Triple-circuit
 Video Switchers

- Description

These video switching ICs, which contain two or three 2-input circuits, were developed for switching TV, DVD, and other video signals. Input pin formats can be selected from bias mode ($\mathrm{R}=20 \mathrm{k} \Omega$), sync-tip mode, and pedestal clamp mode. Having a large dynamic range and broad frequency characteristics, these switches are suited to a wide range of applications from audio signals to video signals.

-Features

1) Contain three 2-input, 1-output switch circuits
2) Power supply voltage $(4.5 \sim 5.5 \mathrm{~V})$
3) Low power consumption
4) Good frequency characteristics
5) Large dynamic range
6) Bias input (BA7602F)

Sync-tip clamp input (BA7603F)
Pedestal clamp input (BA7606F, BA7606FS)
Bias input + sync-tip clamp input (BA7607F, BA7609F, BA7627FV)
7) Large input impedance (Typ. 20k Ω)
8) Fast switching speed (Typ. 50ns)

-Applications

For switching TV, DVD, and Other video signals

- Line up matrix

Part No.	Circuit current (mA)	Built-in circuit	Input type	Distortion $(\%)$	Maximum output level $\left(V_{\text {P-P })}\right.$	Package
BA7602F	14.0	2 in 3 circuits	Bias	-	3.1	SOP16
BA7603F	13.0	2 in 3 circuits	Clamp	-	2.9	SOP16
BA7606F BA7606FS	15.0	2 in 3 circuits	Pedestal Clamp	-	2.6	SOP16/ SSOP-A16
BA7607F	12.5	2 in 3 circuits	Clamp 2 Bias1	0.007	3.0	SOP16
BA7609F	12.5	2 in 3 circuits	Clamp 1 Bias 2	0.007	3.0	SOP16
BA7627FV	12.5	2 in 3 circuits	Clamp 2 Bias1	0.007	3.0	SSOP-B16

-Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Ratings	Unit
Supply voltage		Vcc	9	V
Power dissipation	BA7602F BA7603F BA7606F BA7607F BA7609F	Pd	$500 * 1$	mW
	BA7606FS		$650{ }^{*}$	
	BA7627FV		$450{ }^{* 1}$	
Operating temperature		Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

*1 Deratings is done at $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.(BA7603F, BA7606F, BA7607F, BA7609F, BA7627FV)
*2 Deratings is done at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.(BA7606FS)
-Operating Range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Ratings			
		Min.	Typ.	Max.	
Supply voltage	Vcc	4.5	5.0	5.5	V

- Electrical characteristics (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$)

Parameter		Symbol	Limits (Typ.)						Unit	Conditions	
		02F	03F	$\begin{aligned} & \hline 06 \mathrm{~F} / \\ & \text { 06FS } \end{aligned}$	07F	09F	27FV				
Circuit current			Icc	14.0	13.0	15.0	12.5			mA	-
Maximum output level1	Clamp	Vom1	-	2.9	-	2.9			$V_{\text {P-P }}$	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=0.5 \%,$ with clamp	
Maximum output level2	Bias	Vom2	3.1	-	-	3.0			$V_{\text {P-P }}$	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=0.5 \%$, without clamp	
Maximum output level U	Pedestal clamp	VomU	-		1.65	-			VP-P	Dynamic range on positive side of clamp level	
Maximum output level D	Pedestal clamp	VomD	-		0.95	-			$V_{\text {P-P }}$	Dynamic range on negative side of clamp level	
Voltage gain		Gv	0						dB	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	
Interchannel crosstalk		$\mathrm{C}_{\text {T }}$	-65						dB	$\mathrm{f}=4.43 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	
Frequency characteristic		Gf	0		-1	0			dB	$10 \mathrm{MHz} / 1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {P-P }}$	
Total harmonic distortion		THD	-			0.007			\%	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, 1 \mathrm{Vp}-\mathrm{p}, \\ & \text { Bias type } \\ & \hline \end{aligned}$	
CTL pin switching level		$V_{\text {TH }}$	2.5						V	H: IN1 L: IN2	
Clamp input level		$\mathrm{V}_{\text {ct }}$	$\mathrm{L} \leqq 0.75$			H 2.2			V	Only BA7606F, BA7606FS	

-Block diagram

Fig. 1 BA7602F

Fig. 3 BA7606F, BA7606FS

Fig. 5 BA7609F

Fig. 2 BA7603F

Fig. 4 BA7607F, BA7627FV
CTL pin settings

CTL	OUTPUT
L	IN2
H	IN1

- Reference data

Pin DC voltage (VCC $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Pin No.	Pin DC voltage (V)				
	BA7602F	BA7603F	$\begin{aligned} & \text { BA7606F } \\ & \text { BA7606FS } \end{aligned}$	$\begin{gathered} \text { BA7607F } \\ \text { BA7627FV } \end{gathered}$	BA7609F
1	3.27	2.05	2.96	2.05	2.48
2	4.91	4.91	4.91	4.91	4.91
3	1.84	0.65	1.54	0.65	1.76
4	0	0	0	0	0
5	1.84	0.65	1.54	0.65	1.76
6	1.84	0.65	1.54	1.76	0.65
7	4.91	4.91	4.91	4.91	4.91
8	3.27	2.05	2.96	2.48	2.05
9	3.27	2.05	2.96	2.48	2.05
10	0	0	4.97	0	0
11	3.27	2.05	2.96	2.05	2.48
12	4.91	4.91	4.91	4.91	4.91
13	5.00	5.00	5.00	5.00	5.00
14	3.27	2.05	2.96	2.05	2.48
15	0	0	0	0	0
16	3.27	2.05	2.96	2.05	2.48

Input/Output impedance

Parameter		Limits (Typ.)					Unit
		02F	03F	06F/FS	07F/27FV	09F	
Input impedance	Bias	20k	-	-			Ω
Input impedance	Clamp	-	1.7M				Ω
Output impedance		30		30*	30		Ω

※The 6pin output impedance in the BA7606F/FS is 130Ω.
-Measurement circuit 1/2 (BA7602F, BA7603F, BA7607F, BA7609F)

Fig. 6 BA7602F, BA7603F, BA7607F, BA7609F, BA7627FV

- Measurement circuit $2 / 2$ (BA7606F/FS)

Fig. 7 BA7606F, BA7606FS

- Reference data

Fig. 8 Circuit current vs. Supply voltage

Fig. 11 Interchannel crosstalk

Fig. 9 Frequency characteristics vs. Supply voltage

Fig. 12 Switching characteristics1 $\mathrm{OFF} \rightarrow \mathrm{ON}$

Fig. 10 Frequency characteristics vs. temperature

INPUT IN2a(1pin) f=1MHz,1Vpp $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Fig. 13 Switching characteristics2 ON \rightarrow OFF

- Notes for use

1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.
4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.
5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.
6) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.
7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.
8) A bias input coupling capacitor on the order of $10 \mu \mathrm{~F} \sim 33 \mu \mathrm{~F}$ is appropriate.
9) A clamp input coupling capacitor on the order of $0.1 \mu \mathrm{~F} \sim 1 \mu \mathrm{~F}$ is appropriate.
10) Make the clamp pulse width of the BA7606F/FS at least $1 \mu \mathrm{~s}$.

-Ordering part number

SOP16

SSOP-A16

SSOP-B16

<Tape and Reel information>	
Tape Embossed carrier tape Quantity 2500 pcs $\begin{array}{l}\text { Direction } \\ \text { of feed }\end{array}$ $\begin{array}{l}\text { E2 } \\ \text { (The direction is the 1pin of product is at the upper left when you hold } \\ \text { reel on the left hand and you pull out the tape on the right hand }\end{array}$	

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7

