

RVT3.58320240CNWN00

LCD TFT Datasheet

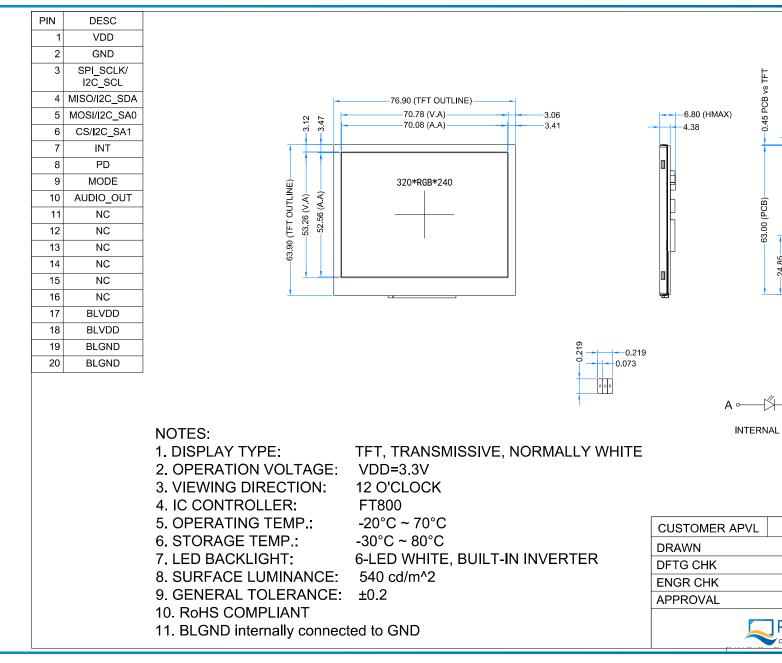
Re∨.1.3 2015-01-28

ITEM	CONTENTS	UNIT
LCD Type	TFT/Transmissive/Normally white	/
Size	3.5	Inch
Viewing Direction	12:00 (without image inversion)	O' Clock
Gray Scale Inversion Direction	6:00	O' Clock
LCM (W \times H \times D)	76.90 x 63.90x 6.58	mm ³
Active Area (W × H)	70.08 × 52.56	mm ²
Dot Pitch (W × H)	0.73 × 0.219	mm ²
Number Of Dots	320 (RGB) × 240	/
Controller IC	FT800	/
Backlight Type	6 LEDs	/
Surface Luminance	540	cd/m ²
Interface Type	SPI/I2C	/
Color Depth	262k	/
Pixel Arrangement	RGB Vertical Stripe	/
Input Voltage	3.3	V
With/Without TSP	Without Touch Panel	/
Weight	45	g

Note 1: RoHS compliant

Note 2: LCM weight tolerance: ± 5%.

REVISION RECORD


REV	NO.	REVDATE	CONTENTS	REMARKS						
1.	0	2014-05-16								
1.	1	2014-05-21	Corrected Surface Luminance							
1.	2	2015-01-07	Update surface luminance, update LED livetime, update response time							
1.	3	2015-01-28	Update mechanical dimension.							
CC	CONTENTS									
REVISIO	N RECO	RD		2						
CONTEN	тѕ			2						
1. MO	DULE C	LASSIFICATION IN	FORMATION							
2. MO	DULE D	RAWING		4						
3. ABS	OLUTE	MAXIMUM RATIN	VGS	4						
4. ELE	CTRICAI	CHARACTERISTI	CS	4						
5. ELE	CTRO-O	PTICAL CHARACT	ERISTICS	4						
6. INT	ERFACE	DESCRIPTION		6						
7. FT8	00 CON		CATIONS	7						
7.1.	Serial	host interface		7						
7.2.	Block	Diagram		8						
7.3.	Host ii	nterface SPI mode	2 0							
7.4.	Backli	ght driver block d	iagram							
8. LCD	8. LCD TIMING CHARACTERISTICS									
8.1.	8.1. Timing Chart									
8.2.	8.2. 24 Bit RGB Mode for 320 x RGB x 240 10									
9. REL	IABILITY	' TEST								
10. L	EGAL IN	0. LEGAL INFORMATION								

1. MODULE CLASSIFICATION INFORMATION

RV	Т	3.5	В	320240		Ν	W	Ν	00
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.

