

High-performance System Video Drivers Wide Band 3-output Video Drivers

No.11065EBT05

.

BH7601FS, BH7602FS

Description

BH7601FS and BH7602FS are wide band 3-output video drivers for high-definition television system. These video drivers are built in the DC output circuits (LINE1, LINE2, LINE3 output) for D terminal and detector to connect. And they have line-up build in DC shift input, selectable LPF every application.

Features

- 1) Built-in the DC output circuits (LINE1, LINE2, LINE3) / detector to connect.
- 2) Built-in OUTPUT MUTE circuit
- 3) I²C BUS control
- 4) Sync tip clamp input 1ch, bias input 2ch (BH7601FS)
- 5) Possible to be directly connected with DAC by DC shift circuit (BH7602FS)
- 6) Built-in power down function (BH7602FS)

Applications

DVD Player, DVD Recorder, DVC, DSC, STB, TV and so on.

●Line up matrix

Parameter	BH7601FS	BH7602FS
Input form of Py	Sync tip Clamp	DC Shift (Directly connected)
Input form of Pb, Pr	Bias Input	DC Shift (Directly connected)
Voltage Gain	8.45dB	6.0dB
Package	SSOP-A24	SSOP-A20

●Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Ratings	Unit
Supply Voltage	Vcc	7	V
Power Dissipation	Pd	800 (SSOP-A24) ^{**} 750 (SSOP-A20) ^{**}	mW
Input Voltage Range	Vin	0~Vcc	V
Operating Temperature	Topr	-25~+75 (SSOP-A24) -35~+75 (SSOP-A20)	°C
Storage Temperature	Tstg	-55~+125	°C

※ 70mm × 70mm × 1.6mm mounting on the glass epoxy board.

For operation above Ta=25°C free-air temperature, power dissipation is decreasing 8.0mW/°C(SSOP-A24), 7.5mW/°C (SSOP-A20).

Operating conditions

Parameter	Symbol		Unit		
Farameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage(BH7601FS)	Vcc	4.5	5.0	5.5	V
Supply Voltage(BH7602FS)	Vcc	4.5	5.0	5.25	V

●Electrical characteristics (Unless otherwise specified, Ta=25°C,V_{CC}=5V) OBH7601FS

Parameter	Symbol		Limits		Unit	Conditions	
Parameter	Symbol	Min. Typ.		Max.	Unit	Conditions	
«All Circuit»							
Circuit Current	Icc	13.5	27.0	40.5	mA	No signal	
LINEOUT「H」Voltage	V _{LOH}	3.5	4.25	5.0	V	$(V_{CC}=5V\pm5\%)$	
LINEOUT「M」Voltage	V _{LOM}	1.4	1.9	2.4	V	(V _{CC} =5V±5%)	
LINEOUT 「L」 Voltage	V _{LO}	0.0	0.1	0.5	V	$(V_{CC}=5V\pm5\%)$	
LINEOUT Impedance	Z _{LO}	1.3	1.8	2.3	kΩ		
《Video Driver Parts》							
Voltage Gain	Gv	1.65	2.45	3.25	dB	V _{IN} =0.75V _{P-P} , f=1MHz * ¹	
Frequency Characteristics	V _{F1}	-1	0	1	dB	V _{IN} =0.75V _{P-P} , f=1M/10MHz	
MUTE Input Parts Impedance	Z _{MUTE}	75	100	125	kΩ		
MUTE「H」Level Input Voltage	V _{MH}	2.0	-	Vcc	V		
MUTE 「L」 Level Input Voltage	V _{ML}	0	-	1.0	V		
PB, PR Input Impedance	Z _{IN}	14	20	26	kΩ		
《Control Parts》							
「H」Level Input Voltage	V _H	2.0	-	V _{CC}	V		
LJ Level Input Voltage	VL	0	-	1.0	V		
SDA 「L」Sink Current	I _{SIN}	4.0	-	-	mA		
DET Detection Level 「H」	V _{DH}	2.0	-	V _{CC}	V		
DET Detection Level 「L」	V _{DL}	0	-	1.0	V		
DET Input Bias Current	I _{DET}	0	-2.0	-20	μA		

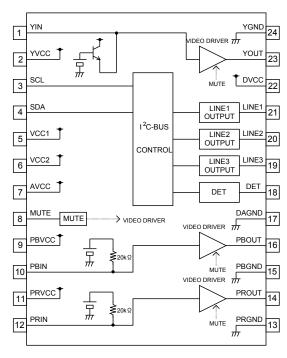
%1 Measure at separation of 75 Ω +75 Ω

OReference Value

Parameter	Symbol		Limits		Unit	Conditions	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
《Video Driver Parts》							
Frequency Characteristics2	V _{F2}	-	-1	-	dB	V _{IN} =0.53V _{P-P} , f=1M/30MHz	
Mute Attenuation	V _{MT}	-	-40	-	dB	V _{IN} =0.75V _{P-P} , f=20MHz	
Channel Crosstalk	C _{TV}	-	-40	-	dB	V_{IN} =0.75 V_{P-P} , f=20MHz	

OBH7602FS

Parameter	Symbol		Limits		Unit	Conditions	
Faidilielei	Symbol	Min.	Тур.	Max.	Onit	Conditions	
«All Circuits»							
V _{CC} Circuit Current	I _{VCC}	44	56	68	mA	No signal	
V _{CC} Circuit Current PD	I _{PD}	-	1.5	3.0	mA	Power down	
《Video Driver Parts》							
Y/PB/PR OUT Voltage Gain	G ₂₀	5.5	6.0	6.5	dB	Vin=1.0V _{P-P} , f=100kHz	
Y/PB/PR OUT Maximum Output Level	V _{OM20}	2.6	2.9	-	V _{P-P}	Vin: THD=1.0% f=10kHz	
Y OUT LPF1 Frequency Characteristics 1	F ₁₂₀₁	-5.0	-1.5	1.0	dB	Vin=1.0V _{P-P} , f=30M/100kHz, LPF1:ON	
Y OUT LPF2 Frequency Characteristics 1	F ₂₂₀₁	-1.5	-0.5	0.5	dB	Vin=1.0V _{P-P} , f=13.5M/100kHz, LPF2:ON	
PB/PR OUT LPF1 Frequency Characteristics 1	F ₁₁₇₁	-5.0	-1.5	1.0	dB	Vin=1.0V _{P-P} , f=15M/100kHz, LPF1:ON	
PB/PR OUT LPF2 Frequency Characteristics 1	F ₂₁₇₁	-1.5	-0.5	0.5	dB	Vin=1.0V _{P-P} , f=6.75M/100kHz, LPF2:ON	
Y OUT LPF1 Frequency Characteristics 2	F ₁₂₀₂	-	-45	-28	dB	Vin=1.0V _{P-P} , f=74.25M/100kHz, LPF1:ON	
Y OUT LPF2 Frequency Characteristics 2	F ₂₂₀₂	-	-40	-28	dB	Vin=1.0V _{P-P} , f=54M/100kHz, LPF2:ON	
PB/PR OUT LPF1 Frequency Characteristics 2	F ₁₁₇₂	-	-45	-28	dB	Vin=1.0V _{P-P} , f=37.125M/100kHz, LPF1:ON	
PB/PR OUT LPF2 Frequency Characteristics 2	F ₂₁₇₂	-	-40	-28	dB	Vin=1.0V _{P-P} , f=27M/100kHz, LPF2:ON	
MUTE Attenuation	M _{T20}	-	-65	-55	dB	Vin=1.0V _{P-P} , f=4.43MHz	
Channel Crosstalk	M _{TCH}	-	-65	-55	dB	Vin=1.0V _{P-P} , f=4.43MHz	
《D_DET》							
Input Voltage H	V _{I14H}	4.0	-	V _{CC}	V		
Input Voltage M	V _{I14L}	0.0	-	1.0	V		
Input Impedance	Z _{I14}	100	150	200	kΩ	Pull Up Resistance	
«LINE_OUT»							
Output Voltage H	V _{O13H}	4.2	4.5	4.8	V		
Output Voltage M	V _{O13M}	1.7	2.0	2.3	V		
Output Voltage L	V _{O13L}	0.0	0.1	0.5	V		
Input Impedance	Z ₀₁₃	0.5	0.9	1.3	kΩ	Pull Down Resistance	


OBH7601FS, BH7602FS

Parameter	Symbol	Limits			Unit	Conditions
Falameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
《ADR》						
Input Voltage H	V _{I8H}	2.0	-	Vcc	V	
Input Voltage L	V _{I8L}	0.0	-	1.0	V	
Input Impedance	Z ₁₈	65	100	135	kΩ	Pull Down Resistance
«SCL, SDA»						
Input Voltage H	V _{I9H}	2.0	-	Vcc	V	
Input Voltage L	V _{I9L}	0.0	-	1.0	V	
Input Bias Current	I _{B9}	-10	0	10	μA	

Block Diagram

OBH7601FS

OBH7602FS

IDEO DRIVER Y_OUT 20 1 LPF1 idB DC SHIFT LPF2 2 TEST TEST N.C 19 P_vcc PB_IN DC_SHIFT 18 3 LPF1 LPF2 MUTE /IDEO DRIVEF PB_OUT 4 17 6dB P_GNE PR_IN DC_SHIFT 16 5 LPF1 I PF2 __GND VIDEO DRIVER PR_OUT 15 6dB 6 Į D_DET D-Connect Detect 7 14 LINE1_OUT ADF 13 8 IIC-BUS Control LINE2_OUT 9 12 SC 10 SDA LINE3_OUT 11

Fig.2

www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.

●Terminal Description - Input/Output Equivalent Circuit OBH7601FS

Pin.No	Pin Name	IN	OUT	Standard Voltage	Input/Output Equivalent Circuit	Terminal Description
3	SCL	0	_		50 30k	I ² C BUS CLOCK Input Terminal This terminal is serial clock input terminal that is based on I ² C BUS. Usually, it use to pull up by resistor.
4	SDA	0			50 30k	I ² C BUS DATA Input Terminal This terminal is serial data input terminal that is based on I ² C BUS. Usually, it use to pull up by resistor.
8	MUTE	0	_	5.0V		Mute Control Terminal This terminal is connected to Vcc with $100k \Omega$, when the terminal is open or High, mute mode, when Low, normal mode.
14 16	PROUT PBOUT		0	2.1V		PB, PR Signal Output Terminal This terminal is the PR, PB output terminal.
23	YOUT		0	0.7V		Y Signal Output Terminal This terminal is the Y signal output terminal.
18	DET	0				DET Terminal This terminal is the detector to connect D terminal. Usually, it use to pull up by resistor.

Terminal Description - Input/Output Equivalent Circuit (Continued) OBH7601ES

Pin.No	Pin Name	IN	OUT	Standard Voltage	Input/Output Equivalent Circuit	Terminal Description
1	YIN	0	_	2.8V		Y Signal Input Terminal This terminal is Y signal input terminal. The input is sync tip clamp.
2 5 6 7 9 11 22	YVcc Vcc1 Vcc2 AVcc PBVcc PRVcc DVcc			5.0V		Vcc Terminal YVcc, PBVcc, PRVcc are Vcc terminal of video driver. Vcc1, Vcc2, AVcc are the Vcc terminal of the other analog parts (These 3 terminals are connected inside), DVcc is Vcc terminal of the digital parts.
10 12	PBIN PRIN	0		2.1V		PB, PR Signal Input Terminal This terminal is the PR, PB input terminal. The input is bias type.
13 15 17 24	PRGND PBGND DAGND YGND			0.0V		GND Terminal PRGND, PBGND, YGND are GND terminal of video driver. DAGND is the GND terminal of the blocks except video driver.
19 20 21	LINE3 LINE2 LINE1	_	0	_		Line Output Terminal This terminal is the line 3 value output terminal for D terminal. This terminal is controlled by I ² C BUS.

X The values in the terminal descriptions and input/output equivalent circuit are for reference only - they are not guaranteed.

●Terminal Description • Input/Output Equivalent Circuit (Continued) OBH7602FS

OBH760			<u></u>			The I De La M
Pin.No	Pin Name	IN	UUT	Standard Voltage	Input/Output Equivalent Circuit	Terminal Description
1 3 5	Y_IN PB_IN PR_IN	0		(V _{S7} -0.4) ∼ (V _{S7} +0.9)		Component signal input terminal Input range is possible to regulate by VREF terminal input voltage (V _{S7}). When Vcc off, this terminal become high impedance.
20 17 15	Y_OUT PB_OUT PR_OUT	_	0	0.7 At input terminal voltage =(V _{S7} -0.4)		Component signal output terminal It is possible to output two drivers.
7	VREF	0		0.4~1.4		Reference Terminal This terminal is input terminal of inside reference voltage for DC-shift circuit.
14	D_DET	0		5.0V		D Terminal Input Terminal for detector to connect Terminal condition (H/L) is possible to read out by I ² C BUS. When D mode, it is possible to control of power-down into terminal condition (H/L).
13 12 11	LINE1_OUT LINE2_OUT LINE3_OUT		0	4.5(H) 2.0(M) 0.1(L)		LINE-OUT Terminal This terminal is the line 3 value output terminal for controlled by I ² C BUS. Each distinction output are correspond with the D terminal standard.
9	SCL	0		_	t circuit are for reference only - they are no	I ² C BUS clock Input Terminal This terminal is possible to operate max 400kHz. When Vcc off, this terminal become high impedance.

* The values in the terminal descriptions and input/output equivalent circuit are for reference only - they are not guaranteed.

● Terminal Description • Input/Output Equivalent Circuit (Continued)

OBH7602FS

Pin.No	Pin Name	IN	OUT	Standard Voltage	Input/Output Equivalent Circuit	Terminal Description
10	SDA	0	0			I ² C-BUS Data Input/ Output Terminal This terminal is possible to operate max 400kHz. When VCC off, this terminal become high impedance.
8	ADR	0		0V		Slave Address Change Terminal LOW: D8H High: DAH
2	TEST	0		0V		LOGIC Test Mode Change Terminal Usually not use. This terminal is 0V input (=GND).
18	P_VCC		_	5.0V		VCC terminal for driver output.
19	P_GND			0V		GND terminal for driver output.
4	s_vcc		_	5.0V		VCC terminal for the analog part except driver and digital part.
6	S_GND			0V		GND terminal for the analog part except driver and digital part.

X The values in the terminal descriptions and input/output equivalent circuit are for reference only - they are not guaranteed.

Operation description of each block

■I²C BUS Control Input Specifications 〈 BH7601FS 〉 ・I²C BUS Format (WRITE MODE)

S	SLAVE ADDRESS	А	DATA	А	Р	
S: Star	t Condition	A: A	cknowledge	P:	Stop C	ondition

	b7	b6	b5	b4	b3	b2	b1	b0
Slave address	1	1	0	1	1	0	0	0
DATA	0	0	LIN	IE1	LIN	IE2	LIN	IE3

Select Input Switch

	Explanation		Explanation
LINE1	Setting output of LINE1 OUT 00: LOW * (BH7601FS) 01: LOW 10: MIDDLE 11: HIGH	LINE3	Setting output of LINE3 OUT 00: LOW * (BH7601FS) 01: LOW 10: MIDDLE 11: HIGH
LINE2	Setting output of LINE2 00: LOW * (BH7601FS) 01: LOW 10: MIDDLE 11: HIGH		

Setting Mode (When power on, it becomes * condition.)

• I²C BUS Format (READ MODE)

S	SLAVE ADDRESS	А	DATA	NA	Р
~ ~ `					

S: Start Condition A: Acknowledge NA: No Acknowledge P: Stop Condition

	b7	b6	b5	b4	b3	b2	b1	b0
Slave address	1	1	0	1	1	0	0	1
DATA	0	0	0	0	0	0	0	DET

Select Input Switch · Setting Mode

	Explanation
DET	Read out the condition of DET (18PIN) pin. 0: LOW 1: HIGH

Operation description of each block (Continued)

■I²C BUS Control Input Specifications 〈 BH7602FS 〉 ・I²C BUS Format (WRITE MODE)

s	SLAVE ADDRESS	A	DATA1	A	DATA2	A	Ρ	
S: S	tart Condition		A: Ackno	wlee	dge F	2: St	op C	ondition

	b7	b6	b5	b4	b3	b2	b1	b0
Slave address	1	1	0	1	1	0	ADR	R/W
DATA1	LPF	SW	LIN	IE1	LINE2	0	LIN	IE3
DATA2	PD	D_MODE	0	0	0	0	0	0

Select Input Switch

	Explanation		Explanation
ADR	Slave Address (write mode) set by ADR pin. 0: "D8H" when ADR is Low. 1: "DAH" when ADR is High.	R/W	READ/WRITE Setting Mode 0: WRITE 1: READ
LPF_SW	LPF_SW Setting output 00: LPF1 01: LPF2 10: - 11: MUTE * (NOTE) "10" is No use	LINE1	Setting output of LINE1_OUT for D terminal 00: L * 01: L 10: M 11: H
LINE2	Setting output of LINE2_OUT for D terminal 0: L * 1: H	LINE3	Setting of output of LINE3_OUT for D terminal 00: L * 01: L 10: M 11: H
PD	Power down control 0: Normal * 1: PD(Power down)	D_MODE	D terminal detect mode change 0: OFF * 1: ON(D terminal detect mode)

Setting Mode (When power on, it becomes * condition.)

• D_MODE (D terminal detect mode)

When I²C BUS sets D_MODE=ON, POWER DOWN is controlled by D_DET pin input level and the PD pin input is ignore.

D_MODE	PD	D_DET	Output
	0	L	Normal
OFF	0	Н	Normal
OFF	1	L	Power down
	1	Н	Power down
	0	L	Normal
ON	0	Н	Power down
ON	1	L	Normal
	1	Н	Power down

Operation description of each block (Continued)

• I²C BUS Format (READ MODE)

S	SLAVE ADDRESS	А	DATA1	NA	Р
---	------------------	---	-------	----	---

S: Start Condition A: Acknowledge NA: No Acknowledge P: Stop Condition

	b7	b6	b5	b4	b3	b2	b1	b0
Slave address	1	1	0	1	1	0	ADR	R/W
DATA	0	0	0	0	0	0	0	D_DET

Select Input Switch

	Explanation		Explanation
ADR	Slave Address (read mode) set by ADR 0: "D9H", when ADR is LOW. 1: "DBH", when ADR is High.	D_DET	Read out D_DET condition 0: LOW 1: HI
R/W	READ/WRITE setting mode 0: WRITE 1: READ		

Operation description of each block (Continued)

■BH7602FS How to set video input level in DC_SHFT circuit

BH7602FS is build in DC_Shift block and it operate without input coupling capacitor. It is necessary to set input voltage of VREF (7pin) terminal to VIDEO signal input level because of enough output dynamic range.

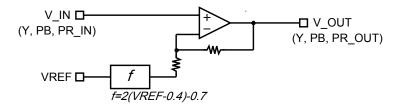


Fig. 3 DC_Shift block equivalent circuit

The relation of V_IN, VREF, V_OUT in this place

V_OUT=0.7+2(V_IN-VREF+0.4) (eq.1)

and the input possible range of VREF is

It shows the relation of V_IN-V_OUT at each VREF value on Fig.5.

On the other hand, the operation range of V_OUT (VIDEO OUTPUT) becomes 0.7V~3.3V (2.6Vp-p) of the circuit composition, and needs to adjust VREF terminal voltage to be kept this range for inputted VIDEO signal. VREF terminal voltage and V_IN input possible range are shown in Fig.4. Caution on use, after confirming Fig.4, adjust

VREF terminal voltage and V_IN input possible range are shown in Fig.4. Caution on use, after confirming Fig.4, adju VREF terminal voltage.

VREF [V]	V_IN input possible range [V]
0.4	0.0~1.3
0.5	0.1~1.4
0.6	0.2~1.5
0.7	0.3~1.6
0.8	0.4~1.7
0.9	0.5~1.8
1.0	0.6~1.9
1.1	0.7~2.0
1.2	0.8~2.1
1.3	0.9~2.2
1.4	1.0~2.3

Fig. 4 The relation of VREF terminal voltage and input possible range

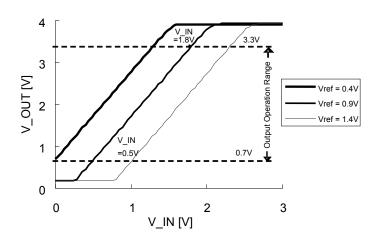


Fig. 5 The relation of V_IN-V_OUT at each VREF value (measurement value)

Application circuit

OBH7602FS



Fig. 6

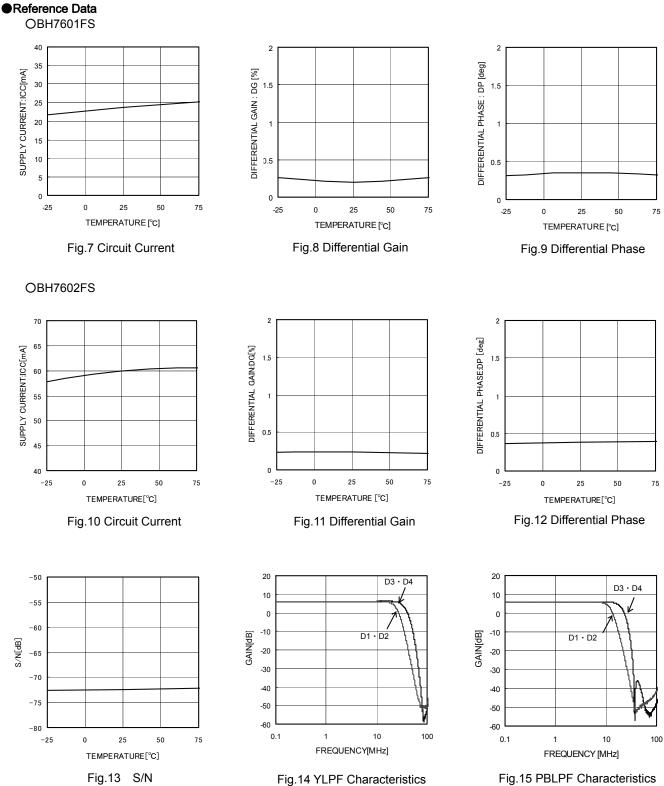
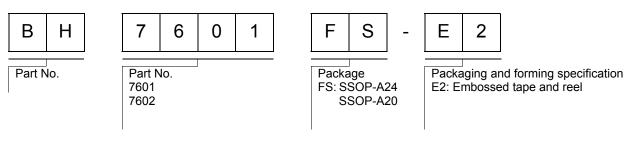
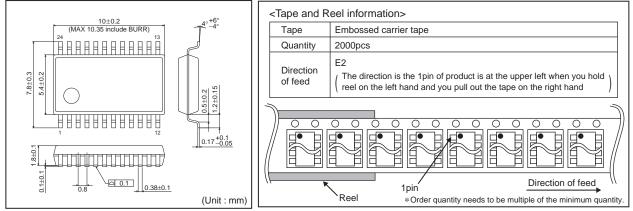
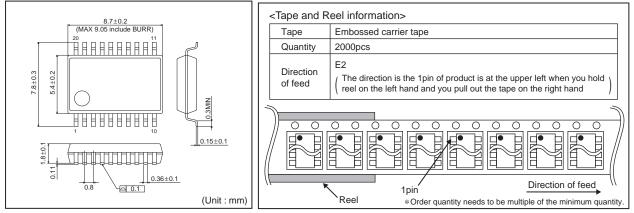




Fig.15 PBLPF Characteristics


Ordering part number

SSOP-A24

SSOP-A20

	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conter	nt specified herein is subject to change for improvement without notice.
"Products'	nt specified herein is for the purpose of introducing ROHM's products (hereinafte '). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein ne standard usage and operations of the Products. The peripheral conditions mus nto account when designing circuits for mass production.
However,	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such n, ROHM shall bear no responsibility for such damage.
examples implicitly, a other parti	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o any license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the h technical information.
equipment	cts specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	HM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard e possibility of physical injury, fire or any other damage caused in the event of the ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHM no responsibility whatsoever for your use of any Product outside of the prescribed ot in accordance with the instruction manual.
system wh may result instrument controller of the Pro-	icts are not designed or manufactured to be used with any equipment, device of hich requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica c, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- or other safety device). ROHM shall bear no responsibility in any way for use of an ducts for the above special purposes. If a Product is intended to be used for an ial purpose, please contact a ROHM sales representative before purchasing.
be control	nd to export or ship overseas any Product or technology specified herein that ma led under the Foreign Exchange and the Foreign Trade Law, you will be required to cense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video ICs category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :

M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ ADV7180WBCP32Z ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ ADA4417-3ARMZ-R7 ADA4424-6ARUZ