
25μA I_O, 250mA Low-Dropout Linear Regulator

General Description

The RT9076 is a low-dropout (LDO) linear regulator that features high input voltage, low dropout voltage, ultra-low operating current, and miniaturized packaging. With quiescent current as low as $25\mu A$, the RT9076 is ideal for battery-powered equipment.

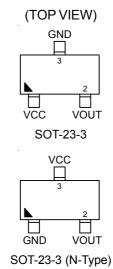
The RT9076's stability requirements are easily met with all types of output capacitors, including tiny ceramic capacitors, over its wide input range and its load current range (0mA to 250mA). The RT9076 offers standard output voltages of 1.2V, 1.5V, 1.8V, 2.5V and 3.3V.

Ordering Information

Note:

Richtek products are:

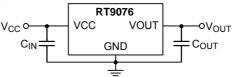
- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.


Features

- 25µA Quiescent Current
- ±2% Output Accuracy
- 250mA Output Current
- Dropout Voltage: 0.4V at 200mA
- Fixed Output Voltage 1.2V/1.5V/1.8V/2.5V/3.3V
- Stable with Ceramic or Tantalum Capacitor
- Current Limit Protection
- Over-Temperature Protection
- SOT-23-3 Packages
- RoHS Compliant and Halogen Free

Applications

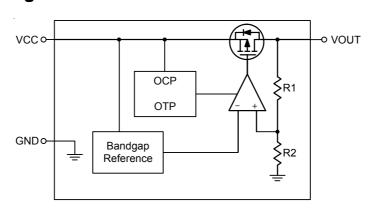
- · Portable, Battery Powered Equipment
- Ultra Low Power Microcontrollers


Pin Configurations

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Simplified Application Circuit



Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Functional Pin Description

Р	Pin No.		Din Eunation		
SOT-23-3	SOT-23-3 (N-Type)	Pin Name Pin Function			
1	3	VCC	Supply Voltage Input.		
2	2	VOUT	Output of the Regulator.		
3	1	GND	Ground.		

Function Block Diagram

Operation

The RT9076 is a high input voltage linear regulator specifically designed to minimize external components.

The minimum required output capacitance for stable operation is 1µF effective capacitance after consideration of the temperature and voltage coefficient of the capacitor.

Output Transistor

The RT9076 includes a built-in low on-resistance P-MOSFET output transistor for low dropout voltage applications.

Error Amplifier

The Error Amplifier compares the output feedback voltage from an internal feedback voltage divider to an internal reference voltage and controls the P-MOSFET's gate voltage to maintain output voltage regulation.

Current Limit

The RT9076 provides a current limit function to prevent damage during output over-load or shorted-circuit conditions. The output current is detected by an internal sensing transistor.

Over-Temperature Protection

The over-temperature protection function will turn off the P-MOSFET when the internal junction temperature exceeds 150°C (typ.) and the output current exceeds 30mA. Once the junction temperature cools down by approximately 20°C, the regulator will automatically resume operation.

----- 2.5V to 6V

Absolute Maximum Ratings (Note 1)

• VCC to GND	–0.3V to 7V
• VOUT to VCC	–7V to 0.3V
• VOUT to GND	–0.3V to 7V
 Power Dissipation, P_D @ T_A = 25°C 	
SOT-23-3	0.41W
Package Thermal Resistance (Note 2)	
SOT-23-3, θ_{JA}	243.3°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
• Junction Temperature	
Storage Temperature Range	–65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
MM (Machine Model)	200V

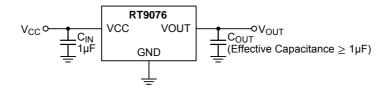
Recommended Operating Conditions (Note 4)

	,	•	0 /			
•	Junction	Tempera	ature Range-	 	 	40°C to 125°C
•	Ambient	Tempera	ature Range -	 	 	40°C to 85°C

Electrical Characteristics

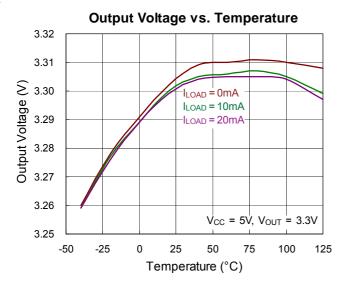
 $((V_{OUT} + 1) < V_{CC} < 6V, T_A = 25^{\circ}C, unless otherwise specified.)$

