System Switching Regulator IC with Built-in FET (5V)

-Description

7 Channel Switching Regulator Controller for Digital Camera that contains an internal FET.
Built in the function that dim a white LED for back light with a diming set signal from a microcomputer.

-Features

1) 1.5 V minimum input operating
2) Supplies power for the internal circuit by step-up converter(CH1).
3) CH 1 step-up converter, CH 2 cross converter, $\mathrm{CH} 3,4$ step-down converter, CH5 inverting converter for CCD, CH 6 boost converter for CCD, CH 7 boost converter for LED
4) All channels contain internal Power MOSFET and compensation. Built-In Over Voltage Protection (OVP) for $\mathrm{CH} 1,2,7$
5) Operating frequency $2.0 \mathrm{MHz}(\mathrm{CH} 3,4), 1 \mathrm{MHz}(\mathrm{CH} 1,2,5 \sim 7)$
6) Contains sequence control circuit for $\mathrm{CH} 1 \sim 4$. It is possible to select sequence $\mathrm{CH} 1 \Rightarrow \mathrm{CH} 3 \Rightarrow \mathrm{CH} 4 \Rightarrow \mathrm{CH} 2$ and $\mathrm{CH} 1 \Rightarrow \mathrm{CH} 4 \Rightarrow \mathrm{CH} 3 \Rightarrow \mathrm{CH} 2$ by SEQ_CTL pin
7) Built-In discharge switch ($\mathrm{CH} 2,3,4$) and contains off sequence control circuit for $\mathrm{CH} 1 \sim 4$. $\mathrm{CH} 1,3$ turn off after $\mathrm{CH} 2,4$ output voltage discharged.
8) Built-In Short-circuit Protection (SCP)
9) CH 1 have backgate control circuit CH 6 have high side switches with soft start function.
10) Thermally enhanced UQFN036V5050 package($5 \mathrm{~mm} \square 0.4 \mathrm{~mm}$ pitch)

-Applications

For Digital Camera

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Ratings	Unit
Maximum applied power Supply voltage	HX2BAT,VCCOUT	$-0.3 \sim 7$	V
Maximum applied input voltage	VHx1~4, 56	$-0.3 \sim 7$	V
	(Hx56-Lx5) Voltage	$-0.3 \sim 15$	V
	VLx6	-0.3~22	V
	VLx7	$-0.3 \sim 30$	V
Maximum Output current	IomaxHx1, Lx1	± 2.2	A
	lomaxHx2	± 1.5	A
	IomaxHx3	± 1.2	A
	IomaxHx4	± 1.0	A
	IomaxHx56	± 1.5	A
	IomaxHS6L	+1.2	A
	IomaxLx7,8	± 1.0	A
Power Dissipation	Pd	0.88 (*1)	W
Operating Temperature	Topr	$-25 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55~+150	${ }^{\circ} \mathrm{C}$
Maximum applied power Supply voltage	HX2BAT,VCCOUT	+150	${ }^{\circ} \mathrm{C}$

${ }^{*} 1$ Should be derated by $7.04 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or more. When mounted on a glass epoxy PCB of $74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm} \times 1.6 \mathrm{~mm}$

－Operating condition

Parameter	Symbol	Ratings			Unit	Conditions
		Min．	Typ．	Max．		
Power supply voltage	VBAT	1.5	－	5.5	V	
VREF terminal connection capacity	CVREF	0.047	0.1	0.47	$\mu \mathrm{F}$	
PWM7 input frequency range	fpwm	20	－	100	kHz	
【Driver】						
CH1 NMOS／PMOS drain current	Idpl1	－	－	2.1	A	
CH2 Hx2BAT input current	lin2	－	－	1.4	A	
CH3 PMOS drain current	Idpl3	－	－	1.0	A	
CH4 PMOS drain current	Idpl4	－	－	0.5	A	
CH5 PMOS drain current	Idpl5	－	－	1.4	A	
CH6 HS6L input current	IdpI6	－	－	1.1	A	
CH6，7 NMOS drain current	Idn16，7	－	－	0.9	A	
【Output voltage setting range】						
CH1		4.5	－	5.4	V	
CH 2		（※）	－	5.4	V	※Use with the following range．
CH3		1.0	－	4.4	V	
CH 4		1.0	－	4.4	V	
CH5		－9．5	－	－1．5	V	
CH6		5.5	－	16	V	※Use with VBAT＜Vo6
CH7		5.5	－	26	V	※Use with VBAT＜Vo7

－ CH 2 output voltage setting range

Fig． 1 CH 2 output voltage setting range
Ripple voltage level of CH 2 cross converter would be big by cross talk with embedded oscillator when oscillating Duty of step down side is 50% ．Therefore please not to set oscillating duty of CH 2 with 50% ．

-Protective functions

Parameter	SCP	OCP	OVP	Conditions
CH1 step-up synchronous rectification	\bigcirc	O	O	Stop when shorted output OVP: VCCOUTmonitor
CH 2 step-up voltage.	0	\bigcirc	\times	SCP:INV monitor
CH3 step-down synchronous rectification	\bigcirc	\bigcirc	\times	SCP:INV monitor
CH4 step-up synchronous rectification	0	O	\times	SCP:INV monitor
CH5 inverse Di rectification	\bigcirc	O	\times	SCP: Error amp output (internal node) monitor
CH6 step-up Di rectification	\bigcirc	\bigcirc	\times	SCP: Error amp output (internal node) monitor
CH7 step-up back light	\times	O	\bigcirc	OVP:VO7 monitor

- Over current protective part

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
CH1 LX1 OCP detecting current	IOCP1	2.5	-	-	A	
CH2 HX2BAT OCP detecting current	IOCP2	2.0	-	-	A	
CH3 HX3 OCP detecting current	IOCP3	1.2	-	-	A	
CH4 HX4 OCP detecting current	IOCP4	1.2	-	-	A	
CH5 LX5 OCP detecting current	IOCP5	1.8	-	-	A	
CH6 HS6L OCP detecting current	IOCP6H	1.5	-	-	A	
CH6 LX6 OCP detecting current	IOCP6L	1.2	-	-	A	
CH7 Lx7 OCP detecting current	IOCP7	1.2	-	-	A	

- Recommended maximum load current

		$\begin{aligned} & \text { Vo } \\ & \text { (V) } \end{aligned}$	Vin (V)	$\begin{array}{\|l\|l\|} \hline \text { Io_max } \\ \hline(\mathrm{mA}) \\ \hline \end{array}$	condition			$\begin{aligned} & \text { Vo } \\ & \text { (V) } \end{aligned}$	Vin (V)	$\underset{(\mathrm{mA})}{\text { Io_max }}$	condition
CH1	Boost	5.0	1.8	400	$\begin{aligned} & \mathrm{L}=4.3 \mu \mathrm{H} \\ & \text { (TOKO:DE4518C) } \\ & \mathrm{C}=22 \mu \mathrm{~F} \\ & \mathrm{R} 1=390 \mathrm{k} \Omega, \\ & \mathrm{R} 2=75 \mathrm{k} \Omega \end{aligned}$	CH5	Reversal	-6.5	2.5	100	$\begin{aligned} & \mathrm{L}=4.7 \mu \mathrm{H} \\ & \text { (TOKO:DE2815) } \\ & \mathrm{C}=10 \mu \mathrm{~F} \\ & \mathrm{R} 1=156 \mathrm{k} \Omega \\ & \mathrm{R} 2=30 \mathrm{k} \Omega \\ & \mathrm{Cc}=1000 \mathrm{pF} \end{aligned}$
			2.5	750					3.6	100	
			3.6	850					4.2	100	
			4.2	850					5.0	100	
CH2	Boost/ Stepdown	3.2	1.8	300	$\begin{aligned} & \mathrm{L}=4.7 \mu \mathrm{H} \\ & \text { (TOKO:DE2815) } \\ & \mathrm{C}=10 \mu \mathrm{~F} \\ & \mathrm{R} 1=440 \mathrm{k} \Omega, \\ & \mathrm{R} 2=200 \mathrm{k} \Omega \\ & \mathrm{Cc}=12 \mathrm{pF} \end{aligned}$	CH6	Boost	13	2.5	30	$\begin{aligned} & \mathrm{L}=4.7 \mu \mathrm{H} \\ & \text { (TOKO:DE2815) } \\ & \mathrm{C}=10 \mu \mathrm{~F} \\ & \mathrm{R} 1=360 \mathrm{k} \Omega \\ & \mathrm{R} 2=30 \mathrm{k} \Omega \end{aligned}$
			2.5	600					3.0	40	
			3.6	600					4.2	50	
			4.2	600					5.0	50	
CH3	Step down	1.2	1.8	800	$\begin{aligned} & \mathrm{L}=4.7 \mu \mathrm{H} \\ & \text { (TOKO:DE2815) } \\ & \mathrm{C}=10 \mu \mathrm{~F} \\ & \mathrm{R} 1=300 \mathrm{k} \Omega, \\ & \mathrm{R} 2=600 \mathrm{k} \Omega \end{aligned}$	CH7	Boost (worth 3 light LED)	11.4	1.8	25	$\begin{aligned} & \mathrm{L}=4.7 \mu \mathrm{H} \\ & \text { (TOKO:DE2815) } \\ & \mathrm{C}=4.7 \mu \mathrm{~F} \end{aligned}$
			2.5	1000					2.5	40	
			3.6	1000					3.6	40	
			4.2	1000					4.2	40	
CH 4	Step down	1.8	2.5	500	$\begin{aligned} & \mathrm{L}=4.7 \mu \mathrm{H} \\ & \text { (TOKO:DE2815) } \\ & \mathrm{C}=10 \mu \mathrm{~F} \\ & \mathrm{R} 1=300 \mathrm{k} \Omega, \\ & \mathrm{R} 2=240 \mathrm{k} \Omega \end{aligned}$	CH7	Boost (worth 4 light LED)	14	2.5	30	$\begin{aligned} & \mathrm{L}=4.7 \mu \mathrm{H} \\ & \text { (TOKO:DE2815) } \\ & \mathrm{C}=4.7 \mu \mathrm{~F} \end{aligned}$
			3.0	500					3.6	40	
			3.6	500					4.2	40	
			4.2	500					5.0	40	

