

AC/DC Converter Isolation Fly-back Converter PWM method 48 W 24 V BM2P016T Reference Board

User's Guide

< High Voltage Safety Precautions >

♦ Read all safety precautions before use

Please note that this document covers only the BM2P016T evaluation board (BM2P016T-EVK-004) and its functions. For additional information, please refer to the datasheet.

To ensure safe operation, please carefully read all precautions before handling the evaluation board

Depending on the configuration of the board and voltages used,

Potentially lethal voltages may be generated.

Therefore, please make sure to read and observe all safety precautions described in the red box below.

Before Use

- [1] Verify that the parts/components are not damaged or missing (i.e. due to the drops).
- [2] Check that there are no conductive foreign objects on the board.
- [3] Be careful when performing soldering on the module and/or evaluation board to ensure that solder splash does not occur.
- [4] Check that there is no condensation or water droplets on the circuit board.

During Use

- [5] Be careful to not allow conductive objects to come into contact with the board.
- [6] Brief accidental contact or even bringing your hand close to the board may result in discharge and lead to severe injury or death.

Therefore, DO NOT touch the board with your bare hands or bring them too close to the board. In addition, as mentioned above please exercise extreme caution when using conductive tools such as tweezers and screwdrivers.

- [7] If used under conditions beyond its rated voltage, it may cause defects such as short-circuit or, depending on the circumstances, explosion or other permanent damages.
- [8] Be sure to wear insulated gloves when handling is required during operation.

After Use

- [9] The ROHM Evaluation Board contains the circuits which store the high voltage. Since it stores the charges even after the connected power circuits are cut, please discharge the electricity after using it, and please deal with it after confirming such electric discharge.
- [10] Protect against electric shocks by wearing insulated gloves when handling.

This evaluation board is intended for use only in research and development facilities and should by handled only by qualified personnel familiar with all safety and operating procedures.

We recommend carrying out operation in a safe environment that includes the use of high voltage signage at all entrances, safety interlocks, and protective glasses.

AC/DC Converter

Isolation Fly-back Converter PWM method Output 48 W 24 V **BM2P016T Reference Board**

BM2P016T-EVK-004

The BM2P016T-EVK-004 evaluation board outputs a 24 V voltage from an input of 90 Vac to 264 Vac. The output current provides up to 2.0 A. The BM2P016T PWM type DC / DC converter IC with 650 V MOSFET is used. The BM2P016T contributes to low power consumption by incorporating a 650 V withstand voltage startup circuit. Using current mode control, cycle-by-cycle current limiting provides excellent performance in bandwidth and transient response. The switching frequency is fixed at 65 kHz. At light loads, frequency reduction achieves high efficiency. Built-in frequency hopping function contributes to low EMI. The low on-resistance 1.4 Ω · 650 V withstand voltage MOSFET is built in, contributing to low power consumption and easy design.

The optimized EMI design complies with CISPR 22 Class B for noise terminal voltage / radiation emission testing.

Figure 1. BM2P016T-EVK-004

Electronics Characteristics

Not guarantee the characteristics, is representative value. Unless otherwise noted: V_{IN} = 230 Vac, I_{OUT} = 1.5 A, Ta = 25 ℃

Parameter	Min	Тур	Max	Units	Conditions
Input Voltage Range	90	230	264	V	
Input Frequency	47	50/60	63	Hz	
Output Voltage	22.8	24.0	25.2	V	
Maximum Output Power	-	-	48	W	I _{OUT} = 2 A
Output Current Range (NOTE1)	0.0	1.5	2.0	А	
Stand-by Power	-	280	-	mW	I _{OUT} = 0 A
Efficiency	83.0	86.4	-	%	I _{OUT} = 2 A
Output Ripple Voltage (NOTE2)	-	180	-	mVpp	
Operating Temperature Range	-10	+25	+65	င	

(NOTE1) Please adjust operating time, within any parts surface temperature under 105 ℃

(NOTE2) Not include spike noise

© 2019 ROHM Co., Ltd. No. 62UG006E Rev.001 1/28 2019.7

Operation Procedure

- 1. Operation Equipment
 - (1) AC Power supply 90 ~ 264 Vac, over 50W
 - (2) Electronic Load capacity 2.0 A
 - (3) Multi meter
- 2. Connect method
 - (1) AC power supply presetting range 90~264 Vac, Output switch is off.
 - (2) Load setting under 2 A. Load switch is off.
 - (3) AC power supply N terminal connect to the board AC (N) of CN1-2, and L terminal connect to AC (L) of CN1-3.
 - (4) Load + terminal connect to VOUT of CN2-2, GND terminal connect to GND of CN2-1
 - (5) AC power meter connect between AC power supply and board.
 - (6) Output test equipment connects to output terminal
 - (7) AC power supply switch ON.
 - (8) Check that output voltage is 24 V
 - (9) Electronic load switch ON
 - (10) Check output voltage drop by load connect wire resistance

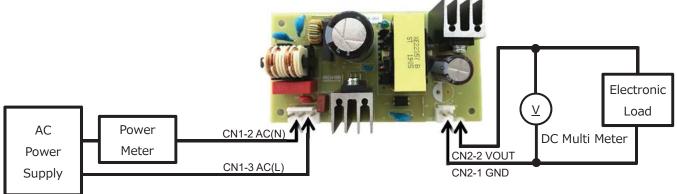


Figure 2. Connection Circuit

Deleting

Maximum Output Power Po of this reference board is 48 W. The derating curve is shown on the below. If ambient temperature is over 40℃, Please adjust load continu ous time by over 105 ℃ of any parts surface temper ature.

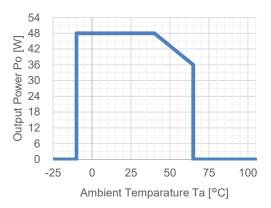


Figure 3. Temperature Deleting curve

Application Circuit

BM2P016T-EVK-004 is a fly-back type circuit method, and BM2P016T is used for IC.

The BM2P016T is built-in a high withstand voltage VDSS: 650 V and a low on resistance RDS (ON): 1.4 Ω Super-Junction MOSFET, contributing to energy saving. The voltage of the output (VOUT) is monitored by a feedback circuit and fed back to the FB terminal of IC1 through a photo coupler. The FADJ pin of IC1 can be used to fix the burst frequency at the burst mode under light load, to prevent the noise at the burst mode.

At startup, the VCC voltage is raised by supplying VIN to CVCC through the startup circuit (Starter). When the VCC voltage exceeds the UVLO release voltage 13.5V typ., The IC operation starts. When the IC operates, the start-up circuit is turned off and the supply from the DRAIN pin is cut off, contributing to the reduction of standby power.

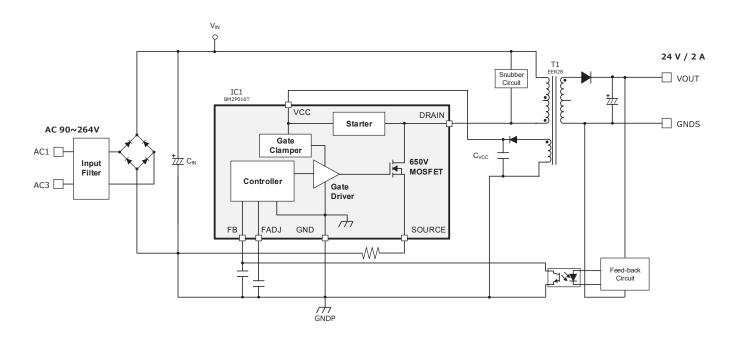


Figure 4. BM2P016T-EVK-004 Application Circuit

BM2SCQ123T Overview

Feature

■ PWM frequency: 65 kHz

■ PWM current mode method

Frequency hopping function

Burst operation at light load

Frequency reduction function

Built-in 650V start circuit

Built-in 650V switching MOSFET

■ VCC pin under voltage protection

VCC pin over voltage protection

SOURCE pin Open protection

■ SOURCE pin Short protection

SOURCE pin Leading-Edge-Blanking function

Per-cycle over current protection circuit

AC Correction function of over current limiter

Soft Start Function

Secondary over current protection circuit

Key specifications

Operation Voltage Range: VCC: 8.9 V ~ 26.0 V

> DRAIN: 650 V(Max)

Normal Operating Current: 0.95 mA(Typ) **Burst Operating Current:** 0.30 mA(Typ) Oscillation Frequency: 65 kHz(Typ) -40 ℃ ~ +105 ℃ Operating Temperature: MOSFET Ron: 1.4 Ω(Typ)

Application

AC adapters and household appliance (vacuum cleaners, humidifiers, air cleaners, air conditioners, IH cooking heaters, rice cookers, etc.)

