Communication ICs

Speech network BA6566 / BA6566F / BA6566FP

The BA6566, BA6566F, and BA6566FP are speech network ICs which possess the basic functions required for handset communications. In addition to amplifying signals from a transmitter and sending them to a telephone line, they amplify only reception signals from a telephone line and drive the receiver. They also compensate for fluctuation in the volume at which signals are transmitted and received, caused by the length of the telephone line (AGC).

Applications

Telephones and telephone equipment

Features

- Can accommodate both dynamic and piezoelectric receivers, simply by changing the circuit constant for a wide dynamic reception range.
- Automatic gain control (AGC) is used, based on the transmission and reception telephone line current, for easier compliance with communications standards.
- Erroneous operation caused by high-frequency electrical wave interference is minimized.
- 4) An HSOP package is used, eliminating the need for an attached transistor to dissipate heat. This means that a common circuit can be shared when a DIP package is used (BA6566FP).

Block diagram

Absolute maximum ratings (Ta=25°C)

Paramete	r	Symbol	Limits	Unit				
Applied voltage		V∟	16.5	V				
Power dissipation	BA6566		1100* ¹	mW				
	BA6566F	Pd	600* ²					
	BA6566FP		1350 * ³					
Operating tempera	ture	Topr	$-35 \sim +60$	°C				
Storage temperatur	е	Tstg	-55~+125	°C				
Current dissipation		L	125 ^{*4}	mA				

*1 Reduced by 11 mW for each increase in Ta of 1°C over 25°C.

*2 Reduced by 6 mW for each increase in Ta of 1°C over 25°C.

*3 Reduced by 13.5 mW for each increase in Ta of 1°C over 25°C. When mounted on 90 mm × 50 mm × 1.6 mm glass epoxy board, fins should be soldered to foil pattern.

*4 With the BA6566, Reduced by 1 mA for each increase in Ta of 1°C over 50°C. With the BA6566F, Reduced by 1.4 mA for each increase in Ta of 1°C over 50°C. With the BA6566FP, Reduced by 1 mA for each increase in Ta of 1°C over 50°C.

ROHM

●Electrical characteristics (Ta=25°C)

Deremeter	Symbol	Min.	Тур.	Max.	Unit		С	onditio	Measurement	
						l∟ (mA)	AGC	Mute	f=1kHz	circuit
Line voltage (5)	$V_L(5)$	-	2.0	-	٧	5	-	-	-	Fig.2
Line voltage (20)	VL (20)	2.5	3.5	5.0	۷	20	-	—	—	Fig.2
Line voltage (30)	VL (30)	3.0	4.0	5.4	۷	30	—	—	—	Fig.2
Line voltage (90)	VL (90)	5.2	7.0	9.5	٧	90	-	-	-	Fig.2
Mute input low level voltage	VIL	0.1	0.18	0.25	V	20~90	_	_	_	Fig.2
Mute input low level current	lı.	25	35	45	μA	20~90	_	_	_	Fig.2
Transmit gain 1 (20 - 90)	Gt1 (20 - 90)	37	41	44	dB	20~90	OFF	OFF	$V_{IN} = -50 dBV$	Fig.3
Transmit gain 1 (30 - 90)	Gt1 (30 - 90)	38	41	44	dB	30~90	OFF	OFF	$V_{IN} = -50 dBV$	Fig.3
Transmit gain 2 (20)	GT2 (20)	38	41	45	dB	20	ON	OFF	VIN=-50dBV	Fig.3
Transmit gain 2 (30)	GT2 (30)	38	41	44	dB	30	ON	OFF	VIN=-50dBV	Fig.3
Transmit gain 2 (90)	GT2 (90)	34.5	37.5	40.5	dB	90	ON	OFF	VIN=-50dBV	Fig.3
Transmit distortion attenuation	Dτ	-	-46	-20	dB	20~90	-	OFF	VIN=-50dBV	Fig.3
Transmit noise level	Nτ	_	-68	-55	dBV	20~90	_	OFF	BPF=400Hz ~30kHz	Fig.3
Maximum transmit output level (20 - 90)	От (20 - 90)	-2	3	_	dBV	20~90	_	OFF	Dist=-20dB	Fig.3
Maximum transmit output level (30 - 90)	OT (30 - 90)	0	3	_	dBV	30~90	_	OFF	Dist=-20dB	Fig.3
Receive gain 1 (20 - 90)	Gri (20 - 90)	-13	-10	-7	dB	20~90	OFF	OFF	$\substack{S_1=1\\V_{IN}=-20dBV}$	Fig.4
Receive gain 1 (20)	G _{R1} (20)	-13	-10	-7	dB	20	ON	OFF	$S_1=1$ VIN=-20dBV	Fig.4
Receive gain 1 (30)	Gr1 (30)	-13	-10	-7	dB	30	ON	OFF	S1=1 VIN=−20dBV	Fig.4
Receive gain 1 (90)	Gr1 (90)	-16.5	-13.5	-10.5	dB	90	ON	OFF	$S_1=1$ VIN=-20dBV	Fig.4
Receive distortion attenuation 1	D _{R1}	_	-46	-20	dB	20~90	-	OFF	$S_1=1$ VIN=-20dBV	Fig.4
Receive noise level 1	N _{R1}	_	-70	-60	dBV	20~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Maximum receive output level 1 (20 - 90)	Ori (20 - 90)	-15	-7	-	dBV	20~90	_	OFF	Dist=-20dB	Fig.4
Maximum receive output level 1 (30 - 90)	Ori (30 - 90)	-11	-7	_	dBV	30~90	-	OFF	Dist=-20dB	Fig.4
Receive gain 2 (20 - 90)	GR2 (20 - 90)	5	8	11	dB	20~90	OFF	OFF	S1=2 VIN=-20dBV	Fig.4
Receive gain 2 (20)	G _{R2} (20)	5	8	11	dB	20	ON	OFF	S1=2 VIN=-20dBV	Fig.4

