3A High Performance Step-Up DC/DC Converter

General Description

The RT9297 includes a high performance step-up DC/DC converter that provides a regulated supply voltage for activematrix thin-film transistor (TFT) liquid-crystal displays (LCDs).

The Boost Converter incorporates current mode, fixedfrequency, pulse-width modulation (PWM) circuitry with a built-in N-Channel power MOSFET to achieve high efficiency and fast transient response.

The RT9297 is available in a WDFN -10L 3×3 package.

Ordering Information

RT9297
Package Type
QW : WDFN-10L 3x3 (W-Type)
Lead Plating System
G: Green (Halogen Free and Pb Free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Features

- High Efficiency Up to 90\%
- Adjustable Output Voltage : VDD to 24 V
- Wide Input Supply Voltage : 2.6 V to 5.5 V
- Input Under Voltage Lockout
- Pin-Programmable Switching Frequency 640kHzl 1.2MHz
- Programmable Soft-Start
- Small 10-Lead WDFN Package
- RoHS Compliant and Halogen Free

Applications

- Notebook Computer Displays
- LCD Monitor Panels
- LCDTV Panels

Pin Configurations

(TOP VIEW)

WDFN-10L 3×3

Marking Information

EZ=YM DNN	EZ=: Product Code YMDNN : Date Code

Typical Application Circuit

Function Block Diagram

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	COMP	Compensation Pin for Error Amplifier. Connect a series RC from COMP to ground.
2	FB	Feedback. The feedback regulation voltage is 1.24V nominal. Connect an external resistive voltage-divider between the step-up regulator's output (VAVDD) and GND, with the center tap connected to FB. Place the divider close to the IC and minimize the trace area to reduce noise coupling.
3	EN	Enable Control Input. Drive EN low to turn off the Boost Converter.
4,5 11 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
6,7	LX	Switch. LX is the drain of the internal MOSFET. Connect the inductor/rectifier diode junction to LX and minimize the trace area for lower EMI.
8	VDD	Supply Pin. Bypass VDD with a minimum 1 1 F ceramic capacitor directly to GND. 9
10	FREQ	Frequency-Select Input. When FREQ is low, the oscillator frequency will be set to 640kHz. When FREQ is high, the frequency will be set to 1.2MHz. This input has a 6 μ A pull-down current.
SS	Soft-Start Control. Connect a soft-start capacitor (CSS) to this pin. A 4 4AA constant current charges the soft-start capacitor. When EN connected to GND, the soft-start capacitor is discharged. When EN connected to V VD high, the soft-start capacitor is charged to V VD. Leave floating for not using soft-start.	

Absolute Maximum Ratings (Note 1)

- LX to GND -0.3 V to 26 V
- Other Pins to GND -0.3 V to 6 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
WDFN-10L 3x3 1.667W
- Package Thermal Resistance (Note 2) WDFN-10L $3 \times 3, \theta_{\mathrm{JA}}$ $60^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-10L 3x3, θ_{Jc} $8.2^{\circ} \mathrm{C} / \mathrm{W}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Model) 2kV
MM (Machine Model) 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, VDD 2.6 V to 5.5 V- Ambient Temperature Range$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Supply Current						
Input Voltage Range	$V_{\text {DD }}$	$\mathrm{V}_{\text {AVDD }}<18 \mathrm{~V}$	2.6	--	5.5	V
		$18 \mathrm{~V}<\mathrm{V}_{\text {AVDD }}<24 \mathrm{~V}$	4	--	5.5	
Output Voltage Range	$\mathrm{V}_{\text {AVDD }}$		$V_{D D}$	--	24	V
Under-Voltage Lockout Threshold	VUVLO	$V_{\text {DD }}$ Rising	--	2.4	--	V
		Hysteresis	--	50	--	mV
Quiescent Current	I_{Q}	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$, LX Not Switching	--	0.5	--	mA
		$V_{F B}=1 \mathrm{~V}$, LX Switching	--	4	--	
Shutdown Current	ISHDN	EN = GND	--	0.1	10	$\mu \mathrm{A}$
Oscillator						
Oscillator Frequency	fosc	FREQ = GND	500	640	750	kHz
		FREQ $=\mathrm{V}_{\mathrm{IN}}$	1000	1240	1500	
Maximum Duty Cycle			--	90	--	\%
Error Amplifier						
Feedback Regulation Voltage	$V_{F B}$		1.22	1.24	1.26	V
Feedback Input Bias Current	$I_{\text {FB }}$		--	125	250	nA