－Electrical characteristics（Unless specified， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCCOUT}=5.0 \mathrm{~V}, \mathrm{VBAT}=3 \mathrm{~V}, \mathrm{STB} 13 \sim 7=3 \mathrm{~V}, \mathrm{UPIC} 8=2.5 \mathrm{~V}$ ）

Parameter	Symbol	Limits			Unit	Conditions
		Min．	Typ．	Max．		
【Low－voltage input malfunction prevention circuit】						
Detecting voltage	Vstd1	－	2.3	2.4	V	VCCOUT monitor
Release voltage	Vstd2	2.3	2.5	2.7	V	VCCOUT monitor
Hysteresis width	$\Delta \mathrm{Vstd}$	100	200	300	mV	
【Short Circuit Protection】						
SCP detect time	Tscp	20	25	30	ms	
Timer start threshold voltage	Vtcinv	0.38	0.48	0.58	V	INV monitor $\mathrm{CH} 2 \sim 4$
【Start－up Circuit】						
Frequency	Fstart	150	300	600	kHz	HX2BAT $=1.8 \mathrm{~V}$
Start－up HX2BAT Voltage	Vst1	1.5	－	－	V	
Start－up CH Soft Start Time	Tss1	1.8	3.0	5.3	msec	
【Oscillating circuit】						
Frequency $\mathrm{CH} 3,4$	fosc1	1.6	2.0	2.4	MHz	
Frequency CH1，2，5－7	fosc2	0.8	1.0	1.2	MHz	
Max duty 1（step－up）	Dmax1	81	86	90	\％	
Max duty CH2 Lx21	Dmax21	－	－	100	\％	
Max dutyCH2 Lx22	Dmax22	81	86	90	\％	
Max duty 3，4（step－down）	Dmax34	－	－	100	\％	
Max duty5，6，7	Dmax567	81	86	90	\％	
【Error Amp】						
Input Bias current	IINV	－	0	50	nA	INV1～7，NON5＝3．0V
INV threshold 1	VINV1	0.79	0.80	0.81	V	CH1，3，4
INV threshold 2	VINV2	0.99	1.00	1.01	V	CH2，6
INV7 threshold 1	VINV71	570	600	630	mV	PWM7，Duty＝100\％
INV7 threshold 2	VINV72	436	450	473	mV	PWM7，Duty＝75\％
INV7 threshold 3	VINV73	223	240	257	mV	PWM7，Duty＝40\％
INV7 threshold 4	VINV74	15	30	45	mV	PWM7，Duty＝5\％
【For Inverting Base Bias Voltage Vref】						
CH5 Output Voltage	VOUT5	－6．072	－6．000	－5．928	V	NON5，15k $\Omega, 72 \mathrm{k} \Omega$
Line Regulation	DVLi	－	4.0	12.5	mV	$\mathrm{VCCOUT}=2.8 \sim 5.5 \mathrm{~V}$
Output Current When Shorted	los	0.2	1.0	－	mA	Vref＝0V
【Soft Start】						
CH2，5，6 Soft Start Time	Tss2，5，6	3.1	5.3	7.4	msec	
CH3，4 Soft Start Time	Tss3，4	1.2	2.1	3.0	msec	
CH7 Duty Restriction time	TDTC	5.0	8.2	11.8	msec	

[^0]－Electrical characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCCOUT}=5.0 \mathrm{~V}, \mathrm{HX}, \mathrm{HX} 2 \mathrm{BAT}=3.6 \mathrm{~V}, \mathrm{STB} 1 \sim 6=3 \mathrm{~V}, \mathrm{PWM} 7=2.5 \mathrm{~V}\right.$ ）

