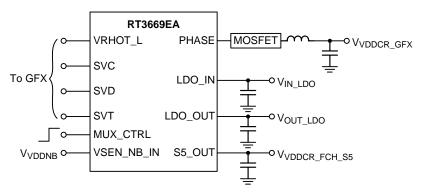


Single Channel PWM Controller with 1 Integrated Driver and 1 LDO Regulator for AMD SVI2 GFX and FCH Power Supply

General Description

The RT3669EA is a single channel PWM controller with 1 integrated driver and 1 LDO regulator, it is compliant with AMD SVI2 Voltage Regulator Specification to support FP4 GFX power (VDDCR GFX) and FCH power (VDDCR FCH S5). The RT3669EA features CCRCOT (Constant Current Ripple Constant On-Time) with G-NAVP (Green-Native AVP), which is Richtek's proprietary topology. G-NAVP makes it an easy setting controller to meet all AMD AVP (Adaptive Voltage Positioning) GFX requirements. The droop is easily programmed by setting the DC gain of the error amplifier. With proper compensation, the load transient response can achieve optimized AVP performance. The controller also uses the interface to issue VOTF Complete and to send digitally encoded voltage and current values for the GFX domains. The RT3669EA can operate in diode emulation mode to enhance the light load efficiency. And it provides the current gain adjustment capability by pin setting. The RT3669EA also provides power good indication, thermal indication (VRHOT_L), and it features complete fault protection functions including over current, over voltage and under voltage.


Features

- 1-Phase (VDDCR GFX) PWM Controller
- 1 Embedded MOSFET Driver
- 1 LDO Regulator for FCH
- G-NAVP[™] Topology
- Support Dynamic Load-Line and Zero Load-Line
- Diode Emulation Mode at Light Load Condition
- SVI2 Interface to Comply with AMD Power Management Protocol
- · Adjustable Current Gain Capability
- DVID Enhancement
- 0.5% DAC Accuracy
- Differential Remote Voltage Sensing
- Build-in ADC for Pin Setting Programming,
 Thermal Indication and Vout, lout Reporting
- Fast Transient Response
- Power Good Indicator
- Thermal Indicator (VRHOT_L)
- OVP, UVP and UVLO
- Over Current Protection

Applications

· AMD FP4 GFX and FCH Power

Simplified Application Circuit

Ordering Information

RT3669EA □ □ Package Type

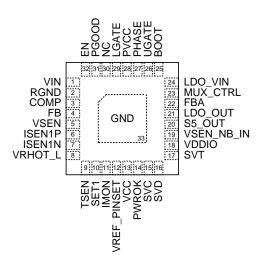
QW: WQFN-32L 4x4 (W-Type)

Lead Plating System

G: Green (Halogen Free and Pb Free)

Note:

Richtek products are:


- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

3A=YM DNN 3A=: Product Code YMDNN: Date Code

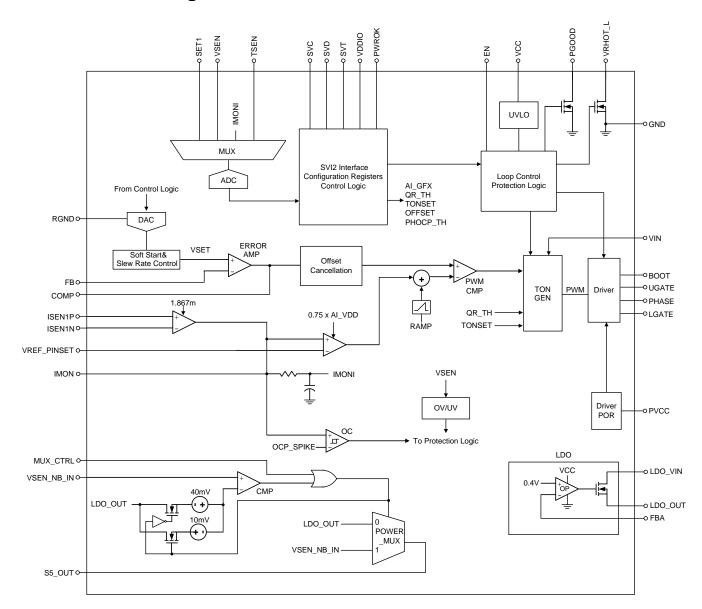
Pin Configuration

(TOP VIEW)

WQFN-32L 4x4

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	VIN	VIN input pin. Connect a low pass filter to this pin.
2	RGND	Return ground of GFX controller. This pin is the common negative input of output voltage differential remote sense of GFX controller.
3	COMP	Error amplifier output pin of the GFX controller.
4	FB	Output voltage feedback input of GFX controller. This pin is the negative input of the error amplifier for the GFX controller.
5	VSEN	GFX controller voltage sense input. This pin is connected to the terminal of GFX controller output voltage.
6	ISEN1P	Positive current sense input for GFX controller.
7	ISEN1N	Negative current sense input for GFX controller.
8	VRHOT_L	Thermal indicator. This pin is an open drain output. (Active low)
9	TSEN	This pin provides two functions: platform setting, platform can use this pin to set frequency, initial offset and per-phase OCP threshold of GFX Controller. The other function is thermal sense input for VRHOT indicator, so this pin must to be connected to the NTC network for thermal sense.
10	SET1	Platform setting pin. Platform can use this pin to set Al gain, QRTH of GFX Controller.
11	IMON	Current monitor output for the GFX controller. This pin outputs a voltage proportional to the output current.
12	VREF_PINSET	This pin provides two functions: The 3.2V power supply for pin setting function divided resistors. The other function is fixed 0.8V output reference voltage, and the voltage is only used to offset the output voltage of IMON pin. Connect a RC circuit from this pin to GND. The recommended resistor is from 3.9Ω to $10\Omega,$ and the capacitor is $0.47\mu F.$



Pin No.	Pin Name	Pin Function
13	VCC	Controller power supply. Connect this pin to 5V and place a decoupling capacitor $2.2\mu F$ at least. The decoupling capacitor is as close controller as possible.
14	PWROK	System power good input. If PWROK is low, the SVI interface is disabled and VR returns to BOOT-VID state with initial load-line slope and initial offset. If PWROK is high, the SVI interface is running and the DAC decodes the received serial VID codes to determine the output voltage.
15	SVC	Serial VID clock input.
16	SVD	Serial VID data input. This pin is a serial data line.
17	SVT	Serial VID telemetry output from VR. This pin is a push-pull output.
18	VDDIO	Processor memory interface power rail and serves as the reference for PWROK, SVD, SVC and SVT. This pin is used by the VR to reference the SVI pins.
19	VSEN_NB_IN	This pin is connected to the output of VDDNB controller.
20	S5_OUT	FCH power output.
21	LDO_OUT	LDO output.
22	FBA	LDO output voltage feedback input.
23	MUX_CTRL	MUX control input. When the pin pulled high, the S5_OUT output voltage is forced to VSEN_NB_IN pin voltage. If the pin pulled low, the S5_OUT output voltage is forced to VSEN_NB_IN pin voltage when the VSEN_NB_IN voltage is greater than LDO_OUT voltage; otherwise, the S5_OUT voltage is forced to LDO_OUT pin voltage.
24	LDO_VIN	LDO power input.
25	воот	Bootstrap supply of GFX controller for high-side MOSFET. This pin powers high-side MOSFET driver.
26	UGATE	Upper gate driver output of GFX controller. Connect this pin to the gate input of high-side MOSFET.
27	PHASE	Switch nodes of high-side driver for GFX controller. Connect this pin to high-side MOSFET Source together with the low-side MOSFET Drain and the inductor.
28	PVCC	Driver power supply. Connect this pin to GND by the $2.2\mu F$ ceramic capacitor at least. The decoupling capacitor is as close controller as possible.
29	LGATE	Lower Gate Driver Output of GFX Controller. Connect this pin to the gate input of low-side MOSFET.
30	NC	No internal connection.
31	PGOOD	Power good indicator for the GFX controller. This pin is an open drain output.
32	EN	Controller enable input pin.
33 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

Functional Block Diagram

Operation

The RT3669EA adopts G-NAVPTM (Green Native AVP) which is Richtek's proprietary topology derived from finite DC gain of EA amplifier with current mode control, making it easy to set the droop to meet all AMD GFX requirements of AVP (Adaptive Voltage Positioning). The G-NAVPTM controller is one type of current mode constant on-time control with DC offset cancellation. The approach can not only improve DC offset problem for increasing system accuracy but also provide fast transient response. When current feedback signal reaches COMP signal, it generates an on-time width to achieve PWM modulation.

