TSEN_Main Setting for DVIDTH_SA, IMAX_AUXI and IMAX_SA

		-	0		_	
$V_{\text{TSEN}} = 3.2 \text{V} \times \frac{\text{R1} \times \text{R2}}{\text{R1} + \text{R2}}$		DVIDTH_AUXI (mV)	DVIDTH_Main (mV)	IMAX_Main (A)		
Min	Typical	Max	Unit			
49.5484	50.0489	50.5494	mV		15	29 (OCP=3X)
148.645	150.147	151.648	mV			35 (OCP=2X)
247.742	250.244	252.747	mV		30	29 (OCP=3X)
346.839	350.342	353.846	mV	15		35 (OCP=2X)
445.935	450.44	454.944	mV	15	60	29 (OCP=3X)
545.032	550.538	556.043	mV		00	35 (OCP=2X)
644.129	650.635	657.142	mV		90	29 (OCP=3X)
743.226	750.733	758.24	mV		90	35 (OCP=2X)
842.323	850.831	859.339	mV		15	29 (OCP=3X)
941.419	950.929	960.438	mV		15	35 (OCP=2X)
1040.52	1051.03	1061.54	mV		20	29 (OCP=3X)
1139.61	1151.12	1162.64	mV	20	30	35 (OCP=2X)
1238.71	1251.22	1263.73	mV	30	60	29 (OCP=3X)
1337.81	1351.32	1364.83	mV		60	35 (OCP=2X)
1436.9	1451.42	1465.93	mV		00	29 (OCP=3X)
1536	1551.52	1567.03	mV		90	35 (OCP=2X)
1635.1	1651.61	1668.13	mV		45	29 (OCP=3X)
1734.19	1751.71	1769.23	mV	-	15	35 (OCP=2X)
1833.29	1851.81	1870.33	mV	-		29 (OCP=3X)
1932.39	1951.91	1971.43	mV		30	35 (OCP=2X)
2031.48	2052	2072.52	mV	- 60		29 (OCP=3X)
2130.58	2152.1	2173.62	mV	-	60	35 (OCP=2X)
2229.68	2252.2	2274.72	mV			29 (OCP=3X)
2328.77	2352.3	2375.82	mV		90	35 (OCP=2X)
2427.87	2452.39	2476.92	mV			29 (OCP=3X)
2526.97	2552.49	2578.02	mV		15	35 (OCP=2X)
2626.06	2652.59	2679.12	mV			29 (OCP=3X)
2725.16	2752.69	2780.22	mV		30	35 (OCP=2X)
2824.26	2852.79	2881.31	mV	90		29 (OCP=3X)
2923.35	2952.88	2982.41	mV	1	60	35 (OCP=2X)
3022.45	3052.98	3083.51	mV	1		29 (OCP=3X)
3121.55	3153.08	3184.61	mV	1	90	35 (OCP=2X)

Table 4. TSEN_AUXI Setting for DVIDTH_AUXI, DVIDTH_Main and IMAX_Main

Dynamic VID (DVID) Compensation

When VID transition event occurs, a charge current will be generated in the loop to cause DVID performance is deteriorated by this induced charge current, the phenomenon is called droop effect. The droop effect is shown in Figure 21. When VID up transition occurs, the output capacitor will be charged by inductor current. Since current signal is sensed in inductor, an induced charge current will appear in control loop. The induced charge current will produce a voltage drop in R1 to cause output voltage to have a droop effect. Due to this, VID transition performance will be deteriorated.

The RT3601BC provides a DVID compensation function. By the DVID compensation to cancel the real induced charge current signal and the virtual charge current signal is defined in Figure 22. Figure 23 shows the operation of cancelling droop effect. A virtual charge current signal is established first and then VID signal plus virtual charge current signal to be generated on the FB pin. Hence, an induced charge current signal flows to R1 and is cancelled to reduce droop effect.

Figure 22. Definition of Virtual Charge Current Signal

Figure 23. DVID Compensation

Table 4 and Table 5 show the each VR DVID threshold setting on TSEN_Main and TSEN_AUXI pins. The each VR DVID width is equal to 2μ s. For example, VR IMAXs are 34A, 6A and 40A for Main rail, SA rail and AUXI rail, respectively. And DIVDTHs are all set as 15mV for each rail. The V_{TSEN_Main} and V_{TSEN_AUXI} need to be set as 0.25V and 0.15V, respectively. Please note that a high accuracy resistor is needed for this setting, <1% error tolerance is recommended.

