Capacitive Switch Controller ICs

Capacitive Switch Controller IC

BU21182FS

General Description

BU21182FS is a capacitive switch controller for switch operation. Based on the result of detecting changes in capacitance, judge the operation of Switch ON / OFF / Long Press.

Features

- 20 Capacitive Sensor Ports.
- Switch ON / OFF / Long Press Detection.
- Information by Interrupt Terminal.
- Noise Calibration Function.
- Drift Calibration Function
- Adjust Switch Detection Time Function.
- 2-wire Serial Bus Interface.
- Single Power Supply.

Applications

- Office Automation Appliance as Printer.
- AV Appliance as TV and HDD Recorder.
- Home Appliance as Air Conditioner, Refrigerator and Rice Cooker.
■ Electrical Equipment with Multiple Switches.

Key Specifications

- Power Supply Voltage Range:
3.0 V to 5.5 V
- Operating Temperature Range:
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
■ Operating Current:
$3.5 \mathrm{~mA}(\mathrm{Typ})$

Package

SSOP-A32

W(Typ) x D(Typ) x H(Max)
$13.60 \mathrm{~mm} \times 7.80 \mathrm{~mm} \times 2.01 \mathrm{~mm}$

Typical Application Circuit

(Note 1) The pull-up resistors must be connected to VDD
Choose the value of the pull-up resistors so as to meet 2-wire Serial Bus Interface Electrical Characteristics. (Note 2) For noise protection, choose the value of the resistors by evaluation.

Figure 1. Typical Application Circuit

Contents

General Description 1
Features 1
Applications 1
Key Specifications1
Package 1
Typical Application Circuit1
Contents 2
Pin Configuration 3
Pin Description 3
I/O Equivalent Circuit 4
Block Diagram 5
Description of Block 5
Absolute Maximum Ratings 6
Thermal Resistance 6
Recommended Operating Conditions 7
Electrical Characteristics 7
Interface Specification 8
2-wire Serial Bus Interface Electrical Characteristics 8
2-wire Serial Bus Protocol 9
Power-on Sequence / Reset Timing 10
Register Map 11
Register Description 17
Status Register Description 17
Configuration Register Description 23
Command Register Description 33
Operational Notes 36
Ordering Information 38
Marking Diagram 38
Physical Dimension and Packing Information 39
Revision History 40

Pin Configuration

Figure 2. Pin Configuration

Pin Description

Pin No.	Pin Name	$\begin{aligned} & \text { I/O } \\ & \text { Type } \end{aligned}$	Function	Power	Initial Condition (RSTB=L)	I/O Equivalent Circuit
1	VSS	-	Ground	-	-	-
2	SDA	IN/OUT	Host interface pin: Serial Data Line	VDD	HIZ	Figure 3
3	SCL	IN/OUT	Host interface pin: Serial Clock Line	VDD	HIZ	Figure 3
4	INTB	OUT	Interrupt pin Active low interrupt	VDD	HIZ	Figure 3
5	RSTB	IN	Reset pin L : Reset H: Normal Operate	VDD	L	Figure 4
6	ADDR	IN	7bit Slave address selection pin L: Slave address $0 \times 5 \mathrm{C}$ H: Slave address 0x5D	VDD	HIZ	Figure 4
7	TEST2	IN	Test pin Connect to Ground.	VDD	HIZ	Figure 4
8	TEST1	IN	Test pin Connect to Ground.	VDD	HIZ	Figure 4
9	CS19	IN/OUT	Sensor pin ${ }^{(\text {Note 3) }}$	AVDD	HIZ	Figure 5
10	CS18	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
11	CS17	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
12	CS16	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
13	CS15	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
14	CS14	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
15	CS13	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
16	CS12	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5

Pin Description - continued

Pin No.	Pin Name	$\begin{aligned} & \text { I/O } \\ & \text { Type } \end{aligned}$	Function	Power	Initial Condition (RSTB=L)	I/O Equivalent Circuit
17	CS11	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
18	CS10	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
19	CS9	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
20	CS8	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
21	CS7	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
22	CS6	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
23	CS5	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
24	CS4	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
25	CS3	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
26	CS2	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
27	CS1	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
28	CSO	IN/OUT	Sensor pin ${ }^{\text {(Note 3) }}$	AVDD	HIZ	Figure 5
29	AVDD	OUT	LDO output pin for sensor block	-	OV	-
30	VDD	-	Power	-	-	-
31	NC	-	No Connect pin with pull-down resistor This pin should be left as open circuit	-	-	-
32	DVDD	OUT	LDO output pin for digital block	-	1.5 V	-

(Note 3) If not used, this pin must be left as an open circuit.
I/O Equivalent Circuit

Figure 3. I/O Equivalent Circuit

Figure 4. I/O Equivalent Circuit

Figure 5. I/O Equivalent Circuit

Block Diagram

Figure 6. Block Diagram

Description of Block

MUX, Driver, C/V Converter, A/D Converter
This block converts from capacitance to voltage and the voltage to digital value for each sensor.

LDO28

This block is AVDD LDO that supplies 2.8 V to MUX, Driver, C/V Converter and A/D Converter. Referred to as AVDD in this document.

LDO15

This block is DVDD LDO that supplies 1.5 V to OSC and LOGIC. Referred to as DVDD in this document.

OSC

This block is ring oscillator for MPU and LOGIC.
MPU
This block detects ON / OFF / Long Press of switches and performs automatic calibration based on the detection results. The result is informed by the INTB pin.

Instruction Memory
This block is Program ROM for MPU.

Work Memory

This block is Working RAM for MPU.
HOST I/F
2-wire serial bus interface compatible with $\mathrm{I}^{2} \mathrm{C}$ protocol.
Analog Controller
This block is control sequencer for MUX, Driver, C/V Converter and A/D Converter.

WDT

This block is watchdog timer reset. When the MPU is hang-upped, the system is reset by WDT.
Timing Generator, Timer
This block generates clock for MPU peripherals based on OSC clock.

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V_{DD}	-0.3 to +7.0	V
Input Terminal Voltage	$\mathrm{V}_{\mathbb{I N}}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Maximum Junction Temperature	Tjmax	125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.

