3A, 24V, 1.2MHz Step-Down Converter

General Description

The RT8272 is a high voltage buck converter that can support the input voltage range from 4.75 V to 24 V and the output current can be up to 3A. Current Mode operation provides fast transient response and eases loop stabilization.

The chip provides protection functions such as cycle-bycycle current limiting and thermal shutdown protection. In shutdown mode, the regulator draws $25 \mu \mathrm{~A}$ of supply current. The RT8272 is available in a SOP-8 (Exposed Pad) surface mount package.

Ordering Information

RT8272

\square Package Type
SP : SOP-8 (Exposed Pad-Option 1)
——Lead Plating System
G : Green (Halogen Free and Pb Free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Features

- Wide Operating Input Range : 4.75V to 24 V
- Adjustable Output Voltage Range : 0.92V to 15 V
- Output Current up to 3A
- $25 \mu \mathrm{~A}$ Low Shutdown Current
- Power MOSFET : 0.1Ω
- High Efficiency up to 95\%
- 1.2MHz Fixed Switching Frequency
- Stable with Low ESR Output Ceramic Capacitors
- Thermal Shutdown Protection
- Cycle-By-Cycle Over Current Protection
- RoHS Compliant and Halogen Free

Applications

- Distributive Power Systems
- Battery Charger
- DSL Modems
- Pre-regulator for Linear Regulators

Pin Configurations

(TOP VIEW)

Typical Application Circuit

Table 1. Recommended Component Selection

Vout (V)	R1 (k 2)	R2 (k $)^{\text {) }}$	$\mathrm{R}_{\mathrm{C}}(\mathrm{k} \Omega$)	$\mathrm{C}_{\mathrm{C}}(\mathrm{nF})$	Cout ($\mu \mathrm{F}$)	L ($\mu \mathrm{H}$)
15	153	10	82	0.82	47	10
10	100	10	62	1.2	47	10
8	77	10	62	1.5	47	6.8
5	43	10	41	2.2	47	6.8
3.3	25.8	10	39	2.2	47	4.7
2.5	17	10	21	2.2	47	4.7
1.8	9.1	10	15	2.2	47	2.2
1.2	3	10	15	2.2	47	2.2

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	BOOT	High Side Gate Drive Boost Input. BOOT supplies the drive for the high side N-MOSFET switch. Connect a 1OnF or greater capacitor from SW to BOOT to power the high side switch.
2	VIN	Power Input. VIN Supplies the power to the IC, as well as the step-down converter switches. Bypass VIN to GND with a suitable large capacitor to eliminate noise on the input to the IC.
3	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BOOT to power the high side switch.
4 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
5	FB	Feedback Input. FB senses the output voltage to regulate said voltage. The feedback reference voltage is 0.92V typically.
6	COMP	Compensation Node. COMP is used to compensate the regulation control Ioop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.
7	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN higher than $1.4 V$ to turn on the regulator, lower than 0.4V to turn it off. If the EN pin is open, it will be pulled to high by internal circuit.
8	SS	Soft-Start Control Input. SS controls the soft start period. Connect a capacitor from SS to GND to set the soft-start period. A 0.1 μ F capacitor sets the soft-start period to 10ms.