Ramp Compensation

The G-NAVPTM topology is one type of ripple based control that has fast transient response and can lower BOM cost. However, ripple based control usually has no good noise immunity. The RT3601BC provides the ramp compensation to increase noise immunity and reduce jitter at the switching node. Figure 24 shows the ramp compensation.

Quick Response (QR) Mechanism

When the transient load step-up becomes quite large, it is difficult for loop response to meet the energy transfer. Hence, that output voltage generate undershoot to fail specification. The RT3601BC has Quick Response (QR) mechanism being able to improve this issue. It adopts a nonlinear control mechanism which can disable interleaving function and simultaneously turn on all UGATE one pulse at instantaneous step-up transient load to restrain the output voltage drooping. Figure 25 shows the QR behavior.

RT3601BC

Figure 25. Quick Response Mechanism

The output voltage signal behavior needs to be detected so that QR mechanism can be trigged. The output voltage signal is via a remote sense line to connect at the VSEN pin which is shown in Figure 26. The QR mechanism needs to set QR width and QR threshold. Both definitions are shown in Figure 24. A proper QR mechanism set can meet different applications. The SET1 and SET2 pins can set QR threshold and QR width by internal current source 80µA with multi-function pin setting mechanism for Main and AUXI VR rails. Table 6 shows the QR_TH and QR_WIDTH for Main and AXUI VR rails on the SET[1:2] pins.

Figure 26. Simplified QR Trigger schematic

Ve	SET[1 and 2]_I	QRTH_X (mV)	QEWIDTH_X (% of On-Time)		
Min	Тур	Max	Unit		
49.54839	50.04888	50.54936	mV	Disable	130%
148.6452	150.1466	151.6481	mV	Disable	70%
247.7419	250.2444	252.7468	mV	15	130%
346.8387	350.3421	353.8456	mV	15	70%
445.9355	450.4399	454.9443	mV	20	130%
545.0323	550.5376	556.043	mV	20	70%
644.129	650.6354	657.1417	mV	25	130%
743.2258	750.7331	758.2405	mV	25	70%
842.3226	850.8309	859.3392	mV	20	130%
941.4194	950.9286	960.4379	mV		70%
1040.516	1051.026	1061.537	mV	25	130%
1139.613	1151.124	1162.635	mV	35	70%
1238.71	1251.222	1263.734	mV	40	130%
1337.806	1351.32	1364.833	mV	40	70%
1436.903	1451.417	1465.932	mV	45	130%
1536	1551.515	1567.03	mV	40	70%

For example, 35mV QR threshold and 1.3 x TON QR width are set. According to Table 6, the set voltage should be between 1.261V and 1.291V. Please note that a high accuracy resistor is needed for this setting accuracy, <1% error tolerance is recommended.

Zero Load-Line Setting and Anti-overshoot function

The SET3 pin can be enabled/disabled zero load-line function for SA rail and can be enabled/disabled antiovershoot function for each VR rail. Table 7 show the zero load-line function for SA rail and anti-overshoot function for each VR rail on the SET3 pin. When DVID slew rate increases, loop response is difficult to meet energy transfer so that output voltage generates overshoot to fail specification. The RT3601BC has antiovershoot function being able to help improve this issue. The VR will turn off low-side MOSFET when output voltage ramps up to the target VID (ALERT signal be pulled low). This function also can improve the overshoot during the load transient condition. When anti-overshoot function is triggered, the UGATE and LGATE signal will be masked to reduce the overshoot amplitude.