1.	BRAND	RV – Riverdi
2.	PRODUCT TYPE	T – TFT Standard F – TFT Custom
3.	DISPLAY SIZE	3.5 – 3.5" 4.3 – 4.3" 5.7 – 5.7" 7.0 – 7.0"
4.	MODEL SERIAL NO.	B (A-Z)
5.	RESOLUTION	320240 – 320x240 px 480272 – 480x272 px 800480 – 800x480 px
6.	INTERFACE	T – TFT LCD, RGB L – TFT LCD, LVDS C – TFT + Controller
7.	FRAME	N – No Frame F – Mounting Frame
8.	BACKLIGHT TYPE	W – LED White
9.	TOUCH PANEL	N – No Touch Panel R – Resistive Touch Panel C – Capacitive Touch Panel
10.	VERSION	00 (00-99)

3. ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT
Supply Voltage For Logic (VDD pin)	VDD	0	4.0	V
Supply Voltage For Logic (BLVDD pins)	BLVDD	0	7.0	V
Input Voltage For Logic	VIN	GND	VDD	V
Operating Temperature	Тор	-20	70	°C
Storage Temperature	T _{ST}	-30	80	°C
Humidity	RH	-	90%(Max 60°C)	RH

4. ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	ΤΥΡ	MAX	UNIT	NOTES
Supply Voltage For Module	VDD	3.0	3.3	3.6	V	
Input Voltage for LED Inverter	BLVDD	2.8	3.3	5.5	V	
Input Current (Exclude LED Backlight)	IDD	-	55	69	mA	VDD = 3.3V
LED Backlight Current	IDD backlight		150	187	mA	BLVDD=3.3V
LED Backlight Current	IDD backlight		93	117	mA	BLVDD=5V
Total Input Current (Include LED	IDD _{total}	-	205	257	mA	BLVDD=3.3V
Backlight 100%)						
Input Voltage ' H ' level	VIH	0.7VDD	-	VDD	V	
Input Voltage ' L ' level	VIL	0	-	0.2VDD	V	
LED Life Time	-	40000	50000	-	Hrs	Note 1

Note 1: The LED life time is defined as the module brightness decrease to 50% original brightness at Ta=25°C.

5. ELECTRO-OPTICAL CHARACTERISTICS

ITEM		SYMBOL	CONDITION	MIN	TYP	MAX	UNIT	REMARK	NOTE
Response T	īme	Tr+Tf	0.00	-	25	30	ms	Figure 1	4
Contrast R	atio	Cr	θ=0° Ø=0°	-	350	-		Figure 2	1
Luminance Un	iformity	δ WHITE	 Ta=25°C	75	80	-	%	Figure 2	3
Surface Lumi	nance	Lv	10-25 C	-	540	-	cd/m²	Figure 2	2
			Ø = 90°	30	40	-	deg	Figure 3	
	Danga		Ø = 270°	50	60	-	deg	Figure 3	
viewing Angle	Viewing Angle Range	θ	Ø = 0°	50	60	-	deg	Figure 3	6
			Ø = 180°	50	60	-	deg	Figure 3	0
	Red	x		0.574	0.624	0.674			
	Reu	У		0.318	0.368	0.418			
	Green	x	θ=0°	0.300	0.350	0.400			
CIE (x, y)		У	Ø=0°	0.500	0.550	0.600			5
Chromaticity	Blue	x		0.093	0.143	0.193	Figure 2		5
		У	10-25 C	0.069	0.119	0.169			
	White	x		0.260	0.310	0.360			
		У		0.283	0.333	0.383			
NTSC	-	-	-	-	50	-		%	-

Note 1. Contrast Ratio(CR) is defined mathematically as below, for more information see Figure 1.

 $Contrast Ratio = \frac{Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)}{Average Surface Luminance with all black pixels (P1, P2, P3, P4, P5)}$

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see Figure 2.

Lv = Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)

Note 3. The uniformity in surface luminance δ WHITE is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance by minimum luminance of 5 points luminance. For more information see Figure 2.

$$\delta \text{ WHITE } = \frac{\text{Minimum Surface Luminance with all white pixels (P1, P2, P3, P4, P5)}}{\text{Maximum Surface Luminance with all white pixels (P1, P2, P3, P4, P5)}}$$

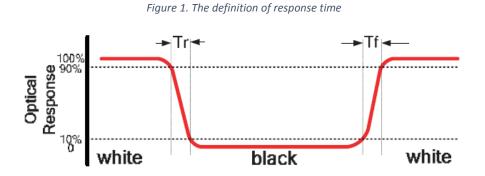
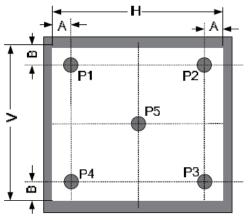
Note 4. Response time is the time required for the display to transition from white to black (Rise Time, Tr) and from black to white (Decay Time, Tf). For additional information see Figure 1. The test equipment is Autronic-Melchers's ConoScope series.

Note 5. CIE (x, y) chromaticity, the x, y value is determined by measuring luminance at each test position 1 through 5, and then make average value.

Note 6. Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Figure 3.

Note 7. For viewing angle and response time testing, the testing data is based on Autronic-Melchers's ConoScope series. Instruments for Contrast Ratio, Surface Luminance, Luminance Uniformity, CIE the test data is based on TOPCON's BM-5 photo detector.

Note 8. For TFT module, gray scale reverse occurs in the direction of panel viewing angle.

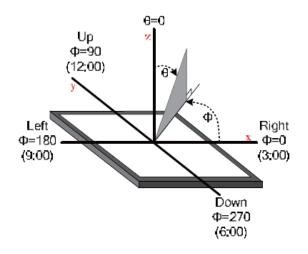
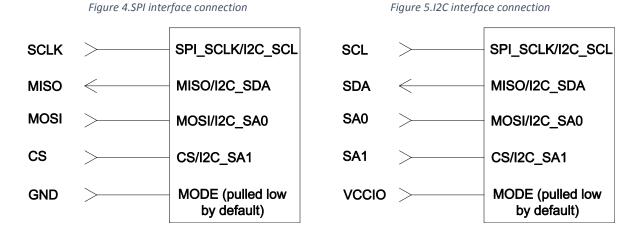


Figure 2. Measuring method for Contrast ratio, surface liminance, Liminance uniformity, CIE (x,y) chromaticity

A: 5 mm B: 5 mm H,V: Active Area Light spot size Ø=5mm, 500mm distance from the LCD surface to detector lens measurement instrument is TOPCON's luminance meter BM-5

6. INTERFACE DESCRIPTION

PIN NO.	SYMBOL	DESCRIPTION
1	VDD	Power Supply
2	GND	Ground
3	SPI_SCLK/ I2C_SCL	SPI SCK Signal / I2C SCL Signal, Pulled Up Inside Display by 47k Resistor
4	MISO/ I2C_SDA	SPI MISO Signal / I2C SDA Signal, Pulled Up Inside Display by 47k Resistor
5	MOSI/ I2C_SA0	SPI MOSI Signal / I2C Slave Address Bit 0, Pulled Up Inside Display by 47k Resistor
6	CS/I2C_SA1	SPI Chip Select Signal / I2C Slave Address Bit 1, Pulled Up Inside Display by 47k Resistor
7	INT	Interrupt Signal, Active Low, Pulled Up Inside Display by 47k Resistor
8	PD	Power Down Signal, Active Low, Pulled Up Inside Display by 47k Resistor
9	MODE	Host Interface SPI(Pull Low) or I2C(Pull Up) Mode Select Input, By Default Pulled Low Inside Display by 47k Resistor
10	AUDIO_OUT	Audio Out Signal



11	NC	Not Connected
12	NC	Not Connected
13	NC	Not Connected
14	NC	Not Connected
15	NC	Not Connected
16	NC	Not Connected
17	BLVDD	Backlight Power Supply, Can Be Connected to VDD
18	BLVDD	Backlight Power Supply, Can Be Connected to VDD
19	BLGND	Backlight Ground, Internally connected to GND
20	BLGND	Backlight Ground, Internally connected to GND

7. FT800 CONTROLLER SPECIFICATIONS

FT800 or EVE (Embedded Video Engine) simplifies the system architecture for advanced human machine interfaces (HMIs) by providing functionality for display, audio, and touch as well as an object oriented architecture approach that extends from display creation to the rendering of the graphics.

7.1. Serial host interface

SPI Interface – the SPI slave interface operates up to 30MHz.

Only SPI mode 0 is supported. The SPI interface is selected by default (MODE pin is internally pulled low by 47k resistor).

I²C Interface – the I²C slave interface operates up to 3.4MHz, supporting standard-mode, fast-mode, fast-mode plus and high-speed mode.

The I²C device address is configurable between 20h to 23h depending on the I²C_SA[1:0] pin setting, i.e. the 7-bit I²C slave address is 0b'01000A1A0.

The I²C interface is selected when the MODE pin is tied to VDDIO.

7.2. Block Diagram

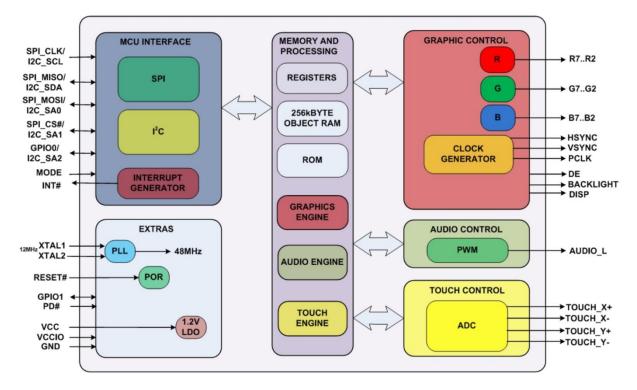
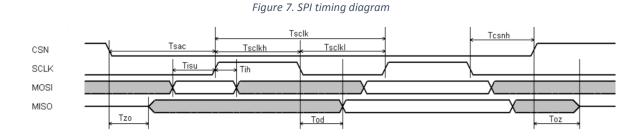
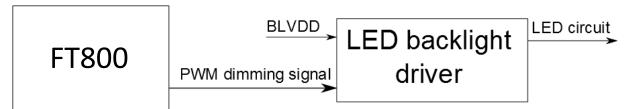



Figure 6. FT800 Block diagram

7.3. Host interface SPI mode 0


For more information about FT800 controller please go to official FT800 Datasheet. <u>http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT800.pdf</u>

7.4. Backlight driver block diagram

Backlight enable signal is internally connected to FT800 Backlight control pin. This pin is controlled by two FT800's registers. One of them specifies the PWM output frequency, second one specifies the duty cycle. Refer to FT800 datasheet for more information.

Figure 8. Backlight driver block diagram

8. LCD TIMING CHARACTERISTICS

8.1. Timing Chart

Timing parameter (VDD=3.3V, GND=0V, Ta=25°C)

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	CONDITION
CLK Clock Time	T _{clk}	1/Max(F _{CLK})	-	1/Min(F _{CLK})	ns	-
CLK Pulse Duty	T _{chw}	40	50	60	%	Тсік
HSYNC to CLK	T _{hc}	-	-	1	CLK	-
HSYNC Width	Thwh	1	-	-	CLK	-
VSYNC Width	T _{vwh}	1	-	-	ns	-
HSYNC Period Time	T _h	60	63.56	67	ns	-
VSYNC Set-up Time	T _{vst}	12	-	-	ns	-
VSYNC Hold Time	T _{vhd}	12	-	-	ns	-
HSYNC Setup Time	T _{hst}	12	-	-	ns	-
HSYNC Hold Time	Thhd	12	-	-	ns	-
Data Set-up Time	T _{dsu}	12	-	-	ns	D00~D23 to CLK
Data Hold Time	Tdhd	12	-	-	ns	D00~D23 to CLK
DEN Set-up Time	Tesu	12	-	-	ns	DEN to CLK

Figure 9. DE mode timing diagram

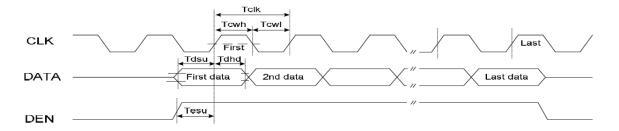
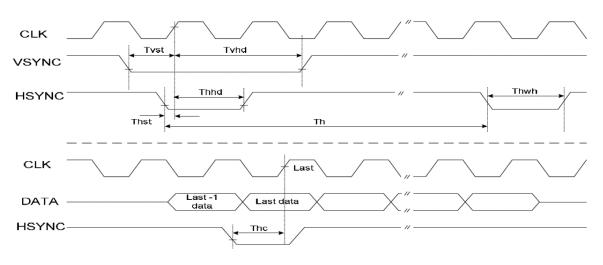
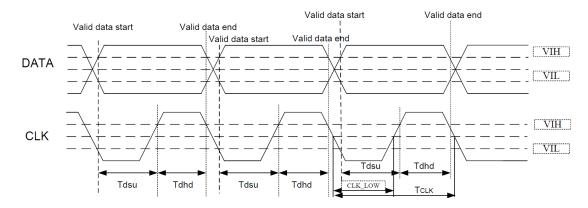
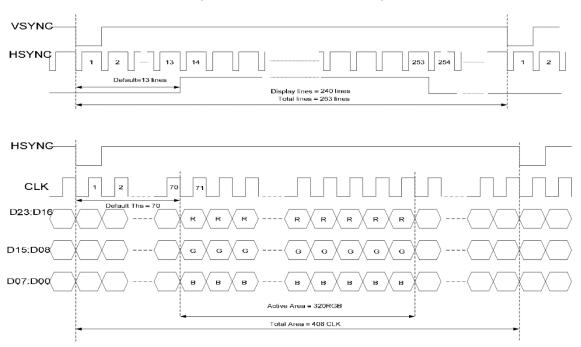




Figure 10. SYNC mode timing diagram

Figure 11. Timing diagram



8.2. 24 Bit RGB Mode for 320 x RGB x 240

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
CLK Frequency	F _{clk}	7.0	8.0	9.0	MHz	VDD=3.0V~3.6V
CLK Cycle Time	T _{clk}	143	125	111	ns	-
CLK Pulse Duty	T _{cwh}	40	50	60	%	-
Time that HSYNC to 1st Data Input (NTSC)	Ths	40	70	255	CLK	DDLY=70 Offset=0(fixed)

Figure 12. 24 bit RGB SYNC mode timing

9. RELIABILITY TEST

NO.	TEST ITEM	TEST CONDITION	INSPECTION AFTER TEST
1	High Temperature Storage	80±2°C/240 hours	
2	Low Temperature Storage	-30±2°C/240 hours	
3	High Temperature Operating	70±2°C/240 hours	
4	Low Temperature Operating	-20±2°C/240 hours	
5	Temperature Cycle	-30±2°C~25~70±2°C × 30 cycles	Inspection after 2~4 hours storage at room
6	Damp Proof Test	60°C ±5°C × 90%RH/160 hours	temperature, the sample shall be free from
7	Vibration Test	Frequency 10Hz~55Hz Stroke: 1.5mm Sweep: 10Hz~55Hz~10Hz 2 hours For each direction of X, Y, Z (6 hours for total)	defects: 1. Air bubble in the LCD 2. Seal leak 3. Non-display 4. Missing segments
8	Mechanical Shock	60G 6ms, $\pm X$, $\pm Y$, $\pm Z$ 3 times for each direction	 Glass crack Current Idd is twice higher than initial value
9	Packing Drop Test	Height: 80 cm 1 corner, 3 edges, 6 surfaces	 The surface shall be free from damage Linearity must be no more than 1.5% by
10	Package Vibration Test	Random vibration: 0.015G ² /Hz from 5-200Hz -6dB/Octave from 200-500Hz 2 hours for each direction of X, Y, Z (6 hours for total)	the linearity tester 9. The Electric characteristics requirements shall be satisfied
11	Electrostatic Discharge	Air: ±8KV 150pF/330Ω 5 times Contact: ±4KV 150pF/330Ω 5 times	
12	Hitting Test	1,000,000 times in the same point	