MUX and ADC

The MUX supports the inputs from SET1, TSEN, IMONI and VSEN. The ADC converts these analog signals to digital codes for reporting or performance adjustment.

SVI2 Interface/Configuration Registers/Control Logic

The SVI2 interface uses the SVC, SVD, and SVT pins to communicate with GFX. The configuration registers save the digital data from ADC output for reporting or performance adjustment. The Control Logic controls

the ADC timing and generates the digital code of the VID for VSEN voltage.

Loop Control Protection Logic

Loop control protection logic detects EN and UVLO signals to initiate the soft-start function, and the PGOOD and VRHOT_L will be controlled after the soft-start is finished. When VRHOT indication event occurs, the VRHOT_L pin voltage will be pulled low.

DAC

The DAC receives VID codes from the SVI2 control logic to generate an internal reference voltage (VSET) for controller.

Soft-Start and Slew-Rate Control

This block controls the slew rate of the internal reference voltage when output voltage changes.

Error Amplifier

Error amplifier generates COMP signal by the difference between VSET and FB.

Offset Cancellation

This block cancels the output offset voltage from voltage ripple and current ripple to achieve accurate output voltage.

UVLO

Detect the VCC pin voltage for under voltage lockout protection and power on reset operation.

PWM CMP

The PWM comparator compares COMP signal and current feedback signal to generate a signal for TONGEN.

TONGEN

This block generates an on-time pulse which high interval is based on the on-time setting and current balance.

RAMP

The Ramp generator is designed to improve noise immunity and reduce jitter.

OC/OV/UV

VSEN and output current are sensed for over current, over voltage and under voltage protection.

LDO

The LDO regulates its output voltage (LDO_OUT) with the fixed reference voltage (0.4V). And the external resistors connected to FBA pin can be adjust to change the output voltage.

POWER MUX

If MUX_CTRL = High, then S5_OUT = VSEN_NB_IN.

If MUX_CTRL = Low, S5_OUT = VSEN_NB_IN or LDO_OUT, refer to MUX description of Application Information.

Table 1. Serial VID Codes

SVID [7:0]	Voltage (V)						
0000_0000	1.55000	0010_0111	1.30625	0100_1110	1.06250	0111_0101	0.81875
0000_0001	1.54375	0010_1000	1.30000	0100_1111	1.05625	0111_0110	0.81250
0000_0010	1.53750	0010_1001	1.29375	0101_0000	1.05000	0111_0111	0.80625
0000_0011	1.53125	0010_1010	1.28750	0101_0001	1.04375	0111_1000	0.80000
0000_0100	1.52500	0010_1011	1.28125	0101_0010	1.03750	0111_1001	0.79375
0000_0101	1.51875	0010_1100	1.27500	0101_0011	1.03125	0111_1010	0.78750
0000_0110	1.51250	0010_1101	1.26875	0101_0100	1.02500	0111_1011	0.78125
0000_0111	1.50625	0010_1110	1.26250	0101_0101	1.01875	0111_1100	0.77500
0000_1000	1.50000	0010_1111	1.25625	0101_0110	1.01250	0111_1101	0.76875
0000_1001	1.49375	0011_0000	1.25000	0101_0111	1.00625	0111_1110	0.76250
0000_1010	1.48750	0011_0001	1.24375	0101_1000	1.00000	0111_1111	0.75625
0000_1011	1.48125	0011_0010	1.23750	0101_1001	0.99375	1000_0000	0.75000
0000_1100	1.47500	0011_0011	1.23125	0101_1010	0.98750	1000_0001	0.74375
0000_1101	1.46875	0011_0100	1.22500	0101_1011	0.98125	1000_0010	0.73750
0000_1110	1.46250	0011_0101	1.21875	0101_1100	0.97500	1000_0011	0.73125
0000_1111	1.45625	0011_0110	1.21250	0101_1101	0.96875	1000_0100	0.72500
0001_0000	1.45000	0011_0111	1.20625	0101_1110	0.96250	1000_0101	0.71875
0001_0001	1.44375	0011_1000	1.20000	0101_1111	0.95625	1000_0110	0.71250
0001_0010	1.43750	0011_1001	1.19375	0110_0000	0.95000	1000_0111	0.70625
0001_0011	1.43125	0011_1010	1.18750	0110_0001	0.94375	1000_1000	0.70000
0001_0100	1.42500	0011_1011	1.18125	0110_0010	0.93750	1000_1001	0.69375
0001_0101	1.41875	0011_1100	1.17500	0110_0011	0.93125	1000_1010	0.68750
0001_0110	1.41250	0011_1101	1.16875	0110_0100	0.92500	1000_1011	0.68125
0001_0111	1.40625	0011_1110	1.16250	0110_0101	0.91875	1000_1100	0.67500
0001_1000	1.40000	0011_1111	1.15625	0110_0110	0.91250	1000_1101	0.66875
0001_1001	1.39375	0100_0000	1.15000	0110_0111	0.90625	1000_1110	0.66250
0001_1010	1.38750	0100_0001	1.14375	0110_1000	0.90000	1000_1111	0.65625
0001_1011	1.38125	0100_0010	1.13750	0110_1001	0.89375	1001_0000	0.65000
0001_1100	1.37500	0100_0011	1.13125	0110_1010	0.88750	1001_0001	0.64375
0001_1101	1.36875	0100_0100	1.12500	0110_1011	0.88125	1001_0010	0.63750
0001_1110	1.36250	0100_0101	1.11875	0110_1100	0.87500	1001_0011	0.63125
0001_1111	1.35625	0010_0110	1.11250	0110_1101	0.86875	1001_0100	0.62500
0010_0000	1.35000	0100_0111	1.10625	0110_1110	0.86250	1001_0101	0.61875
0010_0001	1.34375	0100_1000	1.10000	0110_1111	0.85625	1001_0110	0.61250
0010_0010	1.33750	0100_1001	1.09375	0111_0000	0.85000	1001_0111	0.60625
0010_0011	1.33125	0100_1010	1.08750	0111_0001	0.84375	1001_1000	0.60000
0010_0100	1.32500	0100_1011	1.08125	0111_0010	0.83750	1001_1001	0.59375

SVID [7:0]	Voltage (V)	SVID [7:0]	Voltage (V)	SVID [7:0]	Voltage (V)	SVID [7:0]	Voltage (V)
0010_0101	1.31875	0100_1100	1.07500	0111_0011	0.83125	1001_1010	0.58750
0010_0110	1.31250	0100_1101	1.06875	0111_0100	0.82500	1001_1011	0.58125
1001_1100	0.57500	1011_0101 *	0.41875	1100_1110 *	0.26250	1110_0111*	0.10625
1001_1101	0.56875	1011_0110 *	0.41250	1100_1111 *	0.25625	1110_1000*	0.10000
1001_1110	0.56250	1011_0111 *	0.40625	1101_0000 *	0.25000	1110_1001*	0.09375
1001_1111	0.55625	1011_1000 *	0.40000	1101_0001 *	0.24375	1110_1010*	0.08750
1010_0000	0.55000	1011_1001 *	0.39375	1101_0010 *	0.23750	1110_1011*	0.08125
1010_0001	0.54375	1011_1010 *	0.38750	1101_0011 *	0.23125	1110_1100*	0.07500
1010_0010	0.53750	1011_1011 *	0.38125	1101_0100 *	0.22500	1110_1101*	0.06875
1010_0011	0.53125	1011_1100 *	0.37500	1101_0101 *	0.21875	1110_1110*	0.06250
1010_0100	0.52500	1011_1101 *	0.36875	1101_0110 *	0.21250	1110_1111*	0.05625
1010_0101	0.51875	1011_1110 *	0.36250	1101_0111 *	0.20625	1111_0000*	0.05000
1010_0110	0.51250	1011_1111 *	0.35625	1101_1000 *	0.20000	1111_0001*	0.04375
1010_0111	0.50625	1100_0000 *	0.35000	1101_1001 *	0.19375	1111_0010*	0.03750
1010_1000 *	0.50000	1100_0001 *	0.34375	1101_1010 *	0.18750	1111_0011*	0.03125
1010_1001 *	0.49375	1100_0010 *	0.33750	1101_1011 *	0.18125	1111_0100*	0.02500
1010_1010 *	0.48750	1100_0011 *	0.33125	1101_1100 *	0.17500	1111_0101*	0.01875
1010_1011 *	0.48125	1100_0100 *	0.32500	1101_1101 *	0.16875	1111_0110*	0.01250
1010_1100 *	0.47500	1100_0101 *	0.31875	1101_1110 *	0.16250	1111_0111*	0.00625
1010_1101 *	0.46875	1100_0110 *	0.31250	1101_1111 *	0.15625	1111_1000*	0.00000
1010_1110 *	0.46250	1100_0111 *	0.30625	1110_0000*	0.15000	1111_1001*	OFF
1010_1111 *	0.45625	1100_1000 *	0.30000	1110_0001*	0.14375	1111_1010*	OFF
1011_0000 *	0.45000	1100_1001 *	0.29375	1110_0010*	0.13750	1111_1011*	OFF
1011_0001 *	0.44375	1100_1010 *	0.28750	1110_0011*	0.13125	1111_1100*	OFF
1011_0010 *	0.43750	1100_1011 *	0.28125	1110_0100*	0.12500	1111_1101*	OFF
1011_0011 *	0.43125	1100_1100 *	0.27500	1110_0101*	0.11875	1111_1110*	OFF
1011_0100 *	0.42500	1100_1101 *	0.26875	1110_0110*	0.11250	1111_1111*	OFF

