Synchronous Boost Converter with Voltage Detector

General Description

The RT9276 is a synchronous boost converter, which is based on a fixed frequency Pulse-Width-Modulation (PWM) controller using a synchronous rectifier to obtain maximum efficiency. The converter provides a power supply solution for products powered by a variety of batteries such as single cell, dual cell alkaline, NiMH and NiCd battery. At light load currents, the converter enters power save mode to maintain a high efficiency over a wide load current range.

The output voltage can be programmed by an external resistor divider, or fixed at a certain voltage. Moreover, the converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. The maximum peak current in the boost switch is limited to 2A for current limit.

For the RT9276, a low-EMI mode is implemented to reduce ringing of the inductor phase pin when the converter enters discontinuous conduction mode. Moreover, a voltage detector is built-in in the chip for low battery detection.

```
Ordering Information
RT9276(-\square\square)\square口
                                    - Package Type
                                    QW : WDFN-10L 3x3 (W-Type)
            - Lead Plating System
                G:Green (Halogen Free and Pb Free)
            Boost VOUT
                Default : Adjustable
                33:3.3V
                50:5.0V
```

 Note :
 Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

- True Load Disconnection During Shutdown
- Internal Synchronous Rectifier
- Up to 96\% Efficiency
- Current Mode PWM Operation with Internal Compensation
- Low Start-Up Voltage
- Low Quiescent Current
- Internal Soft-Start Control
- Low Battery Comparator
- Low EMI Converter (Anti-Ringing)
- Power Save Mode for Improved Efficiency at Light Load Current
- Over Current Protection
- Short Circuit Protection
- Over Temperature Protection
- Over Voltage Protection
- Small WDFN-10L 3x3 Package
- RoHS Compliant and Halogen Free

Applications

- All One-Cell, Two-Cell and Three-Cell Alkaline, NiCd, NiMH and Single-Cell Li Batteries
- Hand-Held Devices
- WLED Flash Light

Pin Configurations

(TOP VIEW)

WDFN-10L 3x3
Marking Information

Typical Application Circuit

Figure 1. Adjustable Output Voltage Boost Converter with Voltage Detector

Figure 2. Fixed Output Voltage Boost Converter with Voltage Detector

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	EN	Chip Enable (Active High).
2	VOUT	Boost Output.
3	FB / NC	Feedback Input for Adjustable Output Voltage Version / No Internal Connection for Fixed Output Voltage Version.
4	LBO	Voltage Detector Output.
5	GND	Ground.
6	VBAT	Battery Supply Input.
7	LBI	Voltage Detector Input.
8	$\overline{\text { PGOOD }}$	Power Good Indicator.
9	LX	Switching Node. Connect this pin to an inductor.
10	PGND	Power Ground.
11 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Function Block Diagram

Figure 3. Adjustable Voltage Regulator

Figure 4. Fixed Voltage Regulator
Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, Vbat -0.3 V to 6 V
- Boost Output Voltage, Vout -0.3 V to 6.5 V
- Switch Output Voltage, LX -0.3 V to 6.5 V
<10ns -2 V to 7.5 V
- Digital Input Voltage, EN, LBI -0.3 V to 6 V
- Digital Output Voltage, LBO, $\overline{\text { PGOOD }}$ -0.3 V to 6 V
- Others Pin -0.3 V to 6 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ WDFN-10L 3×3 1.429 W
- Package Thermal Resistance (Note 2)
WDFN-10L $3 \times 3, \theta_{\mathrm{JA}}$ $70^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-10L $3 \times 3, \theta_{\mathrm{Jc}}$ $8.2^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature Range $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)HBM (Human Body Mode)2kV
MM (Machine Mode) 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage Range, $\mathrm{V}_{\mathrm{BAT}}$ 1.2 V to 5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\text {BAT }} \geq 2.5 \mathrm{~V}\right.$ or $\mathrm{V}_{\text {BAT }}=\mathrm{V}_{\text {OUT }}+0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\text {BAT }}, \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F}$, Cout $=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified $)$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Pre-charge Current	IPre-chg	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	--	100	--	mA
DCIDC Stage						
Minimum Start-Up Input Voltage	$V_{\text {BAT }}$	$\mathrm{L}_{\text {LOAD }}=1 \mathrm{~mA}$	--	1.2	--	V
Input Voltage Range After Start-Up	$V_{\text {BAT }}$		0.8	--	5	V
Output Voltage Range	Vout		--	--	5	V
Feedback Reference Voltage	$V_{F B}$	For Adjustable Output Voltage	0.49	0.5	0.51	V
Output Voltage Accuracy	$\Delta \mathrm{V}_{\text {OUT }}$	For Fixed Output Voltage	-3	--	3	\%
Switching Frequency	f_{LX}		0.96	1.2	1.44	MHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$		--	90	--	\%
Non-Switching Quiescent Current	$\mathrm{l}_{\mathrm{Q}, \mathrm{NS}}$	No Switching	--	100	--	$\mu \mathrm{A}$
Shutdown Current	ISHDN	$\mathrm{V}_{\mathrm{EN}}=0, \mathrm{~V}_{\mathrm{BAT}}=1.2 \mathrm{~V}$	--	2	5	$\mu \mathrm{A}$