Thermal Resistance ${ }^{\text {(Note 4) }}$

Parameter	Symbol	Thermal Resistance (Typ)		Unit
		$1 \mathrm{~s}^{\text {(Note } 6)}$	$2 \mathrm{~s} 2 \mathrm{p}^{\text {(Note }} 7$)	
SSOP-A32				
Junction to Ambient	$\theta_{\text {JA }}$	82.9	45.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Top Characterization Parameter ${ }^{\text {(Note 5) }}$	$\Psi_{J T}$	6	6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(Note 4) Based on JESD51-2A(Still-Air)
(Note 5) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package.
(Note 6) Using a PCB board based on JESD51-3.

Layer Number of Measurement Board	Material	Board Size
Single	FR-4	$114.3 \mathrm{~mm} \times 76.2 \mathrm{~mm} \times 1.57 \mathrm{mmt}$
Top		
Copper Pattern	Thickness	
Footprints and Traces	$70 \mu \mathrm{~m}$	

(Note 7) Using a PCB board based on JESD51-7.

Layer Number of Measurement Board	Material	Board Size					
4 Layers		FR-4	$114.3 \mathrm{~mm} \times 76.2 \mathrm{~mm} \times 1.6 \mathrm{mmt}$				
Top			2 Internal Layers		Bottom		
Copper Pattern	Thickness	Copper Pattern	Thickness	Copper Pattern	Thickness		
Footprints and Traces	$70 \mu \mathrm{~m}$	$74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm}$	$35 \mu \mathrm{~m}$	$74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm}$	$70 \mu \mathrm{~m}$		

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Power Supply Voltage	V_{DD}	3.0	5.0	5.5	V
Operating Temperature	Topr	-25	+25	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Unless otherwise specified $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \mathbf{T a}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
Input High Voltage	V_{IH}	$V_{D D} \times 0.7$	-	$V_{D D}+0.3$	V	-
Input Low Voltage	V_{IL}	VSS - 0.3	-	$V_{D D} \times 0.3$	V	-
Output High Voltage	$\mathrm{V}_{\text {OHCS }}$	$V_{\text {AVID }} \times 0.7$	-	$\mathrm{V}_{\text {AVDD }}$	V	$\mathrm{IOH}=-1 \mathrm{~mA}(\mathrm{CS} \mathrm{pin})$
Output Low Voltage	Volcs	$\mathrm{V}_{\text {SS }}$	-	$\mathrm{V}_{\text {AVDD }} \times 0.3$	V	$\mathrm{loL}=+1 \mathrm{~mA}$ (CS pin)
	VoL1	$V_{s s}$	-	$V_{S S}+0.4$	V	$\mathrm{IOL}^{\text {a }}=+3 \mathrm{~mA}($ SDA/SCLINTB pin)
	VoL2	Vss	-	$\mathrm{V}_{\text {Ss }}+0.6$	V	$\mathrm{loL}=+6 \mathrm{~mA}(\mathrm{SDA} / \mathrm{SCL} / \mathrm{INTB}$ pin)
Oscillator Clock Frequency	fosc	45	50	55	MHz	-
DVDD LDO Output Voltage	V ${ }_{\text {DVDD }}$	1.35	1.50	1.65	V	-
AVDD LDO Output Voltage	$\mathrm{V}_{\text {AVDD }}$	2.67	2.80	2.93	V	When AVDD is set to 2.8 V .
Standby Current	$I_{\text {StBy }}$	-	70	200	$\mu \mathrm{A}$	RSTB=L
Active Current	$\mathrm{I}_{\text {ACt }}$	1.9	3.5	5.0	mA	RSTB=H and Sensor enable CS terminals: No load

Interface Specification

2-wire Serial Bus Interface
Compatible with ${ }^{2} \mathrm{C}$ Protocol
Support Slave Mode Only
7bit Slave Address $=0 \times 5 \mathrm{C}$ (in case of ADDR=L) / 0x5D (in case of ADDR=H)
Support Sequential Read
Support Clock Stretching

Figure 7. 2-wire Serial Bus Data Format

Figure 8. 2-wire Serial Bus Data Timing Chart

2-wire Serial Bus Interface Electrical Characteristics (Unless otherwise specified $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ Ta=25${ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
SCL Clock Frequency	fsCL	0	-	400	kHz	-
Hold Time (repeated) START Condition	$\mathrm{thD}_{\text {; STA }}$	0.6	-	-	$\mu \mathrm{s}$	-
Low Period of the SCL Clock	tıow	1.3	-	-	$\mu \mathrm{s}$	-
High Period of the SCL Clock	$\mathrm{t}_{\text {HIGH }}$	0.6	-	-	$\mu \mathrm{s}$	-
Data Hold Time	$\mathrm{thD} ; \mathrm{DAT}$	0	-	-	$\mu \mathrm{s}$	-
Data Set-up Time	tsu;DAt	0.1	-	-	$\mu \mathrm{s}$	-
Set-up Time for a Repeated START Condition	tsu;sTA	0.6	-	-	$\mu \mathrm{s}$	-
Set-up Time for STOP Condition	tsu;sto	0.6	-	-	$\mu \mathrm{s}$	-
Bus Free Time between STOP and START Condition	$t_{\text {BuF }}$	1.3	-	-	$\mu \mathrm{s}$	-

2-wire Serial Bus Protocol

Write Protocol

Figure 9. 2-wire Serial Bus Write Protocol
1: The communication starts when IC received the START condition.
2: IC transmits ACK signal when 7-bit slave address and write bit are received. IC carries out processing by MPU after the transmission of ACK signal. Clock stretch is carried out during the processing.
3: IC transmits ACK signal when 8-bit write register address are received. IC carries out processing by MPU after the transmission of ACK signal. Clock stretch is carried out during the processing.
4: IC transmits ACK signal when 8-bit write data are received. IC carries out processing by MPU after the transmission of ACK signal. Clock stretch is carried out during the processing. IC supports sequential write. So the register address is incremented, and the next of $0 \times F F$ becomes 0×00.
5: The communication finishes when IC received the STOP condition.