^{*} Indicates TOB is 80mV for this VID code; unconditional VR controller stability required at all VID codes

Table 2. SET1 Pin Setting for GFX Controller Al Gain Ratio

SET1 Pin \$	Setting Voltage	$V_{\text{SET1_DIV}} = 3.2 \times \frac{1}{1}$	AI_GFX	
Min	Typical	Max	Unit	
8.5	200	391.5	mV	25%
412.5	600	787.5	mV	50%
816.5	1000	1183.5	mV	100%
1220.5	1400	1579.5	mV	0LL

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

DS3669EA-06 August 2019 www.richtek.com

Table 3. SET1 Pin Setting for GFX Controller QR Threshold

SET1 Pin	Setting Voltage V _{SET}	$r_{1_IR} = 80\mu \times \frac{R_U \times R_D}{R_U + R_D}$		QR Threshold
Min	Typical	Max	Unit	(GFX)
829.28	850	870.72	mV	Disable
1034.64	1050	1065.36	mV	20mV
1137.32	1150	1162.68	mV	25mV

Table 4. TSEN Pin Setting for GFX Controller Frequency, Initial Offset and PHOCP Setting Ratio

TSEN Pin Set	ting Voltage	V _{TSEN_DIV} = 3	$.2 \times \frac{R_D}{R_U + R_D}$	Frequency (GFX)	Initial Offset (GFX)	GFX PHOCP Setting Ratio (Percentage of
Min	Typical	Max	Unit	(511)	(3114)	OCP_SPIKE)
6.75	25	43.25	mV		-25mV	150%
57.25	75	92.75	mV		-25IIIV	200%
208.75	225	241.25	mV		0 \	150%
259.25	275	290.75	mV	300kHz	0mV	200%
410.75	425	439.25	mV	300KHZ	25\/	150%
461.25	475	488.75	mV		25mV	200%
612.75	625	637.25	mV		F0m\/	150%
663.25	675	686.75	mV		50mV	200%
814.75	825	835.25	mV		–25mV	150%
865.25	875	884.75	mV		-25IIIV	200%
1016.75	1025	1033.25	mV		0001/	150%
1067.25	1075	1082.75	mV	400kHz	0mV	200%
1218.75	1225	1231.25	mV	400KHZ	25\/	150%
1269.25	1275	1280.75	mV		25mV	200%
1420.75	1425	1429.25	mV		F0m\/	150%
1471.25	1475	1478.75	mV		50mV	200%
PHOCP_TH =	OCP_SPIKE x	(PHOCP Setting	Ratio) / M (M	l : Phase Numb	er)	

Absolute Maximum Ratings (Note 1)	
VCC to GND	-0.3V to 6.5V
• PVCC to GND	-0.3V to 6.5V
• RGND to GND	-0.3V to 0.3V
BOOT to PHASE	
DC	-0.3V to 6.8V
< 100ns	-5V to 7.5V
PHASE to GND	
DC	-0.3V to 32V
< 100ns	-10V to 38V
UGATE to PHASE	
DC	-0.3V to 6.8V
< 100ns	−5V to 7.5V
LGATE to GND	
DC	-0.3V to 6.5V
< 100ns	-2.5V to 7.5V
• VIN to GND	0.3V to 28V
• Other Pins	-0.3V to 6.8V
• Power Dissipation, PD @ TA = 25°C	
WQFN-32L 4x4	3.59W
Package Thermal Resistance (Note 2)	
WQFN–32L 4x4, θ JA	27.8°C/W
WQFN-32L 4x4, θJC	7°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
Pagemented Operating Conditions (ALL)	
Recommended Operating Conditions (Note 4) • Supply Voltage, VCC	1 5\/ to 5 5\/
Supply Voltage, VCC Supply Voltage, PVCC	
Supply Voltage, PVCC Supply Voltage, VIN	
Junction Temperature Range	-40°C to 125°C

Electrical Characteristics

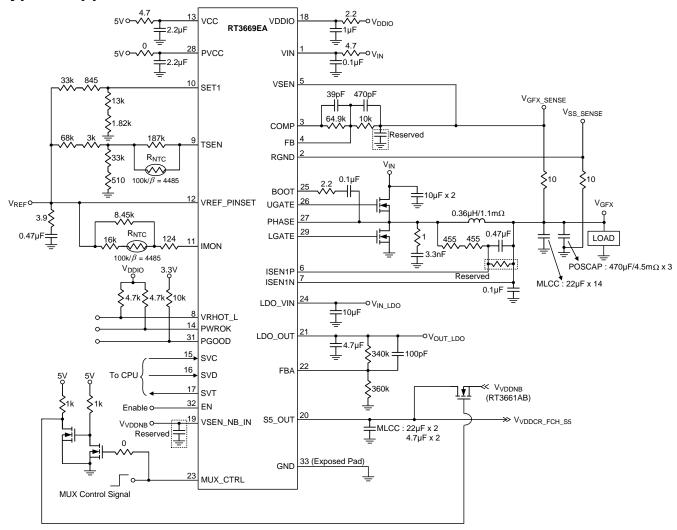
($V_{CC} = 5V$, $T_A = 25$ °C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Power Supply						
Supply Voltage	VCC		4.5	5	5.5	V
Supply Current	Ivcc	EN = 3V, not switching		9	15	mA
Shutdown Current	ISHDN	EN = 0V			100	μΑ
PVCC Supply Voltage	VPVCC		4.5	5	5.5	V
PVCC Supply Current	IPVCC	VBOOTX = 5V, not switching		120		μΑ
Driver Power On Reset (Dri	ver POR)					
Driver POR Threshold	VPOR_r	PVCC POR rising		3.85	4.1	V
Driver FOR Threshold	VPOR_f	PVCC POR falling	3.4	3.65		V
Driver POR Hysteresis	VPOR_Hys		100	200	350	mV
Reference and DAC						
Reference Voltage Output	VREF		0.795	0.8	0.805	V
		V _{DAC} = 1.0000 to 1.5500 (no load, CCM mode)	-0.5	0	0.5	% SVID
DC Accuracy	VFB	$V_{DAC} = 0.8000 \text{ to } 1.0000$	-5	0	5	mV
		VDAC = 0.3000 to 0.8000	-8	0	8	mV
		VDAC = 0.2500 to 0.3000	-80	0	80	mV
Reference and DAC						
RGND Current	IRGND	EN = 3V, not switching			200	μΑ
Slew Rate						
Dynamic VID slew rate	SR	SetVID fast	7.5	10	15	mV/μs
Error Amplifier						
Input Offset	VEAOFS		-4		4	mV
DC Gain	ADC	$R_L = 47k\Omega$	70	80		dB
Gain-Bandwidth Product	GBW	CLOAD = 5pF		5	-	MHz
Output Voltage Range	Vсомр	RLOAD = $47k\Omega$	0.3		3.6	V
EA Source/Sink Current	IEA,SRC / IEA,SNK			5		mA
Current Sense Amplifier						
Input Offset Voltage	Voscs		-0.4		0.4	mV
Impedance at Neg. Input	RISENXN		1			ΜΩ
Impedance at Pos. Input	RISENXP		1			ΜΩ
Input Range	VISEN_IN	VDAC = 1.1V, (ISENxP - ISENxN)	-40		40	mV
Current Sense Gain Error	AISEN_Err	VDAC = 1.1V	-2		2	%