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit	
Protection								
Over-Temperature Protection		Totp		--	170	--	${ }^{\circ} \mathrm{C}$	
Over-Temperature Hysteresis		TotP_Hys		--	40	--	${ }^{\circ} \mathrm{C}$	
Over-Current Protection		locp	$\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$	1.6	2	2.4	A	
Over-Voltage Protection		Vovp		5.4	--	6	V	
Power MOSFET								
N-MOSFET ON-Resistance		RDS(ON)_N	$\mathrm{V}_{\text {Out }}=3.3 \mathrm{~V}$	--	220	--	$\mathrm{m} \Omega$	
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	--	200	--			
P-MOSFET ON-Resistance			RDS(ON)_P	$\mathrm{V}_{\text {Out }}=3.3 \mathrm{~V}$	--	260	--	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$		--	240	--		
Enable Control								
EN Threshold Voltage	Logic-High	$\mathrm{V}_{1} \mathrm{H}$	Rising	0.8	--	--	V	
	Logic-Low	VIL	Falling	--	--	0.2		
Voltage Detector								
LBI Voltage Threshold		$\mathrm{V}_{\text {LBI_Rising }}$		0.49	0.5	0.51	V	
LBI Voltage Hysteresis		VLbI_Hys		--	10	--	mV	
LBO Output Impedance		Ron_lbo	$\mathrm{V}_{\text {LBI }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$	--	15	--	Ω	

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

$C_{\text {IN }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {оит }}=22 \mu \mathrm{~F}, \mathrm{~L}=4.7 \mu \mathrm{H}$, unless otherwise specified.

Efficiency vs. Input Voltage

Output Voltage vs. Load Current

Efficiency vs. Load Current

Efficiency vs. Input Voltage

Output Voltage vs. Load Current

Switching

Line Transient Response

Switching

Load Transient Response

Application Information

The RT9276 integrates a high efficiency synchronous stepup DC-DC converter and a low battery detector. To fully utilize its advantages, peripheral components should be appropriately selected. The following information provides detailed description of application.

Inductor Selection

For a better efficiency in high switching frequency converter, the inductor selection has to use a proper core material such as ferrite core to reduce the core loss and choose low ESR wire to reduce copper loss. The most important point is to prevent core saturation when handling the maximum peak current. Using a shielded inductor can minimize radiated noise in sensitive applications. The maximum peak inductor current is the maximum input current plus half of the inductor ripple current. The calculated peak current has to be smaller than the current limitation in the electrical characteristics. A typical setting of the inductor ripple current is 20% to 40% of the maximum input current. If the selection is 40%

$$
\begin{aligned}
\mathrm{I}_{\mathrm{PK}} & =\mathrm{I}_{\mathrm{IN}(\mathrm{MAX})}+\frac{1}{2} \mathrm{I}_{\mathrm{RIPPLE}}=1.2 \times \mathrm{I}_{\mathrm{IN}(\mathrm{MAX})} \\
& =1.2 \times\left[\frac{\mathrm{IOUT}^{\mathrm{MAX})} \times \mathrm{V}_{\mathrm{OUT}}}{\eta \times \mathrm{V}_{\mathrm{BAT}(\mathrm{MIN})}}\right]
\end{aligned}
$$

The minimum inductance value is derived from the following equation:
$\mathrm{L}=\frac{\eta \times \mathrm{I}_{\mathrm{IN}(\mathrm{MIN})}{ }^{2} \times\left[\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{BAT}(\mathrm{MIN})}\right]}{0.4 \times \operatorname{loUT}(\mathrm{MAX}) \times \mathrm{V}_{\mathrm{OUT}^{2}} \times \mathrm{f}_{\mathrm{LX}}}$
Depending on the application, the recommended inductor value is between $2.2 \mu \mathrm{H}$ and $10 \mu \mathrm{H}$.

Input Capacitor Selection

For better input bypassing, low-ESR ceramic capacitors are recommended for performance. A $10 \mu \mathrm{~F}$ input capacitor is sufficient for most applications. For a lower output power requirement application, this value can be decreased

Output Capacitor Selection

For lower output voltage ripple, low ESR ceramic capacitors are recommended. The tantalum capacitors can be used as well, but their ESR is bigger than ceramic capacitors. The output voltage ripple consists of two components:
one is the pulsating output ripple current which flows through the ESR, and the other is the capacitive ripple caused by charging and discharging.

$$
\begin{aligned}
& \mathrm{V}_{\text {RIPPLE }}=\mathrm{V}_{\text {RIPPLE }}(E S R)+\mathrm{V}_{\text {RIPPLE }}(\mathrm{C})
\end{aligned}
$$

Output Voltage Setting

Referring to application circuit (Figure 1), the output voltage of the switching regulator ($\mathrm{V}_{\text {OUT }}$) can be set with below equation :
$V_{\text {OUT }}=\left(1+\frac{\mathrm{R} 3}{\mathrm{R} 4}\right) \times \mathrm{V}_{\mathrm{FB}}$
where $\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$ (typ.)
When the input voltage is larger than output setting voltage 370 mV (typ.) the RT9276 will be in pre-charge mode. During pre-charge phase, the synchronous P-MOSFET is turned on until the output capacitor is charged to a value close to the input voltage minus 0.2 V . Then the converter is followed by PWM operation. The adaptive precharge current increases linearly to overcome the loading current in the pre-charge phase. If the loading current is larger than pre-charge current, the RT9276 will be in precharge mode until loading current is removed or reduced.

Low Battery Voltage Detector

The low battery voltage detector is designed to monitor the battery voltage and to generate an error flag when the battery voltage drops below a user-set threshold voltage. The function is active only when the device is enabled. When the device is disabled, the LBO pin is in high impedance. The LBI threshold voltage is 0.5 V typically, with 10 mV hysteresis voltage. If the low-battery detection circuit is not used, the LBI pin should be connected to GND (or to $\mathrm{V}_{\mathrm{BAT}}$) and the LBO pin can be left unconnected. Do not let the LBI pin floating.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient.

The maximum power dissipation can be calculated by following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J(M A X)}$ is the maximum operation junction temperature, T_{A} is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification, the maximum junction temperature is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance θ_{JA} is layout dependent. For WDFN-10L $3 x 3$ package, the thermal resistance θ_{JA} is $70^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 four- layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(70^{\circ} \mathrm{C} / \mathrm{W}\right)=1.429 \mathrm{~W}$ for WDFN-10L $3 x 3$ packages

The maximum power dissipation depends on operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance θ_{JA}. The Figure 5 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 5. Derating Curve of Maximum Power Dissipation

Layout Consideration

For best performance of the RT9276, the following layout guidelines must be strictly followed :

- Input and Output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
- The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.
- Keep the main current traces as short and wide as possible.
- Place the feedback components as close as possible to the IC and keep away from the noisy devices.

Figure 6. PCB Layout Guide

Outline Dimension

21

DETAILA
Pin \#1 ID and Tie Bar Mark Options

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.180	0.300	0.007	0.012				
D	2.950	3.050	0.116	0.120				
	2.300	2.650	0.091	0.104				
E2	2.950	3.050	0.116	0.120				
E2	1.500	1.750	0.059	0.069				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

W-Type 10L DFN 3x3 Package

Richtek Technology Corporation

5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Richtek manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG NVD0.4YJJ-M6G XKS-2415

