For portable image equipment Upscaler IC
 BU1521GVW

- Description

BU1521GVW upscales and interpolates images when upconverting to the HDTV (Maximum 1080P) format from the usual SDTV (NTSC/PAL) format.
High quality IP change - up scale management is realized by the frame memory less operate. It is the LSI which is the most suitable for the compact system of the mobile.

- Features

1) Input format

480i or 576i(ITUR BT656) YCbCr 4:2:2(ITUR BT601) 8bit Digital Interface
2) Output Format

480i or 576i(ITUR BT656) YCbCr 4:2:2 8bit Digital Interface
480p or 576p(SMPTE 293 • ITUR BT1358) YCbCr 4:2:2 16bit Digital Interface
1080/59.94i(SMPTE 274) YCbCr 4:2:2 16bit Digital Interface 1080/50i(SMPTE 274) YCbCr 4:2:2 16bit Digital Interface 1080/59.94p(SMPTE 274) YCbCr 4:2:2 16bit Digital Interface 1080/50p(SMPTE 274) YCbCr 4:2:2 16bit Digital Interface
3) IP conversion function

Conversion function from interlace to progressive
4) Upscale function

Horizontal direction: 720 pixels pass-through or upscaling to 1920 pixels
Vertical direction: up scaling to 480, 576, 540, and 1080 pixels
5) Filter function
5×5 filtering function over input data
Filter coefficient is programmable with registers
6) Register access

Register read/write through the SPI interface
Burst write/read support
7) Built-in PLL

Input frequency 27 MHz
Output frequency $74.25 \mathrm{MHz}, 74.175824 \mathrm{MHz}, 148.5 \mathrm{MHz}, 148.351648 \mathrm{MHz}$
8) Power-down mode and through-mode support

Power-down mode can be controlled through STBY pin or register setting. Through-mode can be selected by register setting.
9) Supply voltage

VDD(core voltage) $1.15 \mathrm{~V} \sim 1.25 \mathrm{~V}, ~ \mathrm{AVDD}(\mathrm{PLL})=2.7 \mathrm{~V} \sim 3.3 \mathrm{~V}$, VDDIO1(SDTV input) $=1.7 \mathrm{~V} \sim 3.6 \mathrm{~V}, ~ \mathrm{VDDIO} 2$ (control) $=2.7 \mathrm{~V} \sim 3.3 \mathrm{~V}$, VDDIO3(HDTV output)=1.7V $\sim 1.9 \mathrm{~V}$
10) Package

63 pin, BGA package (SBGA063W060, Size $=6 \mathrm{~mm} \times 6 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)

- Aplications

Digital Video Camera, Digital still camera, Video game, a portable DVD

- Absolute Maximum Rating

Table. 1 Absolute maximum rating

Parameter	Symbol	Rating	Unit
Supply voltage 1 (SD input)	VDDIO1	$-0.3 \sim+4.2$	V
Supply voltage 2 (Control)	VDDIO2	$-0.3 \sim+4.2$	V
Supply voltage 3 (HD output)	VDDIO3	$-0.3 \sim+4.2$	V
Supply voltage 4 (PLL)	AVDD	$-0.3 \sim+4.2$	V
Supply voltage 5 (CORE)	VDD	$-0.3 \sim+1.68$	V
Input voltage 1	VIN1	$-0.3 \sim$ VDDIO1+0.3	V
Input voltage 2	VIN2	$-0.3 \sim$ VDDIO2+0.3	V
Input voltage 3	VIN3	$-0.3 \sim$ VDDIO3+0.3	V
Storage temperature range	Tstg	$-25 \sim+125$	${ }^{\circ} \mathrm{C}$
Power dissipation	PD	$330^{* 1,1200^{*} 2}$	mW

