STRUCTURE Silicon Monolithic Integrated Circuit
NAME OF PRODUCT DC-AC Inverter Control IC
TYPE

BD9897FS

FUNCTION

- 36V High voltage process
- 1ch control with Full-Bridge
- Lamp current and voltage sense feed back control
- Sequencing easily achieved with Soft Start Control
- Short circuit protection with Timer Latch
- Under Voltage Lock Out
- Mode-selectable the operating or stand-by mode by stand-by pin
- Synchronous operating the other BD9897FS IC's
- BURST mode controlled by PWM and DC input
- Output liner Control by external DC voltage

OAbsolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc	36	V
BST pin	BST	40	V
SW pin	SW	36	V
BST-SW voltage difference	BST-SW	7	V
Operating Temperature Range	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	Tjmax	+150	${ }^{\circ} \mathrm{C}$
Power Dissipation	Pd	$950 *$	mW

${ }^{* P d}$ derate at $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for temperature above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (When mounted on a PCB $70.0 \mathrm{~mm} \times 70.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$)
OOperating condition

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	$7.5 \sim 30.0$	V
BST voltage	BST	$4.0 \sim 36.0$	V
BST-SW voltage difference	BST-SW	$4.0 \sim 6.5$	V
CT oscillation frequency	fст	$60 \sim 180$	kHz
BCT oscillation frequency	fвст	$0.05 \sim 1.00$	kHz

Status of this document
The Japanese version of this document is the official specification.
Please use the translation version of this document as a reference to expedite understanding of the official version.
If these are any uncertainty in translation version of this document, official version takes priority.

SEMICONDUCTOR

O Electric Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=24 \mathrm{~V}$)

Parameter	Symbol	Limits			Unit	Conditions
		MIN.	TYP.	MAX.		
((WHOLE DEVICE))						
Operating current	Icc1	-	7.2	13	mA	CT_SYNC_IN = OPEN
Stand-by current	Icc2	-	13.0	30.0	$\mu \mathrm{A}$	
((STAND BY CONTROL))						
Stand-by voltage H	VstH	2.0	-	VCC	V	System ON
Stand-by voltage L	VstL	-0.3	-	0.8	V	System O F F
((UVLO BLOCK)))						
Operating voltage (VCC)	Vuv IoH	5.7	6.0	6.3	V	
Hesteres is width (VCC)	UVCC_Vuvlo	0.26	0.35	0.43	V	
Operating voltage (UVLO)	Vuv 102	2. 179	2.25	2. 321	V	
Hesteres is width (UVLO)	$\Delta \mathrm{Vuv}$ Io	0. 074	0.098	0.122	V	
((REG BLOCK))						
REG output voltage	VREG	5.68	5.80	5.92	V	VCC>7. 0 V
REG source current	IREG	20.0	-	-	mA	
((OSC BLOCK))						
Active edge setting current	lact	1. $35 /$ (RT*7)	1.5/(RT*6)	1. $65 /(\mathrm{RT} * 5$)	A	
Negative edge setting current	Ineg	lact $\times 29$	lact $\times 35$	lact $\times 41$	A	
OSC Max voltage	VOSCH	1.8	2.0	2.2	V	fCT $=120 \mathrm{kHz}$
OSC Min voltage	VOSCL	0.35	0. 45	0.60	V	fCT=120kHz
Soft start current	ISS	0.6	1.1	1.6	$\mu \mathrm{A}$	
SRT ON resistance	RSRT	-	100	200	Ω	
((BOSC BLOCK))						
BOSC Max voltage	VBCTH	1.94	2.00	2.06	V	fBCT $=0.3 \mathrm{kHz}$
BOSC Min voltage	VBCTL	0.40	0.50	0.60	V	fBCT $=0.3 \mathrm{kHz}$
BOSC constant current	IBCT	1. $35 / \mathrm{BRT}$	1.5/RT	1. $65 / \mathrm{RT}$	A	VBCT $=0.2 \mathrm{~V}$
BOSC frequency	fBCT	291	300	309	Hz	(BRT= $33 \mathrm{k} \Omega$ BCT $=0.048 \mu \mathrm{~F}$)
((FEED BACK BLOCK))						
IS threshold voltage 1	VIS(1)	1. 225	1. 250	1. 275	V	
IS threshold voltage 2	VIS(2)	-	VREFIN	VIS(1)	V	VREF applying voltage
VS threshold voltage	VVS	1. 220	1. 250	1. 280	V	
IS source current 1	IIS1	-	-	0.9	$\mu \mathrm{A}$	DUTY=2. 2 V
IS source current 2	IIS2	32	50	68	$\mu \mathrm{A}$	DUTY=0V IS $=0.5 \mathrm{~V}$
VS source current	IVS	-	-	0.9	$\mu \mathrm{A}$	
IS COMP detect voltage (1)	VISCOMP(1)	0.90	0.94	0.98	V	VREFIN \geqq 1. 25 V
IS COMP detect voltage (2)	VISCOMP(2)	-	VREFIN $\times 0.73$	-	V	VREFIN<1. 25V
VREF input voltage range	VREFIN	0.6	-	1.6	V	No effect at VREF $>1.25 \mathrm{~V}$
((DUTY BLOCK))						
High voltage	VDUTY-OUTH	2.8	3.1	3.4	V	
Low voltage	VDUTY-OUTL	-	-	0.5	V	
DUTY-OUT sink resistance	RDUTY-OUTS ink	-	150	300	Ω	
DUTY-OUT source resistance	RDUTY-OUTSouce	-	250	500	Ω	
((OUTPUT BLOCK))						
LN output sink resistance	Rs inkLN	0.75	1.5	3.0	Ω	
LN output source resistance	RsourceLN	2.5	5	10	Ω	
HN output sink resistance	Rs inkHN	1.25	2.5	5.0	Ω	VBST-VSW=5. OV
HN output source resistance	RsourceLN	2.5	5	10	Ω	VBST-VSW=5. OV
MAX DUTY	MAX DUTY	46.0	48.0	49.5	\%	FOUT $=60 \mathrm{kHz}$
OFF period	TOFF	100	200	400	ns	
Drive output frequency	FOUT	58.5	60.0	61.5	kHz	($\mathrm{RT}=4.7 \mathrm{k} \Omega \mathrm{CT}=235 \mathrm{pF}$)
((TIMER LATCH BLOCK))						
Timer Latch setting voltage	VCP	1.94	2.0	2.06	V	
Timer Latch setting current	ICP	0.40	0.55	0.70	$\mu \mathrm{A}$	
((COMP CLOCK))						
COMP1 over voltage detect voltage	VCOMPH	2. 460	2. 485	2.510	V	VSS $>2.2 \mathrm{~V}$
COMP2 over voltage detect voltage	VCOMP2_H	2. 460	2. 485	2.510	V	VSS>2.2V
COMP2 under voltage detect voltage (1)	VCOMP_L_1	1. 225	1.25	1. 275	V	VSS $>2.2 \mathrm{~V}$
COMP2 under voltage detect voltage (2)	VCOMP_L_2	0.606	0.625	0.644	V	VSS<2.2V
((Synchronous Block))						
High voltage	VCT_SYNCH	2.8	3.1	3.4	V	
Low voltage	VCT_SYNCL	-	-	0.5	V	
CT_SYNC sink resistance	RCT_SYNC_SYNC	-	150	300	Ω	
CT_SYNC source resistance	RCT_SYNC_SOURCE	-	370	740	Ω	
High voltage input range	VCT_SYNC_IN_H	2.0	-	3.3	V	
Low voltage input range	VCT_SINK_IN_L	-0.3	-	0.6	V	

(This product is not designed to be radiation-resistant.)

OPackage Dimensions
OPin Description

SSOP-A32 (Unit:mm)

OBlock Diagram

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN NAME	FUNCTION
1	PGND	Ground for FET drivers
2	LN2	NMOS FET driver
3	HN2	NMOS FET driver
4	SW2	Lower rail voltage for HN2 output
5	BST2	Boot-Strap input for HN2 output
6	CT_SYNC_IN	CT synchronous signal input pin
7	CT_SYNC_OUT	CT synchronous signal output pin
8	SRT	External resistor from SRT to RT for adjusting the triangle oscillator
9	RT	External resistor from SRT to RT for adjusting the triangle oscillator
10	CT	External capacitor from CT to GND for adjusting the triangle oscillator
11	GND	GROUND
12	BCT	External capacitor from BCT to GND for adjusting the BURST triangle oscillator
13	BRT	External resistor from BRT to GND for adjusting the BURST triangle oscillator
14	DUTY	Control PWM mode and BURST mode
15	DUTY_OUT	BURST signal output pin
16	STB	Stand-by switch
17	CP	External capacitor from CP to GND for Timer Latch
18	FAIL	COMP2 under voltage protect clock output
19	VREF	Reference voltage input pin for Error amplifier
20	VS	Error amplifier input
21	IS	Error amplifier input
22	FB	Error amplifier output
23	SS	External capacitor from SS to GND for Soft Start Control
24	COMP2	Under, over voltage detect pin
25	COMP1	Over voltage detect pin
26	VCC	Supply voltage input
27	UVLO	External Under Voltage Lock Out
28	REG	Internal regulator output
29	BST1	Boot-Strap input for HN1 output
30	SW1	Lower rail voltage for HN1 output
31	HN1	NMOS FET driver
32	LN1	NMOS FET driver

ONOTE FOR USE

1. When designing the external circuit, including adequate margins for variation between external devices and IC. Use adequate margins for steady state and transient characteristics.
2. The circuit functionality is guaranteed within of ambient temperature operation range as long as it is within recommended operating range. The standard electrical characteristic values cannot be guaranteed at other voltages in the operating ranges, however the variation will be small.
3. Mounting failures, such as misdirection or miscounts, may harm the device.
4. A strong electromagnetic field may cause the IC to malfunction.
5. The GND pin should be the location within $\pm 0.3 \mathrm{~V}$ compared with the PGND pin.
6. BD9897FS incorporate a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation of the thermal shutdown circuit is assumed.
7. Absolute maximum ratings are those values that, if exceeded, may cause the life of a device to become significantly shortened. Moreover, the exact failure mode caused by short or open is not defined. Physical countermeasures, such as a fuse, need to be considered when using a device beyond its maximum ratings.
8. About the external FET, the parasitic Capacitor may cause the gate voltage to change, when the drain voltage is switching. Make sure to leave adequate margin for this IC variation.
9. On operating Slow Start Control (SS is less than 2. 2V), It does not operate Timer Latch.

1 0. By STB voltage, BD9897FS are changed to 2 states. Therefore, do not input STB pin voltage between one state and the other state ($0.8 \sim 2.0 \mathrm{~V}$).
11. The pin connected a connector need to connect to the resistor for electrical surge destruction. This IC is a monolithic IC which (as shown is Fig-1) has P^{+}substrate and between the various pins. A $P-N$ junction is formed from this P layer of each pin. For example, the relation between each potential is as follows,

O (When GND $>\operatorname{PinB}$ and $G N D>P i n A$, the $P-N$ junction operates as a parasitic diode.)
O (When $\operatorname{PinB}>G N D>P i n A$, the $P-N$ junction operates as a parasitic transistor.)
Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.
12. This IC is a monolithic IC which (as shown is Fig-1) has P^{+}substrate and between the various pins. A P-N junction is formed from this P layer of each pin. For example, the relation between each potential is as follows,

O (When GND $>\operatorname{PinB}$ and GND $>$ PinA, the $P-N$ junction operates as a parasitic diode.)
O (When $\operatorname{PinB}>G N D>P i n A$, the $P-N$ junction operates as a parasitic transistor.)
Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.

Fig-1 Simplified structure of a Bipolar IC

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Drivers \& Controllers category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
ICB2FL01G HV5812PJ-G-M904 TW8813-LB2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR LX27901IDW SSD2828QN4
MAX7370ETG+ DLPA1000YFFT ICB2FL01GXUMA2 DLP2000FQC PAD1000YFFR S1D13746F01A600 FIN324CMLX AD8387JSVZ
DLPC6421ZPC HV852K7-G HV859K7-G HV857K7-G DIO2133CT14 S1D13L03F00A100-40 TW2836-BA1-GR SSD2829QL9 MAX749CSA+T MAX4820EUP+T ICL7135CAI+ ICL7135CMH+D ICL7137CMH+D MAX14515AEWA+ MAX14521EETG+ MAX25221BATJ/V+ DS3882E+C S1D13748B00B100 S1D13A05B00B200 MAX3738ETG+T MAX14514ETD+ MAX4990ETD+T MAX8722CEEG+ MAX749CPA+ MAX8520ETP+ MAX8785AETI+ ICL7135CQI+ HV518PJ-G-M903 HV5812P-G HV5812PJ-G HV7224PG-G HV853K7-G HV860K7-G HV6810WG-G