Parameter		Symbol	Limits			Unit	Conditions	
		Min．	Typ．	Max．				
【 Output Driver】								
CH1 High side SW ON Resistance			RON1P	－	100	150	$m \Omega$	$\mathrm{H} \times 1=5 \mathrm{~V}$
CH1 Low side SW ON Resistance		RON1N	－	60	120	$m \Omega$	$\mathrm{VCCOUT}=5.0 \mathrm{~V}$	
CH2 Lx21 High side SW ON resistance		RON21P	－	120	180	$m \Omega$	$\mathrm{H} \times 2 \mathrm{BAT}=3.6 \mathrm{~V}$	
CH2 Lx21 Low side SW ON resistance		RON21N	－	120	180	$m \Omega$	VCCOUT $=5.0 \mathrm{~V}$	
CH2 Lx22 High side SW ON resistance		RON22P	－	120	180	$m \Omega$	VOUT2＝3．6V	
CH2 Lx22 Low side SW ON resistance		RON22N	－	100	150	$m \Omega$	VCCOUT $=5.0 \mathrm{~V}$	
CH3 High side SW ON Resistance		RON3P	－	150	230	$m \Omega$	$\mathrm{H} \times 3=3.6 \mathrm{~V}, \mathrm{VCCOUT}=5 \mathrm{~V}$	
CH3 Low side SW ON Resistance		RON3N	－	120	180	$m \Omega$	$\mathrm{VCCOUT}=5.0 \mathrm{~V}$	
CH4 High side SW ON Resistance		RON4P	－	200	300	$m \Omega$	$\mathrm{H} \times 4=3.6 \mathrm{~V}, \mathrm{VCCOUT}=5 \mathrm{~V}$	
CH4 Low side SW ON Resistance		RON4N	－	150	230	$m \Omega$	VCCOUT $=5.0 \mathrm{~V}$	
CH5 PMOS SW ON resistance		RON5P	－	450	700	$m \Omega$	$\mathrm{H} \times 56=3.6 \mathrm{~V}$	
CH6，7 NMOS SW ON resistance		RON6，7N	－	500	750	$m \Omega$	VCCOUT $=5.0 \mathrm{~V}$	
CH6 Load SW ON resistance		RON6P		150	230	$m \Omega$	$\mathrm{H} \times 56=3.6 \mathrm{~V}$	
LED PIN SW ON resistance		RLED	－	2.0	3.0	Ω	$\mathrm{VCCOUT}=5.0 \mathrm{~V}$	
【Discharge switch】								
CH2 discharge SW ON resistance		RDSW2	－	500	1000	Ω	VCCOUT $=5.0 \mathrm{~V}$	
CH3 discharge SW	ON resistance	RDSW3	－	500	1000	Ω	VCCOUT＝5．0V	
CH4 discharge SW ON resistance		RDSW4	－	500	1000	Ω	$\mathrm{VCCOUT}=5.0 \mathrm{~V}$	
【STB1～6】								
STB Control Voltage	Active	VSTBH1	1.5	－	5.5	V		
	Non Active	VSTBL1	－0．3	－	0.3	V		
Pull Down Resistance		RSTB1	250	400	700	$\mathrm{k} \Omega$		
【PWM7】								
PWM7 Threshold		VPWM7	1.1	1.5	1.9	V		
Pull Down Resistance		RPWM7	250	400	700	$\mathrm{k} \Omega$		
CH7 Delay time for shutdown		Toff7	200	300	－	usec		
【Circuit Current】								
Stand－by Current	VCCOUT terminal	ISTB1	－	－	5	$\mu \mathrm{A}$		
	Hx terminal	ISTB2	－	－	5	$\mu \mathrm{A}$	Step－down Cross－converter	
	Lx terminal	ISTB3	－	－	5	$\mu \mathrm{A}$	Step－up	
Circuit Current when start－up （HX2BAT current when voltage supplied for the terminal）		IST	－	150	450	$\mu \mathrm{A}$	HX2BAT $=1.5 \mathrm{~V}$	
Circuit Current（VCCOUT current when voltage supplied for the terminal）		Icc2	－	5.0	9.7	mA	$\begin{aligned} & \text { INV1~7=1.2V, } \\ & \text { NON5=-0.2V } \end{aligned}$	

This product is not designed for normal operation with in a radioactive environment．

- Reference data (1)

Fig. 2 Start-up circuit frequency-Temp

Fig.5-1 CH134 Base voltage-Temp

Fig. 6 CH1
5.0 V voltage boost efficiency-lo

Fig. 9 CH4 1.8 V
step-down efficiency-lo

Fig. 3 Frequency CH1,2,5~7 - Temp

Fig.5-2 CH26 Base voltage - Temp

Fig. 7 CH2 3.2
Voltage boost efficiency-lo

Fig. $10 \mathrm{CH} 5-6.5 \mathrm{~V}$ inverting efficiency-lo

Fig. 4 Frequency CH3,4—Temp

Fig.5-3 CH5 Base voltage - Temp

Fig. 8 CH3
1.2 V step-down efficiency-lo

Fig. 11 CH6 13V
boost efficiency-lo

-Reference data (2)

Fig. 12 CH7 3LED Efficiency—Input voltage

Fig. 13 IVCCOUT-VBAT (Recommended application)

Fig. 14 CH 1 start-up waveform
(VBAT=1.5V)

Fig. $17 \mathrm{CH} 2 \sim \mathrm{CH} 4$ start-up waveform (SEQ_CTL=H)