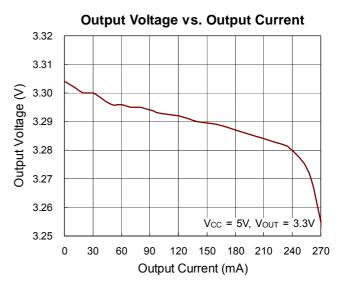
Supply Input Voltage, VCC ------

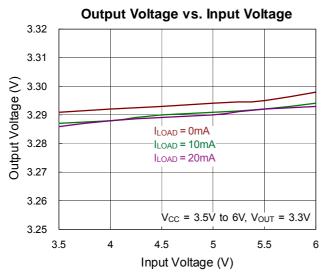

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Output Voltage Range	Vout		1.2		3.3	V	
DC Output Accuracy		I _{LOAD} = 1mA	-2		2	%	
Dropout Voltage	V _{Drop}	I_{LOAD} = 0.2A, $V_{OUT} \ge 3V$		0.4	1.2	V	
		ILOAD = 0.1A, VOUT < 3V		0.3	1		
Quiescent Current	IQ	I _{LOAD} = 20mA		25	50	μΑ	
5		I _{LOAD} = 1mA, V _{OUT} > 1.8V		0.6	1	%	
Line Regulation		I _{LOAD} = 1mA, V _{OUT} ≤ 1.8V		0.6	1.3		
		10mA < I _{LOAD} < 200mA, V _{OUT} < 1.5V		1	1.4		
Load Regulation		10mA < I _{LOAD} < 200mA, 1.5V ≤ V _{OUT} < 2.5V		0.7	1.2	%	
		10mA < I _{LOAD} < 250mA, V _{OUT} ≥ 2.5V		0.6	1		
Power Supply Rejection	PSRR	f = 100Hz, I _{OUT} = 50mA	70		٩D		
Ratio		f = 10kHz, I _{OUT} = 50mA		-40		dB	
Output Current Limit		V _{OUT} = 0.5 x V _{OUT} (Normal)	300	400	500	mA	
OTP Threshold		I _{LOAD} = 30mA		150		°C	
OTP Hysteresis		I _{LOAD} = 30mA		20		°C	

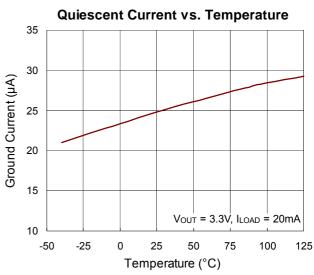
Copyright ©2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

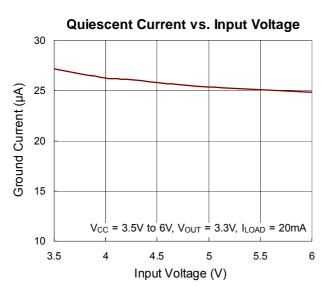
- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at $T_A = 25^{\circ}$ C on a high effective thermal conductivity four-layer test board per JEDEC 51-7.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

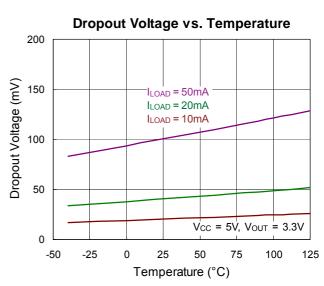

Typical Application Circuit

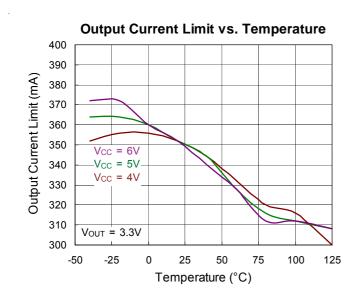


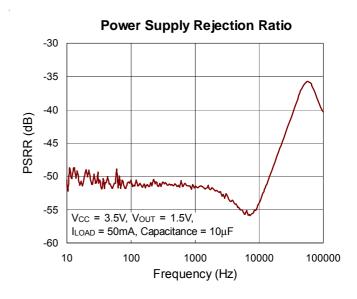

www.richtek.com

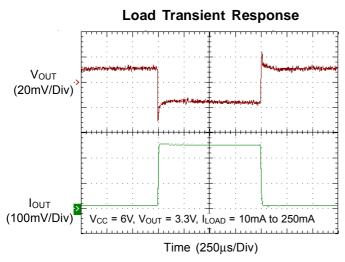


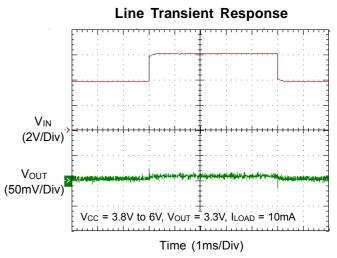

Typical Operating Characteristics

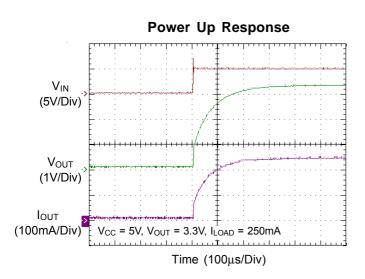







Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.


DS9076-01 February 2016 www.richtek.com



Applications Information

Like any low dropout linear regulator, the RT9076's external input and output capacitors must be properly selected for stability and performance. Use a $1\mu F$ or larger input capacitor and place it close to the IC's VCC and GND pins.

Any output capacitor meeting the minimum $1m\Omega$ ESR (Equivalent Series Resistance) and effective capacitance larger than $1\mu F$ requirement may be used. Place the output capacitor close to the IC's VOUT and GND pins. Increasing capacitance and decreasing ESR can improve the circuit's PSRR and line transient response.

Thermal Considerations

For continuous operation, do not exceed absolute the maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and the allowed difference between the junction and ambient temperatures. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

The recommended operating conditions specify a maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. On a standard JEDEC 51-7 four-layer thermal test board, the thermal resistance, θ_{JA} , of the SOT-23-3 package is 243.3C/W. The maximum power dissipation at T_A = 25°C can be calculated by the following formula :

 $P_{D(MAX)}$ = (125°C - 25°C) / (243.3°C/W) = 0.41W for SOT-23-3 package

For a fixed $T_{J(MAX)}$ of 125°C, the maximum power dissipation depends on the operating ambient temperature and the package's thermal resistance, θ_{JA} . The derating curve in Figure 1 shows the effect of rising ambient temperature on the maximum recommended power dissipation.

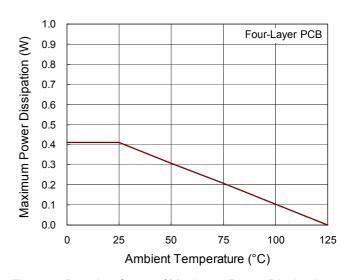
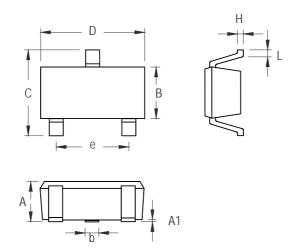



Figure 1. Derating Curve of Maximum Power Dissipation

Outline Dimension

Cumbal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.356	0.508	0.014	0.020	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	1.803	2.007	0.071	0.079	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-3 Surface Mount Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Richtek manufacturer:

Other Similar products are found below:

M38D29FFHP#U1 702103A 717726C 742457H MP20051DN-LF-Z R5F111PGGFB#30 AP7363-SP-13 NCP103AMX285TCG
NCV8664CST33T3G NCV8752AMX28TCG L9454 AP7362-HA-7 LX13043CLD TCR3DF185,LM(CT TCR3DF24,LM(CT
TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT TLF4949EJ L9708 L970813TR 030014BB 059985X EAN61387601
EAN61573601 NCP121AMX173TCG NCP4687DH15T1G NCV8703MX30TCG 701326R 702087BB 755078E TCR2EN28,LF(S
LM1117DT-1.8/NO LT1086CM#TRPBF AZ1085S2-1.5TRE1 MAX15101EWL+T NCV8170AXV250T2G SCD337BTG
TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S MAX15103EWL+T TS2937CZ-5.0 C0 MAX8878EUK30-T MAX663CPA NCV4269CPD50R2G NCV8716MT30TBG AZ1117IH-1.2TRG1 MP2013GQ-P