Structure : Silicon Monolithic Integrated Circuit

Product name : 6ch Video driver (for DVD)

Type

BH7856FS

Outer dimensions
Fig. 1 SSOP-A32(Plastic Package)

Block diagram
Fig. 2

Feature

1) Built in LPF with characteristics suited to DVD players and recorders
($\mathrm{Y}, \mathrm{C}, \mathrm{Y} / \mathrm{C}$ MIX : $6.75 \mathrm{MHz}, \mathrm{Py} / \mathrm{G}, \mathrm{Pb} / \mathrm{B}$, and $\mathrm{Pr} / \mathrm{R}: 13.5 \mathrm{MHz}$)
2) Built in 6ch video driver (Y, C, Y/C MIX, Py/G, Pb/B, and Pr/R)
3) $75 \Omega \times 2$ Driver (Y, C, Y/C MIX,Py/G, Pb/B and Pr/R)
4) Built in MUTE switch (double as power save function)
5) Built in S1/S2 circuit
6) Built in selection switch for SCART connector (CVBS,R or C, Y output)

OAbsolute Maximum Ratings($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits	Unit
Supply Voltage	VccMAX	6.0	V
Power Dissipation	Pd	$1.35 * 1$	W
Terminal applied voltage	Vin	$-0.3 \sim \mathrm{Vcc}+0.3$	V
Storage Temperature Range	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

*1 When mounted on a $100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 1.6 \mathrm{mmt}$ PCB board, the rated values are reduced at $13.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ when temperature exceeds $25^{\circ} \mathrm{C}$. (Glass epoxy substrate)

OOperating Range

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc	$+4.5 \sim+5.5$	V
Operation Temperature Range	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$

* This product is not designed for protection against radioactive rays.

OElectrical characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ Unless otherwise specified)

Parameter		Symbol	Specification			Unit	Testing condition	
		Min	Typ	Max				
Circuit current 1			Icc1	50	75	100	mA	No signal 6ch Active MODE
Circuit current 2		$\mathrm{I}_{\mathrm{cc} 2}$	25	45	65	mA	No signal Mute1 ON (C,Y,CV system)	
Circuit current 3		$\mathrm{I}_{\text {cc3 }}$	15	35	55	mA	No signal Mute2 ON (Py/G, Pb/B, Pr/R system)	
Circuit current 4		$\mathrm{I}_{\text {cc4 }}$	1	2.5	5	mA	No signal Mute1 \& Mute2 ON	
Output dynamic range 1		Vom1	2.4	3.0	-	Vpp	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \mathrm{THD}=1.0 \% \\ & \mathrm{C}, \mathrm{Py} / \mathrm{G}(\mathrm{BIAS}), \mathrm{Pb} / \mathrm{B}, \mathrm{Pr} / \mathrm{R} \end{aligned}$	
Output dynamic range 2		Vом2	2.4	2.8	-	Vpp	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \mathrm{THD}=1.0 \% \\ & \mathrm{CV}, \mathrm{Y}, \mathrm{MIX}, \mathrm{Py} / \mathrm{G}(\mathrm{CLAMP}) \end{aligned}$	
Voltage gain	C	Gvc	5.6	6	6.4	dB	CIN: f=3.58MHz, 1Vpp	
C-Pr/R(SEL3="H")		$\mathrm{G}_{\mathrm{VCPr}}$	5.6	6	6.4	dB	CIN: f=3.58MHz, 1Vpp	
	MIX(C)	$\mathrm{G}_{\text {vilic }}$	5.6	6	6.4	dB	CIN: f=3.58MHz, 1Vpp	
	MIX(Y)	$\mathrm{G}_{\text {VMIXY }}$	5.6	6	6.4	dB	YIN: $f=1 \mathrm{MHz}, 1 \mathrm{Vpp}$	
	CV	Gvcvin	5.6	6	6.4	dB	CVIN:f=1MHz, 1Vpp	
Y-CV(SEL3="H")		Gvycv	5.6	6	6.4	dB	YIN: f=1MHz, 1Vpp	
	Y	G_{VY}	5.6	6	6.4	dB	$\mathrm{YIN}: \mathrm{f}=1 \mathrm{MHz}, 1 \mathrm{Vpp}$	
Py/G (CLAMP/BIAS)		GvPY	5.6	6	6.4	dB	Py/G IN:f=1MHz, 1Vpp	
	Pb / B	Gvpb	5.6	6	6.4	dB	$\mathrm{Pb} / \mathrm{B} \mathrm{IN}: \mathrm{f}=1 \mathrm{MHz}, 1 \mathrm{Vpp}$	
	Pr/R	GVPr	5.6	6	6.4	dB	Pr/R IN: f= $=1 \mathrm{MHz}, 1 \mathrm{Vpp}$	
Frequency Characteristics 1 (CIN, CVIN, YIN)		$f 11$	-1.5	-0.5	0.5	dB	fin=100k/6.75MHz, 1Vpp	
		f12	-	-33	-25	dB	fin $=100 \mathrm{k} / 27 \mathrm{MHz}, 1 \mathrm{Vpp}$	
Frequency Characteristics 2 (Py/G IN, Pb/B IN, Pr/R IN)		f21	-1.5	-0.5	0.5	dB	$\begin{aligned} & \text { LPF13.5MHz } \\ & \text { fin }=100 \mathrm{k} / 13.5 \mathrm{MHz}, 1 \mathrm{Vpp} \end{aligned}$	
		f22	-	-30	-23	dB	$\begin{aligned} & \text { LPF13.5MHz } \\ & \text { fin }=100 \mathrm{k} / 54 \mathrm{MHz}, 1 \mathrm{Vpp} \end{aligned}$	
Crosstalk		CT	-	-60	-50	dB	fin $=4.43 \mathrm{MHz}, 1 \mathrm{Vpp}$	
MUTE attenuation		MT	-	-60	-50	dB	$\begin{aligned} & \text { CIN : f = 4.43MHz, 1Vpp } \\ & \text { YIN,CVIN,Py/GIN,Pb/BIN,Pr/RIN : } \\ & \mathrm{f}=1 \mathrm{MHz}, 1 \mathrm{Vpp} \end{aligned}$	
S-DCOUT Voltage	L	$\mathrm{V}_{\text {SDCL }}$	-	0.1	0.5	V	RL=10k $\Omega+100 \mathrm{k} \Omega$ S $1=\mathrm{L}, \mathrm{S} 2=\mathrm{L}$	
	M	$V_{\text {SDCM }}$	1.9	2.1	2.3	V	$\begin{array}{ll} \hline \mathrm{RL}=10 \mathrm{k} \Omega+100 \mathrm{k} \Omega & \mathrm{~S} 1=\mathrm{L}, \mathrm{~S} 2=\mathrm{H} \\ \mathrm{~S} 1=\mathrm{H}, \mathrm{~S} 2=\mathrm{H} \end{array}$	
	H	$\mathrm{V}_{\text {SDCH }}$	4.3	4.6	-	V	$\mathrm{RL}=10 \mathrm{k} \Omega+100 \mathrm{k} \Omega \mathrm{S} 1=\mathrm{H}, \mathrm{S} 2=\mathrm{L}$	
MUTE Control Voltage		$\mathrm{V}_{\text {THH }}$	2.0	-	VCC	V	MUTE OFF	
		$\mathrm{V}_{\text {THL }}$	GND	-	0.7	V	MUTE ON	

Parameter	Symbol	Specification			Unit	Testing condition
		Min	Typ	Max		
SEL1 (CV /MIX) Control Voltage	$\mathrm{V}_{\text {THH }}$	2.0	-	VCC	V	CV MODE CVIN \rightarrow CV Y OUT
	$\mathrm{V}_{\text {THL }}$	GND	-	0.7	V	MIX MODE CIN,YIN \rightarrow CV_Y OUT
SEL2 (BIAS/CLAMP) Control Voltage	$\mathrm{V}_{\text {THH }}$	2.0	-	VCC	V	BIAS MODE Py/G IN \rightarrow Py/G OUT
	$\mathrm{V}_{\text {THL }}$	GND	-	0.7	V	CLAMP MODE Py/G IN \rightarrow Py/G OUT
SEL3 (SCART OUT/6ch OUT) Control Voltage	$\mathrm{V}_{\text {THH }}$	2.0	-	VCC	V	SCART OUT MODE YIN \rightarrow CV_Y OUT CIN \rightarrow Pr/R_C OUT
	$\mathrm{V}_{\text {THL }}$	GND	-	0.7	V	6ch OUT MODE CVIN \rightarrow CV_Y OUT Pr/R IN \rightarrow Pr/R_C OUT
S1/S2 Control Voltage	$\mathrm{V}_{\text {THH }}$	2.0	-	VCC	V	High
	$\mathrm{V}_{\text {THL }}$	GND	-	0.7	V	Low
Control terminal Input current	I_{H}	-	-	155	$\mu \mathrm{A}$	$\mathrm{VH}=4.5 \mathrm{~V}$
	I_{L}	-	-	20	$\mu \mathrm{A}$	$\mathrm{VL}=0.4 \mathrm{~V}$

OOuter dimensions

Fig. 1 Outer dimensions SSOP-A32(Unit : mm)
OOperation mode table
Table. 1 Operation mode table

Operation Mode	MUTE1	MUTE2	SEL1	SEL3	Output Signal					
					COUT	CV_Y OUT	YOUT	Py/G OUT	Pb / B OUT	Pr/R_C OUT
1	L	L	L	L	\times	\times	\times	\times	\times	\times
2	L	L	L	H	\times	\times	\times	\times	\times	\times
3	L	L	H	L	\times	\times	\times	\times	\times	\times
4	L	L	H	H	\times	\times	\times	\times	\times	\times
5	L	H	L	L	\times	\times	\times	Py/G IN	Pb / B IN	Pr/R IN
6	L	H	L	H	\times	\times	\times	\times	\times	\times
7	L	H	H	L	\times	\times	\times	Py/G IN	Pb / B IN	Pr/R IN
8	L	H	H	H	\times	\times	\times	\times	\times	\times
9	H	L	L	L	CIN	YC MIX	YIN	\times	\times	\times
10	H	L	L	H	CIN	YIN	YIN	\times	\times	CIN
11	H	L	H	L	CIN	CV IN	YIN	\times	\times	\times
12	H	L	H	H	CIN	YIN	YIN	\times	\times	CIN
13	H	H	L	L	CIN	YC MIX	YIN	Py/G IN	Pb / B IN	Pr/R IN
14	H	H	L	H	CIN	YIN	YIN	\times	\times	CIN
15	H	H	H	L	CIN	CV IN	YIN	Py/G IN	Pb / B IN	Pr/R IN
16	H	H	H	H	CIN	YIN	YIN	\times	\times	CIN

* When SEL3 = " $\mathrm{H}^{\prime \prime}$, Py,Pb,Pr block power on without MUTE2=" $\mathrm{H}^{\prime \prime}$, but Py and Pb block are no signal output.
* " \times " express no output. And other output signal from input pin written in table.

OBlock diagram

Fig. 2 Block diagram
Table. 2 Control pin function

Pin name	State	Function
SEL1	H	CVIN \rightarrow CV_Y OUTPUT MODE
	L	MIX(CIN,YIN) \rightarrow CV_Y OUTPUT MODE
SEL2	H	BIAS MODE (Py/G INPUT)
	L	CLAMP MODE (Py/G INPUT)
SEL3	H	SCART OUTPUT MODE
	L	6ch OUTPUT MODE
MUTE1	H	$\mathrm{C}, \mathrm{CV}, \mathrm{Y}$ BLOCK MUTE OFF
	L	$\mathrm{C}, \mathrm{CV}, \mathrm{Y}$ BLOCK MUTE
MUTE2	H	$\mathrm{Py} / \mathrm{G}, \mathrm{Pb} / \mathrm{B}, \mathrm{Pr} / \mathrm{R}$ BLOCK MUTE OFF
	L	$\mathrm{Py} / \mathrm{G}, \mathrm{Pb} / \mathrm{B}, \mathrm{Pr} / \mathrm{R} \mathrm{BLOCK} \mathrm{MUTE}$

OPin number/Pin name

No.	Pin name
1	Vcc1
2	S1
3	S2
4	CIN
5	MUTE1(OFF/ON)
6	CV IN
7	SEL1(CV/MIX)
8	Y IN
9	BIAS
10	SEL2(BIAS/CLAMP)
11	Py/G IN
12	TEST
13	Pb / B IN
14	MUTE2(OFF/ON)
15	Pr/R IN
16	Vcc2
17	Pr/R_C OUT SAG
18	Pr/R_C OUT
19	GND
20	Pb/B OUT SAG
21	Pb/B OUT
22	GND
23	Py/G OUT SAG
24	Py/G OUT
25	GND
26	YOUT SAG
27	YOUT
28	SEL3 (SCART OUT/6ch OUT)
29	CV_Y OUT SAG
30	CV_Y OUT
31	S-DCOUT
32	COUT

O Cautions on use
(1) Absolute maximum ratings

This IC may be damaged if the absolute maximum ratings for the applied voltage, temperature range, or other parameters are exceeded. Therefore, avoid using a voltage or temperature that exceeds the absolute maximum ratings.
If it is possible that absolute maximum ratings will be exceeded, use fuses or other physical safety measures and determine ways to avoid exceeding the IC's absolute maximum ratings.
(2) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
(3) Thermal design

Ensure sufficient margins to the thermal design by taking in to account the allowable power dissipation during actual use modes.
(4) Shorting between pins and mounting errors

When mounting the IC chip on a board, be very careful to set the chip's orientation and position precisely.
When the power is turned on, the IC may be damaged if it is not mounted correctly.
The IC may also be damaged if a short occurs (due to a foreign object, etc.) between two pins, between a pin and the power supply, or between a pin and the GND.
(5) Operation in strong magnetic fields

Note with caution that operation faults may occur when this IC operates in a strong magnetic field.
(6) Place the power supply bypass capacitor as close as possible to the Vcc pin (PIN1, PIN16).
(7) When not using a sag correction circuit

Connect the sag correction pin and output pin as closely as possible.
There is a danger of high frequency oscillation.
Also make the distance from the output pin (OUT pin, SAG pin) to the 75Ω resistance as short as possible.
(8) When using a sag correction circuit

Make the length of the output pin (OUT pin, SAG pin) and capacitor as short as possible.
There is a danger of high frequency oscillation.
Also make the distance from the output pin (OUT pin, SAG pin) to the 75Ω resistance as short as possible.
If these cautions is not observed in board layout, connect a capacitor ($0.01 \mu \mathrm{~F} \sim 0.1 \mu \mathrm{~F}$) as short as possibl

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ ADA4417-3ARMZ-R7 ADA4424-6ARUZ