* 1 IC only. In the case exceeding $25^{\circ} \mathrm{C}, 3.3 \mathrm{~mW}$ should be reduced at the rating $1^{\circ} \mathrm{C}$.
* 2 When packaging a glass epoxy board of $114.3 \times 76.2 \times 1.6 \mathrm{~mm}$. In the case exceeding $25^{\circ} \mathrm{C}, 12 \mathrm{~mW}$ should be reduced att he rating $1^{\circ} \mathrm{C}$.
* Has not been designed to withstand radiation.
* Operation is not guaranteed.
- Operating Conditions

Table. 2 Operating conditions

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage 1 (SD input)	VDDIO1	1.7	3.3	3.6	V
Supply voltage 2 (Control)	VDDIO2	2.7	3.0	3.3	V
Supply voltage 3 (HD output)	VDDIO3	1.7	1.8	1.9	V
Supply voltage 4 (PLL)	AVDD	2.7	3.0	3.3	V
Supply voltage 5 (CORE)	VDD	1.15	1.2	1.25	V
Operating temperature range	Topr	-25	-	85	${ }^{\circ} \mathrm{C}$

- Electrical Characteristics (DC Characteristics)

Table. 3 Electric characteristics

Parameter	Symbol	Specification			Unit	Conditions
		MIN	TYP	MAX		
Operational current (CORE)	IDD1	-	150	200	mA	When operated with HDCLK $=148.5 \mathrm{MHz}$
Operational current (IO)	IDD2	-	40	80	mA	When operated with HDCLK $=148.5 \mathrm{MHz}$ and external capacitor of 5pF
Operational current (CORE)	IDD3	-	15	20	mA	When operated with DCLK $=27 \mathrm{MHz}$
Operational current (IO)	IDD4	-	10	20	mA	When operated with HDCLK $=27 \mathrm{MHz}$ and extemal capacitor of 5 pF
Static current	IDDst	-	-	800	$\mu \mathrm{A}$	In standby mode
Input "H" current	IIH	-10	-	10	$\mu \mathrm{A}$	VIH=VDDIO1/2
Input "L" current	IIL	-10	-	10	$\mu \mathrm{A}$	VIL=GND
Input "H" voltage 1	VIH1	$\begin{gathered} \text { VDDIO1 } \\ \text { *0.8 } \end{gathered}$	-	$\begin{gathered} \text { VDDIO1 } \\ +0.3 \end{gathered}$	V	Ordinary input (Including input mode of I/O pin)
Input "L" voltage 1	VIL1	-0.3	-	$\begin{gathered} \hline \text { VDDIO1 } \\ * 0.2 \end{gathered}$	V	Ordinary input (Including input mode of I/O pin)
Input "H" voltage 2	VIH2	$\begin{gathered} \text { VDDIO1 } \\ \text { *0.85 } \\ \hline \end{gathered}$	-	$\begin{gathered} \text { VDDIO1 } \\ +0.3 \\ \hline \end{gathered}$	V	Hysteresis input
Input "L" voltage 2	VIL2	-0.3	-	$\begin{gathered} \hline \text { VDDIO1 } \\ \text { *0.15 } \end{gathered}$	V	Hysteresis input
Hysteresis voltage range 2	Vhys2	-	0.75	-	V	Hysteresis input
Output " H " voltage 1	VOH1	$\begin{gathered} \hline \text { VDDIO2 } \\ -0.4 \end{gathered}$	-	VDDIO2	V	$1 \mathrm{OH} 1=-1.0 \mathrm{~mA}(\mathrm{DC}) \quad$ SDOUT
Output "L" voltage 1	VOL1	0.0	-	0.4	V	$\mathrm{IOL} 1=1.0 \mathrm{~mA}$ (DC) SDOUT
Output " H " voltage 2	VOH2	$\begin{gathered} \hline \text { VDDIO3 } \\ -0.2 \end{gathered}$	-	VDDIO3	V	$\mathrm{IOH} 1=-1.0 \mathrm{~mA}(\mathrm{DC}) \quad \mathrm{HD}$ output pin
Output "L" voltage 2	VOL2	0.0	-	0.2	V	$1 \mathrm{~L} 1=1.0 \mathrm{~mA}$ (DC) HD output pin