Read Protocol

Figure 10. 2-wire Serial Bus Read Protocol
1: The communication starts when IC received the START condition.
2: IC transmits ACK signal when 7-bit slave address and write bit are received. IC carries out processing by MPU after the transmission of ACK signal. Clock stretch is carried out during the processing.
3: IC transmits ACK signal when 8 -bit read register address are received. IC carries out processing by MPU after the transmission of ACK signal. Clock stretch is carried out during the processing.
4: The communication continues when IC received start condition signal.
5: IC transmits ACK signal when 7-bit slave address and read bit are received. IC carries out processing by MPU after the transmission of ACK signal. Clock stretch is carried out during the processing.
6: IC transmits read data every clock is received until NACK signal. IC carries out processing by MPU after receiving ACK or NACK signal. Clock stretch is carried out during the processing. IC supports sequential read. So the register address is incremented, and the next of 0xFF becomes 0×00.
7: The communication finishes when IC received the STOP condition.

Power-on Sequence / Reset Timing

Built-in LDO (DVDD) boots after VDD power is supplied. The reset condition is released by setting RSTB from low to high after DVDD booted. IC is accessible from host after initializing MPU. IC is accessible from host after the build-in power-on reset circuit was released in the case the RSTB pin is connected to the VDD pin. The filter circuit is integrated for the RSTB pin. The signal less than "Rejected RSTB Pulse Width" are rejected by the filter. To initialize IC, the signal larger than "Detected RSTB Pulse Width" is required.

Power-on Flowchart

Figure 11. Power-on Flowchart

Power-on Timing

Figure 12. Power-on Timing
Power-on / Reset Timing Electrical Characteristics (Unless otherwise specified $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
VDD Rise Time	tve	1	-	10	ms	-
I/F Communication Standby Time	tstry	-	-	10	ms	-
Rejected RSTB Pulse Width	$t_{\text {fc }}$	-	-	3	$\mu \mathrm{s}$	-
Detected RSTB Pulse Width	trw	10	-	-	$\mu \mathrm{s}$	-

Register Map

Unless otherwise specified oscillator frequency is 50 MHz .
Accessing the reserved area is prohibited.
Initial value is the value after initialization by MPU.
Status Register

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×00	R	0x00	DATA_CSO[7:0]							
0x01	R	0x00	DATA_CS1[7:0]							
0x02	R	0x00	DATA_CS2[7:0]							
0x03	R	0x00	DATA_CS3[7:0]							
0x04	R	0x00	DATA_CS4[7:0]							
0x05	R	0x00	DATA_CS5[7:0]							
0x06	R	0x00	DATA_CS6[7:0]							
0x07	R	0x00	DATA_CS7[7:0]							
0x08	R	0x00	DATA_CS8[7:0]							
0x09	R	0x00	DATA_CS9[7:0]							
$0 \times 0 \mathrm{~A}$	R	0x00	DATA_CS10[7:0]							
$0 \times 0 \mathrm{~B}$	R	0x00	DATA_CS11[7:0]							
$0 \times 0 \mathrm{C}$	R	0x00	DATA_CS12[7:0]							
0x0D	R	0x00	DATA_CS13[7:0]							
OxOE	R	0x00	DATA_CS14[7:0]							
$0 \times 0 \mathrm{~F}$	R	0x00	DATA_CS15[7:0]							
0x10	R	0x00	DATA_CS16[7:0]							
0×11	R	0x00	DATA_CS17[7:0]							
0×12	R	0x00	DATA_CS18[7:0]							
0x13	R	0x00	DATA_CS19[7:0]							
0x14	-	-	RESERVED							
0x15	R	0x00	FDATA_CSO[15:8]							
0×16	R	0x00	FDATA_CSO[7:0]							
0×17	R	0x00	FDATA_CS1[15:8]							
0×18	R	0x00	FDATA_CS1[7:0]							
0×19	R	0x00	FDATA_CS2[15:8]							
$0 \times 1 \mathrm{~A}$	R	0x00	FDATA_CS2[7:0]							
$0 \times 1 \mathrm{~B}$	R	0x00	FDATA_CS3[15:8]							
$0 \times 1 \mathrm{C}$	R	0x00	FDATA_CS3[7:0]							
$0 \times 1 \mathrm{D}$	R	0x00	FDATA_CS4[15:8]							
0x1E	R	0x00	FDATA_CS4[7:0]							
$0 \times 1 \mathrm{~F}$	R	0x00	FDATA_CS5[15:8]							
0x20	R	0x00	FDATA_CS5[7:0]							
0×21	R	0x00	FDATA_CS6[15:8]							
0×22	R	0x00	FDATA_CS6[7:0]							
0x23	R	0x00	FDATA_CS7[15:8]							
0x24	R	0x00	FDATA_CS7[7:0]							
0×25	R	0x00	FDATA_CS8[15:8]							
0x26	R	0x00	FDATA_CS8[7:0]							
0×27	R	0x00	FDATA_CS9[15:8]							
0×28	R	0x00	FDATA_CS9[7:0]							
0×29	R	0x00	FDATA_CS10[15:8]							
$0 \times 2 \mathrm{~A}$	R	0x00	FDATA_CS10[7:0]							
$0 \times 2 \mathrm{~B}$	R	0x00	FDATA_CS11[15:8]							
$0 \times 2 \mathrm{C}$	R	0x00	FDATA_CS11[7:0]							