Function Block Diagram

Absolute Maximum Ratings (Note 1)- Supply Voltage, V_{IN}0.3 V to 26 V

- Switching Voltage, SW -0.3 V to ($\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}$)
- BOOT Voltage $\left(V_{s w}-0.3 V\right)$ to $\left(V_{s w}+6 V\right)$
- All Other Pins Voltage -0.3 V to 6 V
- Power Dissipation, PD_{D} @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SOP-8 (Exposed Pad) 1.333W
- Package Thermal Resistance (Note 2) SOP-8 (Exposed Pad), $\theta_{J A}$ $75^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3) HBM (Human Body Mode) 2kV
MM (Machine Mode) 200 V
Recommended Operating Conditions (Note 4)
- Supply Voltage, V_{IN} 4.75 V to 24 V
- Enable Voltage, VEN 0 V to 5.5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Feedback Reference Voltage	$V_{F B}$	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V}$	0.902	0.92	0.938	V
High Side Switch-On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 1}$		--	0.1	0.16	Ω
Low Side Switch-On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 2}$		--	10	--	Ω
Switch Leakage		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V}$	--	--	10	$\mu \mathrm{A}$
Current Limit	ILIM	Duty $=80 \%$; $\mathrm{V}_{\text {BOOT }- \text { SW }}=4.8 \mathrm{~V}$	--	4.1	--	A
Current Sense Transconductance	G_{CS}	Output Current to $\mathrm{V}_{\text {COMP }}$	--	4	--	A/V
Error Amplifier Tansconductance	G_{m}	$\Delta \mathrm{I}_{\mathrm{C}}= \pm 10 \mu \mathrm{~A}$	500	680	900	$\mu \mathrm{A} / \mathrm{V}$
Oscillator Frequency	fSw		--	1.2	--	MHz
Short Circuit Oscillation Frequency		$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	--	440	--	kHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$	$V_{F B}=0.8 \mathrm{~V}$	--	80	--	\%
Minimum On-Time	ton		--	90	--	ns
Under Voltage Lockout Threshold Rising			3.8	4.2	4.5	V
Under Voltage Lockout Threshold Hysteresis			--	300	--	mV
En input Low Voltage			--	--	0.4	V
En input High Voltage			1.4	--	--	V
Enable Pull Up Current			0.15	1	2.65	$\mu \mathrm{A}$
Shutdown Current	ISHDN	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	--	25	--	$\mu \mathrm{A}$
Quiescent Current	I_{Q}	$\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1 \mathrm{~V}$	--	0.8	1	mA
Soft-Start Current	Iss		--	10	--	$\mu \mathrm{A}$
Soft-Start Period		$\mathrm{C}_{\text {SS }}=0.1 \mu \mathrm{~F}$	--	10	--	ms
Thermal Shutdown	$\mathrm{T}_{\text {SD }}$		--	150	--	${ }^{\circ} \mathrm{C}$

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective four layers thermal conductivity test board of JEDEC 51-7 thermal measurement standard.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

UVLO vs. Temperature

Load Transient Response

Enable Threshold vs. Temperature

Load Transient Response

Power On from EN Pin

Output Ripple

Power Off from EN Pin

Application Information

The RT8272 is an asynchronous high voltage buck converter that can support the input voltage range from 4.75 V to 24 V and the output current can be up to 3 A .

Output Voltage Setting

The resistive divider allows the FB pin to sense the output voltage as shown in Figure 1.

Figure 1. Output Voltage Setting
The output voltage is set by an external resistive divider according to the following equation :
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{FB}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
Where V_{FB} is the feedback reference voltage (0.92 V typ.).

External Bootstrap Diode

Connect a 10nF low ESR ceramic capacitor between the BOOT pin and SW pin. This capacitor provides the gate driver voltage for the high side MOSFET.

It is recommended to add an external bootstrap diode between an external 5 V and the BOOT pin for efficiency improvement when input voltage is lower than 5.5 V or duty ratio is higher than 65%. The bootstrap diode can be a low cost one such as 1N4148 or BAT54.

The external 5 V can be a 5 V fixed input from system or a 5 V output of the RT8272.

Figure 2. External Bootstrap Diode

Soft-Start

The RT8272 contains an external soft-start clamp that gradually raises the output voltage. The soft-start timming can be programed by the external capacitor between SS pin and GND. The chip provides a $10 \mu \mathrm{~A}$ charge current for the external capacitor. If $0.1 \mu \mathrm{~F}$ capacitor is used to set the soft-start and it' s period will be $10 \mathrm{~ms}($ typ.).

Inductor Selection

The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔI_{L} increases with higher $V_{\text {IN }}$ and decreases with higher inductance.
$\Delta \mathrm{I}_{\mathrm{L}}=\left[\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{f} \times \mathrm{L}}\right] \times\left[1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right]$
Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve highest efficiency operation. However, it requires a large inductor to achieve this goal.

For the ripple current selection, the value of $\Delta \mathrm{I}_{\mathrm{L}}=0.4\left(\mathrm{I}_{\mathrm{MAX}}\right)$ will be a reasonable starting point. The largest ripple current occurs at the highest V_{IN}. To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation:
$L=\left[\frac{V_{\text {OUT }}}{f \times \Delta I_{\text {L(MAX }}}\right] \times\left[1-\frac{V_{\text {OUT }}}{\operatorname{ViN(MAX)}}\right]$

Inductor Core Selection

The inductor type must be selected once the value for L is known. Generally speaking, high efficiency converters can not afford the core loss found in low cost powdered iron cores. So, the more expensive ferrite or mollypermalloy cores will be a better choice.

The selected inductance rather than the core size for a fixed inductor value is the key for actual core loss. As the inductance increases, core losses decrease. Unfortunately, increase of the inductance requires more turns of wire and therefore the copper losses will increase.

Ferrite designs are preferred at high switching frequency due to the characteristics of very low core losses. So, design goals can focus on the reduction of copper loss and the saturation prevention.

Ferrite core material saturates "hard", which means that inductance collapses abruptly when the peak design current is exceeded. The previous situation results in an abrupt increase in inductor ripple current and consequent output voltage ripple.

Do not allow the core to saturate!
Different core materials and shapes will change the size/ current and price/current relationship of an inductor.

Toroid or shielded pot cores in ferrite or permalloy materials are small and do not radiate energy. However, they are usually more expensive than the similar powdered iron inductors. The rule for inductor choice mainly depends on the price vs. size requirement and any radiated field/ EMI requirements.

Diode Selection

When the power switch turns off, the path for the current is through the diode connected between the switch output and ground. This forward biased diode must have a minimum voltage drop and recovery times. Schottky diode is recommended and it should be able to handle those current. The reverse voltage rating of the diode should be greater than the maximum input voltage, and current rating should be greater than the maximum load current. For more detail please refer to Table 3.

C_{IN} and $\mathrm{C}_{\text {OUt }}$ Selection

The input capacitance, C_{IN}, is needed to filter the trapezoidal current at the source of the high side MOSFET. To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The RMS current is given by :
lims $=\operatorname{loUT}($ MAX $) \frac{V_{\text {OUT }}}{V_{\text {IN }}} \sqrt{\frac{V_{\text {IN }}}{V_{\text {OUT }}}-1}$

This formula has a maximum at $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {OUT }}$, where $I_{\text {RMS }}=I_{\text {OUT }} / 2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.

Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.

For the input capacitor, a $10 \mu \mathrm{~F}$ low ESR ceramic capacitor is recommended. For the recommended capacitor, please
refer to table 2 for more detail. The input capacitor has to connect another $10 \mu \mathrm{~F}$ ceramic capacitor between the input and ground when the input voltage is lower than 6.5 V .

The selection of Cout is determined by the required ESR to minimize voltage ripple.

Moreover, the amount of bulk capacitance is also a key for $\mathrm{C}_{\text {out }}$ selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section.

The output ripple, $\Delta \mathrm{V}_{\text {OUT }}$, is determined by :

$$
\Delta \mathrm{V}_{\mathrm{OUT}} \leq \Delta \mathrm{I}_{\mathrm{L}}\left[\mathrm{ESR}+\frac{1}{8 \mathrm{CO}}\right]
$$

The output ripple will be highest at the maximum input voltage since $\Delta I_{\text {L }}$ increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement. Dry tantalum, special polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages. Special polymer capacitors offer very low ESR value. However, it provides lower capacitance density than other types. Although Tantalum capacitors have the highest capacitance density, it is important to only use types that pass the surge test for use in switching power supplies. Aluminum electrolytic capacitors have significantly higher ESR. However, it can be used in cost-sensitive applications for ripple current rating and long term reliability considerations. Ceramic capacitors have excellent low ESR characteristics but can have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can also lead to significant ringing.

Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, $\mathrm{V}_{\text {IN }}$. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at $\mathrm{V}_{\mathbb{I}}$ large enough to damage the part.

Checking Transient Response

The regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in load current. When a load step occurs, Vout immediately shifts by an amount equal to $\Delta I_{\text {LOAD }}$ (ESR) also begins to charge or discharge Cout generating a feedback error signal for the regulator to return $\mathrm{V}_{\text {out }}$ to its steady-state value. During this recovery time, $\mathrm{V}_{\text {OUt }}$ can be monitored for overshoot or ringing that would indicate a stability problem.

Thermal Considerations

For continuous operation, do not exceed the maximum operation junction temperature $125^{\circ} \mathrm{C}$. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:
$P_{D(\operatorname{MAX})}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
Where $T_{J(M A X)}$ is the maximum operation junction temperature, T_{A} is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT8272, where the maximum junction temperature is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance θ_{JA} is layout dependent. For SOP-8 (Exposed Pad) packages, the thermal resistance θ_{JA} is $75^{\circ} \mathrm{C} / \mathrm{W}$ on the standard JEDEC 51-7 four-layers thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by following formula:
$P_{D(\text { max })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(75^{\circ} \mathrm{C} / \mathrm{W}\right)=1.333 \mathrm{~W}$ for SOP-8 (Exposed Pad) packages

The maximum power dissipation depends on operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance θ_{JA}. For RT8272 packages, the Figure 3 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

Figure 3. Derating Curves for RT8272 Packages

Layout Consideration

Follow the PCB layout guidelines for optimal performance of RT8272.

- Keep the traces of the main current paths as short and wide as possible.
- Put the input capacitor as close as possible to the device pins (VIN and GND).
- LX node is with high frequency voltage swing and should be kept at small area. Keep analog components away from the LX node to prevent stray capacitive noise pickup.
- Connect feedback network behind the output capacitors. Keep the loop area small. Place the feedback components near the RT8272.
- Connect all analog grounds to a command node and then connect the command node to the power ground behind the output capacitors.
- An example of PCB layout guide is shown in Figure 4 for reference.

The resistor divider must be connected as close to the device as possible.
Figure 4. PCB Layout Guide
Table 2. Suggested Inductors for Typical Application Circuit

Component Supplier	Series	Inductance $(\mu \mathbf{H})$	DCR (m Ω)	Current Rating (A)	Dimensions (mm)
TDK	RLF7030	4.7	31	3.5	$7.3 \times 6.8 \times 3.2$
TAIYO YUDEN	NR8040	4.7	18	4.7	$8 \times 8 \times 4$
GOTERND	GSSR2	4.7	18	5.7	$10 \times 10 \times 3.8$

Table 3. Suggested Capacitors for C_{IN} and $\mathrm{C}_{\text {out }}$

Component Supplier	Part No.	Capacitance ($\mu \mathbf{F})$	Case Size
MURATA	GRM31CR61E106K	10	1206
TDK	C3225X5R1E106K	10	1206
TAIYO YUDEN	TMK316BJ106ML	10	1206
MURATA	GRM31CR60J476M	47	1206
TDK	C3225X5R0J476M	47	1210
TAIYO YUDEN	EMK325BJ476MM	47	1210

Table 4. Suggested Diode

Component Supplier	Series	VRRM (V) $^{\text {I }}$	IOUT (A)	Package
DIODES	B330A	30	3	DO-214AC
DIODES	B340	40	3	DO-214AB
PANJIT	SK33	30	3	DO-214AB
PANJIT	SK34	40	3	DO-214AB

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	4.801	5.004	0.189	0.197
B	3.810	4.000	0.150	0.157
C	1.346	1.753	0.053	0.069
D	0.330	0.510	0.013	0.020
F	1.194	1.346	0.047	0.053
H	0.170	0.254	0.007	0.010
I	0.000	0.152	0.000	0.006
J	5.791	6.200	0.228	0.244
M	0.406	1.270	0.016	0.050
Option 1	X	2.000	2.300	0.079
	Y	2.000	2.300	0.079
	Y	3.100	2.500	0.083
3.000	3.500	0.118	0.091	

8-Lead SOP (Exposed Pad) Plastic Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Richtek manufacturer:
Other Similar products are found below :
FMD15.24G PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S $1895219-130041$ CE-1003 CE-1004 RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-1205 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 AK1601-9RT DPA423R VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01-CZY CK2540-9ERT AK-1615-7R 700DNC40-CON-KIT-8G 350DNC40-CON-KIT-9G 088-101348-G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-L50-IY VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20

[^0]: Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

