2A, 22V, 400kHz Step-Down Converter

General Description

The RT8267 is an asynchronous high voltage buck converter that can support the input voltage range from 4.75 V to 22 V and the output current can be up to 2 A . Current Mode operation provides fast transient response and eases loop stabilization.

The chip provides protection functions such as cycle-bycycle current limiting and thermal shutdown protection. In shutdown mode, the regulator draws $25 \mu \mathrm{~A}$ of supply current. The RT8267 is available in a SOP-8 surface mount package.

Ordering Information RT8267

G: Green (Halogen Free and Pb Free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Features

- Wide Operating Input Range : 4.75V to 22 V
- Adjustable Output Voltage Range : 1.222 V to 16 V
- Output Current up to 2A
- $25 \mu \mathrm{~A}$ Low Shutdown Current
- Power MOSFET : 0.18Ω
- High Efficiency up to 95\%
- 400kHz Fixed Switching Frequency
- Stable with Low ESR Output Ceramic Capacitors
- Thermal Shutdown Protection
- Cycle-By-Cycle Over Current Protection
- RoHS Compliant and Halogen Free

Applications

- Distributive Power Systems
- Battery Charger
- DSL Modems
- Pre-regulator for Linear Regulators

Pin Configurations

Typical Application Circuit

Table 1. Recommended Component Selection

$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	$\mathbf{R 1} \mathbf{(k \Omega)}$	$\mathbf{R 2} \mathbf{(k \Omega} \boldsymbol{)}$	$\mathbf{R}_{\mathbf{C}}(\mathbf{k} \Omega)$	$\mathbf{C}_{\mathbf{C}}(\mathbf{n F})$	$\mathbf{C}_{\text {OUT }}(\mu \mathrm{F})$	$\mathbf{L 1}(\mu \mathbf{H})$
12	88.7	10	62	0.82	22	33
5	30	10	20	2.2	22	22
3.3	17	10	10	1.5	22	15
2.5	10.45	10	7.5	1.5	22	10
1.8	4.75	10	6	1.5	22	10
1.222	0	10	6	3.9	22	6.8

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	BOOT	High Side Gate Drive Boost Input. BOOT supplies the drive for the high side N-MOSFET switch. Connect a 10nF or greater capacitor from SW to BOOT to power the high side switch.
2	VIN	Power Input. VIN Supplies the power to the IC, as well as the step-down converter switches. Bypass VIN to GND with a suitable large capacitor to eliminate noise on the input to the IC.
3	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BOOT to power the high side switch.
4	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
5	FB	Feedback Input. FB senses the output voltage to regulate said voltage. The feedback reference voltage is 1.222V typically.
7	COMP	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.
8	NC	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN higher than $1.4 V$ to turn on the regulator, lower than 0.4V to turn it off. If the EN pin is open, it will be pulled to high by internal circuit.
	No Internal Connection.	

Function Block Diagram

Absolute Maximum Ratings (Note 1)

- Supply Voltage, VIN 23V
- Switching Voltage, SW -0.3 V to $\left(\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
- BOOT Voltage $\left(\mathrm{V}_{\mathrm{sw}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{sw}}+6 \mathrm{~V}\right)$
- All Other Voltage -0.3 V to 6 V- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$SOP-80.833W
- Package Thermal Resistance (Note 2)
SOP-8, $\theta_{\text {JA }}$ $120^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Mode) 2kV
MM (Machine Mode) 200V
Recommended Operating Conditions (Note 4)
- Supply Voltage, VIN 22 V
- Enable Voltage, VEN 0 V to 5.5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Feedback Reference Voltage	V_{FB}	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V}$	1.184	1.222	1.258	V
High Side Switch-On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 1}$		--	0.18	--	Ω
Low Side Switch-On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 2}$		--	10	--	Ω
Switch Leakage		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V}$	--	--	10	$\mu \mathrm{A}$
Current Limit	ILIM	Duty $=90 \%$; $\mathrm{V}_{\text {BOOT }- \text { SW }}=4.8 \mathrm{~V}$	--	2.7	--	A
Current Sense Transconductance	G_{CS}	Output Current to $\mathrm{V}_{\text {comp }}$	--	2.5	--	AN
Error Amplifier Tansconductance	G_{m}	$\Delta \mathrm{I}_{\mathrm{C}}= \pm 10 \mu \mathrm{~A}$	--	780	--	$\mu \mathrm{A} / \mathrm{V}$
Oscillator Frequency	fSW		320	400	460	kHz
Short Circuit Oscillation Frequency		$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	--	120	--	kHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$	--	90	--	\%
Minimum On-Time	ton		--	100	--	ns
Under Voltage Lockout Threshold Rising			4	4.2	4.5	V
Under Voltage Lockout Threshold Hysteresis			--	300	--	mV
En input Low Voltage			--	--	0.4	V
En input High Voltage			1.4	--	--	V
Enable Pull Up Current			--	1	--	$\mu \mathrm{A}$