Register Map - continued

Status Register

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x2D	R	0x00	FDATA_CS12[15:8]							
$0 \times 2 \mathrm{E}$	R	0x00	FDATA_CS12[7:0]							
$0 \times 2 \mathrm{~F}$	R	0x00	FDATA_CS13[15:8]							
0×30	R	0x00	FDATA_CS13[7:0]							
0×31	R	0x00	FDATA_CS14[15:8]							
0×32	R	0x00	FDATA_CS14[7:0]							
0×33	R	0x00	FDATA_CS15[15:8]							
0×34	R	0x00	FDATA_CS15[7:0]							
0×35	R	0x00	FDATA_CS16[15:8]							
0×36	R	0x00	FDATA_CS16[7:0]							
0×37	R	0x00	FDATA_CS17[15:8]							
0×38	R	0x00	FDATA_CS17[7:0]							
0×39	R	0x00	FDATA_CS18[15:8]							
$0 \times 3 \mathrm{~A}$	R	0x00	FDATA_CS18[7:0]							
$0 \times 3 \mathrm{~B}$	R	0x00	FDATA_CS19[15:8]							
$0 \times 3 \mathrm{C}$	R	0x00	FDATA_CS19[7:0]							
0x3D-0x3F	-	-	RESERVED							
0×40	R	0x01	$\begin{aligned} & \text { INT- } \\ & \text { NOISE } \end{aligned}$	INT_UNK	-	-	$\begin{aligned} & \text { INT }_{-} \\ & \text {FALCAL } \end{aligned}$	$\begin{aligned} & \text { INT }_{-} \\ & \text {FINCAL } \end{aligned}$	-	$\begin{aligned} & \text { INT } \\ & \text { FININI } \\ & \hline \end{aligned}$
0×41	R	0x00	-	-	$\begin{gathered} \text { INT_MULT_- }_{\text {OFF }} \\ \hline \end{gathered}$		$\begin{aligned} & \text { INT- } \\ & \text { HLDRPT } \\ & \hline \end{aligned}$	INT_HLD	$\begin{gathered} \text { INT }_{-} \\ \text {SW_OFF } \end{gathered}$	$\begin{array}{r} \text { INT } \\ \text { SW_ON } \\ \hline \end{array}$
0×42	R	0x00	-	-	-	-	-	-	INT AVDDOFF	$\begin{gathered} \text { INT }^{-} \\ \text {AVDDON } \\ \hline \end{gathered}$
0x43	R	0x00	$\begin{gathered} \text { DET_ON } \\ \text { CS7 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CS } 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \hline \mathrm{CS} 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \hline \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \hline \mathrm{CS} 3 \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CS2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CSOO } \end{gathered}$
0×44	R	0x00	DET_ON CS15	$\begin{gathered} \text { DET_ON } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CSS13 } \end{gathered}$	DET_ON CS12	DET_ON CS11	$\begin{gathered} \text { DET_ON } \\ \text { CSS10 } \\ \hline \end{gathered}$	DET_ON CS9	$\begin{gathered} \text { DET_ON } \\ \text { CSS8 } \end{gathered}$
0×45	R	0x00	-	-	-	-	DET_ON CS19	$\begin{gathered} \text { DET_ON } \\ \text { CS18 } \\ \hline \end{gathered}$	DET_ON CS17	$\begin{gathered} \text { DET_ON } \\ \text { CSS16 } \end{gathered}$
0×46	R	0x00	$\begin{gathered} \text { DET_OFF } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS6 } \end{gathered}$	$\begin{gathered} \hline \text { DET_OFF } \\ \text { _CS5 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS4 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS2 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS1 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CSO } \end{gathered}$
0×47	R	0x00	$\begin{gathered} \text { DET_OFF } \\ \text { CS } 15 \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CSS11 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS9 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS8 } \end{gathered}$
0×48	R	0x00	-	-	-	-	$\begin{gathered} \text { DET_OFF } \\ \text { CS19 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS18 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS16 } \end{gathered}$
0×49	R	0x00	$\begin{gathered} \text { DET_HLD } \\ \text { CS7 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS6 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS4 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS3 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CSO } \end{gathered}$
$0 \times 4 \mathrm{~A}$	R	0x00	$\begin{gathered} \text { DET_HLD } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS12 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS } 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS8 } \end{gathered}$
$0 \times 4 \mathrm{~B}$	R	0x00	-	-	-	-	$\begin{gathered} \text { DET_HLD } \\ \text { CS } 19 \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS18 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS16 } \end{gathered}$
0x4C	R	0x00	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS7 } \\ & \hline \end{aligned}$	DET_HLD RPT CS6	DET_HLD RPT CS5	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CSO } \end{aligned}$
0x4D	R	0x00	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS15 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS14 } \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS13 } \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS12 } \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS11 } \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS10 } \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS9 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS8 } \\ & \hline \end{aligned}$
0x4E	R	0x00	-	-	-	-	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS19 } \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT_CS18 } \end{aligned}$	$\begin{aligned} & \text { DET_HLD } \\ & \text { RPT CS17 } \end{aligned}$	$\begin{aligned} & \text { DET-HLD } \\ & \text { RPT CS16 } \end{aligned}$
0x4F	R	0x00	DET_MULT ON H	$\begin{gathered} \text { DET_MULT } \\ \text { ON_G } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_F } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_E } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_D } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_C } \\ \hline \end{gathered}$	DET_MULT ON B	DET_MULT ON_A
0x50	R	0x00	DET_MULT OFF_H	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_G } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_F } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { _OFF_E } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_D } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { _OFF_C } \end{gathered}$	DET_MULT _OFF_B	DET_MULT OFF_A
0×51	R	0x00	$\begin{gathered} \text { DET_UNK } \\ \text { CS7 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS6 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS4 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS3 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS2 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CSO } \\ \hline \end{gathered}$
0x52	R	0x00	$\begin{gathered} \text { DET_UNK } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS } 13 \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CST12 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS11 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CST10 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS8 } \\ \hline \end{gathered}$
0×53	R	0x00	-	-	-	- -	$\begin{gathered} \text { DET_UNK } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS18 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS16 } \end{gathered}$
0x54	R	0x00	$\begin{gathered} \text { SW_STAT } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS6 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS5 } \end{gathered}$	$\begin{gathered} \hline \text { SW_STAT } \\ \text { CS4 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS2 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { SW STAT } \\ \text { CSO } \end{gathered}$
0x55	R	0x00	$\begin{gathered} \text { SW_STAT } \\ \text { CS15 } \\ \hline \end{gathered}$	SW $\overline{\text { CSTAT }}$ CST4	$\begin{gathered} \text { SW_STAT } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS8 } \\ \hline \end{gathered}$
0x56	R	0x00	-	-	-	-	$\begin{gathered} \text { SW_STAT } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS16 } \\ \hline \end{gathered}$
0×57	R	0x00	-	-	-	-	-	RUN_CAL	RUN_AFE	-
0x58	R	0x00				NUM_FA	CAL[7:0]			
0x59-0x5E	-	-				RESE	VED			
0x5F	R	0x0D				FW_V	[7:0]			