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Feedback Line Regulation			--	0.05	0.2	\%/V
Transconductance	gm	$\Delta \mathrm{I}= \pm 2.5 \mu \mathrm{~A}$ at COMP $=1 \mathrm{~V}$	--	135	--	$\mu \mathrm{A} / \mathrm{V}$
Voltage Gain	Av	FB to COMP	--	700	--	V/V
N- MOSFET						
Current Limit	l LIM		3	3.8	5	A
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$		--	125	250	$\mathrm{m} \Omega$
Leakage Current	lıEAK	$V_{L X}=24 V$	--	30	45	$\mu \mathrm{A}$
Current-Sense Transresistance	R_{CS}		--	0.25	--	V/A
Soft-Start						
Charge Current	Iss		--	4	--	$\mu \mathrm{A}$
Control Inputs						
EN, FREQ Input Low Voltage	$\mathrm{V}_{\text {IL }}$		--	--	$0.3 \times V_{\text {DD }}$	V
EN, FREQ Input High Voltage	$\mathrm{V}_{\text {IH }}$		$0.7 \times V_{\text {DD }}$	--	--	V
EN, FREQ Input Hysteresis			--	$0.1 \times V_{\text {DD }}$	--	V
FREQ Pull-down Current			--	6	--	$\mu \mathrm{A}$
EN Input Current	I_{EN}	EN = GND	--	0.001	1	$\mu \mathrm{A}$

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

Output Voltage vs. Load Current

Output Voltage vs. Input Voltage

Efficiency vs. Load Current

Output Voltage vs. Load Current

Output Voltage vs. Input Voltage

Load Transient Response

Application Information

The RT9297 contains a high performance boost regulator to generate voltage for the panel source driver ICs. The following content contains the detailed description and the information of component selection.

Boost Regulator

The boost regulator is a high efficiency current-mode PWM architecture with $640 \mathrm{~K} / 1.2 \mathrm{MHz}$ operation frequency. It performs fast transient responses to generate source driver supplies for TFT LCD display. The high operation frequency allows smaller components used to minimize the thickness of the LCD panel. The output voltage setting can be achieved by setting the resistive voltage-divider sensing at FB pin. The error amplifier varies the COMP voltage by sensing the FB pin to regulate the output voltage. For better stability, the slope compensation signal summed with the current-sense signal will be compared with the COMP voltage to determine the current trip point and duty cycle.

Soft-Start

The RT9297 provides soft-start function to minimize the inrush current. When power on, an internal constant current charges an external capacitor. The rising voltage rate on the COMP pin is limited during the charging period and the inductor peak current will also be limited at the same time. When power off, the external capacitor will be discharged for next soft start time.

The soft-start function is implemented by the external capacitor with a $4 \mu \mathrm{~A}$ constant current charging to the softstart capacitor. Therefore, the capacitor should be large enough for output voltage regulation. Typical value for softstart capacitor range is 33 nF . The available soft-start capacitor range is from 10 nF to 100 nF .

Output Voltage Setting

The regulated output voltage is shown as following equation :
$\mathrm{V}_{\text {AVDD }}=1.24 \mathrm{~V} \times\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)$
The recommended value for R 2 should be up to $10 \mathrm{k} \Omega$ without some sacrificing. To place the resistor divider as close as possible to the chip can reduce noise sensitivity.

Loop Compensation

The voltage feedback loop can be compensated with an external compensation network consisted of R COMP and $\mathrm{C}_{\text {comp. }}$ Choose $\mathrm{R}_{\text {comp }}$ to set high frequency integrator gain for fast transient response and Ccomp to set the integrator zero to maintain loop stability. For typical application $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{AVDD}}=13.6 \mathrm{~V}, \mathrm{C} 4=4.7 \mu \mathrm{~F} \times 3$, $L=3.6 \mu \mathrm{H}$, the recommended value for compensation is as below : $\mathrm{R}_{\text {сомр }}=56 \mathrm{k} \Omega, \mathrm{C}_{\text {сом }}=330 \mathrm{pF}$.

Over Current Protection

The RT9297 boost converter has over-current protection to limit peak inductor current. It prevents large current from damaging the inductor and diode. During the ONtime, once the inductor current exceeds the current limit, the internal LX switch turns off immediately and shortens the duty cycle. Therefore, the output voltage drops if the over-current condition occurs. The current limit there should is also affected by the input voltage, duty cycle and inductor value.

Over Temperature Protection

The RT9297 boost converter has thermal protection function to prevent the chip from overheating. When the junction temperature exceeds $155^{\circ} \mathrm{C}$, it will shut down the device. Once the device cools down by approximately $30^{\circ} \mathrm{C}$, it will start to operate normally. For continuous operation, do not operate over the maximum junction temperature rating $125^{\circ} \mathrm{C}$.

Inductor Selection

The inductance depends on the maximum input current. The inductor current ripple is 20% to 40% of maximum input current that is a general rule. Assume, choose 40\% as the criterion then
$I_{V D D(M A X)}=\frac{V_{A V D D} \times I_{\operatorname{AVDD}(M A X)}}{\eta \times V_{D D}}$
$I_{\text {RIPPLE }}=0.4 \times I_{V D D(M A X)}$
Where η is the efficiency, $\mathrm{I}_{\left.\mathrm{IN}_{(\text {MAX }}\right)}$ is the maximum input current, $\mathrm{I}_{\text {RIPPLE }}$ is the inductor current ripple. Beside, the input peak current is maximum input current plus half of inductor current ripple.
$I_{\text {PEAK }}=1.2 \times \operatorname{IVDD}_{\text {(MAX }}$
Note that the saturated current of inductor must be greater than IPEAK. The inductance can be eventually determined as follow equation :

$$
L=\frac{\eta \times\left(V_{D D}\right)^{2} \times\left(V_{A V D D}-V_{D D}\right)}{0.4 \times\left(V_{\mathrm{AVDD}}\right)^{2} \times I_{\mathrm{AVDD}(\mathrm{MAX})} \times f_{\mathrm{OSC}}}
$$

Where fosc is the switching frequency. To consider the system performance, a shielded inductor is preferred to avoid EMI issue.

Diode Selection

Schottky diode is a good choice for an asynchronous Boost converter due to the small forward voltage. However, power dissipation, reverse voltage rating and pulsating peak current are the important parameters for Schottky diode selection. It is recommended to choose a suitable diode whose reverse voltage rating is greater than the maximum output voltage.

Capacitor Selection

Output ripple voltage is an important index for estimating the performance. This portion consists of two parts, one is the product of input current and ESR of output capacitor, another part is formed by charging and discharging process of output capacitor. Refer to Figure 1, evaluate DV ${ }_{\text {out1 }}$ by ideal energy equalization. According to the definition of Q, the Q value can be calculated as following equation :

$$
\begin{aligned}
\mathrm{Q}= & \frac{1}{2} \times\left[\left(\mathrm{I}_{\mathrm{IN}}+\frac{1}{2} \Delta \mathrm{I}_{\mathrm{L}}-\text { IOUT }\right)+\left(\mathrm{I}_{\mathrm{IN}}-\frac{1}{2} \Delta \mathrm{IL}_{\mathrm{L}}-\text { loUT }\right)\right] \\
& \times \frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {OUT }}} \times \frac{1}{f_{S W}}=\text { COUT } \times \Delta \mathrm{V}_{\text {OUT1 }}
\end{aligned}
$$

where $f_{S W}$ is the switching frequency, and $\Delta \mathrm{I}_{\mathrm{L}}$ is the inductor ripple current. Move Cout to the left side to estimate the value of $\Delta \mathrm{V}_{\text {OUT1 }}$ as the following equation :

$$
\Delta \text { Vout1 }=\frac{\mathrm{D} \times \text { lout }}{\eta \times \text { Cout } \times \text { fsW }}
$$