Dimension W(Typ) x D(Typ) x H(Max)

TO220-7M 10.0 mm x 4.6 mm x 25.4 mm

Figure 5. TO220-7M Package

- (*) Product structure: Monolithic integrated circuit mainly made of silicon. No radiation resistant design
- (*) Exceeding the absolute maximum ratings, such as applied voltage and operating temperature range, may lead to deterioration or destruction. Also, the short mode or open mode cannot assume the destruction state. If a special mode that exceeds the absolute maximum rating is assumed, Please consider physical safety measures such as fuses.

Table 1	BM2P016T	DIN	doccrintion
Table 1.	BIVIZPUIDI	PIIN	describtion

No.	Name	I/O	Function	ESD	Diode
NO.	Name	1/0	Function	VCC	GND
1	DRAIN	1/0	MOSFET DRAIN pin	-	-
2	SOURCE	I/O	MOSFET SOURCE pin	✓	✓
3	N.C.	ı	Non Connection	-	-
4	FADJ	I	MAX burst frequency setting pin	✓	✓
5	GND	I/O	GND pin	✓	-
6	FB	I	Feed-back signal input pin	✓	✓
7	VCC	I	Power supply input pin	-	√

Design Overview

1 Important parameter

 V_{IN} : Input Voltage Range AC 90 V ~ 264 Vac (DC 100 V ~ 380 V)

: Output Voltage DC 24 V Vout : Constant Output Current 1.5 A lou⊤(typ) Iout(max) : Maximum Output Current 2.0 A

: Max Switching Frequency min:61 kHz, typ:65 kHz, max:69 kHz fsw : Over Current Detection Voltage min:0.375 V, typ:0.400 V, max:0.425 V VSOURCE

2 Transformer Design

2.1 Setting fly-back voltage VOR

Determine the fly-back voltage VOR and find the turns ratio Np: Ns, Duty ratio. With V_{IN} (min) = 100 V and V_{F} = 1.5 V, target VOR to about 100 V. In this case, the turns ratio Np: Ns = 4.38 determined later.

$$VOR = (V_{OUT} + V_F) \times \frac{N_p}{N_s} = \frac{t_{on}}{t_{off}} \times V_{IN} = 111.7$$

$$\frac{N_p}{N_s} = \frac{VOR}{V_{OUT} + V_F} = \frac{111.7 V}{24 V + 1.5 V} = 4.38$$

$$Duty(max) = \frac{VOR}{V_{IN}(min) + VOR} = \frac{111.7 V}{100 V + 111.7 V} = 0.527$$

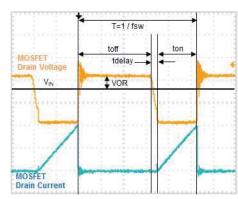
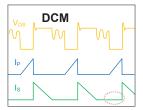
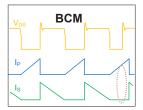


Figure 6. MOSFET Drain Waveform

Set VOR so that Duty is 0.5 or less in consideration of MOSFET loss and so on.

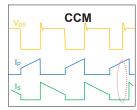
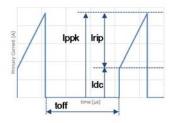

2.2 Selection of operation mode

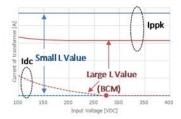

The PWM driven Fly-back switching regulator transfers power from the primary side to the secondary side using a transformer.

There are three types of transformer operation modes:

- CCM (Continuous Current Mode) : The primary side switching element is turned on before the charging current of the secondary side coil is completely discharged. Since the coil current is continuous.
- BCM (Boundary Current Mode) : The switching element on the primary side is turned on at the same time the discharge of the coil on the secondary side is completed.
- DCM (Dis-continuous Current Mode): The primary side switching element turns on after the secondary side coil is completely discharged. It is called current discontinuous mode because the coil current is not continuous.

BM2P016 works properly in either CCM or DCM mode. In this design, the transformer is designed to be BCM at a load current of 1.5 A with an input voltage of DC 260 V (AC conversion: 185 Vac).


Figure 7. Switching Waveform (MOSFET VDS, IP, IS)

2 Transformer design -Continued

2.3 Calculation of inductance value

Selecting the optimum inductor value will improve power supply efficiency. The figure below shows the peak current IPPK of the transformer and the input voltage / output current characteristics of the DC current I_{DC} at switching ON. Increasing the transformer inductance value reduces the transformer peak current. Low peak current offers benefits such as reduced power dissipation and smaller components. However, when the input voltage is low or the output current is large, the continuous mode CCM is set, and a DC current IDC is generated. When DC current is generated, switching loss increases, and disadvantages such as deterioration of power supply efficiency and generation of switching noise increase.

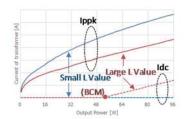


Figure 8. Current of Transfer

Figure 9. Relation of V_{IN} vs. Current

Figure 10. Relation of Vout v. Current

Under the condition that the input voltage VIN = 260 Vdc input, the load current IouT(BCM) = 1.5 A, and the BCM when the oscillation frequency is 65 kHz, find the primary winding inductance LP and secondary winding inductance Ls.

Duty =
$$\frac{VOR}{V_{IN} + VOR} = \frac{111.7 V}{260 V + 111.7 V} = 0.301$$

The secondary side inductance Ls in the case of becoming BCM is calculated.

$$I_{SPK} = \frac{V_{OUT} + V_F}{L_S} \times t_{OFF} = \frac{V_{OUT} + V_F}{L_S} \times \frac{1 - Duty}{f_{SW}}$$

$$I_{OUT}(BCM) = \frac{1}{2} \times I_{SPK} \times (1 - Duty) = \frac{(V_{OUT} + V_F) \times (1 - Duty)^2}{2 \times L_S \times f_{SW}}$$

$$L_S = \frac{(V_{OUT} + V_F) \times (1 - Duty)^2}{2 \times I_{OUT}(BCM) \times f_{SW}} = \frac{(24 V + 1.5 V) \times (1 - 0.301)^2}{2 \times 1.5 A \times 65 kHz} = 63.89 \,\mu\text{H}$$

$$L_P = L_S \times \left(\frac{N_P}{N_S}\right)^2 = 63.89 \ \mu H \times (4.38)^2 = 1225.7 \ \mu H$$

This EVK, L_P = 1200 μH, L_S = 62.69 μH. Calculate the maximum current I_{PPK} on the primary side and the maximum current I_{SPK} on the secondary side.

2.3 Calculation of inductance value -Continued

$$I_{SPK} = \frac{V_{OUT} + V_F}{L_S} \times \frac{1 - Duty}{f_{SW}} = \frac{24 V + 1.5 V}{62.69 \mu H} \times \frac{1 - 0.301}{65 kHz} = 4.29 \text{ [A]}$$

$$I_{PPK} = I_{SPK} \times \frac{N_S}{N_P} = 1.70 [A]$$

2.4 Determination of transformer size

From Po (max) = 48 W, the core size of the transformer selects EER28.

Table 2. Output power and transfer core

Output Power Po(W)	Core size	Core Cross sectional area Ae (mm²)
~30	EI25/EE25	41
~50	EFD30	68
~60	EI28/EE28/EER28	86
~80	EI33/EER35	107

^(*) The above values are guidelines. Please check with the transformer manufacturer etc. for details.

2.5 Calculation of primary winding NP

The maximum value of the magnetic flux density B (T) of a general ferrite core is 0.4 T @ 100 °C, so Bs at = 0.35 T. This EVK, the core cross section Ae = 86.3 mm² is selected.

$$N_P > \frac{L_P \times I_{PPK}}{A_e \times B_{sat}} = \frac{1200 \ \mu H \times 1.70 \ A}{86.3 \ mm^2 \times 0.35 \ T} = 67.5 \ [T]$$

The primary winding number N_P should be 68 turns or more. In this EVK, N_P = 105 turns so that it becomes tightly wound from the bobbin size of the transformer.

2.6 Calculation of secondary winding Ns

The secondary winding number N_S is expressed by the following formula.

$$\frac{N_P}{N_S} = 4.38 \rightarrow N_S = \frac{105 [T]}{4.38} = 24.0 \rightarrow 24 [T]$$

This EVK, we have N_S = 24 turns. Also, in order to reduce the leakage inductance, 24 turns are selected from the size of the transformer bobbin so as to be compact winding

Calculation of VCC winding N_D

Assuming VCC = 17 V and V_F_VCC = 1 V, N_D is expressed by the following formula.

$$N_D = N_S \times \frac{VCC + V_{F_}VCC}{V_{OUT} + V_F} = 24 \text{ T} \times \frac{15 V + 1.0 V}{24 V + 1.5 V} = 15.1 \text{ [T]}$$

2.7 Calculation of VCC winding ND -Continued

It is assumed that N_D = 15 turns. When driving a MOSFET, set the VCC to 15 V or more because it is necessary to control the Gate voltage. Thun, the transformer specification is as follows.

Table 3. Transformer specification (Reference)

Core	EER28 compatible
L _P	1200 μH
N _P	105 turns
Ns	24 turns
N _D	15 turns

2.8 Transformer design example

Manufacture: Alfatrans Co., LTD

〒541-0059 1-7-2 bakurou-cho, chu-o ku, osaka

http://www.alphatrans.jp/

Product: XE2235Y AlphaTrans Corp.

Bobin: FX-2828 10PIN Core: EER28/28

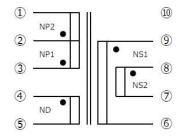


Figure 11. Connection Diagram

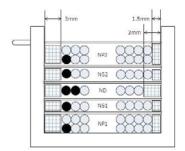


Figure 12. Winding structure diagram

Table 4. Alpha Trans XE2236Y Winding Specification

NO. WINDING		TERMINAL		WIRE SIZE	TURNS	TAPE	WINDING	NOTE
NO.	WINDING	START	FINISH	WIRE SIZE	TURNS	LAYERS	METHOD	NOTE
1	NP1	3	2	2UEW / Ф0.40 * 1	53	2	COMPACT	
2	NS1	9	6	2UEW / Ф0.40 * 1	24	2	COMPACT	
3	ND	4	5	2UEW / Ф0.30 * 2	15	2	COMPACT	
4	NS2	8	7	2UEW / Ф0.40 * 1	24	2	COMPACT	
5	NP2	2	1	2UEW / Ф0.40 * 1	52	2	COMPACT	

Inductance (LP) 1200 µH±10 % (100 kHz,1 V)

Leakage Inductance $50 \mu H MAX$

Withstand Voltage Pri - Sec AC1500 V

> Pri - Core AC1500 V Sec - Core AC500 V

Insulation resistance 100 MΩ over (DC500 V)

Design Overview – Continued

3 Main parts selection

Input Capacitor: C6

The input capacitor value is selected based on Table 5 as a guide. Select according to specifications such as holding time.

Table 5. Input capacitor selection

入力電圧(Vac)	Cin (μF)
85 ~ 264	2 x P _{IN} (W)
180 ~ 264	1 x P _{IN} (W)

A capacity equivalent to 48 W/0.84 x 2 = 114 µF is required as P_{OUT} = 48 W, and the power supply efficiency is 84%. This time, it is 100 µF considering the withstand voltage and ripple current of the capacitor. The withstand voltage of the capacitor needs more than the maximum input voltage. 450 V withstand voltage is selected for up to 380 V.

3.2 Resistor of current detection: Rs (R4, R5)

Set the overload protection point of the output by limiting the current flowing to the primary side. The peak current IPPK of the primary side at the time of over current detection is calculated.

$$I_{PPK} = I_{SPK} \times \frac{N_S}{N_P}$$

Calculate the peak current Issk on the secondary side at the time of over current detection. The output current in continuous mode is expressed by the following equation, and the load current at overcurrent detection is IOUT (LIM).

$$I_{OUT}(LIM) = \left(I_{SPK} - \frac{1}{2} \times \frac{V_{OUT} + V_F}{L_S} \times t_{OFF}\right) \times \frac{t_{OFF}}{T}$$

Calculate on duty and off time toff.

$$Duty = \frac{VOR}{V_{IN}(min) + VOR} = \frac{111.7 V}{100 V + 111.7 V} = 0.528$$

$$t_{OFF} = \frac{1 - Duty}{F_{SW}} = \frac{1 - 0.528}{65 \text{ kHz}} = 7.26 \text{ [}\mu\text{s]}$$

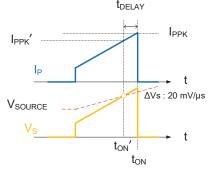


Figure 13. Current detection voltage

The secondary peak current I_{SSK} is expressed by the following equation. The load current at the time of over-current detection is I_{OUT} (LIM): 2.4 A with a 20% margin from the maximum load current I_{OUT} (MAX): 2 A.

$$I_{SPK} = \frac{I_{OUT}(LIM)}{t_{OFF} \times F_{SW}} + \frac{1}{2} \times \frac{V_{OUT} + V_F}{L_S} \times t_{OFF} = \frac{2.4 \text{ A}}{7.26 \text{ }\mu\text{s} \times 65 \text{ }kHz} + \frac{1}{2} \times \frac{24 \text{ }V + 1.5 \text{ }V}{62.69 \text{ }\mu\text{H}} \times 7.26 \text{ }\mu\text{s} = 6.56 \text{ [A]}$$

3.2 Resistor of current detection - Continued

The primary peak current IPPK is expressed by the following formula.

$$I_{PPK} = I_{SPK} \times \frac{N_S}{N_P} = 6.56 A \times \frac{24}{105} = 1.50 [A]$$

The primary current is voltage-converted by the sense resistor Rs, and switching is turned off by exceeding the overcurrent detection voltage. It becomes peak current IPPK after delay time tDELAY from over current detection. The peak current IPPK after delay time tDELAY from over current detection. the time of detection is calculated. t_{DELAY} is 0.1 µs.

$$I'_{PPK} = I_{PPK} - \frac{V_{IN}(min)}{L_P} \times t_{DELAY} = 1.50 A - \frac{100 V}{1200 \mu H} \times 0.1 \mu s = 1.49 A$$

Calculate the on time t_{ON} and the over current detection time t_{ON} '.

$$t_{ON} = \frac{1}{F_{SW}} - t_{OFF} = \frac{1}{65 \text{ kHz}} - 7.26 \text{ } \mu\text{s} = 8.12 \text{ } \mu\text{s}$$

$$t'_{ON} = t_{ON} - t_{DELAY} = 8.12 \,\mu\text{s} - 0.10 \,\mu\text{s} = 8.02 \,\mu\text{s}$$

The over-current protection has an AC voltage correction function to compensate for the over-current protection point shift due to the difference in input voltage. Overcurrent detection voltage at 0 μs V_{SOURCE}: 400 mV, AC voltage correction ΔVs: 20 mV / µs. The current IPPK' at the time of over current detection is as follows.

$$I'_{PPK} > \frac{V_{SOURCE} + \Delta V_S \times t_{ON}'}{R_C}$$

The sense resistance RS is calculated by the following formula.

$$R_S < \frac{V_{SOURCE} + \Delta V_S \times t_{ON}'}{I_{PPK}'} = \frac{400 \text{ mV} + 20 \text{mV}/\mu s \times 8.02 \text{ }\mu s}{1.49 \text{ }A} = 0.376 \text{ } [\Omega]$$

The sense resistance R_S should be 0.376 Ω or less.

This EVK, the sense resistances (R4, R5) are 0.56 Ω in parallel and Rs is 0.28 Ω .

Also, loss P_{R4} of the current detection resistor is expressed by the following formula.

$$P_{R14}(rms) = I_{PRMS}^{2} \times R4 = \left[I_{PPK} \times \sqrt{\frac{Duty(max)}{3}}\right]^{2} \times R4 = \left[0.75 \times \sqrt{\frac{0.528}{3}}\right]^{2} \times 0.56 = 0.055 [W]$$

The MCR18 Series with a rated power of 0.25 W was selected.

3. Main parts selection - Continued

3.6 Diode for VCC: D2

For the VCC diode, a high speed diode is recommended. When $V_F = 1 \text{ V}$, the reverse voltage V_D applied to the VCC diode is expressed by the following formula.

$$V_D = VCC(max) + V_F + V_{IN}(max) \times \frac{N_D}{N_P}$$

This IC has VCC OVP function and VCC OVP (min) = 29.0 V.

Make sure that the reverse voltage of the diode does not exceed the V_{D} of the diode used even if the VCC voltage rises to VCC OVP.

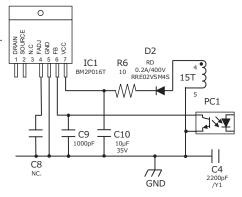


Figure 14. IC peripheral circuit

$$V_D = 29.0 V + 1.0 V + 380V \times \frac{15 \ turns}{105 \ turns} = 84.3 V$$

Select the 84.3 V / 0.7 120 V -> 400 V product taking into consideration the margin. (Example ROHM RRE02VSM4S 400 V 0.2 A)

3.7 Surge voltage limiting resistor for VCC winding: R6

The transformer's leakage inductance (Lleak) generates a large surge voltage (spike noise) the moment the MOSFET is turned off. This surge voltage may be induced in the VCC winding, and the VCC voltage may rise to affect the VCC over voltage protection of the IC.Insert a limiting resistor R6 (about 5 to 22 Ω) to reduce the surge voltage induced in the VCC winding.