Communication ICs

BA6566 / BA6566F / BA6566FP

Parameter	Symbol	Min.	Тур.	Max.	Unit		С	onditio	Measurement	
						l⊾ (mA)	AGC	Mute	f=1kHz	circuit
Receive gain 2 (30)	Gr2 (30)	5	8	11	dB	30	ON	OFF	$S_1=2$ $V_{IN}=-20dBV$	Fig.4
Receive gain 2 (90)	Gr2 (90)	1.5	4.5	7.5	dB	90	ON	OFF	S1=2 VIN=−20dBV	Fig.4
Receive distortion attenuation 2	Dr2	_	-46	-20	dB	20~90	_	OFF	$S_1=2$ VIN=-20dBV	Fig.4
Receive noise level (20 - 90)	N _{R2} (20 - 90)	_	-66	-50	dBV	20~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Receive noise level 2 (30 - 90)	N _{R2} (30 - 90)	_	-66	-55	dBV	30~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Maximum receive output level 2 (20 - 90)	O _{R2} (20 - 90)	1	7	_	dBV	20~90	_	OFF	Dist=-20dB	Fig.4
Maximum receive output level 2 (30 - 90)	Oria (30 - 90)	3	7	_	dBV	30~90	_	OFF	Dist=-20dB	Fig.4
DTMF gain 1 (20 - 90)	Gd1 (20 - 90)	30.5	33.5	36.5	dB	20~90	OFF	ON	V _{IN} =-40dBV	Fig.5
DTMF gain 2 (20)	GD1 (20)	30	33	36	dB	20	ON	ON	VIN=-40dBV	Fig.5
DTMF gain 2 (30)	Gd2 (30)	30	33	36	dB	30	ON	ON	VIN=-40dBV	Fig.5
DTMF gain 2 (90)	GD2 (90)	27	30	33	dB	90	ON	ON	VIN=-40dBV	Fig.5
DTMF distortion attenuation	DD	_	-41	-28	dB	20~90	—	ON	$V_{IN} = -40 dBV$	Fig.5
DTMF noise level (20 - 90)	No	_	-64	-55	dBV	20~90	_	ON	BPF=400Hz ~30kHz	Fig.5
Maximum DTMF output level (20 - 90)	O₀ (20 - 90)	-4.5	-0.5	_	dBV	20~90	_	ON	Dist=-28dB	Fig.5
Maximum DTMF output level (30 - 90)	0₀ (30 - 90)	-3.5	-0.5	_	dBV	30~90	_	ON	Dist=-28dB	Fig.5
AT gain 1	GA1	23.5	26.5	29.5	dB	20~90	_	ON	S1=1 V⊪=−40dBV	Fig.6
AT gain 2	Ga2	26.5	29.5	32.5	dB	20~90	-	ON	$S_1=2$ VIN=-40dBV	Fig.6
AC impedance	ZTEL	450	565	750	Ω	20~90			VIN=-20dBV	Fig.7
Vcc pin voltage	Vccr	1.15	1.27	_	V	20	-	-	S₃=ON	Fig.2

Measurement circuits

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

External dimensions (Units: mm)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Communication ICs - Various category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :

MT3171BE1 SP-SM2030-0261-01 2100-0320-02 SP-SM2030-0265-004 ZL50232QCG1 ZL38003GMG2 ITM-DYPA-B-01 ITM-DOUF-B-01 ITM-DOPA-B-01 BCM43569PKFFBG CPC5710NTR NAU8401YG BA8206F-E2 CPC1465D DS21372T+ ML22530TBZ0BX ML22Q625-NNNTBZ0BX ML22Q665-NNNTBZ0BX ML22660TBZ0BX ML22620TBZ0BX ML22Q535-NNNTBZ0BX NB4N7132DTG LM567CN/NOPB LM567CMX/NOPB UCC2750DW UCC3750DW CPC5710N