		ANTIOVS		SA_0LL				
Min	Тур	Max	Unit	CORE	GT	SA		
49.54839	50.04888	50.54936	mV			Dischlo	Disable	
148.6452	150.1466	151.6481	mV		Dischla	Disable	Enable	
247.7419	250.2444	252.7468	mV		Disable	Enable	Disable	
346.8387	350.3421	353.8456	mV	Dischlo			Enable	
445.9355	450.4399	454.9443	mV	Disable	Enable	Disable Enable	Disable	
545.0323	550.5376	556.043	mV				Enable	
644.129	650.6354	657.1417	mV				Disable	
743.2258	750.7331	758.2405	mV				Enable	
842.3226	850.8309	859.3392	mV		Disable	Disable	Disable	
941.4194	950.9286	960.4379	mV				Enable	
1040.516	1051.026	1061.537	mV		DISADIE	Enable	Disable	
1139.613	1151.124	1162.635	mV	Enable		Enable	Enable	
1238.71	1251.222	1263.734	mV			Disable	Disable	
1337.806	1351.32	1364.833	mV		Enable	Disable	Enable	
1436.903	1451.417	1465.932	mV		Enable	Enable	Disable	
1536	1551.515	1567.03	mV		Enable	LIADIE	Enable	

Table 6. SET3 Pin Setting for anti-overshoot and zero load-line

Over-Current Protection

The RT3601BC has dual OCP mechanism. One is named SUM-OCP, the other is called SPIKE-OCP. The over current protection (OCP) forces high-side MOSFET and low-side MOSFET off by shutting down internal PWM logic drivers. RT3601BC provides SUM-OCP which is 160% of IMON 04. IMON 04 is the current that makes V_{IMON} – $V_{REF} = 0.4V$. When output current is higher than the SUM-OCP threshold, SUM-OCP is latched with a 40us delay time to prevent false trigger. Besides, the SUM-OCP function is masked when dynamic VID transient occurs and after dynamic VID transition, SUM-OCP is masked for 80µs. The other one is SPIKE-OCP which should trip when the output current exceeds SPIKE OCP threshold during first DVID. SPIKE OCP threshold is dependent on IMAX level as shown in Table 4 and Table 5. When output current is higher than the SPIKE-OCP threshold, SPIKE-OCP is latched with a 1µs delay time to prevent false trigger.

Output Over-Voltage Protection

An OVP condition is detected when the VSEN pin is 350mV more than VID. When OVP is detected, the high-side gate voltage UGATEx is pulled low and the low-side gate voltage LGATEx is pulled high. OVP is latched with a 0.5μ s delay- to prevent false trigger.

Negative Voltage Protection

Since the OVP latch continuously turns on all low-side MOSFETs of the VR, the VR will suffer negative output voltage. When the VSEN detects a voltage below -0.07V after triggering OVP, the VR triggers NVP to turn off all low-side MOSFETs of the VR while the high-side MOSFETs remain off. After triggering NVP, if the output voltage rises above 0V, the OVP latch restarts to turn on all low-side MOSFETs. Therefore, the output voltage may bounce between 0V and -0.07V due to OVP latch and NVP triggering. The NVP function will be active only after OVP is triggered.

RICHTEK

Under-Voltage Protection

When the VSEN pin voltage is 350mV less than VID, UVP will be latched. When UVP latched, the both UGATEx and LGATEx are pulled low. A 3μ s delay is used in UVP detection circuit to prevent false trigger. Besides, the UVP function is masked when dynamic VID transient occurs and after dynamic VID transition, UVP is masked for 80 μ s.

Design Step :

The RT3601BC Excel based design tool is available. Users can contact your Richtek representative to get the spreadsheet. Three main design procedures of the RT3601BC design, first step is loop design, second step is pin setting design, and the last step is protection settings. The following design example is to explain the RT3601BC design procedure :

Main VR

	V _{Main} Specification
Input Voltage	19V
No. of Phase	1
Normal VID	1.35V
ICCMAX	34
ICC-Dyn	28
Load-Line	2.1mΩ
Fast Slew Rate	37.5mV/μs
MAX Switching Frequency	700kHz

The output filter requirements of VRTB specification are as follows :

Output Inductor : $220nH/0.875m\Omega$

Output Ceramic Capacitor: 47µF (6pcs)

Output Ceramic Capacitor: $10\mu F$ (9pcs)

Loop Design :

- On time setting: Using the specification, then can get that T_{ON} is 108ns.

The k_{TON} parameter can be calculated after the on-time is decided.

$$T_{ON} = \frac{1.2 \mu \times V_{DAC}}{k_{TON} \times (V_{IN} - V_{DAC})} + 15n$$

Choosing the nearest on-time setting $k_{TON} = 1.4$

• Current sensor adopts lossless RC filter to sense current signal in DCR. For getting an expected load transient waveform R_XC_X time constant needs to match L_X/DCR_X . $C_X = 0.47\mu$ F, $R_{NTC} = 10$ k Ω and $R_P = 10$ k Ω are set, then

 $R_{EQU} = R_S + (R_P / / R_{NTC})$

$$\frac{L_X}{DCR} = C_X \times \frac{R_{EQU} \times R_X}{R_{EQU} + R_X}$$

By using the design tool, R_S and R_X can be determined, are equal to 220 Ω and 590 Ω , respectively.