(When not otherwise specified, under the conditions of $\mathrm{VDD}=1.20 \mathrm{~V}, \mathrm{VDDIO}=3.3 \mathrm{~V}, \mathrm{VDDIO} 3=1.8 \mathrm{~V}, \mathrm{VDDIO}=\mathrm{AVDD}=3.0 \mathrm{~V}, \mathrm{AVSS}=\mathrm{GND}=0.0 \mathrm{~V}$, and $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Electrical Characteristics (AC Characteristics)

1. 3-wire serial interface timing

Fig. 1 3-wire serial interface format

Table. 4 3-wire serial interface format

Symbol	Description	MIN	TYP	MAX	Unit
$\mathrm{t}_{\text {wsck }}$	SCLK clock cycle	200	-	-	ns
$\mathrm{t}_{\text {wes }}$	SCSB access interval	1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {css }}$	SCSB setup time	200	-	-	ns
$\mathrm{t}_{\text {sds }}$	SDIN setup time	30	-	-	ns
$\mathrm{t}_{\text {csh }}$	SCSB holding time	1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sch }}$	SDIN holding time	30	-	-	ns
$\mathrm{t}_{\text {scd }}$	Time from trailing of the clock to the establishment of SDOUT	-	-	60	ns
$\mathrm{t}_{\text {word }}$	1 word write time	2.5	-	-	$\mu \mathrm{s}$
t_{wt}	1 word write interval	1	-	-	$\mu \mathrm{s}$

2. Image Data Input Timing

Fig. 2 Image Data Input Timing

Table. 5 Image Data Input Timing

Symbol	Description	MIN	TYP	MAX	Unit
$t_{\text {CIP }}$	CLKIN Clock cycle	-	37.03	-	ns
$\mathrm{d}_{\text {CKI }}$	CLKIN clock duty (tCIL/tCIP or tCIH/tCIP)	45	50	55	$\%$
$\mathrm{t}_{\text {DIS }}$	Data setup time from the CLKIN rise	2	-	-	ns
$\mathrm{t}_{\text {DIH }}$	Data holding time from the CLKIN rise	3	-	-	ns

3. Image Data Output Timing

Fig. 3 Image Data Output Timing

Table. 6 Image Data Output Timing

Symbol	Description	MIN	TYP	MAX	Unit
$\mathrm{t}_{\text {COP }}$	CLKOUT Clock cycle	6.734	-	-	ns
$\mathrm{d}_{\text {CKO }}$	CLKOUT clock duty (tCOL/COP or tCOH/tCOP) *	45	-	55	\%
tood	Time from the rise of CLKOUT to the establishment of DO0-15	1	-	12	ns
tood	Time from the rise of CLKOUT to the establishment of DO0-15	1	-	5.734	ns
tıIT	Output jitter of CLKOUT (1 us cycle)	-	-	2	ns

*When PLL is used. When 27 MHz is output, the input clock duty is 50%.

Pin configuration diagram (Bottom View)

Fig. 4 Pin configuration diagram of BU1521GVW (Bottom view).

Fig. 4 BU1521GVW Pin configuration diagram(Bottom View)

- Pin Function

Table. 7 BU1521GVW terminal function(1)