Finally, by taking ESR into consideration, the overall output ripple voltage can be determined as the following equation :

$$
\Delta \text { VOUT }=\mathrm{I}_{\mathrm{IN}} \times \mathrm{ESR}+\frac{\mathrm{D} \times \text { lout }}{\eta \times \text { COUT } \times \mathrm{fSW}}
$$

Figure 1. The Output Ripple Voltage without the Contribution of ESR

Input Capacitor Selection

Low ESR ceramic capacitors are recommended for input capacitor applications. Low ESR will effectively reduce the input voltage ripple caused by switching operation. A $10 \mu \mathrm{~F}$ is sufficient for most applications. Nevertheless, this value can be decreased for lower output current requirement. Another consideration is the voltage rating of the input capacitor must be greater than the maximum input voltage.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :
$P_{D(M A X)}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
Where $T_{J(M A X)}$ is the maximum operation junction temperature $125^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}$ is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification, where $T_{J(M A X)}$ is the maximum junction temperature of the die $\left(125^{\circ} \mathrm{C}\right)$ and T_{A} is the maximum ambient temperature. The junction to ambient thermal resistance θ_{JA} is layout
dependent. For WDFN-10L 3×3 packages, the thermal resistance θ_{JA} is $60^{\circ} \mathrm{C} / \mathrm{W}$ on the standard JEDEC 51-7 four layers thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by following formula :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(60^{\circ} \mathrm{C} / \mathrm{W}\right)=1.667 \mathrm{~W}$ for WDFN-10L 3×3 package

The maximum power dissipation depends on operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance θ_{JA}. The Figure 2 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

Figure 2. Derating Curve of Maximum Power Dissipation

Layout Considerations

For high frequency switching power supplies, the PCB layout is important to get good regulation, high efficiency and stability. The following descriptions are the guidelines for better PCB layout.

- For good regulation, place the power components as close as possible. The traces should be wide and short enough especially for the high-current output loop.
- The feedback voltage-divider resistors must be near the feedback pin. The divider center trace must be shorter and the trace must be kept away from any switching nodes.
- The compensation circuit should be kept away from the power loops and be shielded with a ground trace to prevent any noise coupling.
- Minimize the size of the LX node and keep it wide and shorter. Keep the LX node away from the FB.
- The exposed pad of the chip should be connected to a strong ground plane for maximum thermal consideration.

Figure 3. PCB Layout Guide

Outline Dimension

21
21

DETAILA

Pin \#1 ID and Tie Bar Mark Options

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.180	0.300	0.007	0.012				
D	2.950	3.050	0.116	0.120				
D2	2.300	2.650	0.091	0.104				
E	2.950	3.050	0.116	0.120				
E2	1.500	1.750	0.059	0.069				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

W-Type 10L DFN 3x3 Package

Richtek Technology Corporation

5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Richtek manufacturer:
Other Similar products are found below :
FMD15.24G PSL486-7LR Q48T30020-NBB0 18362 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 19-130041 CE-1003 RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-1205 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033PGB0 AK1601-9RT DPA423R VI-R5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 PQA30-D24-S24-DH vi-m13-cw-03 VI-LN2-EW VI-PJW01-CZY CK2540-9ERT AK-1615-7R 700DNC40-CON-KIT-8G 350DNC40-CON-KIT-9G 088-101348-G VI-L52-EW VI-L53-CV PQA30-D48-S12-TH VI-L50-IY VI-LC63-EV AM2D-051212DZ 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 UNO-PS/350-900DC/24DC/60W QUINT4-BUFFER/24DC/20 QUINT4-CAP/24DC/5/4KJ QUINT4-CAP/24DC/10/8KJ

