AC Voltage Zero Cross Detection IC BM1Z002FJ Evaluation Board

<High Voltage Safety Precautions>

Read all safety precautions before use

Please note that this document covers only the BM1Z002FJ evaluation board (BM1Z002FJ-EVK-002) and its functions. For additional information, please refer to the datasheet.

To ensure safe operation, please carefully read all precautions before handling the evaluation board

Depending on the configuration of the board and voltages used,
Potentially lethal voltages may be generated.
Therefore, please make sure to read and observe all safety precautions described in the red box below.

Before Use

[1] Verify that the parts/components are not damaged or missing (i.e. due to the drops).
[2] Check that there are no conductive foreign objects on the board.
[3] Be careful when performing soldering on the module and/or evaluation board to ensure that solder splash does not occur.
[4] Check that there is no condensation or water droplets on the circuit board.

During Use

[5] Be careful to not allow conductive objects to come into contact with the board.
[6] Brief accidental contact or even bringing your hand close to the board may result in discharge and lead to severe injury or death.
Therefore, DO NOT touch the board with your bare hands or bring them too close to the board. In addition, as mentioned above please exercise extreme caution when using conductive tools such as tweezers and screwdrivers.
[7] If used under conditions beyond its rated voltage, it may cause defects such as short-circuit or, depending on the circumstances, explosion or other permanent damages.
[8] Be sure to wear insulated gloves when handling is required during operation.

After Use

[9] The ROHM Evaluation Board contains the circuits which store the high voltage. Since it stores the charges even after the connected power circuits are cut, please discharge the electricity after using it, and please deal with it after confirming such electric discharge.
[10] Protect against electric shocks by wearing insulated gloves when handling.
This evaluation board is intended for use only in research and development facilities and should by handled only by qualified personnel familiar with all safety and operating procedures.
We recommend carrying out operation in a safe environment that includes the use of high voltage signage at all entrances, safety interlocks, and protective glasses.

ACIDC Converter

AC Voltage Zero Cross Detection IC

BM1Z002FJ Evaluation Board

BM1Z002FJ-EVK-002

General Description

This evaluation board outputs a zero cross signal from 90 Vac to 264 Vac input.
The evaluation board is mounted with BM1Z002FJ which outputs high precision zero cross timing of targeted AC voltage. BM1Z002FJ will provide power less down to $1 / 10$ of what conventional zero cross signal generator circuit consumed.

The evaluation board is also mounted with power supply for the IC.

Figure 1. BM1Z002FJ-EVK-002

Performance Specification

Not guarantee the characteristics is representative value. $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Min	Typ	Max	Units	Conditions
Input Voltage Range	90	230	264	V	
Input Frequency	47	-	63	Hz	
Output Voltage (High Level)	4.75	5.00	5.25	V	
Output Voltage (Low Level)	0.0	-	0.1	V	
Delay Time	-	0.0	-	$\mu \mathrm{s}$	
Operating Temperature Range	-10	+25	+65	${ }^{\circ} \mathrm{C}$	

Operation Procedure

1 Necessary Equipment
(1) Isolated AC power source (90 Vac to $264 \mathrm{Vac}, 10 \mathrm{~W}$ or more)
(2) Oscilloscope

2 Connect to Each Equipment

(1) Set the AC power supply to 90 Vac to 264 Vac power supply off.
(2) Connect the output pin (ACOUT pin, COMMON pin) to Oscilloscope .
(Keep the ground isolated from AC Inputs and probes).
(3) Connect the pin of the power supply (CN1) to AC power supply output with pair of wires.
(4) Connect VCC pin, GND pin to DC power supply. Set it to output 5V and turn on the output (Clarify which node per the notes about the schematic)
(5) AC power supply turn on.
(6) Confirm the output waveform synchronized with the AC voltage.

Caution : To avoid the electrical shock, please keep AC Power supply being isolated.

Figure 2. Diagram of How to Connect

Application Circuit

This evaluation board outputs a zero cross signal.
Output a zero cross point of the AC voltage from ACOUT pins by monitoring the voltage between VH_AC1 pins and the VH_AC2 pins of IC1.
600 V withstand monitor circuit is integrated at $\mathrm{VH} _\mathrm{AC} 1$ pin and $\mathrm{VH} _\mathrm{AC} 2$ pin to realize high reliabitity and low power consumption. ACOUT pin output 5 V as high level and 0 V as low level.

Figure 3. Application Circuit

Figure 4. Wave form of the input output voltage

BM1Z002FJ•General Description

Features

This IC outputs the AC voltage zero cross timing detection with high accuracy.
By eliminating the need for opto-coupler and external components required in conventional applications, it is possible to reduce the number of parts drastically and realize compact and highly reliable power supply applications. In addition, this IC can reduce standby power largely in comparison with an existing opto-coupler control.

Package

SOP-J7S

W (Typ) x D (Typ) x H (Max)

Figure 6. SOP-J7S Package
$4.90 \mathrm{~mm} \times 6.00 \mathrm{~mm} \times 1.65 \mathrm{~mm}$
Pitch (Typ): $\quad 1.27 \mathrm{~mm}$ $4.90 \mathrm{~mm} \times 6.00 \mathrm{~mm} \times 1.65 \mathrm{~mm}$
Pitch (Typ): $\quad 1.27 \mathrm{~mm}$

Pin Descriptions

Key Specifications

- VCC Input Power Supply Voltage Range:
-0.3 V to +29.0 V
- VH_AC1 and VH_AC2 Pins Operation Voltage:

600 V (Max)

- Circuit Current at Standby:
$50 \mu \mathrm{~A}$ (Typ)
- Circuit Current at Operation: $\quad 160 \mu \mathrm{~A}$ (Typ)

■ Operating Temperature Range: $\quad-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

- VCC Input Powe

Figure 5. Pin Configuration

1 Important Parameter

Parameter	Symbo I	Min	Typ	Max	Units	Conditions
Input Voltage Range	$\mathrm{V}_{\text {IN }}$	90	230	264	V	
Output Voltage (High Level)	$\mathrm{V}_{\text {OUTH }}$	4.75	5.00	5.25	V	
Output Voltage (Low Level)	$\mathrm{V}_{\text {OUTL }}$	0.0	0.0	0.1	V	
Delay Time	$\mathrm{T}_{\text {DELAY }}$	-	0.0	-	$\mu \mathrm{s}$	

Zero cross delay time is adjustable by the external (R3) between DSET pins and GND pins.

R3	Setting delay time
OPEN	$0 \mu \mathrm{~s}$
$330 \mathrm{k} \Omega$	$200 \mu \mathrm{~s}$
$68 \mathrm{k} \Omega$	$-200 \mu \mathrm{~s}$
0Ω	$-480 \mu \mathrm{~s}$

R3 setting with this evaluation board is OPEN. Thus, the delay time works in $0 \mu \mathrm{sec}$.

R3 is not populated on the Eval Board as shipped so the typical delay between the Zero Crossing on the AC input and ACOUT pin is $0 \mu \mathrm{sec}$. Populating the R3 location with the values shown above will result in a shift in time betwen the detected Zero Crossing and when the ACOUT signal changes state. Note that the ACOUT change can be advanced or occur before (negative delay) the zero crossing.

Measurement Data

1 Input output waveform (Measurement Diagram of is Figure 2.)

R3 OPEN

Figure 7. Input output waveform $\mathrm{V}_{\mathrm{IN}}=90 \mathrm{Vac}$

R3 : $330 \mathrm{k} \Omega$

Figure 9. Input output waveform $\mathrm{V}_{\mathrm{IN}}=90 \mathrm{Vac}$

Figure 8. Input output waveform $\quad \mathrm{V}_{\text {IN }}=264 \mathrm{Vac}$

R3 : $8 \mathrm{k} \Omega$

Figure 10. Input output waveform $\mathrm{V}_{\mathrm{IN}}=90 \mathrm{Vac}$

R $3: 0 \Omega$

Figure 11. Input output waveform $\mathrm{V}_{\mathbb{I N}}=90 \mathrm{Vac}$

Application Circuit

(Condition) $\mathrm{V}_{\mathrm{IN}}=90 \mathrm{Vac}$ to 264 Vac

Zero cross signal output

Figure 12. BM1Z002FJ-EVK-002 Application Circuit

Parts List

Item		Specifications	Parts name	Manufacture
Connector	CN1		B02P-NV	JST
Capacitor	C1	$0.1 \mu \mathrm{~F}, 275 \mathrm{~V}$	890324023023CS	WURTH ELECTRONIK
	C2	$4.7 \mu \mathrm{~F}, 400 \mathrm{~V}$	860021374008	WURTH ELECTRONIK
	C3	$220 \mu \mathrm{~F}, 25 \mathrm{~V}$	860080474010	WURTH ELECTRONIK
	C4	$2.2 \mu \mathrm{~F}, 35 \mathrm{~V}$	UMK212BB7225KG-T	TAIYO YUDEN
	C7	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$	HMK107B7104MA-T	TAIYO YUDEN
Diode-Bridge	DA1	$1 \mathrm{~A}, 800 \mathrm{~V}$	D1UBA80-7062	SHINDENGEN
Diode	D1	$1 \mathrm{~A}, 1000 \mathrm{~V}$	1N4007	
	D2	$1 \mathrm{~A}, 1000 \mathrm{~V}$	1N4007	
	D3	FRD, $0.8 \mathrm{~A}, 600 \mathrm{~V}$	RFN1LAM6S	ROHM
	D4	$0.2 \mathrm{~A}, 600 \mathrm{~V}$	RRE02VSM6S	ROHM
Fuse	F1	$1 \mathrm{~A}, 300 \mathrm{~V}$	36911000000	LITTELFUSE
IC	IC1		BM1Z002FJ	ROHM
	IC2		BM2P129TF	ROHM
Coil	L1	$220 \mu \mathrm{H}$	7447471221	WURTH ELECTRONIK
Resistor	R1	100Ω	MCR18EZPJ101	ROHM
	R2	100Ω	MCR18EZPJ101	ROHM
	R4	$100 \mathrm{k} \Omega$	MCR03EZPJ104	ROHM
	R5	$100 \mathrm{k} \Omega$	MCR03EZPJ104	ROHM
	R6	100Ω	MCR18EZPJ101	ROHM
	R8	$3.3 \mathrm{k} \Omega$	MCR03EZPJ332	ROHM
	C6	$33 \mathrm{k} \Omega$	MCR03EZPJ333	ROHM
Opto-coupler	PC1		LTV-817M-B	LITEON
Transistor	Q1	$20 \mathrm{~V}, 0.1 \mathrm{~A}$	RU1C001UN	ROHM
Pin	TP	RED	LC-2-G-RED	MAC8
	TP	ORANGE	LC-2-G-ORANGE	MAC8
	TP	BLACK	LC-2-G-Black	MAC8

(Note 1) Materials may be changed without notifying.

Layout

Size: $36 \mathrm{~mm} \times 90 \mathrm{~mm}$

Figure 13. TOP Silkscreen (Top view)

Figure 14. Bottom Layout (Top View)

Revision History

Date	Rev.	
30.Mar.2020	001	New Release
12.July.2020	002	Figure 1, Figure 2, Figure 14

Notes

1) The information contained herein is subject to change without notice.
2) Before you use our Products, please contact our sales representative and verify the latest specifications:
3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.
Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
6) The Products specified in this document are not designed to be radiation tolerant.
7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP21021.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV

