RT8525

Boost Controller with Dimming Control

General Description

The RT8525 is a wide input operating voltage range step up controller. High voltage output and large output current are feasible by using an external N-MOSFET. The RT8525 input operating range is from 4.5 V to 29 V .

The RT8525 is an optimized design for wide output voltage range applications. The output voltage of the RT8525 can be adjusted by the FB pin. The PWMI pin can be used as a digital input, allowing WLED brightness control with a logic-level PWM signal.

Ordering Information

RT8525

-Package Type

S: SOP-14
Lead Plating System
G: Green (Halogen Free and Pb Free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Marking Information

RT8525	
GSYMDNN	RT8525GS : Product Number
\bullet	

Features

- VIN Range : 4.5V to 29V
- Programmable Soft-Start Time
- Programmable Boost SW Frequency from 50kHz to 600kHz
- Output Over Voltage Protection
- Output Under Voltage Protection
- 14-Lead SOP Package
- RoHS Compliant and Halogen Free

Applications

- LCD TV, Monitor Display Backlight
- LEDDriver Application

Pin Configurations

(TOP VIEW)

SOP-14

Typical Application Circuit

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	VDC	Output of Internal Pre-Regulator.
2	VIN	IC Power Supply.
3	COMP	Compensation for Error Amplifier. Connect a compensation network to ground.
4	SS	External Capacitor to Adjust Soft-Start Time.
5	FSW	Frequency Adjust Pin. This pin allows setting the switching frequency with a resistor from 50kHz to 600kHz.
6	AGND	Analog Ground.
7	PWMI	External Digital Input for Dimming Function.
8	FAULT	Open Drain Output for Fault Detection.
9	FB	Feedback to Error Amplifier Input.
10	OOVP	Sense Output Voltage for Over Voltage Protection and Under Voltage Protection.
11	ISW	External MOSFET Switch Current Sense Pin. Connect the current sense resistor between the external N-MOSFET switch and ground.
12	EN	Chip Enable (Active High).
13	PGND	Power Ground of Boost Controller.
14	DRV	Drive Output for the N-MOSFET.

Function Block Diagram

Absolute Maximum Ratings (Note 1)

- VIN to GND -0.3 V to 32 V
- VDC, DRV, FAULT to GND -0.3 V to 13.2 V
- EN, COMP, SS, FSW, FB, OOVP, ISW, PWMI to GND -0.3 V to 6 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SOP-14 1.000W
- Package Thermal Resistance (Note 2)
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM 2kV
MM 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, VIN 4.5 V to 29 V
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\text {IN }}=21 \mathrm{~V}\right.$, $\mathrm{V}_{\text {OUt }}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified $)$

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit	
Input Power Supply								
Quiescent Current		I_{Q}	No Switching, RSw $=56 \mathrm{k} \Omega$	--	1.3	2	mA	
Shutdown Current		ISHDN	VEN $=0 \mathrm{~V}$	--	10	--	$\mu \mathrm{A}$	
Under Voltage Lockout Threshold		VUVLO	$V_{\text {IN }}$ Rising	--	3.8	--	V	
Under Voltage Lockout Hysteresis		$\Delta \mathrm{V}_{\text {UVLO }}$		--	500	--	mV	
12V Regulator								
Regulator Output Voltage		VDC	$13.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<16 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<100 \mathrm{~mA}$	11.4	12	12.6	V	
		$16 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<50 \mathrm{~mA}$						
		$20 \mathrm{~V}<\mathrm{V}_{\text {IN }}<29 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<20 \mathrm{~mA}$						
Dropout Voltage			V DROP	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	--	500	--	mV
Short-Circuit Current Limit			ISC	$V_{D C}$ Short to GND	--	270	--	mA
Control Input								
EN Threshold Voltage	Logic-High	$\mathrm{V}_{\text {IH }}$		2	--	--	V	
	Logic-Low	V_{IL}		--	--	0.8		
EN Sink Current		I_{H}	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	--	5	--	$\mu \mathrm{A}$	
Shutdown Delay	Sleeping Mode	${ }^{\text {t SLEEP }}$	$\mathrm{R}_{\text {SW }}=56 \mathrm{k} \Omega, \mathrm{EN}=\mathrm{L}, 12 \mathrm{~V}$ Regular Shutdown	55	--	--	ms	
	Shutdown Mode	tSHDN	RSW $=56 \mathrm{k} \Omega$, EN = L, IC Shutdown	110	--	--	ms	

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Boost Controller						
Switching Frequency	$\mathrm{f}_{\text {Sw }}$	$\mathrm{R}_{\mathrm{SW}}=56 \mathrm{k} \Omega$	--	200	--	kHz
Minimum On-Time	$\mathrm{t}_{\text {MON }}$		--	250	--	ns
Maximum Duty	$\mathrm{D}_{\text {MAX }}$	Switching	90	--	--	\%
Feedback Voltage	$V_{F B}$		1.225	1.25	1.275	V
Slope Compensation						
Peak Magnitude of Slope Compensation Current	IsLope, Pk		--	50	--	$\mu \mathrm{A}$
Soft-Start						
Soft-Start Current	Iss		3	4	5	$\mu \mathrm{A}$
Gate Driver						
DRV On-Resistance	RDS(ON)_N	IsInk $=100 \mathrm{~mA}$ ($\mathrm{N}-\mathrm{MOSFET}$)	--	1	--	Ω
	RDS(ON)_P	ISOURCE $=100 \mathrm{~mA}$ (P-MOSFET)	--	1.5	--	Ω
Peak Sink Current	lpeaksk	$C_{\text {LOAD }}=1 \mathrm{nF}$	--	2.2	--	A
Peak Source Current	IPEAKsr	$C_{\text {LOAD }}=1 \mathrm{nF}$	--	2.55	--	A
Rise Time	tr_{r}	$C_{\text {LOAD }}=1 \mathrm{nF}$	--	6	--	ns
Fall Time	tf_{f}	$C_{\text {LOAD }}=1 \mathrm{nF}$	--	5	--	ns
PWM Dimming Control						
PWMI Threshold Voltage	VPWMI_H		2	--	--	V
	VPWMI_L		--	--	0.8	
Protection Function						
OCP Threshold	Vocp	Including Slope Compensation Magnitude	--	0.4	--	V
V OUT OVP Threshold	Vovp		2.375	2.5	2.625	V
Vout UVP Threshold	Vuvp		--	0.1	--	V
Thermal Shutdown Temperature	TSD		--	150	--	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\Delta \mathrm{T}_{\text {SD }}$		--	50	--	${ }^{\circ} \mathrm{C}$

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity single-layer test board per JEDEC 51-3.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions..

Typical Operating Characteristics

Quiescent Current vs. Input Voltage

Feedback Voltage vs. Input Voltage

Switching Frequency vs. Temperature

Quiescent Current vs. Temperature

Feedback Voltage vs. Temperature

Boost Efficiency vs. Load Current

Applications Information

The RT8525 is a wide input operating voltage range step up controller. High voltage output and large output current are feasible by using an external N-MOSFET. The protection functions include output over voltage, output under voltage, over temperature and current limiting protection.

Boost Output Voltage Setting

The regulated output voltage is set by an external resistor divider according to the following equation :
$V_{\text {OUT }}=V_{F B} \times\left(1+\frac{R_{F B 1}}{R_{F B 2}}\right)$, where $V_{F B}=1.25 \mathrm{~V}$ (typ.)
The recommended value of $R_{\text {FB2 }}$ should be at least $1 \mathrm{k} \Omega$ for saving sacrificing. Moreover, placing the resistor divider as close as possible to the chip can reduce noise sensitivity.

Boost Switching Frequency

The RT8525 boost driver switching frequency is able to be adjusted by a resistor R_{Sw} ranging from $18 \mathrm{k} \Omega$ to $220 \mathrm{k} \Omega$. The following figure illustrates the corresponding switching frequency within the resistor range.

Figure 1. Boost Switching Frequency

Boost Loop Compensation

The voltage feedback loop can be compensated by an external compensation network consisted of $\mathrm{R}_{\mathrm{C}}, \mathrm{C}_{\mathrm{C} 1}$ and $\mathrm{C}_{\mathrm{C} 2}$. Choose R_{C} to set high frequency gain for fast transient response. Select $\mathrm{C}_{\mathrm{C} 1}$ and $\mathrm{C}_{\mathrm{C} 2}$ to set the zero and pole to maintain loop stability. For typical application,
$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{~V}_{\text {OUt }}=50 \mathrm{~V}, \mathrm{C}_{\text {OUt }}=100 \mu \mathrm{~F} \times 2, \mathrm{~L} 1=33 \mu \mathrm{H}$, while the recommended value for compensation is as follows : $R_{C}=33 k \Omega, C_{C 1}=27 n F$.

Soft-Start

The soft-start of the RT8525 can be achieved by connecting a capacitor from the SS pin to GND. The built-in soft-start circuit reduces the start-up current spike and output voltage overshoot. The external capacitor charged by an internal $4 \mu \mathrm{~A}$ constant charging current determines the softstart time. The SS pin limits the rising rate of the COMP pin voltage and thereby limits the peak switch current. The soft-start interval is set by the soft-start capacitor according to the following equation :
$\mathrm{tss} \cong \mathrm{Css} \times 5 \times 10^{5}$
A typical value for the soft-start capacitor is $0.33 \mu \mathrm{~F}$. The soft-start capacitor is discharged when EN voltage falls below its threshold after shutdown delay or UVLO occurs.

Slope Compensation and Current Limiting

A slope compensation is applied to avoid sub-harmonic oscillation in current-mode control. The slope compensation voltage is generated by the internal ramp current flow through a slope compensation resistor RsLP. The inductor current is sensed by the sensing resistor Rs. Both of them are added and presented on the ISW pin . The internal ramp current is rising linearly form zero at the beginning of each switching cycle to $50 \mu \mathrm{~A}$ in maximum on-time of each cycle. The slope compensation resistor $\mathrm{R}_{\text {SLP }}$ can be calculated by the following equation :
$R_{\text {SLP }}>\frac{\left(\text { VOUT }-\mathrm{V}_{\text {IN }}\right) \times R_{S}}{2 \times \mathrm{L} \times 50 \mu \times \mathrm{fSW}}$
where R_{S} is current sensing resistor, L is inductor value, and $f_{s w}$ is boost switching frequency.

The current flow through inductor during charging period is detected by a sensing resistor R_{s}. Besides, the slope compensation voltage also attributes magnitude to ISW. As the voltage at the ISW pin is over 0.4 V , the DRV will be pulled low and turn off the external N-MOSFET. So that the inductor will be forced to leave charging stage and enter discharging stage to prevent over current. The current limiting can be calculated by the following equation:
$R_{s}<\frac{0.4-\text { DMAX } \times R_{\text {SLP }} \times 50 \mu}{I_{L}, \text { PK }}$
where $\mathrm{I}_{\mathrm{L}, \mathrm{PK}}$ is peak inductor current, and $\mathrm{D}_{\mathrm{MAX}}$ is maximum duty.

Output Over Voltage Protection

The output voltage can be clamped at the voltage level determined by the following equation :
VOUT (OOVP) $=\mathrm{V}_{\text {OOVP }} \times\left(1+\frac{\mathrm{R}_{\text {OVP1 }}}{\mathrm{R}_{\text {OVP2 }}}\right)$,
where Voovp $=2.5 \mathrm{~V}$ (typ.)
where RovP1 and RovP2 are the voltage divider connected to the OOVP pin.

Fault Protection

The $\overline{\text { FAULT }}$ pin will be pulled low once a protection is triggered, and a suitable pulled-high $R_{\text {FLT }}$ is required. The suggested $R_{\text {FLT }}$ is $100 \mathrm{k} \Omega$ if the pulled-high voltage was 12 V . The following figure illustrates the fault protection function block. If one of the OUVP and OTP occurs, the switch 1 will be turned on, and the voltage at node A will

Figure 2. Fault Protection Function Block

Inductor Selection

The boundary value of the inductance L between Discontinuous Conduction Mode (DCM) and Continuous Conduction Mode (CCM) can be approximated by the following equation :
$L=\frac{D \times(1-D)^{2} \times \text { VOUT }}{2 \times \text { fsW } \times \text { IOUT }}$
where
Vout is the maximum output voltage,
$\mathrm{V}_{\mathbb{I N}}$ is the minimum input voltage,
be under 0.25 V . Then the protection function will perform action 2 to turn off the driver. When protection function is released, the RT8525 will re-start.

On the other hand, if the triggered protection is OOVP, the voltage at node A will be decided by voltage divider composed of $\mathrm{R}_{\mathrm{FLT}}$ and the internal $8 \mathrm{k} \Omega$ resistor. This voltage must be designed between 0.25 V and 1.25 V by choosing $R_{\text {FLT }}$ appropriately. Once the OOVP turns on the Switch 2, the divided FAULT voltage will activate action 1 to turn off the driver without resetting soft-start. Therefore, when protection function OOVP is released, the RT8525 will be in normal operation.

Power MOSFET Selection

For the applications operating at high output voltage, switching losses dominate the overall power loss. Therefore, the power N-MOSFET switch is typically chosen for drain voltage, VDS, rating and low gate charge. Consideration of switch on-resistance $R_{D S(O N)}$ is usually secondary. The VDC regulator in the RT8525 has a fixed output current limit to protect the IC and provide 12V DRV
fsw is the operating frequency,
lout is the sum of current from all LED strings,
and D is the duty cycle calculated by the following equation :
$D=\frac{V_{\text {OUT }}-V_{\text {IN }}}{V_{\text {OUT }}}$
The boost converter operates in DCM over the entire input voltage range if the inductor value is less than the boundary value L. With an inductance greater than L, the converter operates in CCM at the minimum input voltage and may transit to DCM at higher voltages. The inductor must be
selected with a saturated current rating greater than the peak current provided by the following equation :
l LPK $=\frac{\mathrm{V}_{\text {OUT }} \times \mathrm{lOUT}}{\eta \times \mathrm{VIN}}+\frac{\mathrm{VIN} \times \mathrm{D} \times \mathrm{T}}{2 \times \mathrm{L}}$
where η is the efficiency of the power converter.

Diode Selection

Schottky diodes are recommended for most applications because of their fast recovery time and low forward voltage. The power dissipation, reverse voltage rating and pulsating peak current are the important parameters for Schottky diode selection. Make sure that the diode's peak current rating exceeds $l_{\text {LPK }}$, and reverse voltage rating exceeds the maximum output voltage.

Capacitor Selection

Output ripple voltage is an important index for estimating the performance. This portion consists of two parts, one is the product of input current and ESR of output capacitor, another part is formed by charging and discharging process of output capacitor. Refer to figure 3, evaluate $\Delta \mathrm{V}_{\text {out1 }}$ by ideal energy equalization. According to the definition of Q, the Q value can be calculated as following equation :
$\mathrm{Q}=\frac{1}{2} \times\left[\left(\mathrm{I}_{\mathrm{IN}}+\frac{1}{2} \Delta \mathrm{I}_{\mathrm{L}}-\right.\right.$ IOUT $)+\left(\mathrm{I}_{\mathrm{IN}}-\frac{1}{2} \Delta \mathrm{I}_{\mathrm{L}}-\right.$ IOUT $\left.)\right] \times \frac{\mathrm{V}_{\text {IN }}}{V_{\text {OUT }}}$ $\times \frac{1}{\text { fSW }}=$ COUT $\times \Delta$ V OUT1
where $f_{S W}$ is the switching frequency, and $\Delta \mathrm{I}_{\mathrm{L}}$ is the inductor ripple current. Move Cout to the left side to estimate the value of $\Delta \mathrm{V}_{\text {out1 }}$ as the following equation :
Δ VOUT1 $=\frac{\mathrm{D} \times \text { lout }}{\eta \times \text { COUT } \times \text { fsW }}$
Finally, by taking ESR into consideration, the overall output ripple voltage can be determined as the following equation :
Δ VOUT $=\operatorname{lin} \times E S R+\frac{D \times \text { loUT }}{\eta \times \text { COUT } \times \text { fSW }}$

Figure 3. The Output Ripple Voltage without the Contribution of ESR

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J(M A X)}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For SOP-14 packages, the thermal resistance, θ_{JA}, is $100^{\circ} \mathrm{C} /$ W on a standard JEDEC 51-3 single-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formula :
$P_{D(\text { max })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(100^{\circ} \mathrm{C} / \mathrm{W}\right)=1.000 \mathrm{~W}$ for SOP-14 package

The maximum power dissipation depends on the operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance, θ_{JA}. The derating curve in Figure 4 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 4. Derating Curve of Maximum Power Dissipation

Layout Considerations

PCB layout is very important for designing switching power converter circuits. The following layout guides should be strictly followed for best performance of the RT8525.

- The power components $L_{1}, D_{1}, C_{I N}$, Cout M_{1} and R_{S} must be placed as close as possible to reduce current loop. The PCB trace between power components must be as short and wide as possible.
- Place components $R_{\text {FB1 }}, R_{\text {FB2 }}$, Rovp1 and Rovp2 close to IC as possible. The trace should be kept away from the power loops and shielded with a ground trace to prevent any noise coupling.
- The compensation circuit should be kept away from the power loops and should be shielded with a ground trace to prevent any noise coupling. Place the compensation components to the COMP pin as close as possible, no matter the compensation is $R_{c}, C_{C 1}$ or $\mathrm{C}_{\mathrm{C} 2}$.

Figure 5. PCB Layout Guide

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	8.534	8.738	0.336	0.344
B	3.810	3.988	0.150	0.157
C	1.346	1.753	0.053	0.069
D	0.330	0.508	0.013	0.020
F	1.194	1.346	0.047	0.053
H	0.178	0.254	0.007	0.010
I	0.102	0.254	0.004	0.010
J	5.791	6.198	0.228	0.244
M	0.406	1.270	0.016	0.050

14-Lead SOP Plastic Package

Richtek Technology Corporation

5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Richtek manufacturer:

Other Similar products are found below :
PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 19-130041 CE-1003 CE-1004 MAU228 J800041 NL DFC15U48D15 XGS-1205 SPB05B-15 SPB05C-15 L-DA20 DCG40-5G AK1601-9RT DPA423R VI-N61-CM VI-R5022EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01-CZY CK2540-9ERT AK-1615-7R 350DNC40-CON-KIT-9G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20 QUINT4CAP/24DC/5/4KJ QUINT4-CAP/24DC/10/8KJ VEFT1-S12-S12-SMT SRSB-50T12LG AM1DS-0503DJZ AM1DS-0503SJZ AM1SR0509SJZ