		Hitting pad: tip R3.75mm,
		Silicone rubber, Hardness:
		40deg.
		Load: 2.45N
		Hitting speed: Twice/sec
		Electric load: none
		Test area should be at 1.8mm
		inside of insulation.
13	Pen Sliding Durability	100,000 times minimum
	Test	Hitting pad: tip R0.8mm plastic
		pen
		Load: 1.47N
		Sliding speed: 60 mm/sec
		Electric load: none
		Test area should be at 1.8mm
		inside of insulation.

1. The test samples should be applied to only one test item.

2. Sample size for each test item is 5~10pcs.

3. For Damp Proof Test, Pure water(Resistance

10M Ω) should be used.

4. In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

5. EL evaluation should be excepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.

6. Failure Judgment Criterion: Basic Specification, Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

10.LEGAL INFORMATION

Riverdi makes no warranty, either expressed or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose. Information about device are the property of Riverdi and may be the subject of patents pending or granted. It is not allowed to copy or disclosed this document without prior written permission.

Riverdi endeavors to ensure that the all contained information in this document are correct but does not accept liability for any error or omission. Riverdi products are in developing process and published information may be not up to date. Riverdi reserves the right to update and makes changes to Specifications or written material without prior notice at any time. It is important to check the current position with Riverdi.

Images and graphics used in this document are only for illustrative the purpose. All images and graphics are possible to be displayed on the range products of Riverdi, however the quality may vary. Riverdi is no liable to the buyer or to any third part for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) relating to any product, service provided or to be provided by Riverdi, or the use or inability to use the same, even if Riverdi has been advised of the possibility of such damages.

Riverdi products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). Riverdi and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities. Using Riverdi products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Riverdi from any and all damages, claims or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Riverdi intellectual property rights.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Modules category:

Click to view products by Riverdi manufacturer:

Other Similar products are found below :

P6153-PR TDP0700T800480PCAP P6171DPR-DC-RS P6171DPR-DC-U MIKROMEDIA 3 FOR STM32F4 CAPACITIVE FPI TN0216ANVNANN-GN00 TN0104ANVAANN-GN00 TN0181ANVNANN-GN00 SM-RVT101HVBFWCA0 SM-RVT101HVBNWCA0 SM-RVT35HHBFWCA0 SM-RVT35HHBNWCA0 SM-RVT43HLBFWCA0 SM-RVT43HLBNWCA0 SM-RVT50HQBFWCA0 SM-RVT50HQBNWCA0 SM-RVT70HSBFWCA0 SM-RVT70HSBNWCA0 PIM579 1215686 PIM543 DFR0678 P6191PR-DC-U-V3 16381 17916 18205 21229 12885 FPM-215-R9AE 11769 MIKROMEDIA FOR DSPIC33 MIKROMEDIA FOR PIC24 MIKROMEDIA FOR PIC32 MIKROMEDIA FOR STELLARIS M3 MIKROMEDIA HMI 3.5 RES MIKROMEDIA HMI 5 MIKROMEDIA PLUS FOR FT90X MIKROMEDIA PLUS FOR PIC32MX7 SHIELD MIKROMEDIA PROTO SHIELD 14628 MIKROMEDIA 5 FOR TIVA SHIELD MIKROMEDIA 7 FOR STM32F4 MIKROMEDIA CONNECT SHIELD MIKROMEDIA FOR ARM MIKROMEDIA FOR PSOC5LP MIKROMEDIA GAMING SHIELD MIKROMEDIA HMI 4.3 UXB MIKROMEDIA HMI 5 RES MIKROMEDIA HMI 5 UXB MIKROMEDIA HMI 7