Regarding the rise of the VCC voltage, check it in the state of being incorporated in the product. This EVK, 10Ω was selected.

3.8 Capacitor for VCC: C10

The VCC capacitor C_{VCC} is required to stabilize the VCC voltage of the IC. The recommended capacity is 4.7 μF to 22 μF. Figure 15 shows the relationship between start-up time and VCC capacitor value. This time, 10 μF / 35 V was selected.

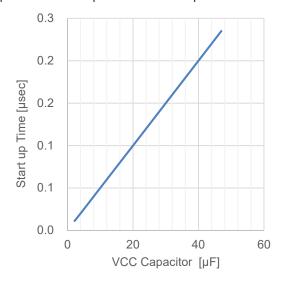


Figure 15. Start-up Time(Reference)

- 3. Main parts selection Continued
 - 3.8 Capacitor for FB terminal: C9

C9 is a stabilization capacitor for the FB pin (1000 pF to 0.01 µF is recommended).

3.9 Snubber circuit: C11, R7, R8, D1

The transformer leakage inductance (LLEAK) generates a large surge voltage (spike noise) the moment the MOSFET is turned off. This surge voltage is applied between the drain and source of the MOSFET, and in the worst case, the MOSFET may be destroyed. An RCD snubber circuit is recommended to suppress this surge voltage.

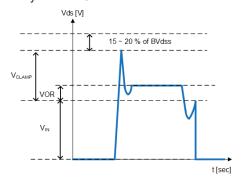


Figure 16. MOSFET Drain Voltage waveform

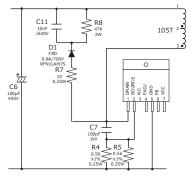


Figure 17. Snubber cuicuit

i. Determination of clamp voltage (V_{CLAMP}) and clamp Ripple voltage (V_{RIPPLE})

The clamp voltage is determined by taking into consideration the margin from the breakdown voltage of the MOSFET.

$$V_{CLAMP} = 650 V \times 0.8 = 520 V$$

Set the clamp ripple voltage (VRIPPLE) to about 50 V.

ii. Determination of snubber resistance: R8 スナバ抵抗は、以下の条件を満たすように選定します。

$$R_8 < 2 \times V_{CLAMP} \times \frac{V_{CLAMP} - VOR}{L_{LEAK} \times I_P^2 \times f_{SW}(max)}$$

Then, LLEAK is 50 µH from the specification of the transformer.

The primary side peak current when P_{OUT} = 48 W, V_{IN} (max) = 380 V: I_{PPK} is calculated from the following formula. First, calculate the on duty and off time toff.

Duty =
$$\frac{VOR}{V_{IN}(max) + VOR} = \frac{111.7 V}{380 V + 111.7 V} = 0.227$$

$$t_{OFF} = \frac{1 - Duty}{F_{SW}} = \frac{1 - 0.227}{65 \text{ kHz}} = 11.89 \text{ [µs]}$$

3.9 Snubber circuit - Continued

The secondary peak current I_{SSK} is expressed by the following formula. The load current at the time of overcurrent detection is the maximum load current I_{OUT} (MAX): 2 A.

$$I_{SPK} = \frac{I_{OUT}(LIM)}{t_{OFF} \times F_{SW}} + \frac{1}{2} \times \frac{V_{OUT} + V_F}{L_S} \times t_{OFF} = \frac{2.0 \text{ A}}{11.89 \text{ } \mu\text{s} \times 65 \text{ } kHz} + \frac{1}{2} \times \frac{24 \text{ } V + 1.5 \text{ } V}{62.69 \text{ } \mu\text{H}} \times 11.89 \text{ } \mu\text{s} = 5.01 \text{ [A]}$$

The primary peak current IPPK is expressed by the following formula.

$$I_{PPK} = I_{SPK} \times \frac{N_S}{N_P} = 5.01 A \times \frac{24}{105} = 1.15 [A]$$

Thus, the snubber resistance: R8 is expressed by the following formula.

$$R_8 < 2 \times V_{CLAMP} \times \frac{V_{CLAMP} - VOR}{{L_{LEAK} \times I_{PPK}}^2 \times f_{SW}(max)} = 2 \times 520 \ V \times \frac{520 \ V - 111.7 \ V}{50 \ \mu H \times 1.15^2 \ A \times 65 \ kHz} = 98.79 \ [k\Omega]$$

In fact, due to the influence of the MOSFET, not according to this equation, the snubber resistance of 47 k Ω is selected from actual device evaluation. Snubber resistance loss: P_R $_8$ is expressed by the following formula.

$$P_{-}R_{8} = \frac{(V_{CLAMP} - V_{IN})}{R_{8}} = \frac{(520 V - 380 V)^{2}}{47 k\Omega} = 0.42 [W]$$

Consider a margin and set it to 2 W or more.

iii. Determination of snubber capacitor: C10

The snubber capacitor is selected to meet the following conditions.

$$C_{10} > \frac{V_{CLAMP}}{V_{RIPPLE} \times f_{SW}(min) \times R_8} = \frac{540 \text{ V}}{50 \text{ V} \times 65 \text{ kHz} \times 47 \text{ k}\Omega} = 3.54 \text{ [nF]}$$

The snubber capacitor is 10 nF. The voltage applied to C10 is 540 V-380 V = 160 V. considering to the margin and make it 200 V or more. This time, the 630 V withstand voltage is selected.

iv. Determination of snubber capacitor: D1

Use a fast recovery diode for the snubber diode. Make the breakdown voltage higher than the Vds (max) of the MOSFET. Surge voltage is affected by the pattern of the board as well as the transformer's leakage inductance. Check the Vds voltage with the product incorporated, and adjust the snubber circuit as required.

© 2019 ROHM Co., Ltd.

No. 62UG006E Rev.001

13/28

2019.7

3.10 Diode for output rectification: D4

Use a high speed diode (Schottky barrier diode, fast recovery diode) as the output rectification diode. Assuming that the reverse voltage applied to the output diode is V_F = 1.5 V and V_{OUT} = 24.0 V, the reverse voltage V_D applied to the diode of D4 is expressed by the following formula.

$$V_D = V_{OUT} + V_F + V_{IN}(max) \times \frac{N_S}{N_P} = 24.0 \text{ V} + 1.5 \text{ V} + 380 \text{ V} \times \frac{24 \text{ turns}}{105 \text{ turns}} = 112.4 \text{ [V]}$$

Select a 200 V product considering the margin.

The current Is (rms) flowing through the output diode is expressed by the following equation.

$$I_S(rms) = I_{SPK} \times \sqrt{\frac{1 - Duty}{3}} = 5.01 \, A \times \sqrt{\frac{1 - 0.227}{3}} = 2.54 \, [A]$$

This EVK, 20 A, 300 V, TO-220 package products was selected. (Example: ROHM RF2001T3DNZ) It is recommended to use voltage margin less than 70% and current less than 50%. Check the temperature rise with the product incorporated in the product, re-examine the parts if necessary, and dissipate the heat from the heat sink.

3.11 Capacitor for output: C12,C13,C14

The output capacitor is determined by the Peak-to-Peak ripple voltage (ΔVpp) and the ripple current that are acceptable at the output load. When the MOSFET is on, the output diode is off. At this time, current is supplied from the output capacitor to the load. When the MOSFET is off, the output diode is on, charging the output capacitor and also providing the load current. Assuming that ΔVPP = 200 mV under the condition (V_{IN} = 100 V, P_{OUT} = 48 W) calculated by the transformer calculation,

$$Z_C < \frac{\Delta V_{PP}}{I_{SPV}} = \frac{200 \text{ mV}}{5.01 \text{ A}} = 39.9 \text{ [m}\Omega$$
]

The impedance is specified at 100 kHz for general electrolytic capacitors for switching power supplies (low impedance products), so convert to 65 kHz.

$$Z_C < 39.9 \ m\Omega \times \frac{65 \ kHz}{100 \ kHz} = 25.9 \ [\text{m}\Omega]$$

Also, the ripple current Ic (rms) to the capacitor is expressed by the following formula. circuit

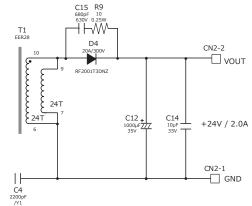


Figure 18 Output peripheral

$$I_C(rms) = \sqrt{I_S(rms)^2 - I_{OUT}^2} = \sqrt{2.54^2 - 2.00^2} = 1.57 \text{ [Arms]}$$

The withstand voltage of the capacitor should be 80% derating as a guide to the output voltage. 24 V / 0.8 = 30 V or more. This EVK time, low impedance type 35 V, 1000 μF for switching power supply, rated ripple current 1.89A: UPA1V102MPD: Nichicon. Check the actual Ripple voltage and Ripple current on the actual device.

3. Main parts selection - Continued

3.12 Output voltage setting resistor: R10,R11,R12

The output voltage is set by the following formula

$$V_{OUT} = \left(1 + \frac{R10 + R11}{R12}\right) \times Vref$$

Set the feedback current I_{BIAS} flowing to R12 at 0.1 mA to 1.0 mA. Assuming that IBIAS = 0.25 mA, and the reference voltage VREF = 2.485 V of the shunt regulator IC2, the resistance value of R12 is

R12 =
$$\frac{V_{REF}}{I_{BIAS}} = \frac{2.485 V}{0.25 mA} = 9.9 [k\Omega]$$

This EVK, select R12: 10 k Ω .

The combined resistance of the feedback resistors (R10 + R11 + R12) is

$$R10 + R11 + R12 = \frac{V_{OUT}}{I_{BIAS}} = \frac{24 V}{0.25 mA} = 96 [k\Omega]$$

This EVK, R10 = 82 k Ω and R11 = 4.7 k Ω are selected. The theoretical value of the output voltage is as follows.

$$V_{OUT} = \left(1 + \frac{82 k\Omega + 4.7 k\Omega}{10 k\Omega}\right) \times 2.485 \text{ V} = 24.03 \text{ V}$$

3.13 Control circuit adjustment: R13,R14,R15,C16

R14 is the dark current setting resistor for shunt regulator IC2. The current value Imin for stable operation of the shunt regulator is 1.2 mA according to the data sheet of the IC. This current is the combined current of R13 and the photo coupler's I_F. Since the voltage applied to R14 is the V_F of the photo coupler, assuming that the V_F of the photo coupler is 1.1 V,

R14
$$< \frac{V_F}{Imin} = \frac{1.1 V}{1.2 mA} = 0.92 [k\Omega]$$

This EVK, R14 = $1.0 \text{ k}\Omega$ is selected.

R13 is a control circuit current limiting resistor. Adjust with 300 to 2.2 k Ω .

This EVK, R13 = $1.0 \text{ k}\Omega$ is selected.

R15 and C16 are phase compensation circuits. Adjust with the actual board as R15 = 1 k to 30 k Ω , C16 = 0.1 μ F or so.

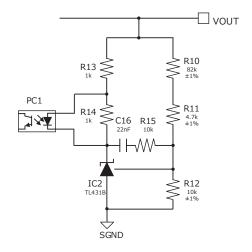


Figure 19. Feed-back circuit

Design Overview – Continued

EMI measures

Check the following as EMI measures.

- (*)The constant is a reference value. Adjust by the influence of noise.
- ·Input filter

Two common mode filters are used. The LF1 is used for the low frequency range, and the LF2 is used for the high frequency range.

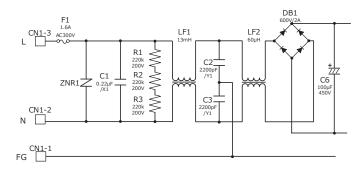


Figure 20. Input filter circuit

- ·Capacitor between primary and secondary side (C4 : Y-Cap 2200 pF around)
- •RC snubber circuit of secondary side rectification diode

An RC snubber circuit is added as a measure against radiated emissions.

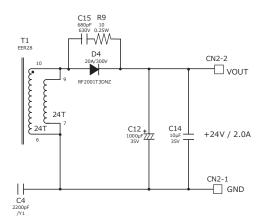
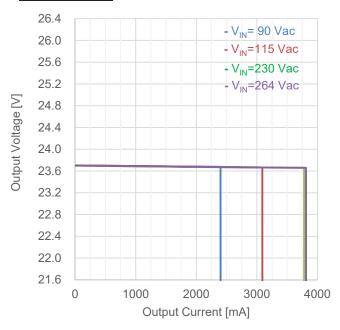



Figure 21. RC snubber circuit of secondary side rectification diode

Performance Data

Load Regulation

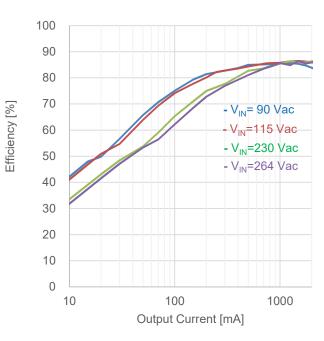


Figure 22. Load Regulation (Iout vs Vout)

Figure 23. Load Regulation (IOUT vs Efficiency)

Table 6-1. Load Regulation (V_{IN}=100 Vac)

l _{оит}	Vout	Efficiency
0.5 A	23.695 V	84.76 %
1.0 A	23.690 V	85.68 %
1.5 A	23.684 V	85.94 %
2.0 A	23.679 V	85.04 %

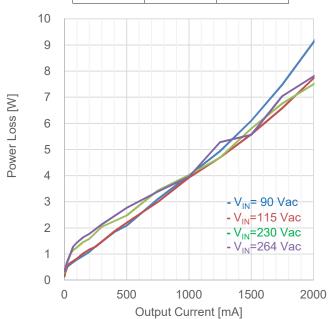


Figure 24. Load Regulation (Iout vs P_{LOSS})

Table 6-2. Load Regulation (V_{IN}=230 Vac)

l _{оит}	V _{OUT}	Efficiency
0.5 A	23.693 V	82.73 %
1.0 A	23.687 V	85.48 %
1.5 A	23.680 V	86.96 %
2.0 A	23.675 V	86.33 %

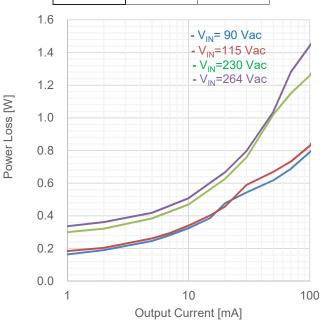


Figure 25. Load Regulation (I_{OUT} vs P_{LOSS})

Table 7-1. Load Regulation: V_{IN}=90 Vac

Table 7-2. Load Regulation: V_{IN} =100 Vac

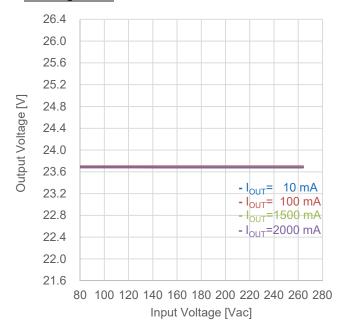
V _{IN} [Vac]	P _{IN} [W]	V _{оит} [V]	I _{OUT} [mA]	P _{out} [W]	P _{LOSS} [W]	Efficiency [%]
90	0.14	23.703	0	0.000	0.140	0.00
90	0.19	23.703	1	0.024	0.164	12.61
90	0.24	23.703	2	0.047	0.191	19.92
90	0.37	23.703	5	0.119	0.246	32.47
90	0.45	23.703	7	0.166	0.281	37.12
90	0.56	23.702	10	0.237	0.325	42.17
90	0.74	23.702	15	0.356	0.385	47.98
90	0.95	23.702	20	0.474	0.478	49.79
90	1.25	23.702	30	0.711	0.543	56.70
90	1.80	23.702	50	1.185	0.618	65.73
90	2.35	23.702	70	1.659	0.688	70.69
90	3.16	23.702	100	2.370	0.789	75.03
90	4.48	23.701	150	3.555	0.925	79.36
90	5.82	23.700	200	4.740	1.080	81.44
90	7.21	23.700	250	5.925	1.285	82.18
90	11.32	23.698	400	9.479	1.841	83.74
90	13.94	23.697	500	11.849	2.092	85.00
90	20.87	23.694	750	17.771	3.100	85.15
90	27.70	23.692	1000	23.692	4.008	85.53
90	34.55	23.688	1250	29.610	4.940	85.70
90	41.63	23.685	1500	35.528	6.103	85.34
90	48.93	23.682	1750	41.444	7.487	84.70
90	56.47	23.680	2000	47.360	9.110	83.87
90	68.95	23.678	2400	56.827	12.123	82.42
90	0.05	0.000	2410	0.000	0.050	0.00

V _{IN} [Vac]	P _{IN} [W]	V _{out} [V]	I _{out} [mA]	P _{out} [W]	P _{LOSS} [W]	Efficiency [%]
100	0.16	23.697	0	0.000	0.161	0.00
100	0.19	23.701	1	0.024	0.170	12.22
100	0.24	23.701	2	0.047	0.195	19.59
100	0.37	23.701	5	0.119	0.249	32.20
100	0.57	23.701	10	0.237	0.328	41.95
100	0.92	23.701	20	0.474	0.448	51.41
100	1.28	23.701	30	0.711	0.564	55.77
100	1.82	23.700	50	1.185	0.634	65.15
100	2.36	23.700	70	1.659	0.705	70.18
100	3.18	23.699	100	2.370	0.811	74.50
100	4.53	23.699	150	3.555	0.973	78.51
100	5.89	23.698	200	4.740	1.149	80.48
100	8.51	23.697	300	7.109	1.404	83.51
100	13.98	23.695	500	11.848	2.131	84.76
100	20.66	23.692	750	17.769	2.893	86.00
100	27.65	23.690	1000	23.690	3.958	85.68
100	34.40	23.687	1250	29.609	4.795	86.06
100	41.34	23.684	1500	35.526	5.814	85.94
100	48.43	23.682	1750	41.444	6.987	85.57
100	55.69	23.679	2000	47.358	8.332	85.04
100	61.66	23.677	2200	52.089	9.571	84.48
100	70.91	23.673	2500	59.183	11.728	83.46
100	76.51	23.673	2670	63.207	13.303	82.61
100	0.08	0.000	2680	0.000	0.080	0.00

Table 7-3. Load Regulation: V_{IN}=115 Vac

Table 7-4. Load Regulation: V_{IN}=178 Vac

V _{IN} [Vac]	P _{IN} [W]	V _{оит} [V]	I _{OUT} [mA]	Р _{оит} [W]	P _{LOSS} [W]	Efficiency [%]	V _{IN} [Vac]	P _{IN} [W]	V _{оит} [V]	I _{OUT} [mA]	Р _{оит} [W]	P _{LOSS} [W]	Efficiency [%]
115	0.16	23.702	0	0.000	0.158	0.00	178	0.22	23.705	0	0.000	0.215	0.00
115	0.21	23.702	1	0.024	0.184	11.40	178	0.26	23.705	1	0.024	0.240	8.98
115	0.25	23.702	2	0.047	0.205	18.81	178	0.31	23.704	2	0.047	0.266	15.15
115	0.38	23.703	5	0.119	0.261	31.19	178	0.45	23.705	5	0.119	0.326	26.63
115	0.46	23.703	7	0.166	0.294	36.07	178	0.65	23.704	10	0.237	0.415	36.36
115	0.58	23.703	10	0.237	0.340	41.08	178	1.03	23.703	20	0.474	0.555	46.07
115	0.76	23.703	15	0.356	0.402	46.91	178	1.39	23.703	30	0.711	0.679	51.16
115	0.93	23.703	20	0.474	0.457	50.92	178	2.05	23.703	50	1.185	0.860	57.95
115	1.30	23.702	30	0.711	0.589	54.70	178	2.60	23.702	70	1.659	0.945	63.72
115	1.86	23.702	50	1.185	0.670	63.89	178	3.41	23.702	100	2.370	1.042	69.47
115	2.39	23.701	70	1.659	0.733	69.36	178	4.79	23.701	150	3.555	1.239	74.16
115	3.20	23.701	100	2.370	0.828	74.11	178	6.15	23.701	200	4.740	1.410	77.08
115	4.57	23.700	150	3.555	1.019	77.72	178	8.77	23.700	300	7.110	1.660	81.07
115	5.91	23.700	200	4.740	1.173	80.16	178	14.24	23.697	500	11.849	2.392	83.21
115	7.20	23.699	250	5.925	1.278	82.25	178	20.92	23.694	750	17.771	3.150	84.95
115	11.34	23.698	400	9.479	1.861	83.59	178	27.71	23.691	1000	23.691	4.019	85.50
115	14.05	23.697	500	11.849	2.202	84.33	178	34.15	23.688	1250	29.610	4.540	86.71
115	20.76	23.694	750	17.771	2.990	85.60	178	41.08	23.685	1500	35.528	5.553	86.48
115	27.62	23.691	1000	23.691	3.929	85.77	178	47.77	23.682	1750	41.444	6.327	86.76
115	34.30	23.688	1250	29.610	4.690	86.33	178	54.48	23.679	2000	47.358	7.122	86.93
115	41.11	23.685	1500	35.528	5.583	86.42	178	59.91	23.677	2200	52.089	7.821	86.95
115	48.03	23.682	1750	41.444	6.587	86.29	178	68.13	23.673	2500	59.183	8.948	86.87
115	55.08	23.679	2000	47.358	7.722	85.98	178	82.05	23.668	3000	71.004	11.046	86.54
115	66.64	23.675	2400	56.820	9.820	85.26	178	100.37	23.662	3640	86.130	14.240	85.81
115	87.72	23.665	3090	73.125	14.595	83.36	178	0.14	0.000	3650	0.000	0.137	0.00
115	0.07	0.000	3100	0.000	0.070	0.00							


© 2019 ROHM Co., Ltd. No. 62UG006E Rev.001 18/28

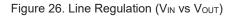

Table 7-5. Load Regulation: V_{IN}=230 Vac

Table 7-6. Load Regulation: V_{IN}=264 Vac

V _{IN} [Vac]	P _{IN} [W]	V _{оит} [V]	I _{OUT} [mA]	Р _{оит} [W]	P _{LOSS} [W]	Efficiency [%]	V _{IN} [Vac]	P _{IN} [W]	V _{оит} [V]	I _{OUT} [mA]	Р _{оит} [W]	P _{LOSS} [W]	Efficiency [%]
230	0.28	23.698	0	0.000	0.280	0.00	264	0.33	23.701	0	0.000	0.325	0.00
230	0.32	23.699	1	0.024	0.300	7.31	264	0.36	23.701	1	0.024	0.336	6.58
230	0.37	23.699	2	0.047	0.322	12.84	264	0.41	23.700	2	0.047	0.362	11.59
230	0.50	23.698	5	0.118	0.385	23.56	264	0.54	23.700	5	0.119	0.419	22.07
230	0.71	23.698	10	0.237	0.470	33.52	264	0.75	23.700	10	0.237	0.508	31.81
230	1.10	23.698	20	0.474	0.626	43.09	264	1.14	23.700	20	0.474	0.667	41.54
230	1.47	23.698	30	0.711	0.758	48.40	264	1.51	23.700	30	0.711	0.797	47.15
230	2.21	23.697	50	1.185	1.020	53.73	264	2.22	23.700	50	1.185	1.037	53.33
230	2.81	23.697	70	1.659	1.150	59.05	264	2.94	23.699	70	1.659	1.281	56.43
230	3.63	23.697	100	2.370	1.258	65.32	264	3.81	23.699	100	2.370	1.440	62.20
230	5.01	23.697	150	3.555	1.451	71.01	264	5.19	23.698	150	3.555	1.634	68.50
230	6.32	23.696	200	4.739	1.581	74.99	264	6.51	23.698	200	4.740	1.770	72.80
230	9.15	23.695	300	7.109	2.042	77.69	264	9.24	23.697	300	7.109	2.131	76.94
230	14.32	23.693	500	11.847	2.474	82.73	264	14.62	23.694	500	11.847	2.773	81.03
230	21.20	23.690	750	17.768	3.433	83.81	264	21.16	23.692	750	17.769	3.391	83.97
230	27.71	23.687	1000	23.687	4.023	85.48	264	27.65	23.689	1000	23.689	3.961	85.67
230	34.30	23.684	1250	29.605	4.695	86.31	264	34.89	23.687	1250	29.609	5.281	84.86
230	41.32	23.680	1500	35.520	5.800	85.96	264	41.09	23.685	1500	35.528	5.563	86.46
230	48.20	23.677	1750	41.435	6.765	85.96	264	48.48	23.678	1750	41.437	7.043	85.47
230	54.85	23.675	2000	47.350	7.500	86.33	264	55.15	23.676	2000	47.352	7.798	85.86
230	60.18	23.673	2200	52.081	8.099	86.54	264	60.49	23.674	2200	52.083	8.407	86.10
230	68.24	23.669	2500	59.173	9.068	86.71	264	68.51	23.670	2500	59.175	9.335	86.37
230	81.83	23.664	3000	70.992	10.838	86.76	264	82.00	23.665	3000	70.995	11.005	86.58
230	103.47	23.658	3780	89.427	14.043	86.43	264	104.23	23.660	3810	90.145	14.085	86.49
230	0.19	0.000	3790	0.000	0.190	0.00	264	0.23	0.000	3820	0.000	0.230	0.00

