3A, 14V Step-Up DC-DC Converter

General Description

The RT8509 is a high performance switching boost converter that provides a regulated supply voltage for active matrix thin film transistor (TFT) liquid crystal displays (LCDs).

The RT8509 incorporates current mode, fixed-frequency, pulse width modulation (PWM) circuitry with a built in N -MOSFET to achieve high efficiency and fast transient response.

The RT8509 has a wide input voltage range from 2.8 V to 14 V . In addition, the output voltage can be adjusted up to 24 V via an external resistive voltage divider. The maximum peak current is limited to 3.5 A (typ.). Other features include programmable soft-start, over voltage protection, and over temperature protection.

The RT8509 is available in a WDFN-10L 3×3 package.

Ordering Information

RT8509口
LPackage Type
QW : WDFN-10L 3×3 (W-Type)
_Lead Plating System
G: Green (Halogen Free and Pb Free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Features

- 90\% Efficiency
- Adjustable Output Up to 24V
- 2.8V to 14V Input Supply Voltage
- Input Supply Under Voltage Lockout
- Fixed 1.2MHz Switching Frequency
- Programmable Soft-Start
- Vout Over Voltage Protection
- Over Temperature Protection
- Thin 10-Lead WDFN Package
- RoHS Compliant and Halogen Free

Applications

- GIP TFT LCD Panels

Pin Configuration

Marking Information

H4 $4=$ YM
DNN

H4=: Product Code
YMDNN : Date Code

Typical Application Circuit

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	COMP	Compensation pin for error amplifier. Connect a series RC from COMP to ground.
2	FB	Feedback. The FB regulation voltage is 1.25 V nominal. Connect an external resistive voltage divider between the step-up regulator's output (Vout) and GND, with the center tap connected to FB. Place the divider close to the IC and minimize the trace area to reduce noise coupling.
3	EN	Chip enable. Drive EN low to turn off the Boost.
4,5, 11 (Exposed Pad)	GND	Ground. The Exposed Pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
6,7	LX	Switch. LX is the drain of the internal MOSFET. Connect the inductor/rectifier diode junction to LX and minimize the trace area for lower EMI.
8	VSUP	Boost converter over voltage protection input. Bypass VSUP with a minimum 1 $1 \mu \mathrm{~F}$ ceramic capacitor directly to GND.
9	VIN	Supply input. Bypass VIN with a minimum 1 1μ F ceramic capacitor directly to GND.
10	SS	Soft-start control. Connect a soft-start capacitor (Css) to this pin. The soft-start capacitor is charged with a constant current of 5 $\mu \mathrm{A}$. The soft-start capacitor is discharged to ground when EN is low.

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

- LX, VSUP to GND -0.3 V to 28 V
- VIN, EN to GND -0.3 V to 16.5 V
- Other Pins to GND -0.3 V to 6.5 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$WDFN-10L $3 x 3$1.429W
- Package Thermal Resistance (Note 2)
WDFN-10L $3 \times 3, \theta_{\mathrm{JA}}$ $70^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-10L $3 x 3, \theta_{\mathrm{Jc}}$ $8.2^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10sec.) $260^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Model) 2kV
MM (Machine Model) 200V
Recommended Operating Conditions (Note 4)
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}\right.$, $\mathrm{V}_{\text {OUt }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified $)$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Supply Current						
Input Voltage Range	VIN		2.8	--	14	V
Output Voltage Range	Vout		--	--	24	V
Under Voltage Lockout Threshold	VuVLO	VIN rising	--	2.5	3	V
UVLO Hysteresis	Δ VUVLO		--	200	--	mV
VIN Quiescent Current	lQ	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}, \mathrm{LX}$ not switching	--	1	--	mA
		$V_{F B}=1 \mathrm{~V}$, LX switching	--	5	--	
Thermal Shutdown Threshold	TSD	Temperature rising	--	155	--	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\Delta T S D$		--	10	--	${ }^{\circ} \mathrm{C}$
VSUP Over Voltage Threshold		VSUP rising	--	26	--	V
Oscillator						
Oscillator Frequency	fosc		1000	1200	1500	kHz
Maximum Duty Cycle	Dmax		--	90	--	\%
Error Amplifier						
FB Regulation Voltage	VREF		--	1.25	--	V
FB Input Bias Current	IFB		--	--	100	nA
FB Line Regulation			--	0.05	0.2	\%/V

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
Transconductance		gm	$\Delta \mathrm{I}= \pm 2.5 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{COMP}}=1 \mathrm{~V}$	--	100	--	$\mu \mathrm{A} N$
Voltage Gain		A_{V}	FB to COMP	--	700	--	V/V
N-MOSFET							
Current Limit		ILIM		3	3.5	--	A
On-Resistance		$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$		--	100	250	$\mathrm{m} \Omega$
Leakage Current		l LEAK	$\mathrm{V}_{\mathrm{LX}}=24 \mathrm{~V}$	--	30	45	$\mu \mathrm{A}$
Current Sense Transresistance		RCs		--	0.25	--	V/A
Soft-Start							
Charge Current				--	5	--	$\mu \mathrm{A}$
Control Inputs							
EN Input Voltage	Logic-High	$\mathrm{V}_{\text {IH }}$		1.5	--	--	V
	Logic-Low	$V_{\text {IL }}$		--	--	0.5	

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured under natural convection (still air) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

Boost Efficiency vs. Load Current

Boost Reference Voltage vs. Temperature

Boost Reference Voltage vs. Input Voltage

Boost Efficiency vs. Load Current

Boost Frequency vs. Temperature

Boost Current Limit vs. Input Voltage

Application Information

The RT8509 is a high performance step-up DC-DC converter that provides a regulated supply voltage for panel source driver ICs. The RT8509 incorporates current mode, fixed frequency, Pulse Width Modulation (PWM) circuitry with a built in N-MOSFET to achieve high efficiency and fast transient response. The following content contains detailed description and information for component selection.

Boost Regulator

The RT8509 is a current mode boost converter integrated with a $24 \mathrm{~V} / 3.5 \mathrm{~A}$ power switch, covering a wide $\mathrm{V}_{\text {IN }}$ range from 2.8 V to 14 V . It performs fast transient responses to generate source driver supplies for TFT LCD display. The high operation frequency allows use of smaller components to minimize the thickness of the LCD panel. The output voltage can be adjusted by setting the resistive voltage-divider sensing at the FB pin. The error amplifier varies the COMP voltage by sensing the FB pin to regulate the output voltage. For better stability, the slope compensation signal summed with the current sense signal will be compared with the COMP voltage to determine the current trip point and duty cycle.

Soft-Start

The RT8509 provides soft-start function to minimize the inrush current. When powered on, an internal constant current charges an external capacitor. The rising voltage rate on the COMP pin is limited from $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ to 1.24 V and the inductor peak current will also be limited at the same time. When powered off, the external capacitor will be discharged until the next soft-start time.

The soft-start function is implemented by the external capacitor with a $5 \mu \mathrm{~A}$ constant current charging to the softstart capacitor. Therefore, the capacitor should be large enough for output voltage regulation. A typical value for soft-start capacitor is 33 nF . The available soft-start capacitor range is from 10 nF to 100 nF .

If $\mathrm{C}_{\mathrm{ss}}<220 \mathrm{pF}$, the internal soft-start function will be turned on and period time is approximately 1 ms .

Output Voltage Setting

The regulated output voltage is shown as the following equation:
$V_{\text {OUT }}=V_{\text {REF }} \times\left(1+\frac{R 1}{R 2}\right)$, where $V_{\text {REF }}=1.25 \mathrm{~V}$ (typ.)
The recommended value for R 2 should be at least $10 \mathrm{k} \Omega$ without some sacrificing. Place the resistive voltage divider as close as possible to the chip to reduce noise sensitivity.

Loop Compensation

The voltage feedback loop can be compensated with an external compensation network consisting of R3. Choose R3 to set high frequency integrator gain for fast transient response and C 1 to set the integrator zero to maintain loop stability. For typical application, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $V_{\text {OUt }}=13.6 \mathrm{~V}, \mathrm{Cout}=4.7 \mu \mathrm{~F} \times 3, \mathrm{~L} 1=4.7 \mu \mathrm{H}$, while the recommended value for compensation is as follows : $R 3=56 \mathrm{k} \Omega, \mathrm{C} 1=1 \mathrm{nF}$.

Over Current Protection

The RT8509 boost converter has over current protection to limit the peak inductor current. It prevents large current from damaging the inductor and diode. During the On-time, once the inductor current exceeds the current limit, the internal LX switch turns off immediately and shortens the duty cycle. Therefore, the output voltage drops if the over current condition occurs. The current limit is also affected by the input voltage, duty cycle, and inductor value.

Over Temperature Protection

The RT8509 boost converter has thermal protection function to prevent the chip from overheating. When the junction temperature exceeds $155^{\circ} \mathrm{C}$, the function shuts down the device. Once the device cools down by approximately $10^{\circ} \mathrm{C}$, it will automatically restart to normal operation. To guarantee continuous operation, do not operate over the maximum junction temperature rating of $125^{\circ} \mathrm{C}$.

Inductor Selection

The inductance depends on the maximum input current. As a general rule, the inductor ripple current range is 20% to 40% of the maximum input current. If 40% is selected
as an example, the inductor ripple current can be calculated according to the following equations :
$\mathrm{I}_{\mathrm{IN}(\text { MAX })}=\frac{\mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\text {OUT(MAX) }}}{\eta \times \mathrm{V}_{\text {IN }}}$
$\mathrm{I}_{\text {RIPPLE }}=0.4 \times \mathrm{I}_{\mathrm{IN}(\mathrm{MAX})}$
where η is the efficiency of the converter, $\mathrm{I}_{\operatorname{IN}(\text { MAX })}$ is the maximum input current, and $I_{\text {RIPPLE }}$ is the inductor ripple current. The input peak current can then be obtained by adding the maximum input current with half of the inductor ripple current as shown in the following equation :
$\mathrm{I}_{\text {PEAK }}=1.2 \times \mathrm{I}_{\mathrm{IN}(\text { MAX })}$
Note that the saturated current of the inductor must be greater than $I_{\text {PEAK. }}$. The inductance can eventually be determined according to the following equation :
$\mathrm{L}=\frac{\eta \times\left(\mathrm{V}_{\text {IN }}\right)^{2} \times\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)}{0.4 \times\left(\mathrm{V}_{\text {OUT }}\right)^{2} \times \mathrm{l}_{\text {OUT (MAX }} \times \mathrm{f}_{\text {OSC }}}$
where $\mathrm{f}_{\text {osc }}$ is the switching frequency. For better system performance, a shielded inductor is preferred to avoid EMI problems.

Diode Selection

Schottky diodes are chosen for their low forward voltage drop and fast switching speed. When selecting a Schottky diode, important parameters such as power dissipation, reverse voltage rating, and pulsating peak current should all be taken into consideration. A suitable Schottky diode's reverse voltage rating must be greater than the maximum output voltage and its average current rating must exceed the average output current. Last of all, the chosen diode should have a sufficiently low leakage current level, since it will increase with temperature.

Output Capacitor Selection

The output ripple voltage is an important index for estimating chip performance. This portion consists of two parts. One is the product of the inductor current with the ESR of the output capacitor, while the other part is formed by the charging and discharging process of the output capacitor. As shown in Figure 1, $\Delta \mathrm{V}_{\text {OUT1 }}$ can be evaluated based on the ideal energy equalization. According to the definition of Q, the Q value can be calculated as the following equation :

$$
\begin{aligned}
\mathrm{Q}= & \frac{1}{2} \times\left[\left(\mathrm{l}_{\mathrm{IN}}+\frac{1}{2} \Delta \mathrm{l}_{\mathrm{L}}-\mathrm{l}_{\mathrm{OUT}}\right)+\left(\mathrm{l}_{\mathrm{IN}}-\frac{1}{2} \Delta \mathrm{l}_{\mathrm{L}}-\mathrm{l}_{\mathrm{OUT}}\right)\right] \\
& x \frac{\mathrm{~V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{OUT}}} \times \frac{1}{f_{\text {OSC }}}=C_{\text {OUT }} \times \Delta \mathrm{V}_{\text {OUT1 }}
\end{aligned}
$$

where fosc is the switching frequency, and $\Delta \mathrm{I}_{\mathrm{L}}$ is the inductor ripple current. Bring Cout to the left side to estimate the value of $\Delta \mathrm{V}_{\text {OUT1 }}$ according to the following equation :
$\Delta \mathrm{V}_{\mathrm{OUT} 1}=\frac{\mathrm{D} \mathrm{x} \mathrm{I}_{\mathrm{OUT}}}{\eta \times \mathrm{C}_{\mathrm{OUT}} \times \mathrm{f}_{\mathrm{OSC}}}$
where D is the duty cycle and η is the boost converter efficiency. Finally, taking ESR into account, the overall output ripple voltage can be determined by the following equation :
$\Delta \mathrm{V}_{\text {OUT }}=\mathrm{I}_{\text {IN }} \times E S R+\frac{\mathrm{D} \times \mathrm{I}_{\mathrm{OUT}}}{\eta \times \mathrm{C}_{\text {OUT }} \times \mathrm{f}_{\mathrm{OSC}}}$
The output capacitor, Cout, should be selected accordingly.

Figure 1. The Output Ripple Voltage without the Contribution of ESR

Input Capacitor Selection

Low ESR ceramic capacitors are recommended for input capacitor applications. Low ESR will effectively reduce the input voltage ripple caused by switching operation. A $10 \mu \mathrm{~F}$ capacitor is sufficient for most applications. Nevertheless, this value can be decreased for lower output current requirement. Another consideration is the voltage rating of the input capacitor which must be greater than the maximum input voltage.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{\text {(MAX) }}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :
$P_{D(\operatorname{MAX})}=\left(T_{J(\operatorname{MAX})}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
where $T_{J_{(M A X)}}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is $125^{\circ} \mathrm{C}$. The junction-to-ambient thermal resistance, θ_{JA}, is highly package dependent. For a WDFN-10L 3×3, the thermal resistance, θ_{JA}, is $70^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 high effective-thermalconductivity four-layer test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated as below :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(70^{\circ} \mathrm{C} / \mathrm{W}\right)=1.429 \mathrm{Wfor}$ a WDFN-10L 3×3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $\mathrm{T}_{J(\text { MAX })}$ and the thermal resistance, θ_{JA}. The derating curves in Figure 2 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 2. Derating Curve of Maximum Power Dissipation

Layout Considerations

For high frequency switching power supplies, the PCB layout is important to get good regulation, high efficiency and stability. The following descriptions are the guidelines for better PCB layout.

- For good regulation, place the power components as close as possible. The traces should be wide and short enough especially for the high current output loop.
- The feedback voltage divider resistors must be near the feedback pin. The divider center trace must be shorter and the trace must be kept away from any switching nodes.
- The compensation circuit should be kept away from the power loops and be shielded with a ground trace to prevent any noise coupling.
- Minimize the size of the LX node and keep it wide and shorter. Keep the LX node away from the FB.
- The exposed pad of the chip should be connected to a strong ground plane for maximum thermal consideration.

Place the power components as close to the IC as possible. The traces should be wide and short, especially for the high-current loop.
Figure 3. PCB Layout Guide

Outline Dimension

DETAILA
Pin \#1 ID and Tie Bar Mark Options

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.180	0.300	0.007	0.012				
D	2.950	3.050	0.116	0.120				
D2	2.300	2.650	0.091	0.104				
E	2.950	3.050	0.116	0.120				
E2	1.500	1.750	0.059	0.069				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

W-Type 10L DFN 3x3 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen $1^{\text {st }}$ Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Richtek manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S $18952 \underline{19-130041}$ CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 TME 0303S TME 0505S TME 1205S TME 1212S TME 2405S TME 2412S V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15 TME 0509S

[^0]: Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