Fig. 15 CH1 start-up waveform (VBAT=3.6V)

Fig. 18 CH5 start-up waveform

Fig. $16 \mathrm{CH} 2 \sim \mathrm{CH} 4$ start-up waveform (SEQ CTL=L)

Fig. 19 CH6 start-up waveform

Fig. 20 CH 7 start-up waveform

Fig. 21 CH1~4 waveform when OFF (SEQ_CTL=H/L common)

(SEQ CTL H/L comman)

Fig. 22 CH 7 waveform when OFF

-Block Diagram

Fig. 23 BD9355MWV Top VIEW

-Pin description

Pin No	Pin name	I/O	Function	note
24	VCCOUT	1	IC Power Supply Input	Part of controller Power Supply for Low side Driver
23	GND	O	Ground terminal	
10,5,15,33	PGND1,2,34,567	O	Ground for Internal FET	
25	VREF5	0	CH5 Reference Output	
12	Hx1	O	Step up output voltage terminal (Contains backgate control)	
17,7,13,1	HX3,2BAT,4,56	1	CH2-6 Pch FET Source Terminal , FET Driver Power Supply	
11,16,14,2,34,32	Lx1, 3, 4, 5,6,7	I/O	Terminal for Connecting Inductor	
6	Lx21	I/O	Terminal for Connecting Inductor For CH2 Input	
4	Lx22	I/O	Terminal for Connecting Inductor For CH2 Output	
3	VOUT2	O	CH2 DC/DC Output	
36	HS6L	O	Output Terminal for Internal Load Switch	
21,22,19,20,27,28	INV1,2,3,4,6,7	1	Error Amp Inverted Input	
26	NON5	1	Error Amp Non-inverted input	
18,8,35	STB1234,5,6	1	ON/OFF switch H : operating over 1.5 V	
30	PWM7	1	CH7 ON/OFF Control, PWM Dimming Input	
9	SEQ_CTL	1	Sequence control terminal	$\begin{aligned} & \text { GND: } \mathrm{CH} 1 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 2 \\ & \text { VCCOUT: } \mathrm{CH} 1 \rightarrow \mathrm{CH} 3 \rightarrow \mathrm{CH} 4 \rightarrow \mathrm{CH} 2 \end{aligned}$
29	LED	1	Terminal for connecting LED Cathode	
31	VO7	1	CH7 DC/DC Output	

- Application circuit(1)

Fig. 24 Applied circuit diagram 1(lithium 1 cell)

OOperation notes

- we are confident that the above applied circuit diagram should be recommended, but please thoroughly confirm its characteristics when using it. In addition, when using it with the external circuit's constant changed, please make a decision that allows a sufficient margin in light of the fluctuations of external components and ROHM's IC in terms of not only static characteristic but also transient characteristic.

-Application circuit (2)

Fig. 25 Applied circuit diagram 2(dry battery $\times 2$)

OOperation notes

- we are confident that the above applied circuit diagram should be recommended, but please thoroughly confirm its characteristics when using it. In addition, when using it with the external circuit's constant changed, please make a decision that allows a sufficient margin in light of the fluctuations of external components and ROHM's IC in terms of not only static characteristic but also transient characteristic.
- Timing chart (1)

SEQ_CTL=L (GND)

SEQ_CTL=H (VCCOUT)

Fig. $26 \mathrm{CH} 1 \sim 4$ start-up sequence

- Timing chart (2)

Fig. 27 CH5,6 start-up sequence

Fig. $28 \quad$ CH7 start-up sequence

- Timing chart (3)

Fig. $29 \quad \mathrm{CH} 1 \sim 4$ OFF sequence

Fig. $30 \mathrm{CH} 5,6$ OFF sequence

Fig. 31 CH7 OFF sequence

- CH 7 dimming function

Fig.. 32 CH 7 block diagram

- CH7 operation

The output duty control signal for soft start starts rising by connecting terminals LED and INV7 when inputting any Duty for PWM7. And threshold voltage of erroramp being proportional to PWM7 Duty is supplied by PWM7 input signal after start up , then INV7 output voltage being proportional to PWM7 Duty is supplied as the result of negative feedback of DCDC converter. DTC7 rises up slower comparatively with oscillating frequency by fixed degree incline. Oscillating duty is restricted by DTC7 signal which is inputted to PWM comparator therefore input rush current is prevented to occur even output voltage of erroramp at start up time rises up rapidly. The time from start up to reaching set current of LED is depend on input voltage, a number of LED, PWM7 duty, resistor to set the current of LED. The time to reach set current of LED will be long when input voltage is low, a number of LED is big, set output current is big because of high duty under that condition. When you input L voltage into PWM7 pin during over $500 \mu \mathrm{sec}$ typ, Switch between LED and INV7 and switching turn off. CH7 heve Over voltage protection(OVP).When VO7 pin is over 28Vtyp,OVP stop CH7 function..OVP latch CH 7 function and reset dy All $\mathrm{STB}=\mathrm{L}$.