Register Map - continued

Configuration Register

Address	R/W	Initial	Bit7 Bit6	Bit5 Bit4	Bit3	Bit2	Bit1	Bit0
0x60	R/W	0x00	CS3_SCAN_SEL[1:0]	CS2_SCAN_SEL[1:0]	CS1_SCAN_SEL[1:0]		CS0_SCAN_SEL[1:0]	
0x61	R/W	0x00	CS7_SCAN_SEL[1:0]	CS6_SCAN_SEL[1:0]	CS5_SCAN_SEL[1:0]		CS4_SCAN_SEL[1:0]	
0x62	R/W	0×50	CS11_SCAN_SEL[1:0]	CS10_SCAN_SEL[1:0]	CS9_SCAN_SEL[1:0]		CS8_SCAN_SEL[1:0]	
0x63	R/W	0×55	CS15_SCAN_SEL[1:0]	CS14_SCAN_SEL[1:0]	CS13_SCAN_SEL[1:0]		CS12_SCAN_SEL[1:0]	
0×64	R/W	0×55	CS19_SCAN_SEL[1:0]	CS18_SCAN_SEL[1:0]	CS17_SCAN_SEL[1:0]		CS16_SCAN_SEL[1:0]	
0x65	-	-	RESERVED					
0x66	R/W	0x7F	VAL_GA_CS1[3:0]		VAL_GA_CSO[3:0]			
0×67	R/W	0x77	VAL_GA_CS3[3:0]		VAL_GA_CS2[3:0]			
0x68	R/W	0x77	VAL_GA_CS5[3:0]		VAL_GA_CS4[3:0]			
0×69	R/W	0×77	VAL_GA_CS7[3:0]		VAL_GA_CS6[3:0]			
$0 \times 6 \mathrm{~A}$	R/W	0x77	VAL_GA_CS9[3:0]		VAL_GA_CS8[3:0]			
$0 \times 6 \mathrm{~B}$	R/W	0xFF	VAL_GA_CS11[3:0]		VAL_GA_CS10[3:0]			
$0 \times 6 \mathrm{C}$	R/W	0xFF	VAL_GA_CS13[3:0]		VAL_GA_CS12[3:0]			
$0 \times 6 \mathrm{D}$	R/W	0xFF	VAL_GA_CS15[3:0]		VAL_GA_CS14[3:0]			
$0 \times 6 \mathrm{E}$	R/W	0xFF	VAL_GA_CS17[3:0]		VAL_GA_CS16[3:0]			
$0 \times 6 \mathrm{~F}$	R/W	0xFF	VAL_GA_CS19[3:0]		VAL_GA_CS18[3:0]			
0x70	R/W	0xC8	VAL_TH_ON_CSO[7:0]					
0x71	R/W	0×64	VAL_TH_OFF_CSO[7:0]					
0x72	R/W	$0 \times \mathrm{C} 8$	VAL_TH_ON_CS1[7:0]					
0x73	R/W	0×64	VAL_TH_OFF_CS1[7:0]					
0x74	R/W	$0 \times \mathrm{C8}$	VAL_TH_ON_CS2[7:0]					
0x75	R/W	0x64	VAL_TH_OFF_CS2[7:0]					
0x76	R/W	$0 \times \mathrm{C} 8$	VAL_TH_ON_CS3[7:0]					
0x77	R/w	0×64	VAL_TH_OFF_CS3[7:0]					
0x78	R/W	0xC8	VAL_TH_ON_CS4[7:0]					
0x79	R/W	0×64	VAL_TH_OFF_CS4[7:0]					
0x7A	R/W	0xC8	VAL_TH_ON_CS5[7:0]					
$0 \times 7 \mathrm{~B}$	R/W	0×64	VAL_TH_OFF_CS5[7:0]					
0x7C	R/w	$0 \times \mathrm{C} 8$	VAL_TH_ON_CS6[7:0]					
0x7D	R/W	0x64	VAL_TH_OFF_CS6[7:0]					
0x7E	R/W	$0 \times \mathrm{C} 8$	VAL_TH_ON_CS7[7:0]					
0x7F	R/W	0×64	VAL_TH_OFF_CS7[7:0]					
0x80	R/W	0xC8	VAL_TH_ON_CS8[7:0]					
0×81	R/W	0×64	VAL_TH_OFF_CS8[7:0]					
0×82	R/W	0xC8	VAL_TH_ON_CS9[7:0]					
0×83	R/W	0×64	VAL_TH_OFF_CS9[7:0]					
0×84	R/W	$0 \times \mathrm{C} 8$	VAL_TH_ON_CS10[7:0]					
0×85	R/W	0×64	VAL_TH_OFF_CS10[7:0]					
0x86	R/W	$0 \times \mathrm{C} 8$	VAL_TH_ON_CS11[7:0]					
0×87	R/W	0×64	VAL_TH_OFF_CS11[7:0]					
0x88	R/W	0xC8	VAL_TH_ON_CS12[7:0]					
0x89	R/W	0×64	VAL_TH_OFF_CS12[7:0]					
$0 \times 8 \mathrm{~A}$	R/w	$0 \times \mathrm{C8}$	VAL_TH_ON_CS13[7:0]					
$0 \times 8 \mathrm{~B}$	R/W	0x64	VAL_TH_OFF_CS13[7:0]					
$0 \times 8 \mathrm{C}$	R/W	0xC8	VAL_TH_ON_CS14[7:0]					
0x8D	R/W	0×64	VAL_TH_OFF_CS14[7:0]					
$0 \times 8 \mathrm{E}$	R/W	0xC8	VAL_TH_ON_CS15[7:0]					
$0 \times 8 \mathrm{~F}$	R/w	0×64	VAL_TH_OFF_CS15[7:0]					

Register Map - continued

Configuration Register

Register Map - continued

Configuration Register

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xBC	R/W	0x00	TIME_DET[7:0]							
0xBD	R/W	0x00	$\begin{gathered} \text { MULT_A } \\ \text { CS7 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { _CS } 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS4 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS } 3 \text { ? } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { _CS2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CSO } \\ \hline \end{gathered}$
0xBE	R/W	0x00	$\begin{gathered} \text { MULT_A } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS13 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CSS12 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CSS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ { }^{\text {CS9 }} \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \hline \\ \hline \end{gathered}$
0xBF	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_A } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CSS18 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { _CS17 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CSS16 } \end{gathered}$
$0 \times C 0$	R/W	0x00	$\begin{gathered} \text { MULT_B } \\ \hline \mathrm{CS} \overline{7} \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS } 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B }^{\text {CS } 5} \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS4 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B }^{\text {CS }} \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CSO } \end{gathered}$
$0 \times C 1$	R/W	0x00	$\begin{gathered} \text { MULT_B } \\ \text { CSS15 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CSS12 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CSS11 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CSS10 } \end{gathered}$	$\begin{gathered} \text { MULT }{ }^{\text {B }} \\ \hline{ }^{\text {CSS }} \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { _CS } 8 \end{gathered}$
0xC2	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_B } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS18 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS16 } \end{gathered}$
0xC3	R/W	0x00	$\begin{gathered} \text { MULT_C } \\ \mathrm{CS}^{2} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{\text {CS }} 6 \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{C S S} 5 \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ =\mathrm{CS}^{-1} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{\text {CS }} 3 \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{\text {CS }} 2 \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ C^{C S 1} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ =\mathrm{CS} 0 \end{gathered}$
0xC4	R/W	0x00	$\begin{gathered} \text { MULT_C } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \mathrm{CS}^{-1} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{C} \mathrm{CS} 8 \end{gathered}$
$0 \times C 5$	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_C } \\ \hline \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { _CS18 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{\text {CS17 }} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{\text {CS16 }} \end{gathered}$
0xC6	R/W	0x00	$\begin{gathered} \hline \text { MULT_D } \\ \hline \mathrm{CS} \overline{7} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MULT_D } \\ \text { CS }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CSS5 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS } 4 \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \mathrm{CS}^{\mathrm{CS}} \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS1 }^{\text {P1 }} \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \hline \text { CSO } \end{gathered}$
$0 \times C 7$	R/W	0x00	$\begin{gathered} \text { MULT_D } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \mathbf{C S S}^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ C^{C S} 8 \end{gathered}$
0xC8	R/W	0x00	-	-	-	-	$\begin{gathered} \hline \text { MULT_D } \\ \hline \text { CS19 } \end{gathered}$	$\begin{gathered} \hline \text { MULT_D } \\ \text { CS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS16 } \\ \hline \end{gathered}$
0xC9	R/W	0x00	$\begin{gathered} \text { MULT_E } \\ \mathrm{CS}^{2} \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS } 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_E }^{\text {CS } 5} \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS4 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \mathrm{CS}_{3} \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \hline \text { CSO } \end{gathered}$
0xCA	R/W	0x00	$\begin{gathered} \text { MULT_E } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS9 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS } 8 \end{gathered}$
0xCB	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_E } \\ \hline \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS18 } \end{gathered}$	$\begin{aligned} & \text { MULT_E } \\ & \text { CS17 } \end{aligned}$	$\begin{aligned} & \text { MULT_E } \\ & \hline \text { CS16 } \end{aligned}$
0xCC	R/W	0x00	$\begin{gathered} \text { MULT_F } \\ \text { CS7 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS } 6 \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS } 4 \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ C^{C S} 3 \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CSO } \end{gathered}$
0xCD	R/W	0x00	$\begin{gathered} \text { MULT_F } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \hline \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \hline \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \hline \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \hline \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \hline \text { CS10 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \mathrm{CSS}^{2} \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ { }_{C S S} \end{gathered}$
0xCE	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_F } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS18 } \end{gathered}$	$\begin{aligned} & \text { MULT_F } \\ & \text { CS17 } \end{aligned}$	$\begin{gathered} \text { MULT_F } \\ \text { _CS16 } \end{gathered}$
0xCF	R/W	0x00	$\begin{gathered} \text { MULT_G } \\ \hline \mathrm{CSF}^{-G} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CSS }^{6} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ { }^{\text {CSS4 }} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ { }^{\text {CSS }} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ C^{C S 2} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \hline \mathrm{CSO} \end{gathered}$
0xD0	R/W	0x00	$\begin{gathered} \text { MULT_G } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CSS }^{-G} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS }^{2} \end{gathered}$
0xD1	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_G } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS18 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ { }^{\text {CS1 }} 6 \end{gathered}$
0xD2	R/W	0x00	$\begin{gathered} \text { MULT_H } \\ \mathrm{CS}^{2} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CSS}_{6} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ { }_{C S S}{ }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ { }_{C S S}{ }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CS}_{3} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ { }_{C}{ }^{\text {CS }} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CSS}_{1} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ { }^{\text {CSO }} 0 \end{gathered}$
0xD3	R/W	0x00	$\begin{gathered} \text { MULT_H } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CSS11 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ { }_{2} \mathrm{CS} 10 \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS }_{9} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { _CS } \end{gathered}$
0xD4	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_H } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CSS17 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CSS16 } \end{gathered}$
0xD5	R/W	0x00	$\begin{gathered} \text { MSK_INT } \\ \text { _NOISE } \\ \hline \end{gathered}$	-	-	-	MSK_INT FALCAL	MSK INT FINCAL	- -	- -
0xD6	R/W	0x00	- -	-	-	-	-	-	$\begin{aligned} & \text { MSK_INT }_{-} \\ & \text {AVDD̄OFF } \end{aligned}$	$\begin{aligned} & \text { MSK_INT- } \\ & \text { AVDDON } \end{aligned}$
0xD7	R/W	0x00	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS7 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS6 } \end{aligned}$	$\begin{gathered} \text { MSK_DET } \\ \text { ON_CS5 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS4 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CSO } \\ & \hline \end{aligned}$
0xD8	R/W	0x00	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS15 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS14 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS13 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS12 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS11 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS10 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS9 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS8 } \end{aligned}$
0xD9	R/W	0x00	- -	- -	-	-	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS19 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS18 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS17 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS16 } \end{aligned}$
0xDA	R/W	0x00	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS7 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS4 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS3 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS2 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS1 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CSO } \end{aligned}$
0xDB	R/W	0x00	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS15 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS14 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS13 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS12 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS11 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS10 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS9 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS8 } \end{aligned}$
0xDC	R/W	0x00	-	-	-	-	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS19 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS18 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS17 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS16 } \\ & \hline \end{aligned}$
0xDD	R/W	0x00	$\begin{gathered} \text { MSK_UNK } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS5 } \\ \hline \end{gathered}$	$\underset{\text { _CS4 }}{\substack{\text { MSK_UNK } \\ \hline}}$	$\begin{gathered} \text { MSK_UNK } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { _CSO } \end{gathered}$
0xDE	R/W	0x00	$\begin{gathered} \text { MSK_UNK } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CSS14 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CSS13 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CSS12 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CSS11 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS9 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS8 } \end{gathered}$
0xDF	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MSK_UNK } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS16 } \\ \hline \end{gathered}$

Register Map - continued

Command Register

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE0	R/W	0x00	CLR_INT NOISE	-	-	-	CLR_INT FALCAL	CLR_INT FINCAL	-	CLR_INT FININI
0xE1	R/W	0x00	-	-	-	-	-	-	$\begin{aligned} & \text { CLR_INT } \\ & \text { AVDD } \overline{\mathrm{D} O F F} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_INT- } \\ & \text { AVDDON } \end{aligned}$
0xE2	R/W	0x00	CLR DET ON CS7	CLR_DET ON_CS6	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS5 } \end{aligned}$	CLR_DET ON CS4	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS3 } \\ & \hline \end{aligned}$	CLR_DET ON CS2	$\begin{aligned} & \text { CLRDET } \\ & \text { ON_CS1 } \end{aligned}$	$\begin{array}{r} \text { CLR_DET } \\ \text { _ON_CS0 } \\ \hline \end{array}$
0xE3	R/W	0x00	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { ON_CS15 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS14 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { ON_CS13 } \end{aligned}$	CLR_DET ON_CS12	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS11 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS10 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS9 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { _ON_CS8 } \\ & \hline \end{aligned}$
0xE4	R/W	0x00	-	-	-	- -	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS19 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS18 } \end{aligned}$	CLR_DET ON CS17	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS16 } \end{aligned}$
0xE5	R/W	0x00	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS7 } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { CLR_DET } \\ \text { OFF_CS6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_DET } \\ \text { COFF_CS5 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { COFF_CS4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLRDET } \\ & \text { OOFFCSET } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CSO } \\ & \hline \end{aligned}$
0xE6	R/W	0x00	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS15 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS14 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS13 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS12 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS11 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS9 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS8 } \end{aligned}$
0xE7	R/W	0x00	-	-	-	-	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { COFF_CS19 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { OFF_CS18 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { OFF_CS17 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS16 } \end{aligned}$
0xE8	R/W	0x00	$\begin{gathered} \text { CLR_HLD } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { _CS6 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { _CS5 } \end{gathered}$	$\underset{\text { CS4 }}{\substack{\text { CLR_HLD }}}$	$\begin{gathered} \text { CLR_HLD } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { _CS2 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { _CS1 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { _CSO } \end{gathered}$
0xE9	R/W	0x00	$\begin{gathered} \text { CLR_HLD } \\ \text { C } \bar{S} 15 \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS8 } \end{gathered}$
0xEA	R/W	0x00	-	-	-	-	$\begin{gathered} \text { CLR_HLD } \\ \text { CS19 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS } 18 \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS } 16 \\ \hline \end{gathered}$
0xEB	R/W	0x00	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS7 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_HLD } \\ & \text { RPT_CS6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { CLR_HLD } \\ & \text { RPT_CS5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS4 } \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS3 } \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS2 } \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS1 } \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CSO } \end{aligned}$
0xEC	R/W	0x00	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS15 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS14 } \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS13 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS12 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS11 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS9 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS8 } \\ & \hline \end{aligned}$
0xED	R/W	0x00	-	-	-	-	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS19 } \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS18 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS17 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_HLD } \\ & \text { RPT_CS16 } \end{aligned}$
0xEE	R/W	0x00	$\begin{gathered} \text { CLR_MULT } \\ \text { ON H } \end{gathered}$	CLR_MULT ON G	CLR_MULT ON F	$\begin{gathered} \text { CLR_MULT } \\ \text { ON E } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { ON_D } \end{gathered}$	CLR_MULT ON C	$\begin{gathered} \text { CLR_MULT } \\ \text { ON B } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { ON A } \end{gathered}$
0xEF	R/W	0x00	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_H } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_G } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_F } \end{gathered}$	CLR_MULT OFF_E	CLR_MULT OFF_D	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_C } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_B } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_A } \end{gathered}$
0xF0	R/W	0x00	$\begin{gathered} \text { CLR_UNK } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS4 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS3 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CSO } \\ \hline \end{gathered}$
0xF1	R/W	0x00	$\begin{gathered} \text { CLR_UNK } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CSS13 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS12 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CSS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CSS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS8 } \\ \hline \end{gathered}$
0xF2	R/W	0x00	-	-	-	-	$\begin{gathered} \text { CLR_UNK } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CSS18 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \hline \text { CS17 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CSS16 } \end{gathered}$
0xF3	R/W	0x00	SRST[7:0]							
0xF4	R/W	0x00	SRST[15:8]							
0xF5-0xFD	-	-	RESERVED							
0xFE	R/W	0x00	-	-	SEL_AVDD[1:0]		-	-	-	AVDD_ON
0xFF	R/W	0x00	-	-	-	-	-	STR_CFG	STR_CAL	STR_AFE

Register Description

Status Register Description

$0 \times 00-0 \times 13$: Sensor Data
Name: DATA_CS
Address: $0 \times 00-0 \times 13$
Description: These registers show 8 -bit sensor data of each sensor. These are compared with the register "Switch ON Threshold / Switch OFF Threshold", and these results are set to the register "Switch ON Detection" and "Switch OFF Detection". These 8 -bit sensor data become 0 after calibration.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×00	R	0x00	DATA_CSO[7:0]							
0×01	R	0x00	DATA_CS1[7:0]							
0x02	R	0x00	DATA_CS2[7:0]							
0×03	R	0x00	DATA_CS3[7:0]							
0x04	R	0x00	DATA_CS4[7:0]							
0×05	R	0x00	DATA_CS5[7:0]							
0×06	R	0x00	DATA_CS6[7:0]							
0×07	R	0x00	DATA_CS7[7:0]							
0×08	R	0x00	DATA_CS8[7:0]							
0×09	R	0x00	DATA_CS9[7:0]							
$0 \times 0 \mathrm{~A}$	R	0x00	DATA_CS10[7:0]							
$0 \times 0 \mathrm{~B}$	R	0x00	DATA_CS11[7:0]							
$0 \times 0 \mathrm{C}$	R	0x00	DATA_CS12[7:0]							
$0 \times 0 \mathrm{D}$	R	0x00	DATA_CS13[7:0]							
$0 \times 0 \mathrm{E}$	R	0x00	DATA_CS14[7:0]							
$0 \times 0 \mathrm{~F}$	R	0x00	DATA_CS15[7:0]							
0×10	R	0x00	DATA_CS16[7:0]							
0×11	R	0x00	DATA_CS17[7:0]							
0×12	R	0x00	DATA_CS18[7:0]							
0×13	R	0×00	DATA_CS19[7:0]							

0x15-0x3C: Filter Sensor Data

Name: FILTER_DATA_CS
Address: $0 \times 15-0 \times 3 \mathrm{C}$
Description: These registers show RAW sensor data of each sensor from 0 to 5000 after calibration. The values of the register "Sensor Data" are the processed values of the amount of change of these registers. The bit "INT_FALCAL" in the register "Interrupt Factor" is set to 1 and calibration is performed again when this register does not become within the range from 2186 to 2814 after calibration.