To be continued

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Shutdown Current	$I_{S H D N}$	$\mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$	--	25	50	$\mu \mathrm{~A}$
Quiescent Current	I_{Q}	$\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.5 \mathrm{~V}$	--	0.7	1	mA
Thermal Shutdown	T_{SD}		--	150	--	${ }^{\circ} \mathrm{C}$

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective four layers thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

Output Voltage vs. Temperature

Shutdown Current vs. Temperature

Reference Voltage vs. Input Voltage

Output Voltage vs. Output Current

Current Limit vs. Input Voltage

Frequency vs. Temperature

Load Transient Response

Quiescent Current vs. Temperature

Frequency vs. Input Voltage

Switching

Power On from EN

Power Off from $\mathrm{V}_{\mathbf{I N}}$

Power Off from EN

Application Information

The RT8267 is an asynchronous high voltage buck converter that can support the input voltage range from 4.75 V to 22 V and the output current can be up to 2 A .

Output Voltage Setting

The resistive divider allows the FB pin to sense the output voltage as shown in Figure 1.

Figure 1. Output Voltage Setting
The output voltage is set by an external resistive divider according to the following equation :
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{FB}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
Where V_{FB} is the feedback reference voltage (1.222V typ.).

External Bootstrap Diode

Connect a 10nF low ESR ceramic capacitor between the BOOT pin and SW pin. This capacitor provides the gate driver voltage for the high side MOSFET.

It is recommended to add an external bootstrap diode between an external 5 V and the BOOT pin for efficiency improvement when input voltage is lower than 5.5 V or duty ratio is higher than 65\%. The bootstrap diode can be a low cost one such as 1N4148 or BAT54.

The external 5 V can be a 5 V fixed input from system or a 5 V output of the RT8267.

Figure 2

Soft-Start

The RT8267 contains an internal soft-start clamp that gradually raises the output voltage. The typical soft-start time is 2 ms .

Inductor Selection

The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔI_{L} increases with higher $V_{I N}$ and decreases with higher inductance.
$\Delta \mathrm{I}_{\mathrm{L}}=\left[\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{f} \times \mathrm{L}}\right] \times\left[1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right]$
Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve highest efficiency operation. However, it requires a large inductor to achieve this goal.

For the ripple current selection, the value of $\Delta I_{\mathrm{L}}=0.4\left(\mathrm{I}_{\mathrm{MAX}}\right)$ will be a reasonable starting point. The largest ripple current occurs at the highest V_{IN}. To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation :
$L=\left[\frac{V_{\text {OUT }}}{f \times \Delta \operatorname{lL}(\mathrm{MAX})}\right] \times\left[1-\frac{V_{\text {OUT }}}{\operatorname{VIN}(\mathrm{MAX})}\right]$

Inductor Core Selection

The inductor type must be selected once the value for L is known. Generally speaking, high efficiency converters can not afford the core loss found in low cost powdered iron cores. So, the more expensive ferrite or mollypermalloy cores will be a better choice.

The selected inductance rather than the core size for a fixed inductor value is the key for actual core loss. As the inductance increases, core losses decrease. Unfortunately, increase of the inductance requires more turns of wire and therefore the copper losses will increase.

Ferrite designs are preferred at high switching frequency due to the characteristics of very low core losses. So, design goals can focus on the reduction of copper loss and the saturation prevention.

Ferrite core material saturates "hard", which means that inductance collapses abruptly when the peak design current is exceeded. The previous situation results in an abrupt increase in inductor ripple current and consequent output voltage ripple.

Do not allow the core to saturate!
Different core materials and shapes will change the size/ current and price/current relationship of an inductor.

Toroid or shielded pot cores in ferrite or permalloy materials are small and do not radiate energy. However, they are usually more expensive than the similar powdered iron inductors. The rule for inductor choice mainly depends on the price vs. size requirement and any radiated field/ EMI requirements.

Diode Selection

When the power switch turns off, the path for the current is through the diode connected between the switch output and ground. This forward biased diode must have a minimum voltage drop and recovery times. Schottky diode is recommended and it should be able to handle those current. The reverse voltage rating of the diode should be greater than the maximum input voltage, and current rating should be greater than the maximum load current. For more detail please, refer to Table 4.

C_{IN} and $\mathrm{C}_{\text {out }}$ Selection

The input capacitance, C_{IN}, is needed to filter the trapezoidal current at the source of the high side MOSFET. To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The RMS current is given by :
lims $=\operatorname{loUT}($ MAX $) \frac{V_{\text {OUT }}}{V_{\text {IN }}} \sqrt{\frac{V_{\text {IN }}}{V_{\text {OUT }}}-1}$

This formula has a maximum at $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {OUT }}$, where $I_{\text {RMS }}=I_{\text {OUT }} / 2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.

Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.

For the input capacitor, a $10 \mu \mathrm{~F}$ low ESR ceramic capacitor is recommended. For the recommended capacitor, please
refer to table 3 for more detail.
The selection of Cout is determined by the required ESR to minimize voltage ripple.

Moreover, the amount of bulk capacitance is also a key for Cout selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section.

The output ripple, $\Delta \mathrm{V}_{\text {OUT }}$, is determined by :
$\Delta \mathrm{V}_{\text {OUT }} \leq \Delta \mathrm{L}_{\mathrm{L}}\left[\mathrm{ESR}+\frac{1}{8 \mathrm{fCOUT}}\right]$
The output ripple will be highest at the maximum input voltage since $\Delta I_{\text {L }}$ increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement. Dry tantalum, special polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages. Special polymer capacitors offer very low ESR value. However, it provides lower capacitance density than other types. Although Tantalum capacitors have the highest capacitance density, it is important to only use types that pass the surge test for use in switching power supplies. Aluminum electrolytic capacitors have significantly higher ESR. However, it can be used in cost-sensitive applications for ripple current rating and long term reliability considerations. Ceramic capacitors have excellent low ESR characteristics but can have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can also lead to significant ringing.

Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V_{IN}. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at $\mathrm{V}_{\text {IN }}$ large enough to damage the part.

Checking Transient Response

The regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in load current. When a load step occurs, Vout immediately shifts by an amount equal to $\Delta I_{\text {LOAD }}$ (ESR) and also begins to charge or discharge Cout generating a feedback error signal for the regulator to return $\mathrm{V}_{\text {Out }}$ to its steady-state value. During this recovery time, $\mathrm{V}_{\text {Out }}$ can be monitored for overshoot or ringing that would indicate a stability problem.

Thermal Considerations

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
Where $T_{J(M A X)}$ is the maximum operation junction temperature, T_{A} is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT8267, the maximum junction temperature is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance $\theta_{\text {JA }}$ for SOP-8 package is $120^{\circ} \mathrm{C} / \mathrm{W}$ on the standard JEDEC 51-7 fourlayers thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by following formula :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(120^{\circ} \mathrm{C} / \mathrm{W}\right)=1.163 \mathrm{~W}$ for SOP-8 packages
The maximum power dissipation depends on operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance θ_{JA}. For RT8267 packages, the Figure 3 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

Figure 3. Derating Curves for RT8267 Packages

Layout Consideration

Follow the PCB layout guidelines for optimal performance of the RT8267.

- Keep the traces of the main current paths as short and wide as possible.
- Put the input capacitor as close as possible to the device pins (VIN and GND).
- LX node is with high frequency voltage swing and should be kept at small area. Keep sensitive components away from the LX node to prevent stray capacitive noise pickup.
- Place the feedback components to the FB pin as close as possible.
- The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.

Figure 4. PCB Layout Guide

Table 2. Suggested Inductors for Typical Application Circuit

Component Supplier	Series	Dimensions (mm)
TDK	SLF12555T	$12.5 \times 12.5 \times 5.5$
TAIYO YUDEN	NR8040	$8 \times 8 \times 4$
TDK	SLF12565T	$12.5 \times 12.5 \times 6.5$

Table 3. Suggested Capacitors for $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {out }}$

Location	Component Supplier	Part No.	Capacitance $(\mu \mathrm{F})$	Case Size
C_{IN}	MURATA	GRM31CR61E106K	10	1206
C_{IN}	TDK	C3225X5R1E106K	10	1206
C_{IN}	TAIYO YUDEN	TMK316BJ106ML	10	1206
$\mathrm{C}_{\text {OUT }}$	MURATA	GRM32ER61E226M	22	1210
COUT $^{\text {Cout }}$	TAIYO YUDEN	EMK325BJ226MM	22	1210

Table 4. Suggested Diode

Component Supplier	Series	V $_{\text {RRM }}$ (V)	lout (A)	Package
DIODES	B330A	30	3	SMA
PANJIT	SK23	30	2	DO-214AA

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	4.801	5.004	0.189	0.197
B	3.810	3.988	0.150	0.157
C	1.346	1.753	0.053	0.069
D	0.330	0.508	0.013	0.020
F	1.194	1.346	0.047	0.053
H	0.170	0.254	0.007	0.010
I	0.050	0.254	0.002	0.010
J	5.791	6.200	0.228	0.244
M	0.400	1.270	0.016	0.050

8-Lead SOP Plastic Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Richtek manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S $18952 \underline{19-130041}$ CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 TME 0303S TME 0505S TME 1205S TME 1212S TME 2405S TME 2412S J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15