- Attention of CH7 start-up

In case CH 7 start up, Please turn on STB1234 before $\mathrm{CH} 7 . \mathrm{CH} 7$ can not start before $\mathrm{CH} 1,2,3,4$

- Recommended method of setting at the time of INV7 output voltage setting.

If INV7 output setting value is made larger than previous setting value during all intervals but soft start interval (at the time of starting up), it is recommended that the value of voltage is increased step by step with the smallest possible width of step after fully evaluating the restriction at the soft side that controls rush current and switching and the vision of brightness etc. in terms of set application.

OPWM7 Duty INV7 Voltage Value

INV7 is output voltage that proportionate to PWM7 input PWM pulse DUTY and control LED current by external resister for setting (between INV7 and GND). LED current is decided by NOTE1 formula.
(Note 1) LED current = INV7 voltage / resistance R for LED current setting

PWM7 InputDUTY[\%]	INV7 Output Voltage [mV]
5	30
10	60
15	90
20	120
25	150
30	180
35	210
40	240
45	270
50	300
55	330
60	360
65	390
70	420
75	450
80	480
85	510
90	540
95	570
100	600

Fig. 33 PWM7 DUTY - INV7 Terminal Voltage

-Block explanation

1. SCP, Timer Latch

It is a timer latch type of short-circuit protection circuit.
For $\mathrm{CH} 1,2,6 \sim 8$, the error AMP output voltage is monitored, and detected when the feedback voltage deviates from control, for $\mathrm{CH} 3 \sim 5$, it is detected when the voltage of INV terminal becomes lower than 60%, and in 25 ms the latch circuit operates and the outputs of all the channels are fixed at OFF.
In order to reset the latch circuit, please turn off all the STB terminals before turning them on once again or turning power supply on once again.
2. U.V.L.O

It is a circuit to prevent malfunction at low voltage.
It is to prevent malfunction of internal circuit at the time of rising or dropping to a lower value of power supply voltage. If the voltage of VCCOUT terminal becomes lower than 2.3 V , then the output of each DC/DC converter is reset to OFF, and SCP's timer latch \& soft start circuit are reset. When control is deviated from, the operation of CH1 at the time of start-up will be explained in START UP OSC mentioned later.
3. Voltage Reference (VREF5)

For the reference voltage circuit of CH 5 inversion CH , the output voltage is 1.25 V and outputted from VREF5 terminal (25pin). According this voltage and the output voltage of CH 5 , the dividing resistance (resistor) is set and then the output voltage is set.
If STB5 terminal is made to be H level at the time of start-up, then increase gradually the voltage up to 1.25 V . The inversion output of CH 5 follows this voltage and performs the soft start. $0.1 \mu \mathrm{~F}$ is recommended as the external capacitor.
4. OSC

It is an oscillation circuit the frequency of which is fixed by a built-in CR.
The operating frequencies of $\mathrm{CH} 3,4$ are set at 2 MHz , and the operating frequencies of $\mathrm{CH} 1,2,5$ are set at 1 MHz .
5. ERRAMP 1~7

It is an error amplifier to detect output signal and output PWM control signal. The reference voltages of ERRAMP (Error Amplifier) of $\mathrm{CH} 1,3,4$ are internally set at 0.8 V , and the reference voltages of ERRAMP (Error Amplifier) of $\mathrm{CH} 2,6$ are set at 1.0 V . The reference voltage of CH 5 is set at GND potential, and for CH7's ERRAMP7, the maximum value of the reference voltage is set at 0.6 V . In addition, each CH incorporates a built-in element for phase compensation.
6. ERRCOMP, Start Up OSC

It is a comparator to detect the output voltage and control the start circuit, and also an oscillator that is turned ON/OFF by this comparator and starts operating from 1.5 V . The frequency of this oscillator is about 300 kHz fixed internally. This oscillator stops operating if VCC terminal becomes more than 2.5 V or the soft start time is exceeded.
7. Current mode control block

CH1, 3~7 adopt the PWM method based on current mode.
For a current- mode DC/DC converter, FET at the main side of synchronous rectification is turned on when detecting the clock edge, and turned off by detecting the peak current by means of the current comparator.
8. Cross Control

DUTY controller for CH2 cross converter. It have PWM comparator that compare 1MHz SLOPE and ERROR AMP output and logic circuit for control 4 FET ON/OFF switching.. LX21 MAX ON DUTY is 100%, LX21 MAX ON DUTY is 86%.
9. Back gate Control

PchFET backgate selector controller in CH 1 .
PchFET have body Di between backgate and source, drain ordinary. This circuit intercept CH1 step up output voltage by cutting body Di line at STB OFF and control soft start .CH1 softstart output voltage from OV like a slope.
10. Nch DRIVER, Pch DRIVER

