STRUCTURE
TYPE
PRODUCT SERIES
FEATURE

Silicon Monolithic Integrated Circuit

Three-Terminal Regulator

BATTBXXT

Output current up to 1 A

ABSOLUTE MAXIMUM RATING $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limit	Unit
Input Voltage	Vin	35	V
Power Dissipation 1	Pd1	$2^{* 1}$	W
Power Dissipation 2	Pd2	$22^{* 2}$	W
Output Current	Iout	$1^{* 3}$	A
Operating Temperature Range	Topr	$-40 \sim+85$	C
Storage Temperature Range	Tstg	$-55 \sim+150$	C
Maximum Junction Temperature	Tjmax	150	C

${ }^{*}$ Derating in done $16 \mathrm{~mW} / /^{\circ} \mathrm{C}$ for temperatures above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
${ }^{2}$ Derating in done $176 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for temperatures above $\mathrm{Ta}=25^{\circ} \mathrm{C}$, Mounted on infinity Alminium heat sink.
${ }^{*} \mathrm{Pd}$, ASO should not be exceeded.
ORECOMMENDED OPERATING CONDITIONS ($\mathrm{Ta}=-40 \sim+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Type	Min	Max	Unit
Input Voltage	Vin	BA17805T	7.5	25	V
		BA17806T	8.5	21	
		BA17807T	9.5	22	
		BA17808T	10.5	23	
		BA17809T	11.5	26	
		BA17810T	12.5	25	
		BA17812T	15	27	
		BA17815T	17.5	30	
		BA17818T	21	33	
		BA17820T	23	33	
		BA17824T	27	33	
Output Current	10	Common	-	1^{+3}	A

The product described in this specification is a strategic product (and/or Service) subject to COCOM regulations.
It should not be exported without Authorization from the appropriate government.
This product is not designed for protection against radioactive rays.
Status of this document
The Japanese version of this document is the formal specification. A customer may use this translation version only for a reference to help reading the formal version. If there are any differences in translation version of this document, formal version takes priority.

O ELECTRICAL CHARACTERISTICS
(Unless otherwise specified, $\left.\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vin}=10 \mathrm{~V}(05), 11 \mathrm{~V}(06), 13 \mathrm{~V}(07), 14 \mathrm{~V}(08), 15 \mathrm{~V}(09), 16 \mathrm{~V}(10), 19 \mathrm{~V}(12), 23 \mathrm{~V}(15), 27 \mathrm{~V}(18), 29 \mathrm{~V}(20), 33 \mathrm{~V}(24), 10=500 \mathrm{~mA}\right)$

Parameter	Symbol	Type	Limit			Unit	Condition
			Min.	Typ.	Max.		
Output Voitage1	Vo1	05	4.8	5.0	5.2	V	$10=500 \mathrm{~mA}$
		06	5.75	6.0	6.25		
		07	6.7	7.0	7.3		
		08	7.7	8.0	8.3		
		09	8.6	9.0	9.4		
		10	9.6	10.0	10.4		
		12	11.5	12.0	12.5		
		15	14.4	15.0	15.6		
		18	17.3	18.0	18.7		
		20	19.2	20.0	20.8		
		24	23.0	24.0	25.0		
Output Voltage2	Vo2	05	4.75	-	5.25	V	Vin $=7.5 \sim 20 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		06	5.7	-	6.3		Vin $=8.5 \sim 21 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		07	6.65	-	7.35		Vin $=9.5 \sim 22 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		08	7.6	-	8.4		Vin $=10.5 \sim 23 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		09	8.55	-	9.45		$\mathrm{Vin}=11.5 \sim 26 \mathrm{~V}, \mathrm{lo}=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		10	9.5	-	10.5		$\mathrm{Vin}=12.5 \sim 25 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		12	11.4	-	12.6		$\mathrm{Vin}=15 \sim 27 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		15	14.25	-	15.75		$\mathrm{Vin}=17.5 \sim 30 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		18	17.1	-	18.9		$\mathrm{Vin}=21 \sim 33 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		20	19.0	-	21.0		$\mathrm{Vin}=23 \sim 33 \mathrm{~V}, 10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
		24	22.8	-	25.2		Vin $=27 \sim 33 \mathrm{~V}$, $10=5 \mathrm{~mA} \sim 1 \mathrm{~A}$
Line Regulation 1	Reg. 11	05	-	3	100	mV	$\mathrm{Vin}=7 \sim 25 \mathrm{~V}, 10=500 \mathrm{~mA}$
		06	-	4	120		Vin $=8 \sim 25 \mathrm{~V}, 10=500 \mathrm{~mA}$
		07	-	5	140		$\mathrm{Vin}=9 \sim 25 \mathrm{~V}$, $10=500 \mathrm{~mA}$
		08	-	5	160		Vin $=10.5 \sim 25 \mathrm{~V}$, $\mathrm{lo}=500 \mathrm{~mA}$
		09	-	6	180		Vin $=11.5 \sim 26 \mathrm{~V}, 10=500 \mathrm{~mA}$
		10	-	7	200		Vin $=12.5 \sim 27 \mathrm{~V}$, $\mathrm{lo}=500 \mathrm{~mA}$
		12	-	8	240		Vin $=14.5 \sim 30 \mathrm{~V}, 10=500 \mathrm{~mA}$
		15	-	9	300		Vin $=17.5 \sim 30 \mathrm{~V}, 10=500 \mathrm{~mA}$
		18	-	10	360		Vin $=21 \sim 33 \mathrm{~V}$, $10=500 \mathrm{~mA}$
		20	-	12	400		$\mathrm{Vin}=23 \sim 33 \mathrm{~V}, 10=500 \mathrm{~mA}$
		24	-	15	480		Vin $=27 \sim 33 \mathrm{~V}, 10=500 \mathrm{~mA}$
Line Regulation2	Reg. 12	05	-	1	50	mV	$\mathrm{Vin}=8 \sim 12 \mathrm{~V}, 10=500 \mathrm{~mA}$
		06	-	2	60		Vin $=9 \sim 13 \mathrm{~V}, 10=500 \mathrm{~mA}$
		07	-	2	70		$\mathrm{Vin}=10 \sim 15 \mathrm{~V}, 10=500 \mathrm{~mA}$
		08	-	3	80		Vin $=11 \sim 17 \mathrm{~V}, 10=500 \mathrm{~mA}$
		09	-	4	90		Vin $=13 \sim 19 \mathrm{~V}, 10=500 \mathrm{~mA}$
		10	-	4	100		$\mathrm{Vin}=14 \sim 20 \mathrm{~V}, 10=500 \mathrm{~mA}$
		12	-	5	120		$\mathrm{Vin}=16 \sim 22 \mathrm{~V}, 10=500 \mathrm{~mA}$
		15	-	5	150		Vin=20~26V, $10=500 \mathrm{~mA}$
		18	-	5	180		Vin $=24 \sim 30 \mathrm{~V}, 10=500 \mathrm{~mA}$
		20	-	7	200		$\mathrm{Vin}=26 \sim 32 \mathrm{~V}, 10=500 \mathrm{~mA}$
		24	-	10	240		$\mathrm{Vin}=30 \sim 33 \mathrm{~V}, 10=500 \mathrm{~mA}$
Ripple Rejection	R.R.	05	62	78	-	dB	$\begin{aligned} & \text { ein }=1 \mathrm{Vms}, f=120 \mathrm{~Hz}, \\ & 10=100 \mathrm{~mA} \end{aligned}$
		06	59	73	-		
		07	57	69	-		
		08	56	65	-		
		09	56	64	-		
		10	55	64	-		
		12	55	63	-		
		15	54	62	-		
		18	53	61	-		
		20	53	60	-		
		24	50	58	-		
Temperature Coefficient of Output Voltage	Tevo	05	-	-1.0	-	mV / C	$\mathrm{l} \mathrm{O}=5 \mathrm{~mA}, \mathrm{Tj}=0 \sim 125^{\circ} \mathrm{C}$
		06/07/08/09/10/12	-	-0.5	-		
		15/18	-	-0.6	-		
		$20 / 24$	-	-0.7	-		
Peak Output Current	10-p	Common	-	1.7	-	A	$\mathrm{T}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Type | | Limit | | Unit | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

O Output Voltage and Marking

Type	Marking	Output Voltage(V)
BA17805T	17805 T	5
BA17806T	$17806 T$	6
BA17807T	17807 T	7
BA17808T	17808 T	8
BA17809T	17809 T	9
BA17810T	$17810 T$	10

Type	Marking	Output Voltage(V)
BA17812T	$17812 T$	12
BA17815T	$17815 T$	15
BA17818T	17818 T	18
BA17820T	17820 T	20
BA17824T	17824 T	24