PIN No.	Ball No.	PIN Name	In/Out	Init	Function Description	I/O Type	I/O System
1	B2	DI3	In	-	3rd bit of SD input data	B	VDDIO1
2	D4	AVDD	-	-	Power Source for PLL	-	-
3	B1	DI6	In	-	6 th bit of SD input data	B	VDDIO1
4	C2	D15	In	-	5 th bit of SD input data	B	VDDIO1
5	-	N.C *1	-	-	-	-	-
6	D3	VDDIO1	-	-	Data input IO voltage (Typical 3.3 V)	-	-
7	D2	DI12	In	-	12th bit of SD input data	B	VDDIO1
8	D1	D19	In	-	9 9th bit of SD input data	B	VDDIO1
9	E1	DI14	In	-	14th bit of SD input data	B	VDDIO1
10	E2	DIO	In	-	Oth bit of SD input data	B	VDDIO1
11	E3	GND	-	-	GND	-	-
12	F1	DI10	In	-	10th bit of SD input data	B	VDDIO1
13	F2	DI7	In	-	7th bit of SD input data	B	VDDIO1
14	G1	DI13	In	-	13th bit of SD input data	B	VDDIO1
15	F3	GND	-	-	GND	-	-
16	H1	GND	-	-	GND	-	-
17	G2	D111	In	-	11th bit of SD input data	B	VDDIO1
18	E4	VDD	-	-	Core power supply (1.2 V)	-	-
19	H2	DI15	In	-	15 th bit of SD input data	B	VDDIO1
20	G3	DI2	In	-	2nd bit of SD input data	B	VDDIO1
21	H3	DI1	In	-	1st bit of SD input data	B	VDDIO1
22	F4	RESETB	In	-	Reset pin (low active)	B*2	VDDIO2
23	G4	SCLK	In	-	3-wire serial I/F clock	B*2	VDDIO2
24	H4	SCSB	In	-	3-wire serial I/F chip select	B*2	VDDIO2
25	H5	SDIN	In	-	3 -wire serial I/F data input	B*2	VDDIO2
26	G5	SDOUT	Out	Low	3 -wire serial I/F data output	C*3	VDDIO2
27	F5	VDDIO2	-	-	Control signal IO voltage (typically 3.3 V)	-	-
28	H6	STBY	In	-	IC stand-by control	A	VDDIO2
29	G6	CLKOUT	Out	Low	HD clock output	D	VDDIO3
30	H7	DO1	Out	PD	1st bit of HD output pin	C	VDDIO3
31	F6	VDD	-	-	Core power supply (1.2 V)	-	-
32	H8	GND	-	-	GND	-	-
33	G7	DO0	Out	PD	Oth bit of HD output pin	C	VDDIO3
34	E5	VDDIO3	-	-	Data output IO voltage (typically 1.8 V)	-	-
35	G8	DO2	Out	PD	2nd bit of HD output pin	C	VDDIO3
36	F7	DO4	Out	PD	4th bit of HD output pin	C	VDDIO3
37	F8	DO3	Out	PD	3rd bit of HD output pin	C	VDDIO3
38	E6	GND	-	-	GND	-	-
39	E7	DO6	Out	PD	6 th bit of HD output pin	C	VDDIO3
40	E8	DO5	Out	PD	5 th bit of HD output pin	C	VDDIO3
41	D8	DO7	Out	PD	7th bit of HD output pin	C	VDDIO3

Table. 8 BU1521GVW terminal function(2)

PIN No.	Ball No.	PIN Name	In/Out	Init	Function Description	I/O Type	I/O System
42	D7	DO8	Out	PD	8th bit of HD output pin	C	VDDIO3
43	D6	VDD	-	-	Core power supply (1.2 V)	-	-
44	C8	DO9	Out	PD	9th bit of HD output pin	C	VDDIO3
45	C7	DO10	Out	PD	10th bit of HD output pin	C	VDDIO3
46	B8	DO11	Out	PD	11th bit of HD output pin	C	VDDIO3
47	C6	GND	-	-	GND	-	-
48	A8	GND	-	-	GND	-	-
49	B7	DO12	Out	PD	12th bit of HD output pin	C	VDDIO3
50	D5	GND	-	-	GND	-	-
51	A7	DO13	Out	PD	13th bit of HD output pin	C	VDDIO3
52	B6	DO14	Out	PD	14th bit of HD output pin	C	VDDIO3
53	A6	DO15	Out	PD	15th bit of HD output pin	C	VDDIO3
54	C5	VDDIO3	-	-	Data output IO voltage (Typical 1.8 V)	-	-
55	B5	TEST0	In	-	Test pin 0 (Connect to GND)	A	VDDIO3
56	A5	TEST1	In	-	Test pin 1 (Connect to GND)	A	VDDIO3
57	A4	TEST2	In	-	Test pin 2 (Connect to GND)	A	VDDIO3
58	B4	GND	-	-	GND	-	-
59	C4	AVSS	-	-	GND for PLL	-	-
60	A3	CLKIN	In	-	SD clock input $(27$ MHz)	B	VDDIO1
61	B3	DI8	In	-	8th bit of SD input data	B	VDDIO1
62	A2	DI4	In	-	4th bit of SD input data	B	VDDIO1
63	C3	GND	-	-	GND	-	-
64	A1	GND	-	-	GND	-	

Init column indicates pin status when released from reset. Low: L output \quad PD: Pull-down
*1: No balls *2: Input suspend function is fixed to OFF by an intemal signal *3: No pull-down function

- Block Diagram

Fig. 5 BU1521GVW Block diagram

- Functions Discpriction

1. Input format

The following is the input format for BU1521GVW 480i or 576i(ITUR BT656) YCbCr 4:2:2 8bit(ITUR BT601) Digital Interface

Table. 9 Input format

Format	Data bit width	Pixel clock $(M H z)$	Size including blank (HxV)	Active Size (HxV)	Standard
$480 / 59.94 \mathrm{i}$	8	27	858×525	$720 \times(244 / 243)$	ITURBT656-4
$576 / 50 \mathrm{i}$	8	27	864×625	$720 \times(288 / 288)$	

SYS2 register (0×12) setting allows applying whether Y data and CbCr data to be assigned to lower $\mathrm{DI}[7: 0]$ or upper $\mathrm{DI}[15: 8]$.
2. Output format

The following is the output format for BU1521GVW:
480i or 576i(ITUR BT656) YCbCr 4:2:2 8bit (ITUR BT601)Digital Interface 480p or 576p(ITUR BT1358) YCbCr 4:2:2 16bit(IUR BT601) Digital Interface 1080/59.94i(SMPTE 274) YCbCr 4:2:2 16bit(ITUR BT601) Digital Interface 1080/50i(SMPTE 274) YCbCr 4:2:2 16bit(ITUR BT601) Digital Interface 1080/59.94p(SMPTE 274) YCbCr 4:2:2 16bit(ITUR BT601) Digital Interface 1080/50p(SMPTE 274) YCbCr 4:2:2 16bit(ITUR BT601) Digital Interface

Table. 10 Output format

Format	Data bit width	Pixel Clock Frequency (MHz)	Blanking Size including Line (HxV)	Active Image Size (HxV)	Standard
$480 / 59.94 \mathrm{i}$	8	27	858×525	$720 \times(244 / 243)$	
$576 / 50 \mathrm{i}$	8	27	864×625	$720 \times(288 / 288)$	
$480 / 59.94 \mathrm{p}$	16	27	858×525	720×483	ITUR BT1358
$576 / 50 \mathrm{p}$	16	27	864×625	720×576	
$1080 / 59.94 \mathrm{i}$	16	$74.25 / 1.001$	2200×1125	1920×1080	
$1080 / 50 \mathrm{i}$	16	74.25	2640×1125	1920×1080	SMPTE 274
$1080 / 59.94 \mathrm{p}$	16	$148.5 / 1.001$	2200×1125	1920×1080	
$1080 / 50 \mathrm{p}$	16	148.5	2640×1125	1920×1080	

3．IP conversion，upscale function
BU1521GVW upscales and interpolates images when upconverting to output format．
Supported image data I／O conversion is shown in Table． 11
Only input size of 720 or upscale to 1920 are supported for the horizontal direction．
The edge of the upscaled image can be enhanced（3 levels）by changing the UPC＿SEL register．
When upscaling the 480i input，upscaling is applied to 240 lines among the overall effective lines
Table． 11 Image data I／O conversion table