Internal Nch, Pch FET driver CMOS inverter type output circuit.
11. Load SW

It is a circuit, mounted in CH6, to control the Load SW. Hx56 terminal (1pin) is input terminal, and the HS6L terminals (36pin) are output terminals.
This control circuit can prevent the rush current at the time of SW ON because the soft start starts functioning at the time of start-up. In addition, this Load SW is provided with OCP function to prevent the IC from damage. Ensure that the IC is used within Load SW's rated current when used normally.
12. ON/OFF LOGIC

It is the voltage applied to STB terminal and can control the ON/OFF of CH1~CH6.
If the voltage more than 1.5 V is applied, then it becomes ON , but if open or OV is applied, then it becomes off, furthermore, it all the channels are turned off, then the whole IC will be in standby state. In addition, STB1, 2, 3, 4~STB6 terminals contain respectively a built-in pull-down resistor of about 400k Ω.
PWM7 is the input terminal of the start signal and the light control signal of CH 7 . It becomes high if the voltage more than 2.1 V is applied and becomes Low if the voltage less than 0.4 V is applied. In addition, PWM7 terminal contains a built-in pull-down resistor of about $400 \mathrm{k} \Omega$.

13. SOFT START

It is a circuit to apply the soft start to the output voltage of DC/DC converter and prevent the rush current at the start-up. Soft start time varies with the channels.
a. CH1 • . . . reaches the target voltage in 3.0 ms .
b. $\mathrm{CH} 3,4$ • • reach the target voltage in 2.1 ms .
c. $\mathrm{CH} 2,5,6$ • • reach the target voltage in 5.3 ms .
d. $\mathrm{CH} 7 \cdot \cdots \cdot$ reach the target voltage in 8.2 ms .
14. Brightness controller

CH 7 have LED brightness controller.INV7 is output voltage that proportionate to PWM7 input DUTY and control LED current by external resister for setting (between INV7 and GND).
15. OVP COMP7

In CH7, When LED is OPEN, INV7 become L and output voltage increase suddenly. If this condition continues, Lx7 voltage increase and exceed break down voltage. CH7 heve Over voltage protection (OVP). When VO7 pin is inputted over 28Vtyp, OVP stop CH7 function..OVP latch CH7 function and reset dy All STB=L

-Setting method of IC peripheral components

(1) Design of feedback resistor constant

Reference voltage is
connected to GND inside conne
IC

VOUT7

$$
\begin{align*}
& \mathrm{CH} 1,3, \text { 4output voltage } \\
& \mathrm{V}=\frac{(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 2} \times 0.8[\mathrm{~V}] \cdots \tag{1}
\end{align*}
$$

$$
\mathrm{V} 0=-\frac{\mathrm{R} 2}{\mathrm{R} 1} \times 1.25[\mathrm{~V}] \cdots(2)
$$

CH2,6 output voltage

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=\frac{(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 2} \times 1.0[\mathrm{~V}] \cdots(3 \tag{4}
\end{equation*}
$$

CH5 output voltage

CH 7 output voltage

$$
\mathrm{Io}=\frac{\mathrm{INV7}}{\mathrm{R} 3}[\mathrm{~A}] \cdots
$$

Fig. 34 Feedback resistor setting method
(a) $\mathrm{CH} 1,3,4$ setting

The reference voltage of $\mathrm{CH} 1,3,4$ ERROR AMP is 0.8 V . Please refer to Formula (1) in Fig. 33 for determining the output voltage.
This IC incorporates built-in phase compensation. Please refer to Applied Circuit Diagram for setting the values of R1 \& R2 and ensure that the setting values of R1 \& R2 are of the order of several hundred $k \Omega$.
(b) CH5 setting

The reference voltage of CH5's ERROR AMP is connected to GND inside the IC. Therefore, a high-accuracy regulator can be configured if setting by the feedback resistance between the outputs of VREF and CH5 as shown in Fig.33. Please refer to Formula (2) in Fig. 33 for determining the output voltage. R1 is recommended as more than $20 \mathrm{k} \Omega$ because the current capacity of VREF5 is about $100 \mu \mathrm{~A}$.
(c) $\mathrm{CH} 2,6$ setting

The reference voltage of CH7's ERROR AMP is 1.0V. Please refer to Formula (3) in Fig. 33 for determining the output voltage.
(d) CH 7 setting LED current is decided by Fig. 33 (4) formula. Please decide R3 value for LED current range.
(2) Points for attention in terms of PCB layout of base-plate

OFor a switching regulator, in principle a large current transiently flows through the route of power supply - coil output capacitor. Ensure that the wiring impedance is lowered as much as possible by making the pattern as wide as possible and the layout as short as possible.
Olnterference of power supply noise with feedback terminals (INV1~7,NON5) may cause the output voltage to oscillate. Ensure that the power supply noise's interference is avoided by making the wiring between feedback resistor and feedback terminal as short as possible.

-PIN equivalent circuit

INV1~INV6
(Error amplifier's inversion input)

STB1234
(operating when $\mathrm{CH} 1 \sim 4$ ON/OFF switch is High)


```
VREF5
(CH5 Standard voltage output)
```


NON5
(Error amplifier's non-inversion input)

STB5,6
(operating when $\mathrm{CH} 5,6$ ON/OFF switch is High)

PWM7

(CH7 start signal, LED modulated light signal input)

Hx1,2BAT,3,4, VOUT2 (Pch FET source terminal) Lx1,21,22,3,4(Nch,Pch FET drain terminal)

HS6H (PMOS high side SW input terminal) HS6L (OMOS high side SW input terminal)

PGND567
INV7(CH7 Error amplifier's inversion input)
LED(LED cathode connection terminal)

Hx1,2BAT(Pch FET FET source terminal) Lx1,21(Nch,Pch FET drain terminal) PGND1,2 (output stage earthing terminal)

Fig. 35 PIN equivalent circuit

- Notes for use

1) Absolute Maximum Ratings

Although the quality of this product has been tightly controlled, deterioration or even destruction may occur if the absolute maximum ratings, such as for applied pressure and operational temperature range, are exceeded. Furthermore, we are unable to assume short or open mode destruction conditions. If special modes which exceed the absolute maximum ratings are expected, physical safely precautions such as fuses should be considered.
2) GND Potential

The potential of the GND pin should be at the minimum potential during all operation status. In addition, please try to do not become electric potential below GND for the terminal other than NON5 including the transient phenomenon in practice. Please do not go down below 0.3 V for the NON5 terminal with transient phenomenon and the like when you use.
3) Heat Design

Heat design should consider tolerance dissipation (Pd) during actual use and margins which should be set with plenty of room.
4) Short-circuiting Between Terminals and Incorrect Mounting When attaching to the printed substrate, pay special attention to the direction and proper placement of the IC. If the IC is attached incorrectly, it may be destroyed. Destruction can also occur when there is a short, which can be caused by foreign objects entering between outputs or an output and the power GND.
5) Operation in Strong Magnetic Fields

Exercise caution when operating in strong magnet fields, as errors can occur.
6) About common impedance

Please do sufficient consideration for the wiring of power source and GND with the measures such as lowering common impedance, making ripple as small as possible (making the wiring as thick and short as possible, dropping ripple from L.C) and the like.
7) Heat Protection Circuit (TSD circuit)

This IC has a built-in Temperature Protection Circuit (TSD circuit). The temperature protection circuit (TSD circuit) is only to cut off the IC from thermal runaway, and has not been designed to protect or guarantee the IC. Therefore, the user should not plan to activate this circuit with continued operation in mind.
8) Rush current at the time of power supply injection.

Because there are times when rush current flows instantaneously in internal logical uncertain state at the time of power source turning on with CMOS IC, please pay attention to the power source coupling capacity, the width of GND pattern wiring and power source, and the reel.
9) IC Terminal Input

This IC is a monolithic IC, and between each element there is a $P+$ isolation and P substrate for element separation. There is a P-N junction formed between this P-layer and each element's N-layer, which makes up various parasitic elements. For example, when resistance and transistor are connected with a terminal as in fig.35:

OWhen GND>(terminal A) at the resistance, or GND>(terminal B) at the transistor (NPN), the P-N junction operates as a parasitic diode.
OAlso, when GND>(terminal B) at the transistor, a parasitic NPN transistor operates by the N-layer of other elements close to the aforementioned parasitic diode.
With the IC's configuration, the production of parasitic elements by the relationships of the electrical potentials is inevitable. The operation of the parasitic elements can also interfere with the circuit operation, leading to malfunction and even destruction. Therefore, uses which cause the parasitic elements to operate, such as applying voltage to the input terminal which is lower than the GND(P-substrate), should be avoided.

Fig.. 36 Simple Structure of Bipolar IC (Sample)

-Ordering part number

UQFN036V5050

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ${ }^{(N o t e}{ }^{1}$), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl 2 , $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}$, and NO_{2}
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl} 2, \mathrm{H} 2 \mathrm{~S}, \mathrm{NH} 3, \mathrm{SO} 2$, and NO 2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the la test information with a ROHM sale s representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by ROHM manufacturer:

Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614
MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG
SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4668AIY\#PBF
NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0004 MPM54304GMN-0003
XDPE132G5CG000XUMA1 MP8757GL-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S
LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-
CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MAX38640BENT18+T MAX77511AEWB+ MAX20406AFOD/VY+

[^0]: （＊）Recommend resistor value over $20 \mathrm{k} \Omega$ between VREF5 to NON5，because VREF5 current is under $100 \mu \mathrm{~A}$ ． This product is not designed for normal operation with in a radioactive environment．

