承 認 書

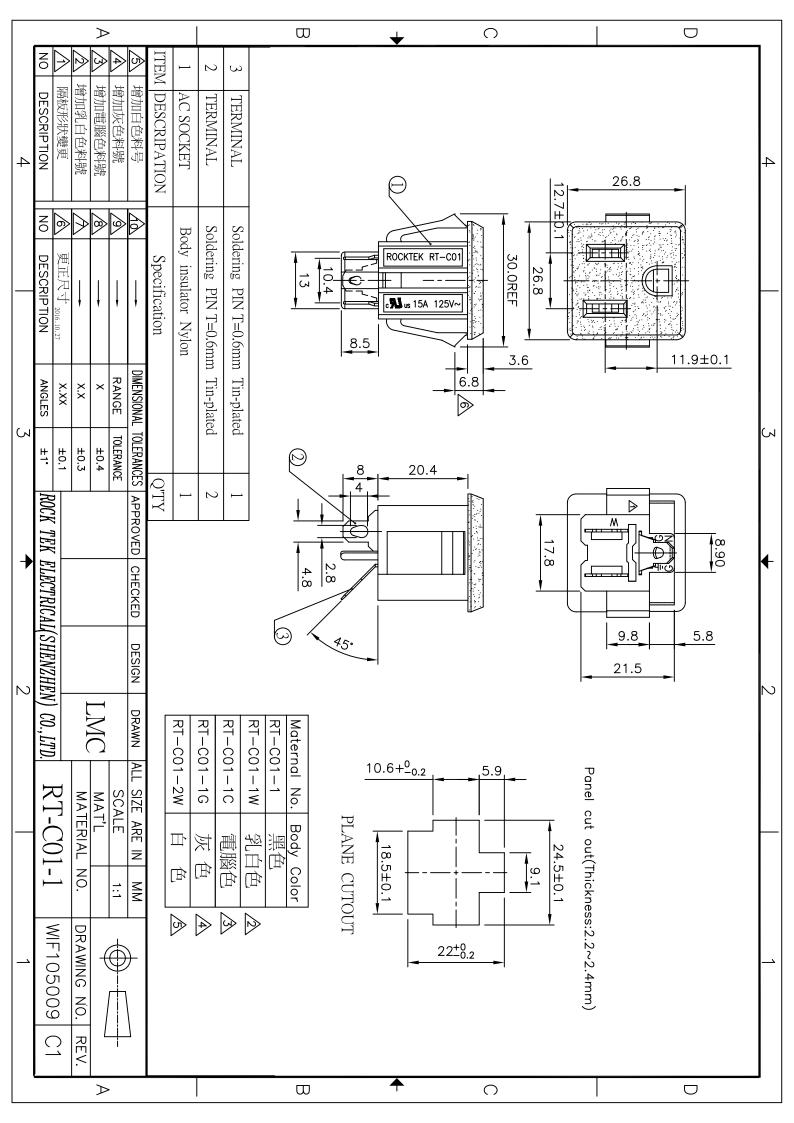
SPECIFICATION FOR APPROVAL

*客戶名稱	:	立创
Customer name		
*產品名稱	:	AC插座
Product Description		
*產品型號	:	RT-C01-1
Product part number		
*客戶料號	:	
Customer's material number		
*數量	:	100 PCS
Quantity		
*日期	:	2019-1-4
Date		

供應商負責人簽名		客戶負責	人確認簽回
製作人	莫丽琴	承認人	
審核	李跃鑫	審核	
批准	王瑞宝	批准	

皓字(香港)有限公司 HAOYU (HONG KONG) LIMITED 六均电子五金有限公司

LEGION ELECTRONIC&HARDWARE CO., LTD


富力隆电子(深圳)有限公司 ROCKTEK ELECTRONICS (SHENZHEN) CO. LTD

東莞市石碣鎮四村第一工業區 Sicun 1st Industrial park, Sicun, Shijie Town, Dongguan

電 話 : (86) 769-82310511-2 Tel No

傳 真 : (86) 769-82310510 Fax No

郵 箱 E-mail: haoyu888@21cn.com 核 准 : Approved :