Output（HD）								
	$480 /$	$480 /$	$576 /$	$576 /$	$1080 /$	$1080 /$	$1080 /$	$1080 /$
	59.94 i	59.94 p	50 i	50 p	59.94 i	50 i	59.94 p	50 p
$480 / 59.94 \mathrm{i}$	O	$\mathrm{O} ※$	-	-	O	-	O	-
$576 / 50 \mathrm{i}$	-	-	O	O	-	O	-	O

＊Immediately after reset and when standby mode is set，480i becomes 480p．

4．Filter fiunction

BU1521GVW can apply 5 taps of filtering both horizontally and vertically．
5 taps of filter tap coefficients can be set independently on horizontal and vertical directions using filter coefficient registers（ $0 \times 14-0 \times 1 \mathrm{~B}$ ）．
5×5 Filter tap coefficients $=$ Horizontal filter tap coefficients \times Vertical filter tap coefficients．
The values of the horizontal and vertical filter taps must be set to make the sum of the coefficients 64 ．
The initial value makes the filter invalid．
［Horizontal filter tap coefficients］

1	2	3	4	5
TH1	TH2	TH3	TH4	TH5

［Vertical filter tap coefficients］

1	TV1
2	TV2
3	TV3
4	TV4
5	TV5

行番号	列番号				
	1	2	3	4	5
1	TH1＊TV1	TH2＊TV1	TH3＊TV1	TH4＊TV1	TH5＊TV1
2	TH1＊TV2	TH2＊TV2	TH3＊TV2	TH4＊TV2	TH5＊TV2
3	TH1＊TV3	TH2＊TV3	TH3＊TV3	TH4＊TV3	TH5＊TV3
4	TH1＊TV4	TH2＊TV4	TH3＊TV4	TH4＊TV4	TH5＊TV4
5	TH1＊TV5	TH2＊TV5	TH3＊TV5	TH4＊TV5	TH5＊TV5

Fig． 65×5 filter tap coefficients

5. Register access

Registers are accessed by 3 wire serial interfaces (SCSB, SCLK, SDIN, SDOUT).
Burst write/read is supported; therefore, consecutive writing is possible.

- Regular write sequence

The address 8 bits and data 8 bits should be written in this order.
Both address and data have MSB first.

Fig. 7 Regular write sequence

- Regular read sequence

For reading, the address of the register to be read out should be written in the SADR register (0×70), then SRDAT register (0×80) should be read out. Both address and data have MSB first.

Fig. 8 Regular read sequence
6. PLL

BU1521GVW has an integrated PLL to generate and output the clock for HD format from the 27 MHz pixel clock.
The PLL output frequency is selected and output is executed according to the output format only, by setting the output format to the register. The input frequency is 27 MHz and the output frequency can be $74.25 \mathrm{MHz}, 74.25 / 1.001 \mathrm{MHz}, 148.5 \mathrm{MHz}$, or $148.5 / 1.001 \mathrm{MHz}$. With 480i/576i output format, the 27 MHz input clock is output without going through the PLL.

- Typical application circuit

The typical application circuit of BU1521GVW is shown in Fig. 9 It does not guarantee

Note 1)Adjust the output damping resistance for CLKOUT and $D O$ [15:0] with the line load.
Note 2) When the STBY pin is unused, pull it down with a $10 \mathrm{k} \Omega$ resistor.

Fig. 9 BU1521GVW typical application circuit

- I/O pin equivalent circuit diagram

Fig. 10 An I/O pin equivalent circuit diagram.
Type

Fig. 10 BU1521GVW I/O pin equivalent circuit diagram

Not for uses

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND patter from the small-signal GND pattem and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattem and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattem of extemal parts as well.

Extemal capacitor
In order to use a ceramic capacitor as the extermal capacitor, detemine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.

- External Dimensional Drawing and Mark Drawing

Fig. 11 BU1521GVW Package external view (SBGA063W060)

- Ordering part number

SBGA063W060

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by ROHM manufacturer:

Other Similar products are found below :
M21328G-12 ISL79985ARZ-T TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 BH76361FV-E2 MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA44113ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ ADA4417-3ARMZ-R7