• IMON resistor network design :

$$R_{IMON} = \frac{\Delta V_{IMON} \times 2.15k}{ICCMAX \times DCR \times \frac{R_{EQU}}{R_X + R_{EQU}}} = 32.17k\Omega$$

 Load-line design : 2.1mΩ droop is requirement, because DCR and ki are decided to 0.875mΩ and 20, respectively. The voltage loop Av gain is also can be determined by following equation :

$$R_{LL} = \frac{A_{I}}{A_{V}} = \frac{\frac{k_{i}}{2} \times DCR}{\frac{R_{2}}{R_{1}}}$$

 R_1 = 10k Ω is usually decided and here R2 is chosen to 37.4k $\Omega.$

• Typical compensator design can use the following equations to design C_1 and C_2 values

$$C_{1} = \frac{1}{R_{1} \times \pi \times F_{SW}} \approx 45.5 \text{pF}$$
$$C_{2} = \frac{C_{OUT} \times ESR}{R_{2}} \approx 33 \text{pF}$$

For Intel platform, in order to induce the band width to enhance transient performance to meet Intel's criterion, the zero location can be designed close to 1/10 of the switching frequency or less than the 1/10 of switching frequency.

Copyright ©2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

DS3601BC-03 June 2017

RT3601BC

SA VR

	V _{SA} Specification
Input Voltage	19V
No. of Phase	1
Normal VID	1.05V
ICCMAX	6
ICC-Dyn	3
Load-Line	10.3mΩ
Fast Slew Rate	37.5mV/μs
MAX Switching Frequency	800kHz

The output filter requirements of VRTB specification are as follows :

Output Inductor: $820nH/6.7m\Omega$

Output Ceramic Capacitor: 47µF (4pcs)

Output Ceramic Capacitor:10µF (8pcs)

Loop Design :

- On time setting : Using the specification, then can get that T_{ON} is 96ns.

The k_{TON} parameter can be calculated after the on-time is decided.

$$T_{ON} = \frac{1.2 \mu \times V_{DAC}}{k_{TON} \times (V_{IN} - V_{DAC})} + 15 n$$

Choosing the nearest on-time setting $k_{TON} = 1.4$

Current sensor adopts lossless RC filter to sense current signal in DCR. For getting an expected load transient waveform R_XC_X time constant needs to match L_X/DCR_X. C_X = 0.47 μ F, R_{NTC} = 4.7 $k\Omega$ and Rp = 4.7 $k\Omega$ are set, then

 $R_{EQU} = R_{S} + (R_{P} / / R_{NTC})$

$$\frac{L_X}{DCR} = C_X \times \frac{R_{EQU} \times R_X}{R_{EQU} + R_X}$$

By using the design tool, R_S and R_X can be determined, are equal to 165 Ω and 280 Ω , respectively.

• IMON resistor network design :

$$R_{IMON} = \frac{\Delta V_{IMON} \times 2.15k}{ICCMAX \times DCR \times \frac{R_{EQU}}{R_X + R_{EQU}}} = 23.79 k\Omega$$

 Load-line design : 10.3mΩ droop is requirement, because DCR and ki are decided to 6.7mΩ and 20, respectively. The voltage loop Av gain is also can be determined by following equation :

$$R_{LL} = \frac{A_{I}}{A_{V}} = \frac{\frac{k_{i}}{2} \times DCR}{\frac{R_{2}}{R_{1}}}$$

 $R_1 = 10k\Omega$ is usually decided and here R2 is chosen to 58.5k Ω .

Typical compensator design can use the following equations to design C_1 and C_2 values

$$C_{1} = \frac{1}{R_{1} \times \pi \times F_{SW}} \approx 45.5 \text{pF}$$
$$C_{2} = \frac{C_{OUT} \times ESR}{R_{2}} \approx 56 \text{pF}$$

For Intel platform, in order to induce the band width to enhance transient performance to meet Intel's criterion, the zero location can be designed close to 1/10 of the switching frequency or less than the 1/10 of switching frequency.

AVXI VR

	VAUXI Specification
Input Voltage	19V
No. of Phase	1
Normal VID	1.35V
ICCMAX	40
ICC-Dyn	37
Load-Line	3.1mΩ
Fast Slew Rate	37.5mV/μs
MAX Switching Frequency	700kHz

The output filter requirements of VRTB specification are as follows :

Output Inductor: 220nH/0.875mΩ

Output Bulk Capacitor: 330μ F/2V.4.5m Ω (1pcs)

Output Ceramic Capacitor: 47µF (6pcs)

Output Ceramic Capacitor: 22µF (7pcs)

Output Ceramic Capacitor:10µF (2pcs)

Loop Design :

• On time setting: Using the specification, then can get that T_{ON} parameter can be calculated after the on-time is decided.

$$T_{ON} = \frac{1.2\mu \times V_{DAC}}{k_{TON} \times (V_{IN} - V_{DAC})} + 15n$$

Choosing the nearest on-time setting $k_{TON} = 1.1$

• Current sensor adopts lossless RC filter to sense current signal in DCR. For getting an expected load transient waveform R_XC_X time constant needs to match L_X/DCR_X . $C_X = 0.47\mu$ F is set, then

$$R_X = \frac{L_X}{1\mu F \times DCR_X} = 530\Omega$$

- IMON resistor network design : $T_L = 25^{\circ}C$, $T_R = 50^{\circ}C$ and $T_H = 100^{\circ}C$ are decided, NTC thermistor = $100k\Omega$ @ $25^{\circ}C$, $\beta = 4485$ and ICCMAX = 40A. $R_{IMON1} = 22.07k\Omega$, $R_{IMON2} = 41.03k\Omega$ and $R_{IMON3} = 38.3k\Omega$ can be decided. The $R_{EQ}(25^{\circ}C) = 53.71k\Omega$.
- Load-line design: 3.1mΩ droop is requirement, because DCR and ki are decided to 0.875mΩ and 2, respectively. The voltage loop Av gain is also can be determined by following equation :

$$R_{LL} = \frac{A_{I}}{A_{V}} = \frac{\frac{k_{i}}{2} \times \frac{DCR}{R_{CS}} \times R_{IMON}}{\frac{R_{2}}{R_{1}}}$$

 $R_1 = 10k\Omega$ is usually decided and here R2 is chosen to 64.51k Ω .

• Typical compensator design can use the following equations to design C_1 and C_2 values

$$C_{1} = \frac{1}{R_{1} \times \pi \times F_{SW}} \approx 45.5 \text{pF}$$
$$C_{2} = \frac{C_{OUT} \times ESR}{R_{2}} \approx 55 \text{pF}$$

For intel platform, in order to induce the band width to enhance transient performance to meet intel's criterion, the zero location can be designed close to 1/10 of the switching frequency or less than the 1/10 of switching frequency.

Pin Setting Design :

SET1 resistor network design: From above designs, parameters of k_{TON_Main} and k_{i_Main} are 1.1 and 20,

respectively. The Main_QR_TH is set to disable and Main_QR_Width is designed as 0.7 x T_{ON} . By using the information, the two equation can be listed by using multi-function pin setting mechanism :

$$3.2 \times \frac{R_2}{R_1 + R_2} = 675.7 \text{mV}$$

 $80 \mu \times \frac{R_1 \times R_2}{R_1 + R_2} = 175.2 \text{mV}$

 $R_1 = 10.37 k\Omega$ and $R_2 = 2.78 k\Omega$.

• SET2 resistor network design : From above designs, parameters of k_{TON_AUXI} and k_{i_AUXI} are 1.1 and 2, respectively. The AUXI_QR_TH is set to 15mV and AUXI_QR_Width is designed as 0.7 x T_{ON}. By using the information, the two equation can be listed by using multi-function pin setting mechanism :

$$3.2 \times \frac{R_2}{R_1 + R_2} = 575.56 \text{mV}$$

 $80 \mu \times \frac{R_1 \times R_2}{R_1 + R_2} = 575.56 \text{mV}$

 $R_1 = 40k\Omega$ and $R_2 = 8.77k\Omega$.

• SET3 resistor network design: From above designs, parameters of k_{TON_SA} and k_{i_SA} are 1.4 and 20, respectively. The anti-overshoot function is enabled for Main and AUXI rails. The anti-overshoot function and zero load-line function for SA rail both are disabled. The tristate delay is disable, too. By using the information, the two equation can be listed by using multi-function pin setting mechanism :

$$3.2 \times \frac{R_2}{R_1 + R_2} = 675.66 \text{mV}$$

 $80\mu \times \frac{R_1 \times R_2}{R_1 + R_2} = 1276.24 \text{mV}$
 $R_1 = 75.56 \text{k}\Omega$ and $R_2 = 20.22 \text{k}\Omega$.

• TSEN_Main resistor network design : The DIVD threshold is 60mV for SA rail. And the IMAXs are designed as 40A and 6A for AUXI rail and SA rail, respectively. By using the information, the equation can be shown as below :

$$3.2 \times \frac{R_2}{R_1 + R_2} = 1.851V$$

• TSEN_AUXI resistor network design : The DIVD thresholds are 15mV and 60mV for Main rail and AUXI rail, respectively. And the IMAX is designed as 34A for

Copyright ©2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

Main rail. By using the information, the equation can be listed by using multi-function pin setting mechanism :

$$3.2 \times \frac{R_2}{R_1 + R_2} = 550 \text{mV}$$

Protection Settings :

- OVP/UVP protections: When the VSEN pin voltage is 350mV higher than VID, the OVP will be latched. When the VSEN pin voltage is 350mV lower than VID, the UVP will be latched.
- TSEN and VR HOT design : Using the following equation to calculate related resistances for VR_HOT setting.

 $V_{TSEN} = 80 \mu \times (R_3 / R_{NTC}) + (R_1 / R_2)$

Choosing $R_1 = 100 k\Omega$ and an NTC thermistor $R_{NTC (25^{\circ}C)}$ = $100k\Omega$ and its β = 4485. When temperature is 100° C, the $R_{NTC (100^{\circ}C)}$ = 4.85k Ω . According to TSEN pins for multi-function mechanism, three equations can be got as following for Main VR rail :

 $V_{\text{TSEN Main}(25^{\circ}\text{C})} = 80 \mu \times (R_3 / R_{\text{NTC}}(25^{\circ}\text{C})) + (R_1 / R_2) = 1.624 V$

 $V_{\text{TSEN Main}(100^{\circ}\text{C})} = 80\mu \times (R_3 / R_{\text{NTC}(100^{\circ}\text{C})}) + (R_1 / R_2) = 1.092V$

 $3.2 \times \frac{R_2}{R_1 + R_2} = 1.851V$

 $R_1 = 15.214k\Omega$, $R_2 = 20.898k\Omega$ and $R3 = 5618.685k\Omega$.

Three equations can be got as following for AUXI VR rail : $V_{\text{TSEN} \text{AUXI(25^{\circ}C)}} = 80 \mu \times (R_3 / R_{\text{NTC}(25^{\circ}C)}) + (R_1 / R_2) = 1.624 V$ $V_{\text{TSEN AUXI(100^{\circ}C)}} = 80 \mu \times (R_3 / R_{\text{NTC}(100^{\circ}C)}) + (R_1 / R_2) = 1.092 V$

 $3.2 \times \frac{R_2}{R_1 + R_2} = 550 \text{mV}$

 $R_1 = 16.083 k\Omega$, $R_2 = 19.059 k\Omega$ and $R_3 = 5618.685 k\Omega$.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

 $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-52L 6x6 package, the thermal resistance, θ_{JA} , is 26.5°C/W on a standard JEDEC 51-7 high effective-thermalconductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (26.5^{\circ}C/W) = 3.77W$ for a WQFN-52L 6x6 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 27 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 27. Derating Curve of Maximum Power Dissipation

Outline Dimension

Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.150	0.250	0.006	0.010
D	5.950	6.050	0.234	0.238
D2	4.650	4.750	0.183	0.187
E	5.950	6.050	0.234	0.238
E2	4.650	4.750	0.183	0.187
е	0.400		0.016	
L	0.350	0.450	0.014	0.018
L1	0.300	0.400	0.012	0.016

W-Type 52L QFN 6x6 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by Richtek manufacturer:

Other Similar products are found below :

LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3 SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G