Line Regulation

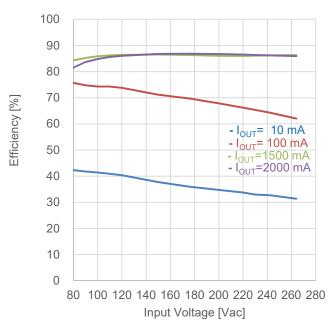


Figure 27. Line Regulation (V_{IN} vs Efficiency)

Switching Frequency 70 60 50 Switching Frequency [kHz] 40 30 - V_{IN}=100 Vac - V_{IN}=230 Vac 20 10 0 500 0 1000 1500 2000 Output Current [mA]

Figure 28. Switching Frequency (Iout vs fsw)

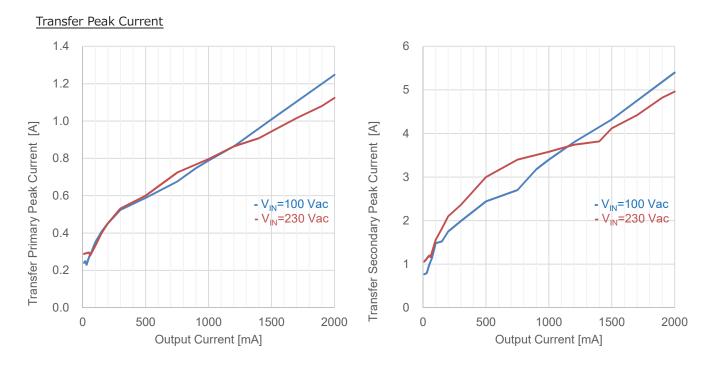


Figure 29. Transfer Primary Peak Current (IOUT vs IPPK) Figure 30. Transfer Secondary Peak Current (IOUT vs ISPK)

Operation Waveform

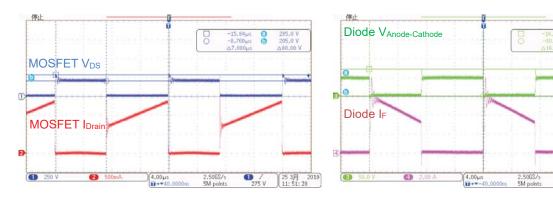


Figure 31. MOSFET V_{IN} = 90 Vac, I_{OUT} = 2.0 A

Figure 32. Diode V_{IN} = 90 Vac, I_{OUT}=2.0 A

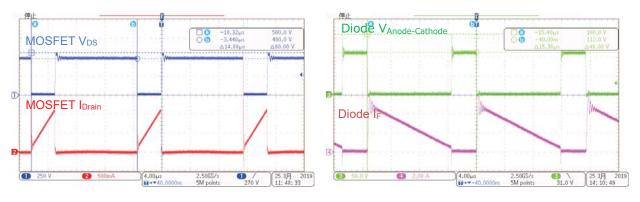


Figure 33. MOSFET V_{IN} = 264 Vac, I_{OUT} = 2.0 A

Figure 34. Diode V_{IN} = 264 Vac, I_{OUT} = 2.0 A

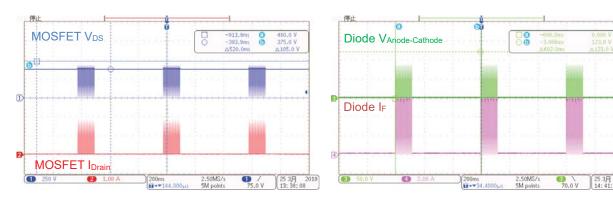
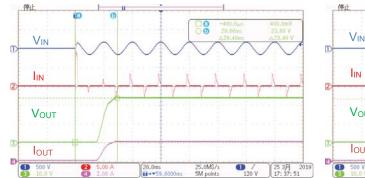



Figure 35. MOSFET V_{IN} = 264 Vac, Output Short

Figure 36. Diode V_{IN} = 264 Vac, Output Short

Power On

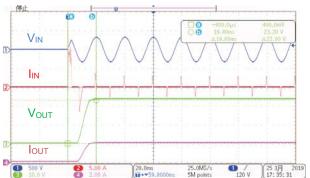
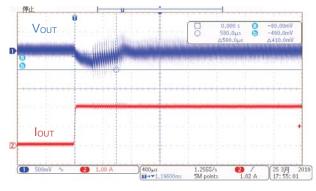



Figure 37. V_{IN} = 115 Vac, I_{OUT} = 2.0 A

Figure 38. V_{IN} = 230 Vac, I_{OUT} = 2.0 A

Dynamic Response

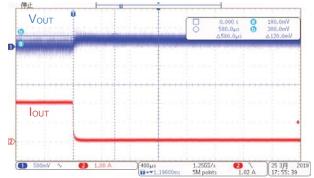
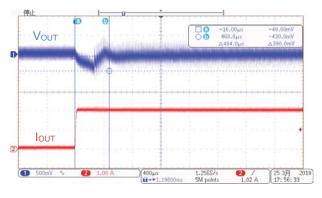



Figure 39. V_{IN} = 115 Vac, I_{OUT} = 10 mA \rightarrow 2.0 A

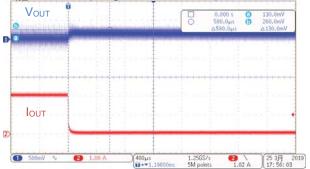
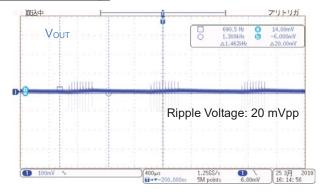



Figure 41. V_{IN} = 230 Vac, I_{OUT} = 10 mA \rightarrow 2.0 A

Figure 42. V_{IN} = 230 Vac, I_{OUT} = 2.0 A \rightarrow 10 mA

Output Ripple Voltage

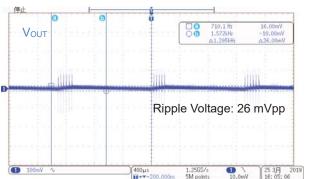
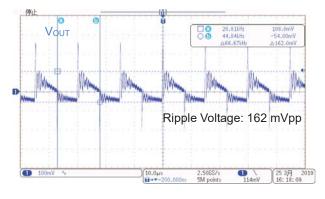



Figure 43. V_{IN} = 115 Vdc, I_{OUT} = 10 mA

Figure 44. V_{IN} = 230 Vac, I_{OUT} = 10 mA

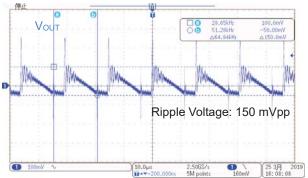
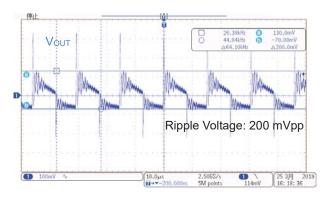



Figure 45. V_{IN} = 115 Vac, I_{OUT} = 1.5 A

Figure 46. V_{IN} = 230 Vac, I_{OUT} = 1.5 A

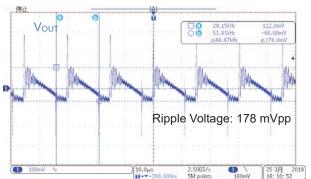


Figure 47. V_{IN} = 115 Vac, I_{OUT} = 2.0 A

Figure 48. V_{IN} = 230 Vac, I_{OUT} = 2.0 A

Parts surface temperature

Table 8. Parts surface temperature

Ta = 25 ℃, m easured 30minites after startup

	Condition						
Part	V _{IN} =90 Vac, I _{OUT} =1.5 A	V _{IN} =90 Vac, I _{OUT} =2.0 A	V _{IN} =264 Vac, I _{OUT} =1.5 A	V _{IN} =264 Vac, I _{OUT} =2.0 A			
LF1	61.9 ℃	72.1 ℃	37.4 ℃	39.7 ℃			
DB1	65.0 ℃	76.2 ℃	43.0 ℃	45.8 ℃			
IC1	60.1 ℃	65.5 ℃	51.1 ℃	64.8 ℃			
T1	78.3 ℃	92.2 ℃	76.1 ℃	78.5 ℃			
R8	85.3 ℃	99.1 ℃	83.7 ℃	87.2 ℃			
D4	60.7 ℃	71.0 ℃	61.2 ℃	65.7 ℃			

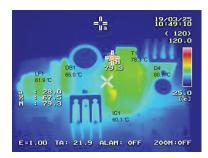
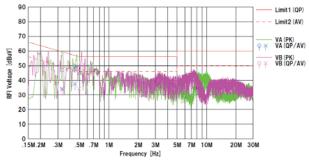


