RICHTEK®

300mA Dual LDO Regulator

General Description

The RT9055 is a dual channel, low noise, and low dropout regulator sourcing up to 300mA at each channel. The output voltage range is from 0.9V to 3.5V with an input voltage range from 1.5V to 5.5V.

The RT9055 offers 2% accuracy, extremely low dropout voltage and extremely low quiescent current (only 29μ A per LDO). The shutdown current is near zero which is suitable for battery powered applications. The RT9055 also provides protection functions such as current limiting, output short circuit protection, and over temperature protection.

The RT9055 allows stable operation with very small ceramic output capacitors, hence minimizing required board space and component cost.

The RT9055 is available in a WL-CSP-6B 0.8x1.2 package.

Ordering Information

RT9055-00

└Package Type WSC : WL-CSP-6B 0.8x1.2 ─Output Voltage : VOUT1/VOUT2 VOUT2 > VOUT1 is Recommended

Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features

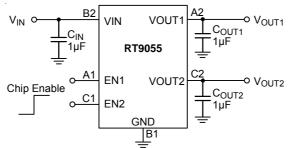
- Wide Operating Voltage Range : 1.5V to 5.5V
- Low Noise for RF Application
- No Noise Bypass Capacitor Required
- Fast Response in Line/Load Transient
- TTL Logic Controlled Shutdown Input
- Low Temperature Coefficient
- Dual LDO Outputs (300mA/300mA)
- Ultra-Low Quiescent Current : 29µA/LDO
- High Output Accuracy 2%
- Short Current Protection
- Thermal Shutdown Protection
- Current Limit Protection
- Short Circuit Thermal Folded Back Protection
- RoHS Compliant and Halogen Free

Applications

- Cellular Handsets
- Battery Powered Equipment
- Hand-Held Instruments
- Portable Information Appliances

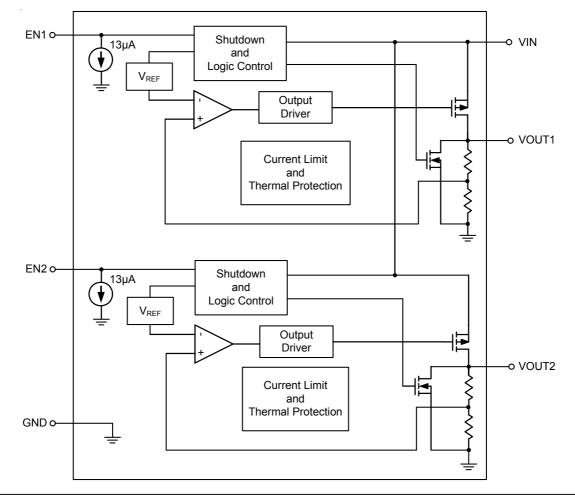
Pin Configurations

A1.	A2	VOUT1					
(B1)	(B2)	VIN					
(C1)	C2)	VOUT2					
		5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					


WSC-CSP-6B 0.8x1.2

Available Voltage Version

Code	Voltage	Code	Voltage	Code	Voltage
Α	3.5	В	1.3	С	1.2
D	1.85	E	2.1	F	1.5
G	1.8	Н	2	J	2.5
K	2.6	L	2.7	М	2.8
Ν	2.85	Р	3	Q	3.1
R	3.2	S	3.3	Т	2.65
V	2.9	W	1.6	Х	3.15
Y	1.9	U	1.4	Z	1.25
2	1.1	3	1		


Typical Application Circuit

Functional Pin Description

Pin No.	Pin Name	Pin Function		
A1	EN1	LDO1 Enable (Active High).		
A2	VOUT1	LDO1 Output Voltage.		
B1	GND	Ground.		
B2	VIN	Supply Input.		
C1	EN2	LDO2 Enable (Active High).		
C2	VOUT2	LDO2 Output Voltage.		

Function Block Diagram

RICHTEK

RT9055

Absolute Maximum Ratings (Note 1)

Supply Input Voltage, VIN	0.3V to 6V
Other I/O Pins Voltages	0.3V to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WL-CSP-6B 0.8x1.2	- 0.670W
Package Thermal Resistance (Note 2)	
WL-CSP-6B 0.8x1.2, θ _{JA}	- 148°C/W
Lead Temperature (Soldering, 10 sec.)	- 260°C
Junction Temperature	- 150°C
Storage Temperature Range	- −65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	- 2kV
MM (Machine Model)	- 200V

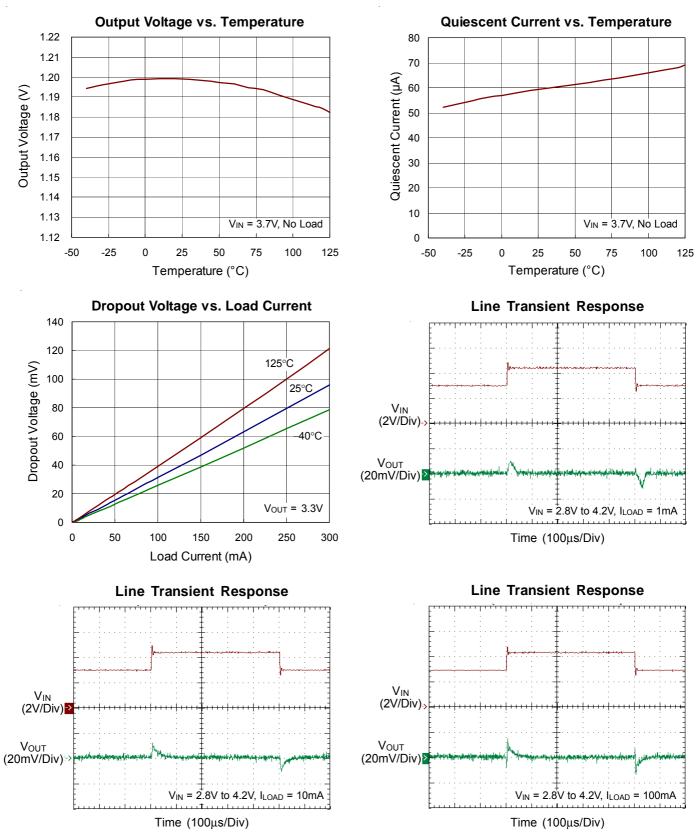
Recommended Operating Conditions (Note 4)

Supply Input Voltage, VIN	- 1.5V to 5.5V
Junction Temperature Range	40°C to 125°C
Ambient Temperature Range	40°C to 85°C

Electrical Characteristics

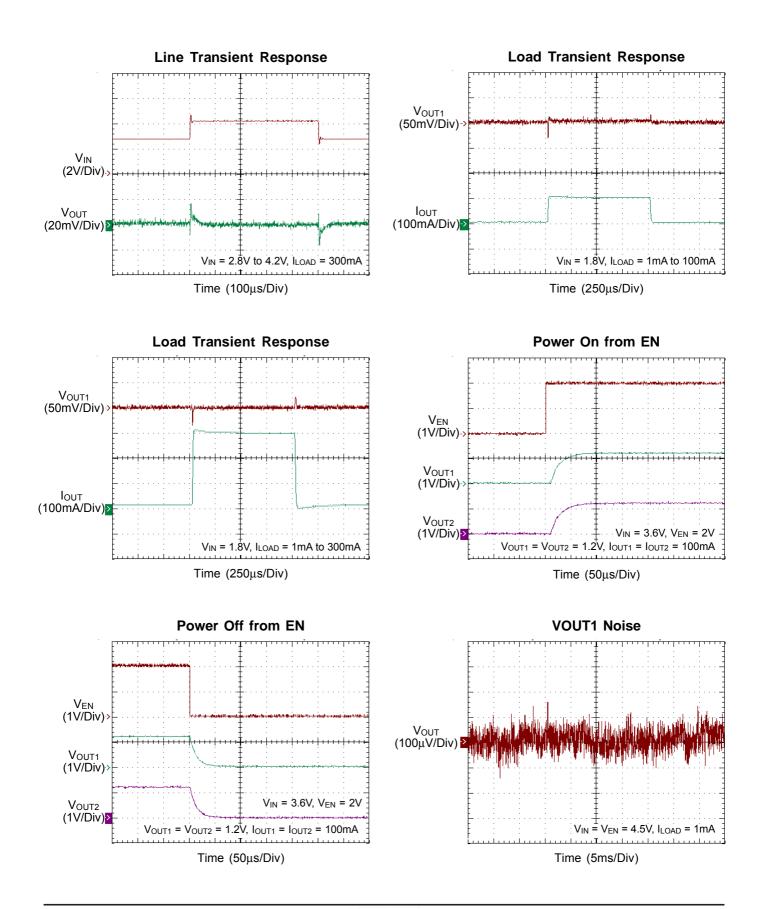
(V_{IN} = V_{OUT} + 1V, C_{IN} = C_{OUT} = 1 μ F, T_A = -40°C to 85°C, unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Power S	Input Power Supply							
			V_{OUT} = 1.2V to 1.4V, I_{OUT} = 300mA	50		550		
Dropout Voltage	e (Note 5)	VDROP	V _{OUT} = 1.5V to 2.4V, I _{OUT} = 300mA	40		400	mV	
			V _{OUT} = 2.5V to 3.5V, I _{OUT} = 300mA	20		300	1	
Output Voltage	Range	Vout		0.9		3.5	V	
V _{OUT} Accuracy		ΔV	I _{OUT} = 1mA to 300mA	-2		2	%	
Line Regulation	ı	ΔV_{LINE}	V_{IN} = (V_{OUT} + 1) to 5.5V, I_{OUT} = 1mA	-2		2	%	
Load Regulatio	n	ΔV_{LOAD}	1mA < I _{OUT} < 300mA	-1.5		1.5	%	
Current Limit		I _{LIM}	$R_{LOAD} = 0\Omega$	350	600		mA	
Quiescent Curr	ent	lq	V _{EN} > 1.5V		58		μA	
Shutdown Curr	ent	I _{SHDN}	V _{EN} < 0.4V			1	μA	
EN Input Threshold	Logic-High	VIH	V _{IN} = 2.5V to 5.5V, Power On	1.2			v	
Voltage	Logic-Low	VIL	V_{IN} = 2.5V to 5.5V, Shutdown			0.4	V	
V _{OUT} Discharge in Shutdown	e Resistance (Note 6)		V _{IN} = 5V, EN1 = EN2 = GND		3		kΩ	
EN Pull Low Cu	urrent	I _{EN}		8	13	18	μA	
Thermal Shutde	own	T _{SD}			170		°C	
Thermal Shutdo Hysteresis	own	ΔT_{SD}			40		°C	

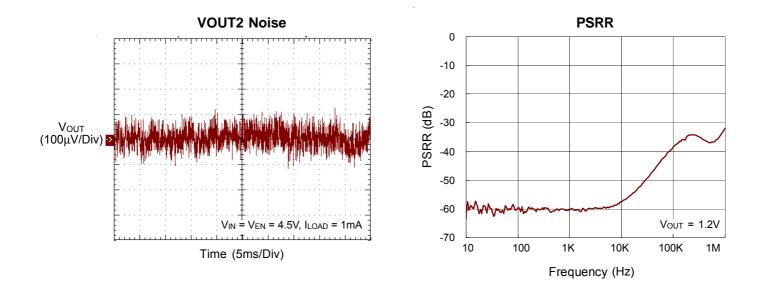

RT9055

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Power Supply Rejection Ratio	PSRR	f = 100Hz, V_{IN} = V_{OUT} + 1V, C_{OUT} = 2.2 μ F, I _{LOAD} = 50mA		70			
		f = 1kHz, V_{IN} = V_{OUT} + 1V, C_{OUT} = 2.2 μ F, I _{LOAD} = 50mA		70			
		f = 10kHz, V_{IN} = V_{OUT} + 1V, C_{OUT} = 2.2 μ F, I _{LOAD} = 50mA		70	-		
		f = 100kHz, $V_{IN} = V_{OUT} + 1V$, $C_{OUT} = 2.2\mu$ F, $I_{LOAD} = 50$ mA		54		dB	
		$f = 200 \text{kHz}, V_{\text{IN}} = V_{\text{OUT}} + 1\text{V},$ $C_{\text{OUT}} = 2.2 \mu\text{F}, I_{\text{LOAD}} = 50 \text{mA}$		45			
		$ f = 300 kHz, V_{IN} = V_{OUT} + 1V, C_{OUT} = 2.2 \mu F, I_{LOAD} = 50 mA $	38				
Output Voltage Noise		C _{OUT1} = C _{OUT2} = 10μF, 10Hz to100kHz, I _{OUT1} = I _{OUT2} = 1mA		100		μV _{RMS}	

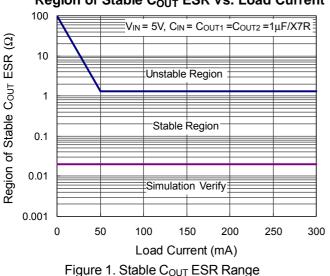
- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2.** θ_{JA} is measured at $T_A = 25^{\circ}$ C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. The CSP balls connect directly to the internal GND copper plane by 2 vias, the via diameter is about 1mm.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. The dropout voltage is defined as $V_{IN} V_{OUT}$, which is measured when V_{OUT} is $V_{OUT(NORMAL)} 100 mV$.
- Note 6. It is guaranteed by design.


4

Typical Operating Characteristics


Copyright ©2014 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Copyright ©2014 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



Applications Information

Like any low-dropout regulator, the external capacitors used with the RT9055 must be carefully selected for regulator stability and performance. Using a capacitor whose value is >1 μ F on the RT9055 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response.

The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The RT9055 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1µF with ESR is > $20m\Omega$ on the RT9055 output ensures stability. The RT9055 still works well with output capacitor of other types due to the wide stable ESR range. Figure 1 shows the curves of allowable ESR range as a function of load current for various output capacitor values. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the RT9055 and returned to a clean analog ground.

Region of Stable C_{OUT} ESR vs. Load Current

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. For WL-CSP-6B 0.8x1.2 package, the thermal resistance, θ_{JA} , is 148°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated by the following formula :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (148^{\circ}C/W) = 0.670W$ for WL-CSP-6B 0.8x1.2 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J (MAX)}$ and thermal resistance, θ_{JA} . The derating curves in Figure 2 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

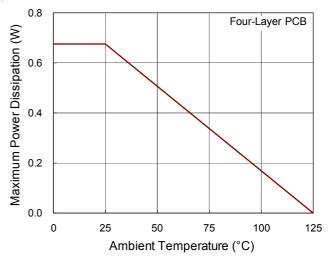
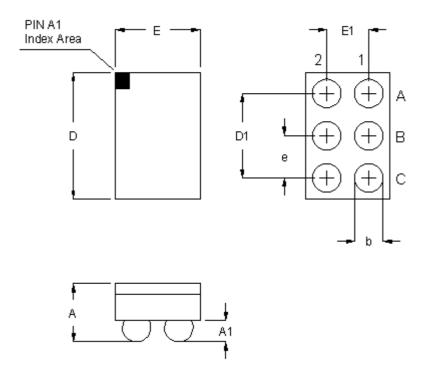



Figure 2. Derating Curve of Maximum Power Dissipation

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	0.500	0.600	0.020	0.024	
A1	0.170	0.230	0.007	0.009	
b	0.240	0.300	0.009	0.012	
D	1.150	1.250	0.045	0.049	
D1	0.800		0.031		
E	0.750	0.850	0.030	0.033	
E1	0.400		0.016		
е	0.400		0.016		

6B WL-CSP 0.8x1.2 Package (BSC)

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Richtek manufacturer:

Other Similar products are found below :

AP7363-SP-13 NCV8664CST33T3G L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TLF4949EJ NCP4687DH15T1G NCV8703MX30TCG LP2951CN NCV4269CPD50R2G AP7315-25W5-7 NCV47411PAAJR2G AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117ID-ADJTRG1 NCV4263-2CPD50R2G NCP706ABMX300TAG NCP114BMX075TCG MC33269T-3.5G TLE4471GXT AP7315-33SA-7 NCV4266-2CST33T3G NCP715SQ15T2G NCV8623MN-50R2G NCV563SQ18T1G NCV8664CDT33RKG NCV4299CD250R2G NCP715MX30TBG NCV8702MX25TCG TLE7270-2E NCV562SQ25T1G AP2213D-3.3TRG1 AP2202K-2.6TRE1 NCV8170BMX300TCG NCV8152MX300180TCG NCP700CMT45TBG AP7315-33W5-7 NCP154MX180300TAG AP2113AMTR-G1 NJW4104U2-33A-TE1 MP2013AGG-5-P NCV8775CDT50RKG NJM2878F3-45-TE1 S-19214B00A-V5T2U7 S-19214B50A-V5T2U7 S-19213B50A-V5T2U7 S-19214BC0A-E8T1U7*1 S-19213B00A-V5T2U7 S-19213B33A-V5T2U7