六鈞/富力隆電子

可靠性试验报告

Reliability Test Report-(UL1054)

MODEL /型号: RT-C01-1

TEST RATING/额定: 15A 125VAC

WEEK/周数: 第 52 周

FUNCTIONAL TEST /功能测试:

Report NO./报告编号: <u>EN1812016</u>

LOT NO./批号: 产线产品

PERIOD/时期: 2018.12.28

TEST DATE/测试日期: 2018.12.28

te/完全测试 or Part/部分测试 e(Max 50mΩ) 压 (Vr ±5%) s /电流(150%/125%) actor /功率因数 temp/环境温度 rcles / Result 周期数/结果 压 (Vr ±5%) s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%) s/电流 actor/功率因数	125VAC 15A 25° 300	125VAC 15A 25° 300	12.1 125VAC 15A 25° 300	结果判定 OK
压(Vr ±5%) s /电流(150%/125%) actor /功率因数 temp/环境温度 rcles / Result 周期数/结果 压(Vr ±5%) s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压(Vr±5%) s /电流	125VAC 15A 25°	125VAC 15A 25 °	125VAC 15A 25°	
s /电流(150%/125%) actor /功率因数 temp/环境温度 rcles / Result 周期数/结果 压 (Vr ±5%) s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%) s /电流	15A 25 °	15A 25 °	15A 25 °	OK
actor /功率因数 temp/环境温度 rcles / Result 周期数/结果 压 (Vr ±5%) s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%)	15A 25 °	15A 25 °	15A 25 °	OK
temp/环境温度 rcles / Result 周期数/结果 压 (Vr ±5%) s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%) s /电流	15A 25 °	15A 25 °	15A 25 °	OK
rcles / Result 周期数/结果 压 (Vr ±5%) s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%)	15A 25 °	15A 25 °	15A 25 °	OK
压 (Vr ±5%) s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%)	15A 25 °	15A 25 °	15A 25 °	OK
s/电流 actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%)	15A 25 °	15A 25 °	15A 25 °	OK
actor/功率因数 temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%)	25 °	25 °	25 °	ОК
temp/环境温度 rcles/Result 周期数/结果 压 (Vr±5%) s /电流			_	ОК
rcles/Result 周期数/结果 压 (Vr±5%) s /电流			_	OK
压 (Vr±5%) s/电流	300	300	300	OK
· · /电流			/	
			ı /	
actor /功率因数				
rcles/Result 周期数/结果				
!				
压				
s/电流(Max Rating/最大额定)				
mp /最高温度(<i>单位</i> ℃)				1
emp /室温(<i>单位</i> ℃)				
se /温升(<i>单位</i> ℃)Max 55℃				
	PASS	PASS	PASS	OK
压				
s /电流				-
rcles/Result 周期数/结果		-		-
1	50	42	68	ОК
	PASS	PASS	PASS	OK
50 °C				
	n:1500VAC/1Minute/0.5mA ase:3000VAC/1Minute/0.5mA 压 s /电流 /cles/Result 周期数/结果	m:1500VAC/1Minute/0.5mA ase:3000VAC/1Minute/0.5mA 压 s /电流 //cles/Result 周期数/结果 2 PASS PASS	m:1500VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass pass:3000VAC/1Minute/0.5mA pass pass:3000VAC/1Minute/0.5mA pass pass:3000VAC/1Minute/0.5mA pass pass:3000VAC/1Minute/0.5mA pas	m:1500VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass:3000VAC/1Minute/0.5mA pass pass pass pass pass pass pass pas

按额定 15A 125VAC 测试,插座各项数据均符合标准,此次测试通过。
Approved by/核准者: 刘美昌 Reviewed by/审核者:/ Tested by/测试者:管林华

东莞市皓宇电子有限公司 部品材料规格

序号	物料名称	用量	供应商	详细规格	牌号	ROHS报告
1	TERMINAL	3	外购	Soldering PIN T=0.6mm Tin-plated		SZC17030181031-31
2	AC SOCKET	1	外购	Body insulator Nylon Black color		SZC17030181031-30
	以下空白					

2014年3月14日 UL IQ™

for enhanced search functionality please visit UL's iQ™ family of databases

Component - Plastics

E321019

TAISU PLASTIFICATION MATERIAL SCI&TECH CO LTD

TAISU INDUSTRIAL ZONE, FENGXIN RD, GUANGMING NEW DISTRICT, SHENZHEN GUANGDONG 518107 CN

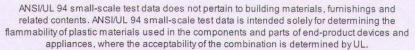
PA66 T303 (XX)GF NC-D(f2)

Polyamide 66 (PA66), furnished as pellets, particles

	Min Thk	Flame			RTI	RTI	RTI
Color	(mm)	Class	HWI	HAI	Elec	Imp	Str
NC	0.8	V-0	2	1	120	110	125
	3.0	V-0	0	0	120	110	125

Inclined Plane Tracking (IPT): -

Dielectric Strength (kV/mm): 26


Volume Resistivity (10X ohm-cm): 13 High Volt, Low Current Arc Resis

High-Voltage Arc Tracking Rate (HVTR):

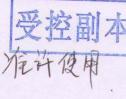
(D495):

Dimensional Stability (%): -

- (XX) Denotes a two digit number 01 thru 34 representing 01% to 34% glass fiber
- (f2) Subjected to one or more of the following tests: Ultraviolet Light, Water Exposure or Immersion in accordance with UL 746C, where the acceptability for outdoor use is to be determined by UL.

Report Date: 2012-08-21 Last Revised: 2014-03-06

© 2014 UL LLC



IEC and ISO Test Methods

		Thickness	
Test Method	Units	Tested (mm)	Value
IEC 60695-11-10	Class (color)	0.8	V-0 (NC)
		3.0	V-0 (NC)
IEC 60695-2-12	C	3.0	960
IEC 60695-2-13	C	3.0	775
IEC 60112	Volts (Max)		
IEC 60695-10-2	C		-
ISO 75-2	С		
ISO 527-2	MPa		
ISO 178	MPa		
ISO 8256	kJ/m ²		
ISO 180	kJ/m ²	-	
ISO 179-2	kJ/m ²	•	
	IEC 60695-11-10 IEC 60695-2-12 IEC 60695-2-13 IEC 60112 IEC 60695-10-2 ISO 75-2 ISO 527-2 ISO 178 ISO 8256 ISO 180	IEC 60695-11-10 Class (color) IEC 60695-2-12 C IEC 60695-2-13 C IEC 60112 Volts (Max) IEC 60695-10-2 C ISO 75-2 C ISO 527-2 MPa ISO 178 MPa ISO 8256 kJ/m²	Test Method Units Tested (mm) IEC 60695-11-10 Class (color) 0.8 3.0 IEC 60695-2-12 C 3.0 IEC 60695-2-13 C 3.0 IEC 60112 Volts (Max) IEC 60695-10-2 C - ISO 75-2 C - ISO 527-2 MPa - ISO 178 MPa - ISO 8256 kJ/m² -

© 2014 UL LLC

Page 1 of 5 Report No.: SZC17030181031-30 Date: Mar. 6, 2017

Dongguan Haoyu (Honghao) Electronics Co., Ltd. Applicant:

Address: 1st Industrial Zone, Shijie Fourth Village, Shijie Town, Dongguan City

Report on the submitted sample(s) said to be:

Sample Name: Base (PA66)

White plastic (Base) Sample Description: Sample No.: QT1703018103130

Sample Received Date: Feb. 28, 2017

Testing Period: Feb. 28, 2017 - Mar. 6, 2017

Test Method: Please refer to the following page(s).

Test Result: Please refer to the following page(s).

Test Requested:	UC,	70,	70,	170,	Conclusion
As specified by client, to determine the	ne Pb, Cd, Hg, Cı	r(VI), PBBs, PBI	DEs, DBP, BBP,	DEHP, DIBP	
content in the submitted sample with	reference to EU	RoHS Directive 2	2011/65/EU and	its amendment	PASS
Directive EU 2015/863.				7	

Checked by

Angela

Signed for and on behalf of HCT

Michael

Laboratory Manager Testing Tec

HONGCAI TESTING TECHNOLOGY CO.,LTD Unit D,Penglitai Industrial Estate, Longping Xi Road, Longgang District, Shenzhen

Tel: 0755-84616666 E-mail: hongcai@hct-test.com Service Tel: 400-0066-989 Fax: 0755-89594380 Web:www.hct-test.com

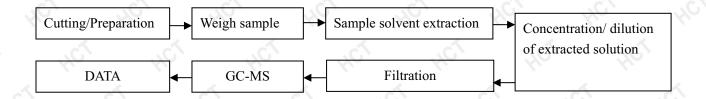
Report No.: SZC17030181031-30 Date: Mar. 6, 2017 Page 2 of 5

Test Result(s): Unit: mg/kg

Test Items	Test Method/ Equipment	MDL	Content	EU RoHS Directive 2011/65/EU and its amendment Directive EU 2015/863
Lead(Pb)	Refer to	2	N.D.	1000
Cadmium(Cd)	IEC 62321-5:2013. ICP-OES/AAS	2	N.D.	100
Mercury(Hg)	Refer to IEC 62321-4:2013. ICP-OES	2	N.D.	1000
Hexavalent Chromium(Cr(VI)) by Alkaline extraction	Refer to IEC 62321:2008. UV-VIS	2	N.D.	1000
Mono-bromobiphenyl	40, 40	5	N.D.	40, 40,
Di-bromobiphenyl		5	N.D.	
Tri-bromobiphenyl	UC)	5	N.D.	70, 71
Tetra-bromobiphenyl		5	N.D.	
Penta-bromobiphenyl	101	5	N.D.	
Hexa-bromobiphenyl	4, 4,	5	N.D.	
Hepta-bromobiphenyl	, c1	5	N.D.	,c1 ,c1
Octa-bromobiphenyl	K	5	N.D.	H. H.
Nona-bromobiphenyl	(2)	5	N.D.	
Deca-bromobiphenyl	1/10	5	N.D.	1/10
Polybrominated Biphenyls(PBBs)	Refer to	_	N.D.	1000
Mono-bromodiphenyl ether	IEC 62321-6:2015.	5	N.D.	10 110
Di-bromodiphenyl ether	GC-MS	5	N.D.	A A
Tri-bromodiphenyl ether	170,	5	N.D.	HO, HO
Tetra-bromodiphenyl ether	, ,	5	N.D.	
Penta-bromodiphenyl ether	C, 17C,	5	N.D.	17 <u>C</u> /
Hexa-bromodiphenyl ether		5	N.D.	, ,
Hepta-bromodiphenyl ether	7C) 7C	5	N.D.	70, 70,
Octa-bromodiphenyl ether	4,	5	N.D.	7.
Nona-bromodiphenyl ether	(6)	5	N.D.	1,C ¹ .1C
Deca-bromodiphenyl ether	N.	5	N.D.	K. K.
Polybrominated DiphenylEthers(PBDEs)	HCI HCI	-40	N.D.	Stong 1006 ing Technology

Report No.: SZC17030181031-30 Date: Mar. 6, 2017 Page 3 of 5

Test Items	Test Method/ Equipment	MDL	Content	EU RoHS Directive 2011/65/EU and its amendment Directive EU 2015/863
Dibutyl phthalate (DBP)	< <	30	N.D.	1000
Butylbenzyl phthalate (BBP)	Refer to	30	N.D.	1000
Di-(2-ethylhexyl) Phthalate (DEHP)	EN 14372:2004, GC-MS	30	N.D.	1000
Di-iso-butyl phthalate (DIBP)	HCI	30	N.D.	1000

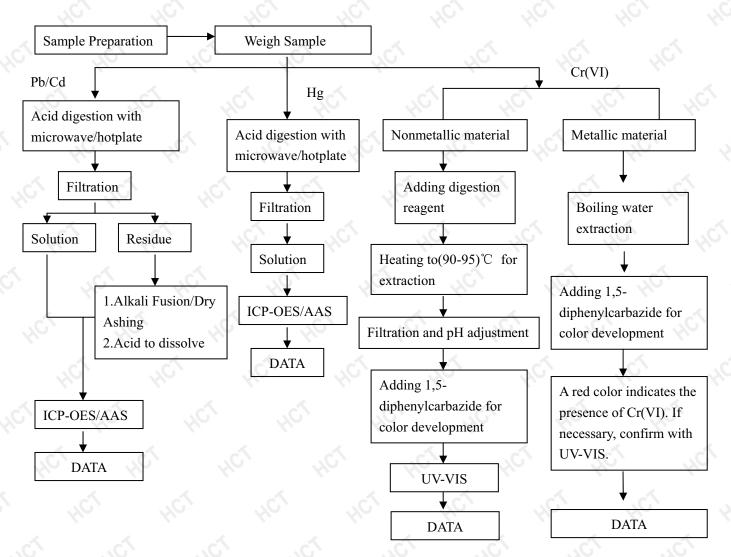

Note:

mg/kg=ppm= parts per million

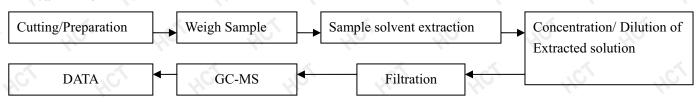
MDL=method detection limit

N.D.=not detected(less than method detection limit)

Test Flow Chart (DBP, BBP, DEHP, DIBP)

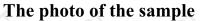


[&]quot;—" =Not regulated


Report No.: SZC17030181031-30 Date: Mar. 6, 2017 Page 4 of

Test Flow Chart (Pb, Cd, Hg, Cr(VI), PBBs, PBDEs)

These sample were dissolved totally by pre-conditioning method according to above flow chart(Cr(VI) test method excluded)


PBBs/PBDEs

Report No.: SZC17030181031-30 Page 5 of 5 Date: Mar. 6, 2017

***End ***

This report will go into effect with HCT stamp. This report could not be revised. This report is only responsible for the test result of submitted samples. Without written authorization, any copy of this report for propaganda is invalid.

Report No.: SZC17030181031-31 Page 1 of 4 Date: Mar. 6, 2017

Applicant: Dongguan Haoyu (Honghao) Electronics Co., Ltd.

Address: 1st Industrial Zone, Shijie Fourth Village, Shijie Town, Dongguan City

Report on the submitted sample(s) said to be:

Sample Name: Pin (Brass + tin plating) Sample Description: Silvery metal (Pin) Sample No.: QT1703018103131

Sample Received Date: Feb. 28, 2017

Testing Period: Feb. 28, 2017 - Mar. 6, 2017

Test Method: Please refer to the following page(s).

Test Result: Please refer to the following page(s).

Test Requested:	Conclusion
As specified by client, to determine the Pb, Cd, Hg, Cr(VI) content in the submitted samp	le with
reference to EU RoHS Directive 2011/65/EU and its amendment Directive EU 2015/863.	PASS

Checked by

Signed for and on behalf of HCT

Michael

Laboratory Mariager

HONGCAI TESTING TECHNOLOGY CO.,LTD Unit D, Penglitai Industrial Estate, Longping Xi Road, Longgang District, Shenzhen

Tel: 0755-84616666 E-mail: hongcai@hct-test.com Service Tel: 400-0066-989 Fax: 0755-89594380 Web:www.hct-test.com

Report No.: SZC17030181031-31 Date: Mar. 6, 2017 Page 2 of 4

Test Result(s):

Unit: mg/kg

Test Items	Test Method/ Equipment	MDL	Content	EU RoHS Directive 2011/65/EU and its amendment Directive EU 2015/863
Lead(Pb)	Refer to IEC 62321-5:2013.	2	30	1000
Cadmium(Cd)	ICP-OES/AAS	2	N.D.	100
Ho Ho	Refer to	He	K	H
Mercury(Hg)	IEC 62321-4:2013. ICP-OES	HC 2	N.D.	1000

Test Items	Test Method/ Equipment	MDL (μg/cm²)	Result (μg/cm²)	Qualitative Result	EU RoHS Directive 2011/65/EU and its amendment Directive EU 2015/863
Hexavalent	Refer to	HC,	11C,	HC,	4C, 4C
	IEC 62321-7-1:2015.	0.05	N.D.	Negative	_
Chromium(Cr(VI))◆	UV-VIS		.107	.(0)	

Note:

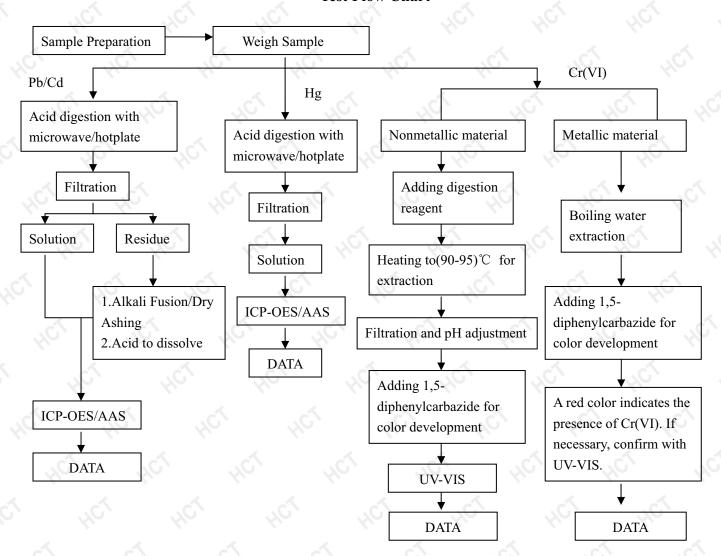
mg/kg=ppm= parts per million

MDL=method detection limit

"-"=Not regulated

N.D.=not detected(less than method detection limit)

- Φ = a. The sample is positive for Cr(VI) if the Cr(VI) concentration is greater than 0.13μg/cm². The sample coating is considered to contain Cr(VI);
 - b. The sample is negative for Cr(VI) if Cr(VI) is ND (concentration less than $0.10\mu g/cm^2$). The coating is considered a non-Cr(VI) based coating;
 - c. The result between $0.10\mu g/cm^2$ and $0.13\mu g/cm^2$ is considered to be inconclusive -unavoidable coating variations may influence the determination;


Information on storage conditions and production date of the tested sample is unavailable and thus Cr(VI) results represent status of the sample at the time of testing.

Report No.: SZC17030181031-31 Date: Mar. 6, 2017 Page 3 of 4

Test Flow Chart

These sample were dissolved totally by pre-conditioning method according to above flow chart(Cr(VI) test method excluded)

Page 4 of 4 Report No.: SZC17030181031-31 Date: Mar. 6, 2017

The photo of the sample

***End ***

This report will go into effect with HCT stamp. This report could not be revised. This report is only responsible for the test result of submitted samples. Without written authorization, any copy of this report for propaganda is invalid.

ROCK TEK ELECTRONICS(SHENZHEN)CO., LTD.

富力 隆電子(深圳)有限公司

Specification Of RT-C01 Single Socket

page:1/2

1.Scope

This specification covers the requirements for RT-C01 Single Socket.

2. Outline and dimensions

Outline and dimensions of the socket is shown on the following drawing.

3.Rating

15A125V AC for UL, CUL.

4.Approval

UL,CUL

5.Use condition

This socket should be used from $-20^{\circ}\text{C} \sim 60^{\circ}\text{C}$.

6. Hold condition

This socket should be holded from $-20^{\circ}\text{C} \sim 65^{\circ}\text{C}$.

7.Standard

UL 498

- 8. Electrical
 - 8.1. Dielectric strength

The socket should withstand a potential of direct current 1500V/minute.

8.2. Insulation resistance

Insulation resistance between pins should not be less than $1000M\Omega$.

It is measured with 500V DC.

ROCK TEK ELECTRONICS(SHENZHEN)CO., LTD.

富力隆電子(深圳)有限公司

Specification Of RT-C01 Single Socket

page:2/2

8.3. Contact resistance

Contact resistance should not exceed $30m\Omega$.

8.4. Temperature test

The socket should be test using 15A and the temperature of less than 30°C

9. Construction

9.1. Heat test

The socket should be putted in a hot chamber at temperature of $100^{\circ}\text{C}\pm5^{\circ}\text{C}$ /hour. The Socket should have the capability to satisify the performance the paragraphs 8.1., 8.2., 8.3., And the socket should show no evidence of cracking. Crazing and deformation.

9.2. Retention test

The socket should not be 2 plugs pulled free with 1.36kg/minute.

The socket should be all plugs pulled free with 6.8kg.

9.3. Material

The socket should be used NYLON PA66.

10.Packing

100PCS/BAG. 1000PCS/CTN.

APPROVED	CHECK	DESCRIPTION
125 to 12	100 5 % (\$ P)	Yale

RTRT2.E251407 Receptacles for Plugs and Attachment Plugs - Component

Page Bottom

Receptacles for Plugs and Attachment Plugs - Component

See General Information for Receptacles for Plugs and Attachment Plugs - Component

LEGION ELECTRONIC CO LTD

F251407

Room M 4Th Fl, Continental Mansion 300 King's Rd Hong Kong, HONG KONG

Appliance outlets, Model RT-C03.

Models RT-C04-2P, RT-C04-3P, RT-C04-4P.

Model RT-C05B.

Single receptacles, Model RT-C01.

Model RT-C01-A.

Marking: Company name and model designation on device or carton.

Last Updated on 2015-12-04

<u>Questions?</u> <u>Print this page</u> <u>Terms of Use</u> <u>Page Top</u>

♦ 2016 UL LLC

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2016 UL LLC".

RTRT8.E251407

Receptacles for Plugs and Attachment Plugs Certified for Canada - Component

Page Bottom

Receptacles for Plugs and Attachment Plugs Certified for Canada - Component

See General Information for Receptacles for Plugs and Attachment Plugs Certified for Canada - Component

LEGION ELECTRONIC CO LTD

F251407

Room M 4Th Fl, Continental Mansion 300 King's Rd Hong Kong, HONG KONG

Appliance outlets, Model RT-C03.

Models RT-C04-2P, RT-C04-3P, RT-C04-4P.

Model RT-C05B.

Single receptacles, Model RT-C01.

Model RT-C01-A.

Marking: Company name and model designation and Recognized Component Mark for Canada C The on device of Carton

Last Updated on 2015-12-04

<u>Questions?</u> <u>Print this page</u> <u>Terms of Use</u> <u>Page Top</u>

♠ 2016 UL LLC

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2016 UL LLC".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for DC Power Connectors category:

Click to view products by ROCKTEK manufacturer:

Other Similar products are found below:

1600206-1 163-0308-EX 163-4012-EX 163-4117-EX 163-7421 163-MJ22-EX 171-0721-EX KLDX-SMT-0202-BPTR 163-0179-EX 163-1000-EX 163-4007-EX 163-4015-EX 171-0722-E 171-7391 K596 KLD-0201-BC KPPX-D 4C6831AX TS3PNJ E16550-0008 VLP-12V-1 VLS-01V DC PLUG-P1J-P1MR DC PLUG-P1M-P1MR 09442 AS120-M CP30240 TAMIYA-M TAMIYA-MT1 TAMIYA-MT2 4840.1200 4840.2202 C5080HI-04P-18 + C5080HI-C JC-135 JC-138 JC-210 JPO-25 (FC6814) JYO-26 (FC6811) JYO-29 (FC68102) KLBPS 3 KLS 10 SCHWARZ KLS 3 SCHWARZ KLS 40 SCHWARZ KPJXHT-4S DC-10A FC68148 DC-10B (FC68149) WKLS 2 WKLS 40 FA67555 XNES/J 210 SCHWARZ XNES/J 250 SCHWARZ