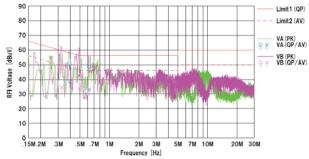
Figure 49. Thermal Image V_{IN}: 90 Vac, I_{OUT}:1.5 A

Figure 50. Thermal Image V_{IN} :264 Vac, I_{OUT} :1.5 A


Hori. (PEAK) Hori. (QP)

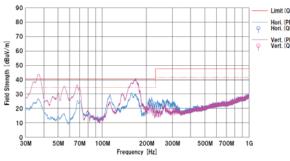
Vert. (PEAK) Vert. (QP)

Performance Data - Continued


<u>EMI</u>

·Conducted Emission

QP margine: 7.4 dB AVE margine: 9.1 dB


Figure 51. V_{IN}: 110 Vac / 60 Hz, I_{OUT}:2 A

QP margine: 7.6 dB AVE margine: 9.4 dB

Figure 52. V_{IN}: 230 Vac / 50 Hz, I_{OUT}:2 A

·Radiated Emission

QΡ margine: 4.0 dB

80 Hori. (PEAK) Hori. (QP) 70 Vert. (PEAK) Vert. (QP) 60 50 40 30

> margine: 3.1 dB QΡ

Figure 53. V_{IN}: 110 Vac / 60 Hz, I_{OUT}:2 A

Figure 54. V_{IN}: 230 Vac / 50 Hz, I_{OUT}:2 A

200M 300M 500M 700M

Schematics

 $V_{IN} = 90 \sim 264 \text{ Vdc}, V_{OUT} = 24 \text{ V}$

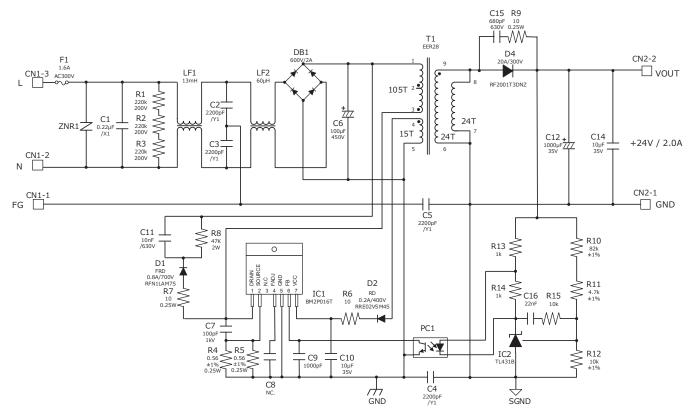


Figure 55. BM2P016T-EVK-004 Schematics

Bill of Materials

Table 9. BoM of BM2P016T-EVK-004

Part Reference	Qty.	Туре	Value	Description	Part Number	Manufacture	Configuration mm (inch)
C1	1	X2 Capacitor	0.22µF	300Vac, ±20%	890 334 025 027 CS	Wurth	-
C2,C3,C4, C5	4	Y1 Capacitor	2200pF	Y1 capacitor	DE1E3RA222MJ4BP01F	Murata	-
C6	1	Electrolytic	100µF	450V, ±20%	450BXW100MEFR18X30	Rubycon	18mmΦX30mm
C7	1	Ceramic	100pF	1kV, X7R, ±20%	RDE5C3A101J2M1H03A	Murata	-
C8	0	-	-	25V , ±20%	-	-	-
C9	1	Ceramic	1000pF	100V, X7R, ±20%	HMK107B7102MA-T	Taiyo Yuden	1608 (0603)
C10,C14	2	Ceramic	10µF	35V, X7R, ±20%	GMK316AB7106ML-TR	Taiyo Yuden	3216 (1206)
C11	1	Ceramic	10nF	630V, X7R, ±10%	SMK316B7103KF-T	Taiyo Yuden	3216 (1206)
C12	1	Electrolytic	1000µF	35V, ±20%	UPA1V102MPD	Nichicon	12.5mmΦX20mm
C13	0	-	-	-	-	-	-
C15	1	Ceramic	680pF	630V, C0G, ±10%	GRM31B5C2J681FW01L	Murata	3216 (1206)
C16	1	Ceramic	22nF	100V, X7R, ±10%	HMK107B7223KA-T	Taiyo Yuden	1608 (0603)
CN1	1	Connector	3pin	<u> </u> -	B3P-NV	JST	-
CN2	1	Probe(Write)	-	-	-	-	-
CN3	1	Probe(Black)	-	-	-	-	-
D1	1	FRD	0.8A	700V	RFN1LAM7S	ROHM	PMDTM
D2	1	RD	0.5A	200V	RRE02VSM4S	ROHM	TUMD2SM
D3	1	FRD	20A	300V	RF2001T3DNZ	ROHM	TO-220
D4	0	-	-	-	-	-	-
DB1	1	Bridge Diode	2A	600V	D2SBA60	Shindengen	SIP4
F1	1	Fuse	1.6A	300V	36911600000	Littelfuse	-
HS1,HS2	2	Heat Sink	-	22.9℃/W	IC-1625-STL	Sankyo Thermotec	-
-	2	Skrew	M3	M3	-	-	_
IC1	1	AC/DC Converter	-	650V	BM2P016T	ROHM	TO-220-7
IC2	1	Shunt Regulator	-	-	TL431BIDBZT	TI	SOT-23-3
LF1	1	Line Filter	13mH	1A	XF1482Y	Alpha Trans	-
LF2	1	Line Filter	60uH	1A	LF1246Y	Alpha Trans	-
PC1	1	Optocoupler	-	5kV	LTV-817-B	LiteOn	DIP4
R1,R2,R3	3	Resistor	220kΩ	0.25W, ±5%	MCR18EZPJ224	ROHM	3216 (1206)
R4,R5	2	Resistor	0.56Ω	0.25W, ±1%	MCR18EZHFLR560	ROHM	3216 (1206)
R6	1	Resistor	10Ω	0.25W, ±5%	MCR18EZPJ100	ROHM	3216 (1206)
R7,R9	2	Resistor	10Ω	0.25W, ±5%	MCR18EZPJ100	ROHM	3216 (1206)
R8	1	Resistor	47kΩ	2W, ±2%	ERG2SJ473	Panasonic	-
R10	1	Resistor	82kΩ	0.1W, ±1%	MCR03EZPFX8202	ROHM	1608 (0603)
R11	1	Resistor	4.7kΩ	0.1W, ±1%	MCR03EZPFX4701	ROHM	1608 (0603)
R12,R15	2	Resistor	10kΩ	0.1W, ±1%	MCR03EZPFX1002	ROHM	1608 (0603)
R13,R14	2	Resistor	1kΩ	0.1W, ±5%	MCR03EZPJ102	ROHM	1608 (0603)
T1	1	Transformer	-	Bobin:EER2828-10pin Core:EER28/28	XE2235Y	Alpha Trans	-
ZNR1	1	Varistor	-	300Vac, 423Vmin, 400A	V470ZA05P	Littelfuse	_
				1007 120 TITLING 100/1	1		

© 2019 ROHM Co., Ltd.

No. 62UG006E Rev.001

PCB

Size: 55 mm x 105 mm

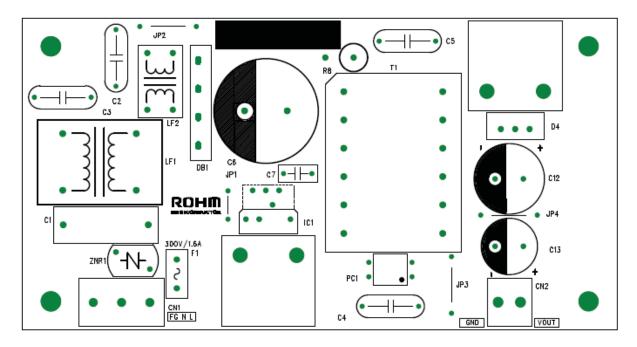


Figure 56. Top Layout (Top view)

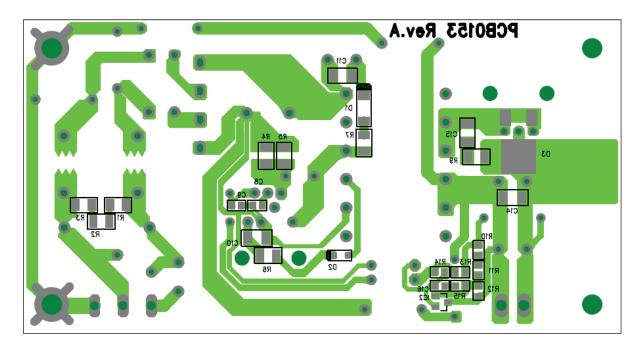


Figure 57. Bottom Layout (Top view)

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV