1.25MHz, 600 mA , High Efficiency PWM Step-Down DC/DC Converter

General Description

The RT8009 is a high-efficiency pulse-width-modulated (PWM) step-down DC/DC converter. Capable of delivering 600 mA output current over a wide input voltage range from 2.5 to 5.5 V , the RT8009 is ideally suited for portable electronic devices that are powered from 1-cell Li-ion battery or from other power sources within the range such as cellular phones, PDAs and handy-terminals.

Internal synchronous rectifier with low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ dramatically reduces conduction loss at PWM mode. No external Schottky diode is required in practical application. The RT8009 automatically turns off the synchronous rectifier while the inductor current is low and enters discontinuous PWM mode. This can increase efficiency at light load condition.

The RT8009 enters Low-Dropout mode when normal PWM cannot provide regulated output voltage by continuously turning on the upper P-MOSFET. RT8009 enter shutdown mode and consumes less than $0.1 \mu \mathrm{~A}$ when EN pin is pulled low.

The switching ripple is easily smoothed-out by small package filtering elements due to a fixed operation frequency of 1.25 MHz . This along with small SOT-23-5 and TSOT-23-5 package provides small PCB area application. Other features include soft start, lower internal reference voltage with 2% accuracy, over temperature protection, and over current protection.

Pin Configurations

(TOP VIEW)

SOT-23-5/TSOT-23-5

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features

- 2.5V to 5.5V Input Range
- Adjustable Output From 0.5 V to V_{IN}
- 1.0V, 1.2V, 1.3V, 1.5V, 1.8V, 2.5V and 3.3V Fixed/ Adjustable Output Voltage
- 600mA Output Current
- 95\% Efficiency
- No Schottky Diode Required
- 1.25MHz Fixed Frequency PWM Operation
- Small SOT-23-5 and TSOT-23-5 Package
- RoHS Compliant and 100\% Lead (Pb)-Free

Applications

- Cellular Telephones
- Personal Information Appliances
- Wireless and DSL Modems
- MP3 Players
- Portable Instruments

Ordering Information

RT8009(- $\square \square$) $\square \square$

-Package Type
B : SOT-23-5
J5: TSOT-23-5
-Lead Plating System
P: Pb Free
G: Green (Halogen Free and Pb Free)
Output Voltage
Default : Adjustable
10: 1.0V
12 : 1.2V
13 : 1.3V
$15: 1.5 \mathrm{~V}$
$18: 1.8 \mathrm{~V}$
25 : 2.5V
33 : 3.3V

Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Typical Application Circuit

Figure 1. Fixed Voltage Regulator

VOUT $=\operatorname{VREFx}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
with $R 1+R 2 \leq 1 M \Omega$ and
VREF (Typ.) $=0.5 \mathrm{~V}$

Figure 2. Adjustable Voltage Regulator

Layout Guide

Figure 3
Layout note:

1. The distance that $\mathrm{C}_{\mathbb{N}}$ connects to $\mathrm{V}_{\mathbb{N}}$ is as close as possible (Under 2 mm).
2. Cout should be placed near RT8009.

Functional Pin Description

Pin Number	Pin Name	Pin Function
1	VIN	Power Input.
2	GND	Ground.
3	EN	Chip Enable (Active High, do not leave EN pin floating, and VEN < VIN + 0.6V).
4	FB/VOUT	Feedback Input Pin.
5	LX	Pin for Switching.

Function Block Diagram

Absolute Maximum Ratings (Note 1)

- Supply Input Voltage 6.5V
- Enable, FB Voltage $\mathrm{V}_{\mathrm{IN}}+0.6 \mathrm{~V}$
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SOT-23-5, TSOT-23-5 0.4 W
- Package Thermal Resistance (Note 2)
SOT-23-5, TSOT-23-5, JJA $250^{\circ} \mathrm{C} / \mathrm{W}$
SOT-23-5, TSOT-23-5, θ_{Jc} $130^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature Range $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Mode) 2kV
MM (Machine Mode) 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage 2.5 V to 5.5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0.5 \mathrm{~V}, \mathrm{~L}=4.7 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{MAX}}=600 \mathrm{~mA}\right.$ unless otherwise specified $)$

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
Input Voltage Range		VIN		2.5	--	5.5	V
Quiescent Current		I_{Q}	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }}+5 \%$	--	50	100	$\mu \mathrm{A}$
Shutdown Current		ISHDN	EN = GND	--	0.1	1	$\mu \mathrm{A}$
Reference Voltage		$V_{\text {REF }}$	For adjustable output voltage	0.49	0.5	0.51	V
Adjustable Output Range		Vout		VREF	--	VIN-0.2	V
Output Voltage Accuracy	Fix	$\Delta \mathrm{VOUT}^{\text {O }}$	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=2.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V} \\ & 0 \mathrm{~A}<\text { IOUT }<600 \mathrm{~mA} \end{aligned}$	-3	--	3	\%
		$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V} \\ & \mathrm{OA}<\mathrm{I}_{\mathrm{OUT}}<600 \mathrm{~mA} \end{aligned}$	-3	--	3	\%
		$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.3 \mathrm{~V} \\ & 0 \mathrm{~A}<\text { IOUT }<600 \mathrm{~mA} \end{aligned}$	-3	--	3	\%
		$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V} \\ & \mathrm{OA}<\mathrm{I}_{\mathrm{OUT}}<600 \mathrm{~mA} \\ & \hline \end{aligned}$	-3	--	3	\%
		$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \hline \mathrm{V}_{\text {IN }}=2.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V} \\ & \mathrm{OA}<\mathrm{l}_{\mathrm{OUT}}<600 \mathrm{~mA} \\ & \hline \end{aligned}$	-3	--	3	\%
		$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}+\Delta \mathrm{V} \text { to } 5.5 \mathrm{~V} \quad(\text { Note } 5) \\ & \mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, 0 \mathrm{~A}<\mathrm{I}_{\mathrm{OUT}}<600 \mathrm{~mA} \end{aligned}$	-3	--	3	\%
		$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}+\Delta \mathrm{V} \text { to } 5.5 \mathrm{~V} \quad(\text { Note } 5) \\ & \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, 0 \mathrm{~A}<\mathrm{I}_{\mathrm{OUT}}<600 \mathrm{~mA} \end{aligned}$	-3	--	3	\%
		$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {OUT }}+0.2 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & 0 \mathrm{~A}<\mathrm{I}_{\text {OUT }}<600 \mathrm{~mA} \end{aligned}$	-3	--	3	\%

Parameter		Symbol	Test Conditions		Min	Typ	Max	Unit	
Output Voltage Accuracy	Adjustable	$\Delta \mathrm{V}_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+\Delta \\ & \mathrm{OA} \text { < I OUT }<60 \end{aligned}$	5.5V (Note 5)	-3	--	3	\%	
FB Input Current		IfB	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {IN }}$		-50	--	50	nA	
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of P-Channel MOSFET		$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \mathrm{P}}$	IOUT $=200 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$	--	0.3	0.65	Ω	
		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		--	0.4	0.80			
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of N-Channel MOSFET			$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{N}$	IOUT $=200 \mathrm{~mA}$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	--	0.25	0.55	Ω
		$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$			--	0.35	0.65		
P-Channel Current Limit		ILIM_P	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V		1	--	1.8	A	
EN High-Level Input Voltage		$\mathrm{V}_{\text {EN_H }}$	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V		1.5	--	--	V	
EN Low-Level Input Voltage		$\mathrm{V}_{\text {EN_L }}$	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V		--	--	0.4	V	
Under Voltage Lockout Threshold					--	1.8	--	V	
Hysteresis					--	0.1	--	V	
Oscillator Frequency		fosc	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$		0.8	1.25	1.85	MHz	
Thermal Shutdown Temperature		TSD			--	160	--	${ }^{\circ} \mathrm{C}$	
Min. On Time					--	50	--	ns	
Max. Duty Cycle					100	--	--	\%	
LX Leakage Current			$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{LX}}$	or $\mathrm{V}_{\mathrm{LX}}=3.6 \mathrm{~V}$	-1	--	1	$\mu \mathrm{A}$	

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
Note 3. Devices are ESD sensitive. Handling precaution recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. $\Delta \mathrm{V}=$ lout $\times \mathrm{R}_{\mathrm{DS}(\mathrm{ON}) _\mathrm{P}}$

Typical Operating Characteristics

Load Transient Response

Output Ripple

Load Transient Response

Power On

Applications Information

The basic RT8009 application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value and operating frequency followed by C_{IN} and Cout.

Inductor Selection

For a given input and output voltage, the inductor value and operating frequency determine the ripple current. The ripple current ΔL_{L} increases with higher $V_{I N}$ and decreases with higher inductance.

$$
\Delta \mathrm{I}_{\mathrm{L}}=\left[\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{f} \times \mathrm{L}}\right]\left[1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right]
$$

Having a lower ripple current reduces the ESR losses in the output capacitors and the output voltage ripple. Highest efficiency operation is achieved at low frequency with small ripple current. This, however, requires a large inductor.

A reasonable starting point for selecting the ripple current is $\Delta I_{L}=0.4\left(I_{\text {MAX }}\right)$. The largest ripple current occurs at the highest V_{IN}. To guarantee that the ripple current stays below a specified maximum, the inductor value should be chosen according to the following equation :

$$
L=\left[\frac{V_{\text {OUT }}}{f \times \Delta \mathrm{IL}(\mathrm{MAX})}\right]\left[1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}(\mathrm{MAX})}}\right]
$$

Inductor Core Selection

Once the value for L is known, the type of inductor must be selected. High efficiency converters generally cannot afford the core loss found in low cost powdered iron cores, forcing the use of more expensive ferrite or mollypermalloy cores. Actual core loss is independent of core size for a fixed inductor value but it is very dependent on the inductance selected. As the inductance increases, core losses decrease. Unfortunately, increased inductance requires more turns of wire and therefore copper losses will increase.

Ferrite designs have very low core losses and are preferred at high switching frequencies, so design goals can concentrate on copper loss and preventing saturation. Ferrite core material saturates "hard", which means that inductance collapses abruptly when the peak design current is exceeded. This results in an abrupt increase in
inductor ripple current and consequent output voltage ripple. Do not allow the core to saturate!

Different core materials and shapes will change the size/ current and price/current relationship of an inductor.

Toroid or shielded pot cores in ferrite or permalloy materials are small and don't radiate energy but generally cost more than powdered iron core inductors with similar characteristics. The choice of which style inductor to use mainly depends on the price vs size requirements and any radiated field/EMI requirements.

C_{In} and Cout Selection

The input capacitance, C_{IN}, is needed to filter the trapezoidal current at the source of the top MOSFET. To prevent large ripple voltage, a low ESR input capacitor sized for the maximum RMS current should be used. RMS current is given by :

$$
I_{\text {RMS }}=I_{\text {OUT(MAX) }} \frac{V_{\text {OUT }}}{V_{\text {IN }}} \sqrt{\frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\mathrm{OUT}}}-1}
$$

This formula has a maximum at $\mathrm{V}_{\mathbb{I N}}=2 \mathrm{~V}_{\text {OUT }}$, where $\mathrm{I}_{\mathrm{RMS}}$ $=l_{\text {Out }} / 2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that ripple current ratings from capacitor manufacturers are often based on only 2000 hours of life which makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.

The selection of Cout is determined by the effective series resistance (ESR) that is required to minimize voltage ripple and load step transients, as well as the amount of bulk capacitance that is necessary to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section. The output ripple, $\Delta \mathrm{V}_{\text {OUT }}$, is determined by :

The output ripple is highest at maximum input voltage since Δ_{L} increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirements. Dry tantalum, special
polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages. Special polymer capacitors offer very low ESR but have lower capacitance density than other types. Tantalum capacitors have the highest capacitance density but it is important to only use types that have been surge tested for use in switching power supplies. Aluminum electrolytic capacitors have significantly higher ESR but can be used in cost-sensitive applications provided that consideration is given to ripple current ratings and long term reliability. Ceramic capacitors have excellent low ESR characteristics but can have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can also lead to significant ringing.

Using Ceramic Input and Output Capacitors

Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at the input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V_{IN}. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at $\mathrm{V}_{\mathbb{N}}$ large enough to damage the part.

Output Voltage Programming

The resistive divider allows the V_{FB} pin to sense a fraction of the output voltage as shown in Figure 4.

Figure 4. Setting the Output Voltage
For adjustable about voltage mode, the output voltage is set by an external resistive divider according to the following equation :

$$
\operatorname{VOUT}=\mathrm{V}_{\mathrm{REF}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

where $\mathrm{V}_{\mathrm{REF}}$ is the internal reference voltage (0.5 V typ.)

Efficiency Considerations

The efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Efficiency can be expressed as :

```
Efficiency = 100% - (L1+ L2+ L3+ ...)
```

where L1, L2, etc. are the individual losses as a percentage of input power. Although all dissipative elements in the circuit produce losses, two main sources usually account for most of the losses : VIN quiescent current and I ${ }^{2}$ R losses. The VIN quiescent current loss dominates the efficiency loss at very low load currents whereas the $I^{2} R$ loss dominates the efficiency loss at medium to high load currents. In a typical efficiency plot, the efficiency curve at very low load currents can be misleading since the actual power lost is of no consequence.

1. The VIN quiescent current is due to two components : the $D C$ bias current as given in the electrical characteristics and the internal main switch and synchronous switch gate charge currents. The gate charge current results from switching the gate capacitance of the internal power MOSFET switches. Each time the gate is switched from high to low to high again, a packet of charge $\Delta \mathrm{Q}$ moves from $V_{\mathbb{I N}}$ to ground.

The resulting $\Delta \mathrm{Q} / \Delta \mathrm{t}$ is the current out of $\mathrm{V}_{\mathbb{I}}$ that is typically larger than the DC bias current. In continuous mode,

$$
I_{G A T E C H G}=f\left(Q_{T}+Q_{B}\right)
$$

where Q_{T} and Q_{B} are the gate charges of the internal top and bottom switches. Both the DC bias and gate charge losses are proportional to $\mathrm{V}_{\mathbb{N}}$ and thus their effects will be more pronounced at higher supply voltages.
2. $I^{2} R$ losses are calculated from the resistances of the internal switches, $R_{\text {SW }}$ and external inductor R_{L}. In continuous mode the average output current flowing through inductor L is "chopped" between the main switch and the synchronous switch. Thus, the series resistance looking into the LX pin is a function of both top and bottom MOSFET $R_{D S(O N)}$ and the duty cycle (DC) as follows :
$R_{S W}=R_{D S(O N) T O P} \times D C+R_{D S(\text { ON)BOT }} \times(1-D C)$
The $R_{\mathrm{DS}(\mathrm{ON})}$ for both the top and bottom MOSFETs can be obtained from the Typical Performance Characteristics
curves. Thus, to obtain I^{2} R losses, simply add Rsw to R_{L} and multiply the result by the square of the average output current.

Other losses including $\mathrm{C}_{\mathbb{I}}$ and Cout ESR dissipative losses and inductor core losses generally account for less than 2% of the total loss.

Thermal Considerations

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :
$P_{D(\operatorname{MAX})}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
Where $T_{J(M A X)}$ is the maximum operation junction temperature $125^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}$ is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT8009 DC/DC converter, where $T_{J_{(M A X)}}$ is the maximum junction temperature of the die $\left(125^{\circ} \mathrm{C}\right)$ and T_{A} is the maximum ambient temperature. The junction to ambient thermal resistance θ_{JA} is layout dependent. For SOT-23-5/TSOT-23-5 packages, the thermal resistance θ_{JA} is $250^{\circ} \mathrm{C} / \mathrm{W}$ on the standard JEDEC 51-3 single-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by following formula :
$P_{D(\operatorname{MAX})}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) / 250=0.4 \mathrm{~W}$ for SOT-23-5/ TSOT-23-5 packages

The maximum power dissipation depends on operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance θ_{JA}. For RT8009 packages, the Figure 5 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

The value of junction to case thermal resistance θ_{Jc} is popular for users. This thermal parameter is convenient for users to estimate the internal junction operated temperature of packages while IC operating. It's independent of PCB layout, the surroundings airflow effects and temperature difference between junction to ambient. The operated junction temperature can be calculated by following formula :

Where T_{C} is the package case (Pin 2 of package leads) temperature measured by thermal sensor, P_{D} is the power dissipation defined by user's function and the θ_{Jc} is the junction to case thermal resistance provided by IC manufacturer. Therefore it's easy to estimate the junction temperature by any condition.