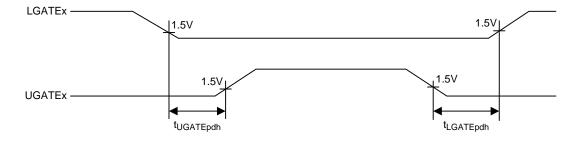
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
EN and Logic Inputs	<u> </u>		-		1	
ENTERROLL	VIH_EN		2			1.7
EN Threshold	VIL_EN				0.8	V
Leakage Current of EN	ILEK_EN		-1		1	μА
OVO OVD DWDOV	VIH_SVI	Respect to VDDIO	70		100	0/
SVC, SVD, PWROK	VIH_SVI	Respect to VDDIO	0		35	%
Hysteresis of SVC, SVD, PWROK	VHYS_SVI	Respect to VDDIO	10			%
SVI2 Bus						
SVC Frequency	fsvc	(Note 5)	0.1		30	MHz
Thermal Management						
VRHOT Indicator Threshold	VTH_VRHOT		2.16	2.2	2.24	V
VRHOT Indicator Hysteresis	VHYS_VRHOT		50	75	100	mV
TON Setting	<u> </u>		1		1	
On-Time Setting	ton	V _{IN} = 19V,V _{DAC} = 1V, [PSI0_L:PSI1_L]=00 (Note 6)	150	175	200	ns
Minimum Off Time	toff	VDAC = 1V		250	400	ns
ITSEN						
TSEN Source Current	ITSEN	Vcc = 5V		80		μА
Protection						
Under Voltage Lockout Threshold	Vuvlo	VCC falling edge	3.9	4.1	4.3	V
Under Voltage Lockout Hysteresis	ΔVυνιο			200		mV
Over Voltage Protection Threshold	Vove		1.8	1.85	1.9	V
Delay of OVP	tovp	VSEN rising above threshold	0.3	1	3	μS
Under Voltage Protection Threshold	VUVP	Respect to VID voltage	-600	-500	-400	mV
Delay of UVP	tuvp	VSEN falling below threshold	0.5	3	7	μS
OCP_SPIKE Threshold	IOCP_SPIKE	DCR = 1.1 m Ω , RIMON = 7.95 k Ω	46.55	49	51.45	А
OCP_SPIKE Trigger Delay	tocpspike _DLY		8	14	20	μS
Delay of Per Phase OCP	tPHOCP		0.1	0.5	1	μS
VRHOT_L and PGOOD						
Output Low Voltage at VRHOT_L	VVRHOT_L	IVRHOT_L = 4mA	0		0.2	V
VRHOT_L Assertion Time	tvrhotl		2			μS

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

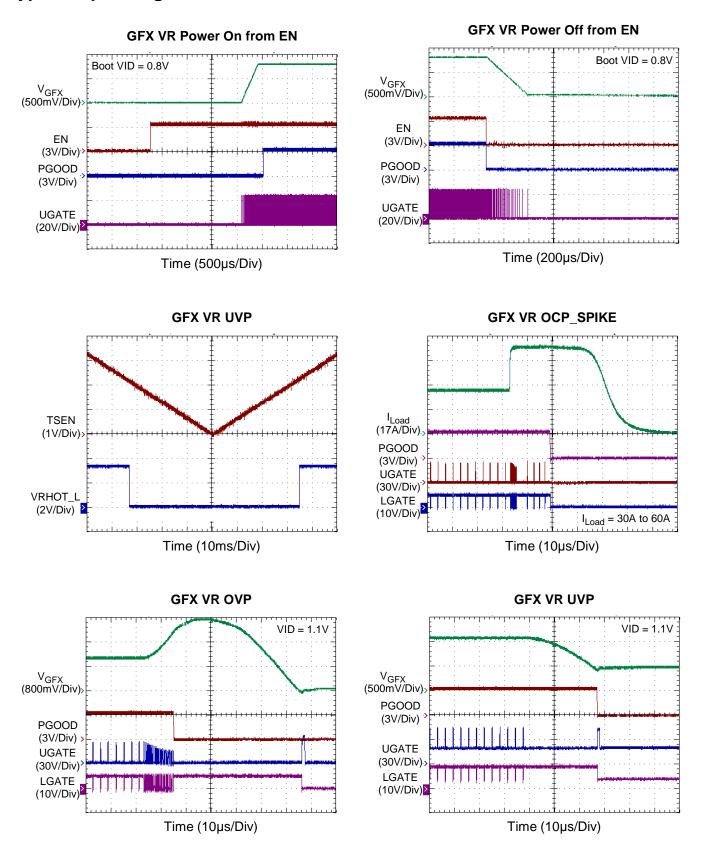
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Low Voltage at PGOOD	VPGOOD	IPGOOD = 4mA	0		0.2	V
PGOOD Threshold	VTH_PGOOD	Respect to BOOT VID		-300		mV
PGOOD Delay Time	tPGOOD	BOOT VID to PGOOD high	60	110	160	μS
Current Report	•	,	1	•		•
Maximum Reported Current (FFh = OCP_SPIKE)				100		%IDD_ SPIKE _OCP
Minimum Reported Current (00h)				0		%IDD_ SPIKE _OCP
IDDSPIKE Current Accuracy					3	%
Voltage Report						
Maximum Reported Voltage (0_00h)				3.15		V
Minimum Reported Voltage (1_F8h)				0		V
Voltage Accuracy			-2		2	LSB
Switching Time	•					
UGATE Rise Time	tUGATEr	3nF load		8		ns
UGATE Fall Time	tUGATEf	3nF load		8		ns
LGATE Rise Time	tLGATEr	3nF load		8		ns
LGATE Fall Time	tLGATEf	3nF load		4		ns
UGATE Turn-On Propagation Delay	tUGATEpdh	Output unloaded		20		ns
LGATE Turn-On Propagation Delay	tLGATEpdh	Output unloaded		20		ns
Output						
UGATE Driver Source Resistance	RUGATEsr	100mA source current		1		Ω
UGATE Driver Source Current	lugatesr	Vugate – Vphase = 2.5V		2		А
UGATE Driver Sink Resistance	RUGATEsk	100mA sink current		1		Ω
UGATE Driver Sink Current	lugatesk	VUGATE - VPHASE = 2.5V		2		А
LGATE Driver Source Resistance	RLGATEsr	100mA source current		1		Ω
LGATE Driver Source Current	ILGATEsr	VLGATE = 2.5V		2		А
LGATE Driver Sink Resistance	RLGATEsk	100mA sink current		0.5		Ω
LGATE Driver Sink Current	ILGATEsk	VLGATE = 2.5V		4		Α
LDO	T		,	1		1
Input Voltage	VIN_LDO		0.95		5	V



Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage	Vout_ldo		-1.5		1.5	%
Reference Voltage	VREF_LDO		0.394	0.4	0.406	V
Dropout Voltage	V _{Drop_LDO}	VIN_LDO = 0.95V, IOUT_LDO = 200mA	30	50	70	mV
Current Limit	loc		0.6	1.3	1.5	Α
Power MUX						
Switch On Resistance	RDS(ON)		40	70	100	mΩ
Current Limit	loc_mux		1.1	2.1	3.1	Α
MUX_CTRL VIH	VIH_MUX				3	V
MUX_CTRL VIL	VIL_MUX		1			V

