

STRUCTURE	Silicon Monolithic Integrated Circuit
NAME OF PRODUCT	DC-AC Inverter Control IC
TYPE	BD9883AF, BD9883FV
FUNCTION	• 36V High voltage process

• 36V High voltage process

- 1ch control with Half-bridge
- · Lamp current and voltage sense feed back control
- · Sequencing easily achieved with Soft Start Control
- Short circuit protection with Timer Latch
- Under Voltage Lock Out
- · Mode-selectable the operating or stand-by mode by stand-by pin

OAbsolute Maximum Ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit	
Supply Voltage	Vcc	30	V	
BST	BST	40	V	
BST-ST Voltage Difference	BST-SW	15	V	
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Tstg	-55~+150	°C	
Power Dissipation	Dd	550*1 (BD9883AF)	mW	
Power Dissipation	Pd	650*2 (BD9883FV)	mW	
Maximum Junction Temperature	Tjmax	+150	°C	

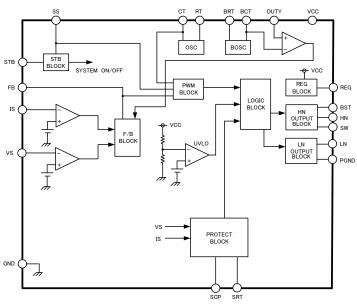
¹Pd derated at 4.4mW/°C for temperature above Ta = 25° C (When mounted on a PCB 70.0mm × 70.0mm × 1.6mm) $^{2}$ Pd derated at 5.2mW/°C for temperature above Ta = 25°C (When mounted on a PCB 70.0mm × 70.0mm × 1.6mm)

ORecommended operating condition

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	6.0~22.0	V
CT oscillation frequency	fct	20~150	kHz
BST voltage	BST	4.0~34.0	V
BST-SW voltage difference	BST-SW	4.0~12.0	V
BCT oscillation frequency	fbct	0.10~0.50	kHz

OElectric Characteristics (Ta=25°C, VCC=12V)

Parameter	Symbol		Limits		Unit	Conditions
	Gymbol	MIN.	TYP.	MAX.	onne	oonar crons
((WHOLE DEVICE))						
Operating current	lcc1	—	9.0	17.0	mA	fCT=100kHz
Stand-by current	lcc2	_	5.0	10.0	μA	
((STAND BY CONTROL))						
Stand-by voltage H	VstH	1.7	_	VCC	٧	System ON
Stand-by voltage L	VstL	-0.3	_	0. 7	٧	System OFF
Stand-by hysteresis	⊿Vst	0. 05	0. 20	0. 35	٧	
((UVLO BLOCK))						
Operating voltage	Vuv I oH	5. 15	5.40	5.65	٧	
Shut down voltage	VuvloL	4. 90	5. 15	5.40	٧	
((REG BLOCK))					-	
REG output voltage	VREG	5.30	5. 50	5. 70	٧	Vcc>6.0V
REG source current	IREG	20.0	_	_	mA	
((OSC BLOCK))	·					
Active edge current	lact	1.35/RT	1. 5/RT	1.65/RT	A	
Negative edge current	Ineg	lact×10	lact × 13	lact×16	A	
OSC Max voltage	VoscH	1.8	2.0	2. 2	٧	fCT=50kHz, fCT=120kHz
OSC Min voltage①	VoscL1	0. 2	0.4	0.6	٧	fCT=50kHz
OSC Min voltage②	VoscL2	0. 05	0. 15	0. 25	٧	fCT=120kHz
Soft start current	lss	0. 50	1.00	1.50	μA	
SRT ON resistance	RSRT	_	150	300	Ω	
((BOSC BLOCK))			•	•		
BOSC Max voltage	VBCTH	1.920	2.000	2. 080	V	fBCT=0. 3kHz
BOSC Min Voltage	VBCTL	0. 400	0. 500	0. 600	V	fBCT=0. 3kHz
BOSC constant current	IBCT	1.35/BRT	1.5/BRT	1.65/BRT	A	VBCT=0. 2V
((TIMER LATCH))	L.					
Timer Latch voltage	Vscp	1.8	2.0	2. 2	٧	
Timer Latch current	Iscp	0. 25	0. 50	0. 75	μA	
((FEED BACK BLOCK))	·	1				
IS threshold voltage	Vis	1. 220	1. 250	1. 280	٧	
VS threshold voltage	Vvs	1. 220	1. 250	1. 280	v	
IS source current 1	lis1	_	_	0. 9	μA	DUTY=2. OV
IS source current 2	lis2					
VS source current	lvs	_	_	0.9	μA	
FB over voltage detect voltage	Vovf	2. 2	2.5	2.8	V	
IS COMP detect Voltage	Visc					
((OUTPUT BLOCK))	I	1	1	1	1	
LN output sink current	RsinkLN	_	15	30	Ω	
LN output source current	RsourceLN	_	30	60	Ω	
HN output sink current	RsinkHN	_	15	30	Ω	VBST-VSW=5. 0V
HN output source current	RsourceHN	_	30	60	Ω	VBST-VSW=5. OV


(This product is not designed for normal operation with in a radio active environment.)

OPackage Dimensions

OBlock Diagram

OPin Description

Pin No.	Pin Name	Function
1	DUTY	Control PWM mode and BURST mode
2	BCT	External capacitor from BCT to GND for adjusting the BURST triangle oscillator
3	BRT	External resistor from BRT to GND for adjusting the BURST triangle oscillator
4	CT	External capacitor from CT to GND for adjusting the triangle oscillator
5	RT	External resistor from RT to GND for adjusting the triangle oscillator
6	SRT	External resistor from SRT to RT for adjusting the triangle oscillator
7	GND	GROUND
8	FB	Error amplifier output
9	IS	Error amplifier input①
10	VS	Error amplifier input②
11	STB	Stand-by switch
12	SCP	External capacitor from SCP to GND for Timer Latch
13	SS	External capacitor from SS to GND for Soft Start Control
14	PGND	Ground for FET drivers
15	LN	NMOS FET driver
16	HN	NMOS FET driver
17	SW	Low voltage for HN output
18	BST	Boot-Strap input for HN output
19	REG	Internal regulator output
20	VCC	Supply voltage input

ONOTE FOR USE

- 1. When designing the external circuit, including adequate margins for variation between external devices and the IC. Use adequate margins for steady state and transient characteristics.
- 2. Recommended Operating Range

The circuit functionality is guaranteed within of ambient temperature operation range as long as it is within recommended operating range. The standard electrical characteristic values cannot be guaranteed at other voltages in the operating ranges, however, the variation will be small.

3. Mounting Failures

Mounting failures, such as misdirection or miscounts, may harm the device.

4. Electromagnetic Fields

A strong electromagnetic field may cause the IC to malfunction.

- 5. The GND pin should be the location within $\pm 0.3V$ compared with the PGND pin
- 6. BD9883AF, BD9883FV has the short circuit protection with Thermal Shut Down System. When STB or Vcc pin re-supplied, They enables to cancel the latch. If It rise the temperature of the chip more than 170°C(TYP), It make the external FET OFF
- 7. Absolute maximum ratings are those values that, if exceeded, may cause the life of a device to become significantly shortened. Moreover, the exact failure mode caused by short or open is not defined. Physical countermeasures, such as a fuse, need to be considered when using a device beyond its maximum ratings.
- 8. About the external FET, the parasitic Capacitor may cause the gate voltage to change, when the drain voltage is switching. Make sure to leave adequate margin for this IC variation.
- 9. On operating Slow Start Control (SS is less than 2.2V), It does not operate Timer Latch.
- 1 O. By STB voltage, BD9883AF, BD9883FV is changed to 2 states. Therefore, do not input STB pin voltage between one state and the other state $(0.7 \sim 1.7V)$.
- 1 1. The pin connected a connector need to connect to the resistor for electrical surge destruction.
- 1 2. This IC is a monolithic IC which (as shown is Fig-1)has P⁺ substrate and between the various pins. A P-N junction is formed from this P layer of each pin. For example, the relation between each potential is as follows, O (When GND > PinB and GND > PinA, the P-N junction operates as a parasitic diode.)

O(When PinB > GND > PinA, the P-N junction operates as a parasitic transistor.)

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin. Resistance Transistor (NPN)

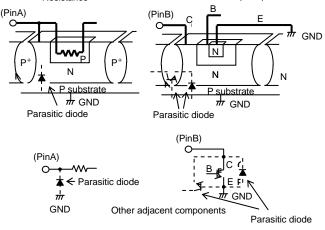


図-1 Simplified structure of a Bipolar IC

	copying or reproduction of this document, in part or in whole, is permitted without the asent of ROHM Co.,Ltd.
The	e content specified herein is subject to change for improvement without notice.
"Pr	e content specified herein is for the purpose of introducing ROHM's products (hereinafte oducts"). If you wish to use any such Product, please be sure to refer to the specifications ich can be obtained from ROHM upon request.
illu	amples of application circuits, circuit constants and any other information contained herein strate the standard usage and operations of the Products. The peripheral conditions mus taken into account when designing circuits for mass production.
Ho	eat care was taken in ensuring the accuracy of the information specified in this document wever, should you incur any damage arising from any inaccuracy or misprint of such prmation, ROHM shall bear no responsibility for such damage.
exa imp oth	e technical information specified herein is intended only to show the typical functions of an imples of application circuits for the Products. ROHM does not grant you, explicitly o plicitly, any license to use or exercise intellectual property or other rights held by ROHM and er parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the of such technical information.
equ	Products specified in this document are intended to be used with general-use electronic upment or devices (such as audio visual equipment, office-automation equipment, commu ation devices, electronic appliances and amusement devices).
The	Products specified in this document are not designed to be radiation tolerant.
	ile ROHM always makes efforts to enhance the quality and reliability of its Products, a duct may fail or malfunction for a variety of reasons.
aga fail sha	ase be sure to implement in your equipment using the Products safety measures to guard ainst the possibility of physical injury, fire or any other damage caused in the event of the ure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM all bear no responsibility whatsoever for your use of any Product outside of the prescribed uppe or not in accordance with the instruction manual.
sys ma ins cor of t	e Products are not designed or manufactured to be used with any equipment, device o tem which requires an extremely high level of reliability the failure or malfunction of which y result in a direct threat to human life or create a risk of human injury (such as a medica trument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- ntroller or other safety device). ROHM shall bear no responsibility in any way for use of any the Products for the above special purposes. If a Product is intended to be used for any ch special purpose, please contact a ROHM sales representative before purchasing.
be	ou intend to export or ship overseas any Product or technology specified herein that ma controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to ain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management Specialised - PMIC category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :

LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 MAX4940MB LV56841PVD-XH MAX77686EWE+T AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G TEA1998TS/1H PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MAX17506EVKITBE# MCP16501TC-E/RMB ISL91212AIIZ-TR5770 ISL91212BIIZ-TR5775 CPX200D AX-3005D-3 TP-1303 TP-1305 TP-1603 TP-2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C MPS-3003L-3 MPS-3005D SPD-3606 MMPF0200F6AEP STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ-AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB