Video signal switcher BA7613N / BA7613F

The BA7613N and BA7613F are three-channel analog multiplexers with built-in mute, 6 dB amplifier and 75Ω driver. The ICs designed for use in video cassette recorders, and feature a large dynamic range and wide operating frequency range. Sync-tip clamp inputs make this an ideal switch for video signals.

- Applications

Video cassette recorders and televisions

- Features

1) 3-input / 1-output switches.
2) Built-in 6 dB amplifier and 75Ω driver.
3) Built-in mute.
4) Low power consumption (100 mW Typ.).
5) Sync-tip clamp inputs.
6) Excellent frequency characteristics (10 MHz , OdB Typ.).
7) Wide operating supply voltage range
(4.5V ~ 13.0V, BA7613N) (4.5V ~ 9.5V, BA7613F).
8) Wide dynamic range (3.5Vp-p Typ.).
9) Low interchannel crosstalk
(-65 dB Typ., $\mathrm{f}=4.43 \mathrm{MHz}$).

- Block diagram

- Truth table

CTL A	CTL B	OUT
L (OPEN)	L (OPEN)	IN 1
L (OPEN)	H	IN 2
H	L (OPEN)	IN 3
H	H	MUTE

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	${ }^{* 1} 13.5 / * 210.0$	V
Power dissipation	Pd	${ }^{* 1} 900 * 3 / * 2550 * 4$	mW
Operating temperature	Topr	$-25 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

*1 BA7613N.
*2 BA7613F.
*3 Reduced by 9.0 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
*4 Reduced by 5.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

- Equivalent circuits

CTLA / CTLB

- Electrical characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Operating voltage	Vcc	4.5	-	13.0	V	BA7613F is Max.9.5V
Supply current	Icc	-	20.0	28.5	mA	-
Maximum output level	Vom	3.0	3.5	-	VP.p	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=0.5 \%$
Voltage gain	Gv	5.5	6.0	6.5	dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Interchannel crosstalk	$\mathrm{C}_{\text {T }}$	-	-65	-	dB	$\mathrm{f}=4.43 \mathrm{MHz}, \mathrm{V}_{1 \times}=1.0 \mathrm{~V}_{\text {P-P }}$
Frequency characteristic	C_{t}	-3.0	0	1.0	dB	$\mathrm{f}=10 \mathrm{MHz} / 1 \mathrm{MHz}, \mathrm{VIN}=1.0 \mathrm{~V}_{\text {p-P }}$
CTL pin switch level A	$\mathrm{V}_{\text {th-A }}$	1.0	2.0	3.0	V	-
CTL pin switch level B	$\mathrm{V}_{\text {тH-B }}$	1.0	2.0	3.0	V	-

ONot designed for radiation resistance.

- Measurement circuit

Fig. 1

- Measurement conditions

Parameter		Symbol	Switch settings					Measurement method	
		SW ${ }_{1}$	SW2	SW_{3}	SW_{4}	SW5			
Current dissipation			Icc	2	2	2	2	2	Ammeter
Maximum output level	$\begin{aligned} & \text { ln1 } \\ & \text { l }^{2} 2 \\ & \text { IN }^{2} \end{aligned}$	Vom Vom Vom	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \mathrm{THD}=0.5 \% \\ & \quad * 1 \end{aligned}$	
Voltage gain	IN1 In2 In3	Gv Gv Gv	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}=1 \mathrm{VP-P} \\ & * 2 \end{aligned}$	
Interchannel crosstalk	$\mathrm{I}_{\mathrm{N} 1} \rightarrow \mathrm{I}_{\mathrm{N} 2}$ $\mathrm{I}_{\mathrm{N} 1 \rightarrow} \rightarrow \mathrm{~N} 3$ $\mathrm{I}_{\mathrm{N} 1} \rightarrow$ MUTE $\mathrm{I}_{\mathrm{N} 2} \rightarrow$ In3 $\mathrm{I}_{\mathrm{N} 2} \rightarrow$ MUTE IN3 \rightarrow MUTE	$\begin{aligned} & \mathrm{C}_{T} \\ & \mathrm{C}_{\mathrm{t}} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{f}=4.43 \mathrm{MHz}, \\ & \mathrm{~V}=1 \mathrm{VP-P} \\ & * 3 \end{aligned}$	
Frequency characteristic	$\mathrm{I}_{\mathrm{N} 1}$ In2 Імз	$\begin{aligned} & \mathrm{G}_{\mathrm{f}} \\ & \mathrm{G}_{\mathrm{f}} \\ & \mathrm{G}_{\mathrm{f}} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} f=10 \mathrm{MHz} / f=1 \mathrm{MHz}, \\ V=1 \mathrm{VP} \cdot \mathrm{P} \\ * 4 \end{gathered}$	
CTL pin switching level	CTLA CTLB	$\begin{aligned} & V_{T H} \\ & V_{T H} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	*5	

*1: Connect a distortion meter to the output, and input a $f=1 \mathrm{kHz}$ sine wave. Adjust the input level until the output distortion is 0.5%. This output voltage at this time multiplied by 2 is the maximum output level Vom (VP-P).
*2: Input a $1 \mathrm{VP}-\mathrm{P}, 1 \mathrm{MHz}$ sine wave. The voltage gain is given by $\mathrm{Gv}=20 \log (\mathrm{Vout} / \mathrm{VIN})+6$.
*3: Input a $1 \mathrm{VP}-\mathrm{P}, 4.43 \mathrm{MHz}$ sine wave. The interchannel crosstalk is given by $\mathrm{CT}=20 \log$ (VOUT / VIN).
*4: Input $1 \mathrm{VP}-\mathrm{P}, 1 \mathrm{MHz}$ and 10 MHz sine waves.
The frequency characteristic is given by $\mathrm{Gf}_{\mathrm{f}}=20 \log (\operatorname{VOUT}(f=10 \mathrm{MHz}) / \operatorname{Vout}(f=1 \mathrm{MHz}))$.
*5: Input a 1VP-P, 1 MHz sine wave. Reduce the CTL pin voltage from Vcc.
The CTL pin switching level (VTH) is the CTL pin voltage at which the Vout level drops below 20mVp-p.

- Electrical characteristic curves

Fig. 2 Vin vs. Vout $(f=1 k H z)$

Fig. 3 Frequency characteristics

Fig. 4 Interchannel crosstalk

Operation notes

The output impedance is approximately 32Ω. Therefore, to ensure output matching, connect an external resistor of 43Ω.

- External dimensions (Units: mm)

SIP8

SOP8

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33
PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX
M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2
BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z
ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-
M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ
$\underline{\text { ADA4417-3ARMZ-R7 ADA4424-6ARUZ ADA4431-1YCPZ-R7 }}$