Rev.B

OPin number, Pin name

Pin number	Pin name
1	INPUT
2	COMMON
3	OUTPUT

ONOTES FOR USE

(1) Absolute maximum range

We are careful enough for quality control about this IC. So, there is no problem under normal operation, excluding that it exceeds the absolute maximum ratings. However, Absolute Maximum Ratings are those values beyond which the life of a device may be destroyed we cannot be defined the failure mode, such as short mode or open mode. Therefore physical security countermeasure, like fuse, is to be given when a specific mode to be beyond absolute maximum ratings is considered.
(2) Ground voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
(3) Thermal design

When you do the kind of use which exceeds Pd, It may be happened to deteriorating IC original quality such as decrease of electric current ability with chip temperature rise. Do not exceed the power dissipation (Pd) of the package specification rating under actual operation, and please design enough temperature margins.
(4) Short circuit mode between terminals and wrong mounting

Do not mount the IC in the wrong direction and be careful about the reverse-connection of the power connector. Moreover, this IC might be destroyed when the dust short the terminals between them or GND.
(5) Operation in the strong electromagnetic field

Malfunction may be happened when the device is used in the strong electromagnetic field.
(6) ASO

Do not exceed the maximum ASO and the absolute maximum ratings of the output transistor.
(7) Thermal shutdown circuit

The thermal shutdown circuit (TSD circuit) is built in this product. When IC chip temperature become higher, the thermal shutdown circuit operates and turns output off. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the $\mathrm{LS} \mid$ with this circuit operating or use the LSI assuming its operation.
(8) GND wiring pattern

Use separate ground lines for control signals and high current power driver outputs. Because these high current outputs that flows to the wire impedance changes the GND voltage for control signal. Therefore, each ground terminal of IC must be connected at the one point on the set circuit board. As for GND of external parts, it is similar to the above-mentioned.
(9) Internal circuits could be damaged if there are modes in which the electric potential of the application's input and GND are the opposite of the electric potential of the various outputs. Use of a diode or other such bypass is recommended.
(10) We recommend to put Diode for protection purpose in case of output pin connected with large load of impedance or reserve current occurred at initial and output off.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

Please contact our sales offices for details ;

U.S.A / San Diego	TEL : +1(858)625-3630	FAX : +1(858)625-3670
Atlanta	TEL : +1(770)754-5972	FAX : +1(770)754-0691
Dallas	TEL : +1 (972)312-8818	FAX : +1 (972)312-0330
Germany / Dusseldorf	TEL : +49(2154)9210	FAX : +49(2154)921400
United Kingdom / London	TEL : +44(1)908-282-666	FAX : +44(1)908-282-528
France / Paris	TEL : +33(0)1 56973060	FAX : +33(0) 156973080
China / Hong Kong Shanghai Dilian Beijing	$\begin{aligned} & \text { TEL : +852(2)740-6262 } \\ & \text { TEL : +86(21)6279-2727 } \\ & \text { TEL : +86(411)8230-8549 } \\ & \text { TEL : +86(10)8525-2483 } \end{aligned}$	$\begin{aligned} & \text { FAX : +852(2)375-8971 } \\ & \text { FAX : +86(21)6247-2066 } \\ & \text { FAX : +86(411)8230-8537 } \\ & \text { FAX : +86(10)8525-2489 } \end{aligned}$
Taiwan / Taipei	TEL : +866(2)2500-6956	FAX : +866(2)2503-2869
Korea / Seoul	TEL : +82(2)8182-700	FAX : +82(2)8182-715
Singapore	TEL : +65-6332-2322	FAX : +65-6332-5662
Malaysia / Kuala Lumpur	TEL : +60(3)7958-8355	FAX : +60(3)7958-8377
Philippines / Manila	TEL : +63(2)807-6872	FAX : +63(2)809-1422
Thailand / Bangkok	TEL : +66(2)254-4890	FAX : +66(2)256-6334

```
Japan /
(Internal Sales)
```

 Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082
 TEL : +81(3)5203-0321 FAX : +81(3)5203-0300
 Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575
 TEL : +81(45)476-2131 FAX : \(+81(45) 476-2128\)
 Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya,Aichi 450-0002
 TEL : +81(52)581-8521 FAX : +81 (52) \(561-2173\)
 Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,
 Kyoto 600-8216
 TEL : +81(75)311-2121 FAX :+81(75)314-6559
 (Contact address for overseas customers in Japan)
Yokohama TEL: $+81(45) 476-9270 \quad$ FAX : +81(045)476-9271

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G
L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1
L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 MD5127 MD5128 MD5130 MD5144 MD5150 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3 MD52E25QA3 MD52E28QA3