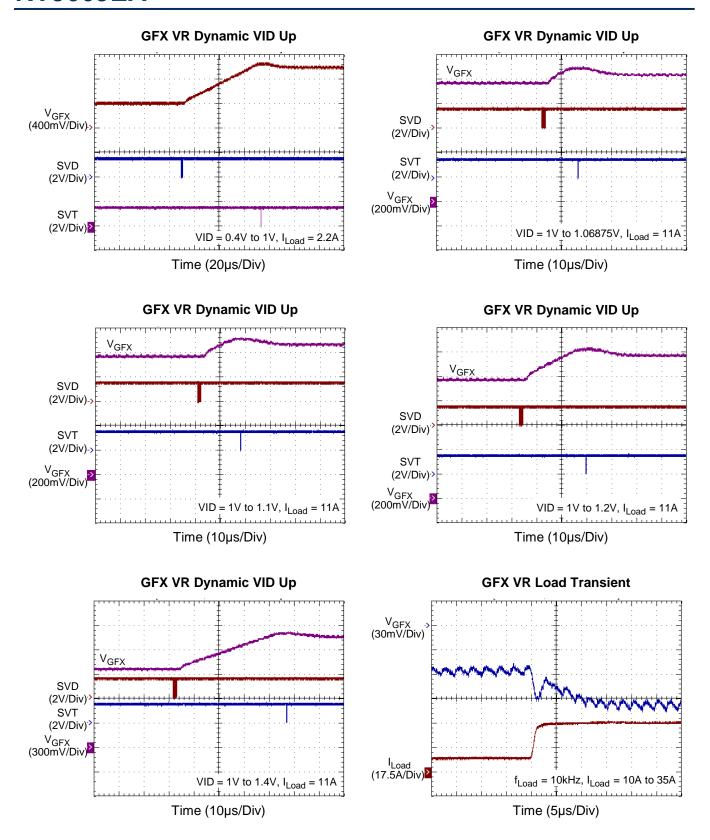

- Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}$ C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- **Note 4.** The device is not guaranteed to function outside its operating conditions.
- Note 5. Min. SVC frequency defined in electrical spec. is related with different application. As min. SVC < 1MHz, VR can't support telemetry reporting function. As min. SVC < 400kHz, VR can't support telemetry reporting function and VOTF complete function.
- **Note 6.** $TON_{[PSI0_L:PSI1_L=00,01,10]} = 0.8 * TON_{[PSI0_L:PSI1_L=11]}$

Typical Application Circuit

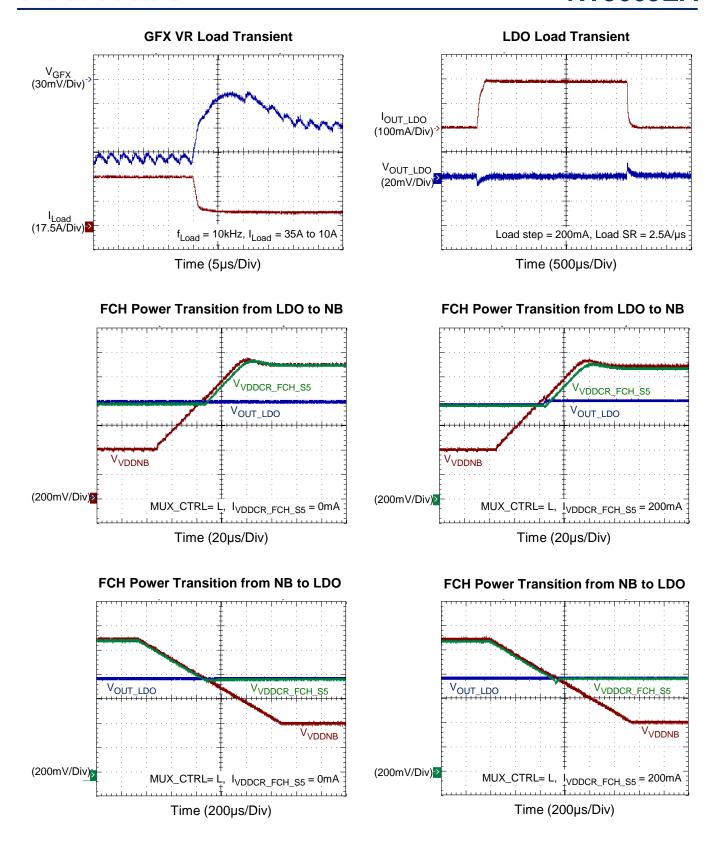


Timing Diagram

Typical Operating Characteristics



Copyright © 2019 Richtek Technology Corporation. All rights reserved.


RICHTEK

is a registered trademark of Richtek Technology Corporation.

DS3669EA-06 August 2019 www.richtek.com

Application Information

Power Ready (POR) Detection

During start-up, the RT3669EA will detect the voltage at the voltage input pins: VCC, PVCC and EN. When VCC > 4.3V and PVCC > 3.85V, the IC will recognize the power state of system to be ready (POR = high) and wait for enable command at the EN pin. After POR = high and VEN > 2V, the IC will enter start-up sequence for GFX. If the voltage of VCC and EN pin drop below low threshold, the IC will enter power down sequence and all the functions will be disabled. Normally, connecting system power to the EN pin is recommended. The SVID will be ready in 2ms (max) after the chip has been enabled. All the protection latches (OVP, OCP, UVP) will be cleared only after POR = low. The condition of VEN = low will not clear these latches.

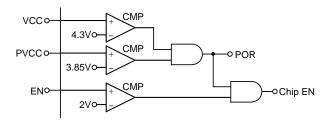


Figure 1. Power Ready (POR) Detection

Boot VID

When EN goes high, GFX output begin to soft-start to the Boot VID in CCM. Table 5 shows the Boot VID setting. The Boot VID is determined by the SVC and SVD input states at EN rising edge and it is in the internal register. The digital soft-start circuit ramps up the reference voltage at a controlled slew rate to reduce inrush current during start-up. When all the output voltages are above power good threshold (300mV below Boot VID) at the end of soft-start, the controller asserts power good (PGOOD) after a time delay.

Table 5. 2-Bit Boot VID Code

Initial Startup VID (Boot VID)					
SVC	SVD	GFX Output Voltage (V)			
0	0	1.1			
0	1	1.0			
1	0	0.9			
1	1	0.8			

Start-Up Sequence

After EN goes high, the RT3669EA starts up and operates according to the initial settings. Figure 2 shows the simplified sequence timing diagram. The detailed operation is described in the following.

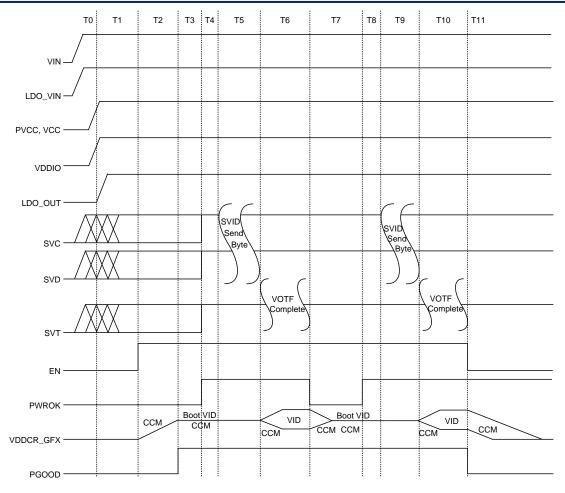


Figure 2. Simplified Sequence Timing Diagram

Description of Figure 2:

T0: When the VIN and LDOVIN power are ready, the RT3669EA will wait for VCC and PVCC POR.

T1: After VCC power is ready, the LDO_OUT power on and the voltage controlled by FBA pin voltage divider. The GFX BOOT VID can be set by SVC pin and SVD pin, and then latched at EN rising edge. SVT is driven high by the RT3669EA.

T2 : The enable signal goes high and the GFX output voltage ramp up to the Boot VID in CCM. The soft-start slew rate is $2.5\text{mV}/\mu\text{s}$.

T3: The GFX output voltage is within the regulation limits and the PGOOD signal goes high.

T4: The PWROK pin goes high and the SVI2 interface starts running. The RT3669EA waits for SVID command from processor.

T5 : A valid SVID command transaction occurs between the processor and the RT3669EA.

T6: The RT3669EA starts VOTF (VID on-the-Fly)

transition according to the received SVID command and send a VOTF Complete if the VID is greater than BOOT VID and output voltage reaches target VID.

T7: The PWROK pin goes low and the SVI2 interface stops running. All output voltages go back to the Boot VID in CCM.

T8: The PWROK pin goes high again and the SVI2 interface starts running. The RT3669EA waits for SVID command from processor.

T9: A valid SVID command transaction occurs between the processor and the RT3669EA.

T10: The action is same with T6. The RT3669EA starts VID on-the-Fly transition and send a VOTF Complete if the VID up and reaches target VID.

T11 : The enable signal goes low and GFX output voltage enter soft-shutdown mode. The soft-shutdown slew rate is $2.5 \text{mV/}\mu\text{s}$. The LDO_OUT voltage keeps power on unless the VCC power down.

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

Power-Down Sequence

If the voltage at the EN pin falls below the enable falling threshold, the controller is disabled. The voltage at the PGOOD pin will immediately go low when EN pin signal goes low, and the GFX controller executes softshutdown operation. The internal digital circuit ramps down the reference voltage at the same slew rate as that of in soft-start, making GFX output voltage gradually decrease in CCM. The Boot VID information stored in the internal register is cleared at POR. This event forces the RT3669EA to check the SVC and SVD inputs for a new Boot VID when the EN voltage goes high again.

PGOOD

The PGOOD is open-drain logic output. It provides the power good signal when GFX output voltage is within the regulation limits and no protection is triggered. The pin is typically tied to 3.3V or 5V power source through a pull-high resistor. During shutdown state (EN = low) and the soft-start period, the PGOOD voltage is pulled low. After a successful soft-start and GFX output voltage is within the regulation limits, the PGOOD is released high.

The voltage at the PGOOD pin will be pulled low when any of the following events occurs: over-voltage protection, under-voltage protection, over-current protection, and logic low EN voltage.

SVI2 Wire Protocol

The RT3669EA complies with AMD's Voltage Regulator Specification, which defines the Serial VID Interface 2.0 (SVI2) protocol. With SVI2 protocol, the processor directly controls the reference voltage level of each individual controller channel and determines which controller operates in power saving mode. The SVI2 interface is a three-wire bus that connects a single master to one or above slaves. The master initiates and terminates SVI2 transactions and drives the clock, SVC. and the data, SVD, during a transaction. The slave drives the telemetry, SVT during a transaction. The AMD processor is always the master. The voltage regulator controller (RT3669EA) is always the slave. The RT3669EA receives the SVID code and acts accordingly. The SVI protocol supports 20MHz high speed mode I²C, which is based on SVD data packet. Table 6 shows the SVD data packet. A SVD packet consists of a "Start" signal, three data bytes after each byte, and a "Stop" signal. The 8-bit serial VID codes are listed in Table1. After the RT3669EA has received the stop sequence, it decodes the received serial VID code and executes the command. The controller has the ability to sample and report voltage and current for the GFX domains. The controller reports this telemetry serially over the SVT wire which is clocked by the processor driven SVC. A bit TFN at SVD packet along with the GFX domain selector bits are used by the processor to change the telemetry functionality. The telemetry bit definition is listed in Figure 3. The detailed SVI2 specification is outlined in the AMD Voltage Regulator and Voltage Regulator Module (VRM) and Serial VID Interface 2.0 (SVI2) Specification.

Table 6. SVD Data Packet

Bit Time	Description		
1:5	Always 11000b		
6	GFX domain selector bit, if set then the following two data bytes contain the VID for GFX, the PSI state for GFX, and the load-line slope trim and offset trim state for GFX.		
8	Always 0b		
10	PSI0_L		
11 : 17	VID Code bits [7:1]		
19	VID Code bit [0]		
20	PSI1_L		
21	TFN (Telemetry Functionality)		

Bit Time	Description		
22 : 24	Load Line Slope Trim [2:0]		
25 : 26	Offset Trim [1:0]		

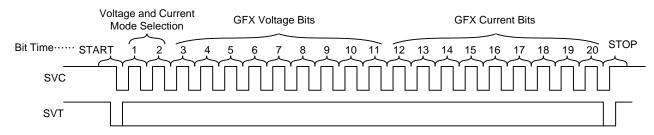


Figure 3. Telemetry Bit Definition

PWROK and SVI2 Operation

The PWROK pin is an input pin, which is connected to the global power good signal from the platform. Logic high at this pin enables the SVI2 interface, allowing data transaction between processor and the RT3669EA. Once the RT3669EA receives a valid SVID code, it decodes the information from processor to determine the output target VID. The internal DAC then steps up/down the reference voltage in a controlled slew rate, making the output voltage shift to the required new VID. If the PWROK input goes low during normal operation, the SVI2 protocol stops running. The RT3669EA immediately drives SVT high and modifies all output voltages back to the Boot VID, which is stored in the internal register right after the controller is enabled. The controller does not read SVD and SVC inputs after the loss of PWROK. If the PWROK input goes high again, the SVI2 protocol resumes running. The RT3669EA then waits to decode the SVID command from processor for a new VID and acts as previously described. The SVI2 protocol is only runs when the PWROK input goes high after the voltage at the EN pin goes high.

VID on-the-Fly Transition

After the RT3669EA has received a valid SVID code, it executes the VID on-the-Fly transition by stepping up/down the reference voltage of the required controller channel in a controlled slew rate, hence allowing the output voltage to ramp up/down to target VID.

During the VID on-the-Fly transition, the RT3669EA will force CCM operation in high performance mode. If the controller channel operates in the power-saving mode prior to the VID on-the-Fly transition, it will change to high performance mode and implement CCM operation when the controller implement VID up, and then remain in high performance mode; if the controller implement VID down in power-saving mode, it will decay down and keep in power-saving mode. The voltage at the PGOOD pin will keep high during the VID on-the-Fly transition. The RT3669EA send a VOTF complete only at the end of VID up transition. In the event of receiving a VID off code, the RT3669EA steps the reference voltage of required controller channel down to zero, hence making the required output voltage decrease to zero, and the voltage at the PGOOD pin will remain high since the VID code is valid.

Power State Transition

The RT3669EA supports power state transition function in GFX VR for the PSI[x]_L command from AMD processor. The PSI[x]_L bit in the SVI2 protocol controls the operating mode of the RT3669EA controller channel. The default operation mode of GFX VR is 1-phase CCM. When the GFX VR receives PSI0_L = 0 and PSI1_L = 0 or 1, the GFX VR will entry 1-phase diode emulation mode. When the GFX VR receives PSI0_L = 1 and PSI1_L = 0, the GFX VR remains 1-phase diode emulation mode. In reverse, the GFX VR goes back to 1-phase CCM upon receiving PSI0_L = 1 and PSI1_L = 1, see Table 7.

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Table 7. GFX VR Power State

Full Phase Number	PSI0_L : PSI1_L	Mode
	11	1 phase CCM
1	10	
'	01	1 phase DEM
	00	

Differential Remote Sense Setting

The GFX controller has differential remote-sense inputs to eliminate the effects of voltage drops along the PC board traces, processor internal power routes and socket contacts. The processor contains on-die sense pins, including of VGFX_SENSE, and VSS_SENSE. For GFX controller, connect FB to VGFX_SENSE with a resistor to build the negative input path of the error amplifier, and connect VSS_SENSE to RGND as shown in Figure 4. The precision reference voltages refer to RGND for accurate remote sensing.

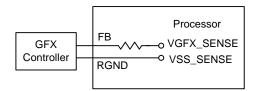


Figure 4. Differential Remote Sense Connection

SET1 Pin Setting

The RT3669EA provides the SET1 pin for platform users to set the GFX controller current gain ratio (AI_GFX), QR threshold (QR_TH). Platform designers should use resistive voltage divider on the pin, refer to Figure 5. The voltage (VREF) at VREF_PINSET pin will be pulled up to 3.2V for SET1 pin setting after power ready (POR), and then the voltage will change and fix to 0.8V with a delay time for normal operation.

The divided voltage at the SET1 pin as below:

$$V_{SET1_DIV} = 3.2 \times \frac{R_D}{R_U + R_D}$$
 (1)

The ADC monitors and decodes the voltage at this pin only once after power up. After ADC decoding (only once), a 80μ A current (when VCC = 5V) will be generated at the SET1 pin for pin setting. That is the voltage at SET1 pin described as below :

$$V_{SET1_IR} = 80\mu \times \frac{R_U \times R_D}{R_U + R_D}$$
 (2)

From equation (1) and (2) and Table 2 and 3, platform users can set the above described pin setting functions.

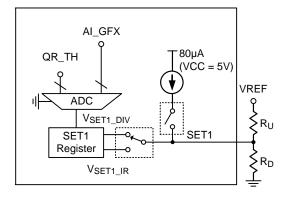


Figure 5. SET1 Pin Setting

TSEN Pin Setting

The RT3669EA provides the TSEN pin for platform users to set the pin setting functions, including the GFX controller switching frequency (Fsw), Initial offset and per-phase over current protection (PHOCP). Platform designers should use resistive voltage divider on the pin, refer to Figure 6. The voltage (VREF) at VREF_PINSET pin will be pulled up to 3.2V for TSEN pin setting after power ready (POR), and then the voltage will change and fix to 0.8V with a delay time for normal operation.

The divided voltage at the TSEN pin described as below:

$$V_{TSEN_{-}DIV} = 3.2 \times \frac{R_{p2}}{R_{p1} + R_{p2}}$$
 (3)

The ADC monitors and decodes the voltage at this pin only once after power up. After ADC decoding (only once), a $80\mu A$ current (when VCC = 5V) will be generated at the TSEN pin for thermal indicator and protection functions.

From equation (3) and Table 4, platform users can set the above described pin setting functions.

Thermal Indicator

Refer to Figure 6, the RT3669EA provides the thermal indicator function. The VRHOT_L pin is an open-drain output which is used for VR thermal indicator. When the sensed voltage at TSEN pin is less than 2.2V, the VRHOT_L signal will be pulled low to notify CPU that the temperature is over the VRHOT temperature threshold.

After TSEN pin setting, a $80\mu A$ current (when VCC = 5V) will be generated at the TSEN pin for thermal indicator function. And the voltage at TSEN pin as below :

$$V_{TSEN} = 80 \mu A \cdot \left[\left(\frac{R_1 \cdot R_{NTC}}{R_1 + R_{NTC}} \right) + \left(\frac{R_{p1} \cdot R_{p2}}{R_{p1} + R_{p2}} \right) \right] + VREF \cdot \left(\frac{R_{p2}}{R_{p1} + R_{p2}} \right)$$
 (4)

Due to the VREF reference voltage cause the thermal compensation become complex. In this way, the sensed voltage related VREF will be eliminated in ADC block. The actual sensed voltage at TSEN pin described as below:

$$V_{TSEN_ADC} = 80 \mu A \cdot \left[\left(\frac{R_1 \cdot R_{NTC}}{R_1 + R_{NTC}} \right) + \left(\frac{R_{p1} \cdot R_{p2}}{R_{p1} + R_{p2}} \right) \right]$$
 (5)

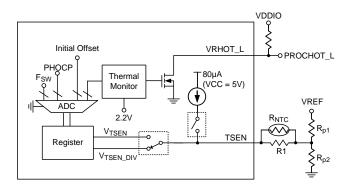


Figure 6. TSEN Circuit

GFX Controller

Loop Control

The GFX controller adopts Richtek's proprietary G-NAVPTM topology. The G-NAVPTM is based on the finite gain peak current mode with CCRCOT (Constant Current Ripple Constant On-Time) topology. The output voltage, V_{GFX} will decrease with increasing output load current. The control loop consists of PWM modulators with power stages, current sense amplifiers and an error amplifier as shown in Figure 7.

Similar to the peak current mode control with finite

compensator gain, the HS_FET on-time is determined by CCRCOT on-time generator. When load current increases (Vcs increases), the steady state COMP voltage also increases and induces Vgfx_sense to decrease, thus achieving AVP. A near-DC offset canceling is added to the output of EA to eliminate the inherent output offset of finite gain peak current mode controller.

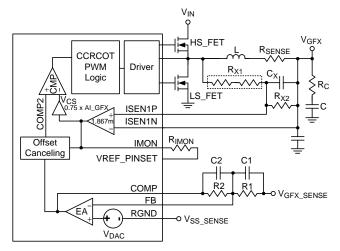


Figure 7.GFX Controller : Simplified Schematic with Voltage Loop and Current Loop

Current Sense Setting

Refer to Figure 7, for different RSENSE resistor, the current sense method can classify as two types. The method1 only use R_{X1} for lower RSENSE application, and the method2 use R_{X1} and R_{X2} to divide the current signal for higher RSENSE application. Richtek also provide Excel based design tool to let user choose the appropriate components quickly.

The current sense topology of the GFX controller is continuous inductor current sensing. Therefore, the controller has less noise sensitive. Low offset amplifiers are used for loop control and over current detection. The ISEN1P and ISEN1N pins denote the positive and negative input of the current sense amplifier.

In order to optimize transient performance, the recommended R_{eq} and C_X will be set according to the equation as below, and τ recommended set to 1.1.

$$R_{eq} \times C_X = \tau \times \frac{L}{R_{SENSE}}$$
 (6)

$$Method1: R_{eq} = R_{X1}$$
 (7)

RICHTEK is a registered trademark of Richtek Technology Corporation.

Method2:
$$R_{eq} = \frac{R_{X1} \times R_{X2}}{R_{X1} + R_{X2}}$$
 (8)

Considering the inductance tolerance, the resistor Reg has to be tuned on board by examining the transient voltage. If the output voltage transient has an initial dip below the minimum load-line requirement and the response time is too fast causing a ring back, the value of resistance should be increased. Vice versa, with a high resistance, the output voltage transient has only a small initial dip with a slow response time. Rx is highly recommended as two 0603 size resistors in series to enhance the lout reporting accuracy. Cx is suggested X7R type for the application.

Droop Setting

It is very easy to achieve Active Voltage Positioning (AVP) by properly setting the error amplifier gain due to the native droop characteristics as shown in Figure 8. This target is to have

$$V_{GFX} = V_{DAC} - I_{LOAD} \times R_{DROOP}$$
 (9)

Then solving the switching condition VCOMP2 = VCS in Figure 7 yields the desired error amplifier gain as

$$A_V = \frac{R2}{R1} = \frac{G_I}{R_{DROOP}} \tag{10}$$

$$G_{I} = R_{SENSE} \times 1.867 \text{m} \times R_{IMON} \times 0.75 \times AI_GFX \qquad (11)$$

Method2:

$$G_{I} = R_{SENSE} \times \frac{R_{X2}}{R_{X1} + R_{X2}} \times 1.867 m \times R_{IMON} \times 0.75 \times AI_GFX$$

(12)

Where G_I is the current sense amplifier gain. RSENSE is the current sense resistor. If no external sense resistor present, it is the equivalent resistance of the inductor. RIMON is the IMON equivalent resistance. For the PHOCP accuracy, the RIMON resistor need to set in $8k\Omega$ to $70k\Omega$. Al GFX is the GFX controller current gain ratio set by SET1 pin setting. RDROOP is the equivalent loadline resistance as well as the desired static output impedance.

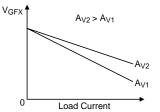


Figure 8. GFX Controller: Error Amplifier gain (Av) Influence on V_{GFX} Accuracy

Loop Compensation

Optimized compensation of the GFX controller allows for best possible load step response of the regulator's output. A type-I compensator with one pole and one zero is adequate for proper compensation. Figure 9 shows the compensation circuit. Previous design procedure shows how to select the resistive feedback components for the error amplifier gain. Next, C1 and C2 must be calculated for compensation. The target is to achieve constant resistive output impedance over the widest possible frequency range.

The pole frequency of the compensator must be set to compensate the output capacitor ESR zero:

$$f_{P} = \frac{1}{2\pi \times C \times R_{C}} \tag{13}$$

Where C is the capacitance of output capacitor, and Rc is the ESR of output capacitor. C2 can be calculated as follows:

$$C2 = \frac{C \times R_C}{R2} \tag{14}$$

The zero of compensator has to be placed at half of the switching frequency to filter the switching related noise. Such that,

Figure 9. GFX Controller: Compensation Circuit

Initial and Dynamic Offset

The GFX controller features initial and dynamic offset function. The GFX rail initial offset function can be implemented through the TSEN pin setting. And the dynamic offset can be implemented by SVI2 interface, it controlled by CPU. Consider the offset factor, the GFX

output voltage described as below:

$$V_{GFX} = V_{DAC} - I_{LOAD} \times R_{DROOP} + V_{INI,OFS} + V_{DYN,OFS}$$
 (16)

VINI_OFS is the initial offset voltage set by pin setting function, and the dynamic offset voltage, VDYN_OFS, controlled by CPU, and it can be set through the SVI2 interface.

Dynamic VID Enhancement

During a dynamic VID event, the charging (dynamic VID up) or discharging (dynamic VID down) current causes unwanted load-line effect which degrades the settling time performance. The RT3669EA will hold the inductor current to hold the load-line during a dynamic VID event. The GFX controller will always enter CCM operation when it receives dynamic VID up command; If GFX controller receives dynamic VID down command, it will hold the operating state.

When the VID CCM down on light loading condition, the negative inductor current will be produced, and it may cause the audio noise and phase ring effect. For improving the problems, the controller set the dynamic VID down slew rate to $0.625 \text{mV/}\mu\text{s}$, the action will reduce the negative current and phase ring effect.

Ramp Compensation

G-NAVPTM topology is one type of ripple based control that has fast transient response. However, ripple based control usually don't have good noise immunity. The RT3669EA provides a ramp compensation to increase noise immunity and reduce jitter at the switching node, refer to Figure 10 shows the ramp compensation. When the GFX controller takes phase shedding operation and enters diode emulation mode, the internal ramp of GFX controller will be modified for the reason of stability.