Figure 5. Derating Curves for RT8009 Package

Checking Transient Response

The regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in load current. When a load step occurs, Vout immediately shifts by an amount equal to $\Delta I_{\text {LOAD }}$ (ESR), where ESR is the effective series resistance of Cout. Δ lload also begins to charge or discharge Cout generating a feedback error signal used by the regulator to return $V_{\text {OUt }}$ to its steady-state value. During this recovery time, V ${ }_{\text {OUt }}$ can be monitored for overshoot or ringing that would indicate a stability problem.

Layout Considerations

Follow the PCB layout guidelines for optimal performance of RT8009.

- For the main current paths as indicated in bold lines in Figure 6 keep their traces short and wide.
-Put the input capacitor as close as possible to the device pins (VIN and GND).
- LX node is with high frequency voltage swing and should be kept small area. Keep analog components away from LX node to prevent stray capacitive noise pick-up.
$T_{J}=T_{C}+P_{D} \times \theta_{J C}$
- Connect feedback network behind the output capacitors. Keep the loop area small. Place the feedback components near the RT8009.
- Connect all analog grounds to a command node and then connect the command node to the power ground behind the output capacitors.
- An example of 2-layer PCB layout is shown in Figure 7 and Figure 8 for reference.

Figure 6. EVB Schematic

Figure 7. Top Layer

Figure 8. Bottom Layer

Recommended component selection for Typical Application
Table 1. Inductors

Component Supplier	Series	Inductance $(\boldsymbol{\mu H})$	DCR $(\mathbf{m} \boldsymbol{\Omega})$	Current Rating (mA)	Dimensions (mm)
TAIYO YUDEN	NR 3015	2.2	60	1480	$3 \times 3 \times 1.5$
TAIYO YUDEN	NR 3015	4.7	120	1020	$3 \times 3 \times 1.5$
Sumida	CDRH2D14	2.2	75	1500	$4.5 \times 3.2 \times 1.55$
Sumida	CDRH2D14	4.7	135	1000	$4.5 \times 3.2 \times 1.55$
GOTREND	GTSD32	2.2	58	1500	$3.85 \times 3.85 \times 1.8$
GOTREND	GTSD32	4.7	146	1100	$3.85 \times 3.85 \times 1.8$

Table 2. Capacitors for C_{IN} and $\mathrm{C}_{\text {out }}$

Component Supplier	Part No.	Capacitance $(\mu \mathrm{F})$	Case Size
TDK	C1608JB0J475M	4.7	0603
TDK	C2012JB0J106M	10	0805
MURATA	GRM188R60J475KE19	4.7	0603
MURATA	GRM219R60J106ME19	10	0805
MURATA	GRM219R60J106KE19	10	0805
TAIYO YUDEN	JMK107BJ475RA	4.7	0603
TAIYO YUDEN	JMK107BJ106MA	10	0603
TAIYO YUDEN	JMK212BJ106RD	10	0805

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.889	1.295	0.035	0.051
A1	0.000	0.152	0.000	0.006
B	1.397	1.803	0.055	0.071
b	0.356	0.559	0.014	0.022
C	2.591	2.997	0.102	0.118
D	2.692	3.099	0.106	0.122
e	0.838	1.041	0.033	0.041
H	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

SOT-23-5 Surface Mount Package

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.700	1.000	0.028	0.039
A1	0.000	0.100	0.000	0.004
B	1.397	1.803	0.055	0.071
b	0.300	0.559	0.012	0.022
C	2.591	3.000	0.102	0.118
D	2.692	3.099	0.106	0.122
e	0.838	1.041	0.033	0.041
H	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

TSOT-23-5 Surface Mount Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Richtek manufacturer:

Other Similar products are found below :
PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 19-130041 CE-1003 CE-1004 MAU228 J800041 NL DFC15U48D15 XGS-1205 SPB05B-15 SPB05C-15 L-DA20 DCG40-5G AK1601-9RT DPA423R VI-N61-CM VI-R5022EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01-CZY CK2540-9ERT AK-1615-7R 350DNC40-CON-KIT-9G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20 QUINT4CAP/24DC/5/4KJ QUINT4-CAP/24DC/10/8KJ VEFT1-S12-S12-SMT SRSB-50T12LG AM1DS-0503DJZ AM1DS-0503SJZ AM1SR0509SJZ

[^0]: Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