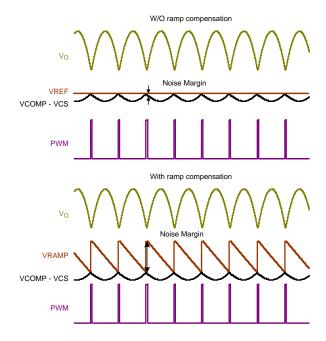


Figure 10. Ramp Compensation

Current Monitoring and Reporting

The GFX controller provides current monitoring function via inductor current sensing. In the G-NAVPTM technology, the output voltage is dependent on output current, and the current monitoring function is achieved by this characteristic of output voltage. The equivalent output current will be sensed from inductor current sensing and mirrored to the IMON pin. The resistor connected to the IMON pin determines voltage of the IMON output.

For Method1 current sensing:

$$V_{\text{IMON}} = I_{\text{L.SUM}} \times DCR_{\text{L}} \times 1.867 \text{m} \times R_{\text{IMON}} + 0.8 \tag{17}$$

Where I_L,sum is the GFX output current, DCR_L is the current sense resistance, R_{IMON} is the IMON pin equivalent setting resistor, and the current sense gain equal to 1.867m.

The ADC circuit of the GFX controller monitors the voltage variation at the IMON pin, and this voltage is decoded into digital format and stored into output current register.

DIMON =
$$\frac{V_{\text{IMON}} - 0.8}{0.8} \times 255$$
 (Bits) (18)

Quick Response

When the transient load step-up becomes quite large, it is difficult for loop response to meet the energy transfer.

RICHTEK

Hence, the output voltage generate undershoot to fail specification. RT3669EA has Quick Response (QR) mechanism which is able to improve this issue. It adopts a nonlinear control mechanism which can disable interleaving function and simultaneously turn on all UGATE one pulse at instantaneous step-up transient load to restrain the output voltage drooping. The output voltage signal behavior needs to be detected so that QR mechanism can be trigged. Refer to Figure 11, the output voltage signal is via a remote sense line to connect at the VSEN pin. The QR threshold can be set by SET1 pin setting for GFX controller refers to Table 3.

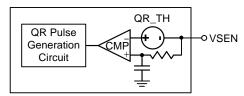


Figure 11. GFX Controller : Quick Response Triggering
Circuit

Over-Current Protection

The RT3669EA provides the over current protection function. The OCP_SPIKE threshold will be set by the current monitor resistor R_{IMON} as below:

For Method1 current sensing:

$$OCP_SPIKE = \frac{1.6 - 0.8}{DCR_L \times 1.867m \times R_{IMON}}$$
(19)

For prevent the OCP false trigger, the trigger delay is requirement, refer to Electrical Characteristics. When output current is still higher than the OCP_SPIKE after the trigger delay time, the OCP will be latched, and then the GFX controller will turn off both high-side and low-side MOSFETs of all channels.

Per-Phase Over Current Protection

The GFX controller provides per-phase over current protection (PHOCP) function, it only detected at soft-start duration when VR power on. The PHOCP threshold is set by TSEN pin setting described as below:

$$PHOCP_TH = OCP_SPIKE_NB \times N$$
 (20)

N is the GFX PHOCP setting ratio.

If the PHOCP is triggered, the controller will turn off all high-side and low-side MOSFETs to protect CPU.

Over-Voltage Protection (OVP)

The OVP circuit of the GFX controller monitors the output voltage via the VSEN pin after POR. When the VSEN voltage exceeds the OVP threshold 1.85V, OVP is triggered and latched. The GFX controller will try to turn on low-side MOSFET and turn off high-side MOSFET of all active phases to protect the CPU. A $1\mu s$ delay is used in OVP detection circuit to prevent false trigger.

Under-Voltage Protection (UVP)

The GFX controller implements UVP of VSEN pin. If VSEN voltage is less than the internal reference by 500mV, the GFX controller will trigger UVP latch. The UVP latch will turn off both high-side and low-side MOSFETs. A 3µs delay is used in UVP detection circuit to prevent false trigger.

Under-Voltage Lock Out (UVLO)

During normal operation, if the voltage at the VCC pin drops below IC POR threshold, the GFX controller will trigger UVLO. The UVLO protection forces all high-side and low-side MOSFETs off by shutting down internal PWM logic drivers. A $3\mu s$ delay is used in UVLO detection circuit to prevent false trigger.

VDDCR_FCH_S5 Power and Power MUX

The RT3669EA provides FP4 VDDCR_FCH_S5 power. Refer to Figure 12, the VDDCR_FCH_S5 voltage is determined by power MUX, it can be supplied by VDDNB power (VVDDNB) or LDO power (VOUT_LDO). Figure 13 shows the VDDCR_FCH_S5 power simplified sequence timing diagram related with power MUX and described as below:

T0 : MUX control signal is high, then VvDDCR_FCH_S5 voltage supplied by VvDDNB.

T1: MUX control signal is low and VVDDNB > (VOUT_LDO – 10mV), then VVDDCR_FCH_S5 voltage supplied by VVDDNB.

T2: VVDDCR_FCH_S5 voltage supplied by VOUT_LDO when VVDDNB < (VOUT_LDO -10mV).

T3: Because of VVDDNB > (VOUT_LDO + 40mV), the VVDDCR_FCH_S5 voltage supplied by VVDDNB.

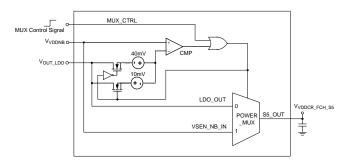


Figure 12. VDDCR_FCH_S5 Circuit

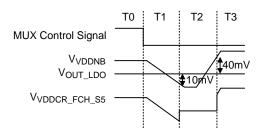


Figure 13. VDDCR_FCH_S5 Simplified Timing Diagram

LDO Regulator

The LDO will operate when VCC power turns on. Figure 14 shows the LDO circuit, the output voltage can be set by adjusting the resistor connected to FBA pin. And the output voltage described as below:

$$V_{OUT_LDO} = 0.4 \times \left(\frac{R_1 + R_2}{R_2}\right) \tag{21}$$

Be carefully, the external capacitors of the RT3669EA are selected for regulator stability and performance. When Vout_LDO set to 0.775V, the recommended resistors and capacitors as below : $CIN = 10\mu F$, COUT = 4.7μ F, R1 = 340kΩ, R2 = 360kΩ, and Cf = 100pF.

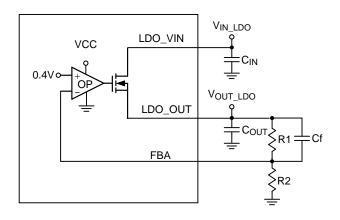


Figure 14. LDO Circuit

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_J(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$$PD(MAX) = (TJ(MAX) - TA) / \theta JA$$

where T_J(MAX) is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-toambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-32L 4x4 package, the thermal resistance, θJA, is 27.8°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (27.8^{\circ}C/W) = 3.59W$ for a WQFN-32L 4x4 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed TJ(MAX) and the thermal resistance, θ JA. The derating curves in Figure 15 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

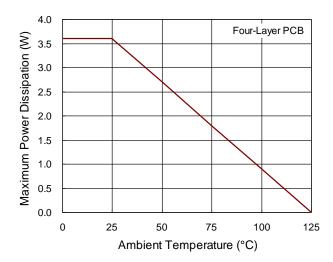
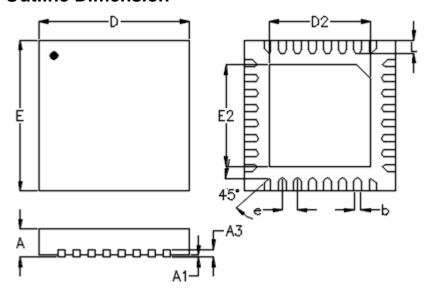
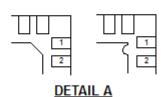




Figure 15. Derating Curve of Maximum Power Dissipation

Outline Dimension

Pin #1 ID and Tie Bar Mark Options

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
А3	0.175	0.250	0.007	0.010
b	0.150	0.250	0.006	0.010
D	3.900	4.100	0.154	0.161
D2	2.650	2.750	0.104	0.108
Е	3.900	4.100	0.154	0.161
E2	2.650	2.750	0.104	0.108
е	0.400		0.016	
Ĺ	0.300	0.400	0.012	0.016

W-Type 32L QFN 4x4 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by Richtek manufacturer:

Other Similar products are found below:

LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G

NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG

NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3

SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G

NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG

NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+

MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G

NCP1217AP100G