The relationship between the register "Sensor Data" and the register "Filter Sensor Data" is as follows. The associated registers are the register "Sensitivity" and the register "Digital Gain".

The register "Sensor Data" =
[(The register "Filter Sensor Data" - 2500) - (315 \div The register "Sensitivity")] \div (The register "Digital Gain" + 1)

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x15	R	0x00	FDATA_CSO[15:8]							
0×16	R	0x00	FDATA_CSO[7:0]							
0×17	R	0x00	FDATA_CS1[15:8]							
0×18	R	0x00	FDATA_CS1[7:0]							
0×19	R	0x00	FDATA_CS2[15:8]							
$0 \times 1 \mathrm{~A}$	R	0x00	FDATA_CS2[7:0]							
$0 \times 1 \mathrm{~B}$	R	0x00	FDATA_CS3[15:8]							
$0 \times 1 \mathrm{C}$	R	0x00	FDATA_CS3[7:0]							
0x1D	R	0x00	FDATA_CS4[15:8]							
$0 \times 1 \mathrm{E}$	R	0x00	FDATA_CS4[7:0]							
$0 \times 1 \mathrm{~F}$	R	0x00	FDATA_CS5[15:8]							
0x20	R	0×00	FDATA_CS5[7:0]							
0×21	R	0x00	FDATA_CS6[15:8]							
0×22	R	0×00	FDATA_CS6[7:0]							
0×23	R	0x00	FDATA_CS7[15:8]							
0×24	R	0x00	FDATA_CS7[7:0]							
0×25	R	0x00	FDATA_CS8[15:8]							
0×26	R	0x00	FDATA_CS8[7:0]							
0×27	R	0x00	FDATA_CS9[15:8]							
0×28	R	0x00	FDATA_CS9[7:0]							
0×29	R	0x00	FDATA_CS10[15:8]							
$0 \times 2 \mathrm{~A}$	R	0×00	FDATA_CS10[7:0]							
$0 \times 2 \mathrm{~B}$	R	0x00	FDATA_CS11[15:8]							
$0 \times 2 \mathrm{C}$	R	0x00	FDATA_CS11[7:0]							
$0 \times 2 \mathrm{D}$	R	0×00	FDATA_CS12[15:8]							
$0 \times 2 \mathrm{E}$	R	0x00	FDATA_CS12[7:0]							
0x2F	R	0x00	FDATA_CS13[15:8]							
0×30	R	0x00	FDATA_CS13[7:0]							
0×31	R	0x00	FDATA_CS14[15:8]							
0×32	R	0x00	FDATA_CS14[7:0]							
0×33	R	0x00	FDATA_CS15[15:8]							
0×34	R	0x00	FDATA_CS15[7:0]							
0×35	R	0x00	FDATA_CS16[15:8]							
0×36	R	0x00	FDATA_CS16[7:0]							
0×37	R	0x00	FDATA_CS17[15:8]							
0×38	R	0x00	FDATA_CS17[7:0]							
0×39	R	0x00	FDATA_CS18[15:8]							
$0 \times 3 \mathrm{~A}$	R	0x00	FDATA_CS18[7:0]							
$0 \times 3 \mathrm{~B}$	R	0x00	FDATA_CS19[15:8]							
$0 \times 3 \mathrm{C}$	R	0x00	FDATA_CS19[7:0]							

0x40-0x42: Interrupt Factor

Name:	INTERRUPT
Address:	$0 \times 40-0 \times 42$

Description: These registers show the interrupt factor. The INTB pin outputs low level when the logical disjunction (hereinafter, referred to as "OR") of the register address $0 \times 40-0 \times 42$ becomes to 1 , and outputs HIZ when the result becomes 0 . In the case the bit "MLT_SW_EN" in the register "Control Mode" is set to 0 , while the OR of the register address 0×41 is 1 , the other switch operations are not detected. After the OR becomes 0 , the next switch operation is detectable.

$$
0: \text { Interrupt is undetected } 1: \text { Interrupt is detected }
$$

INT_FININI : Initialization Completion Interrupt

When the initialization of MPU is completed, this bit is set to 1 . This bit is cleared by setting 0 to the bit "CLR_INT_FININI" in the register "Clear Interrupt Factor".

INT_FINCAL : Software Calibration Completion Interrupt
When software calibration is completed, this bit is set to 1 . This bit is cleared by setting 0 to the bit "CLR_INT_FINCAL" in the register "Clear Interrupt Factor".

INT_FALCAL : Calibration Failure Interrupt
When software calibration is failed, this bit is set to 1 . This bit is cleared by setting 0 to the bit "CLR_INT_FALCAL" in the register "Clear Interrupt Factor".

INT_UNK : Unexpected Long Press Detection Interrupt
When unexpected long press is detected, this bit is set to 1 . The bit is set to 1 when the OR of the register "Unexpected Long Press Detection" is 1 . This bit is cleared by setting 0 to the register "Clear Unexpected Long Press Detection".

INT_NOISE : Noise Detection Interrupt

When the sensors detect the noise, this bit is set to 1 . This bit is cleared by setting 0 to the bit "CLR_INT_NOISE" in the register "Clear Interrupt Factor".

INT_SW_ON : Switch ON Detection Interrupt
When the OR of the register "Switch ON Detection" is 1 , this bit is set to 1 . This bit is cleared by setting 0 to the register "Clear Switch ON Detection".

INT_SW_OFF : Switch OFF Detection Interrupt
When the OR of the register "Switch OFF Detection" is 1 , this bit is set to 1 . This bit is cleared by setting 0 to the register "Clear Switch OFF Detection".

INT_HLD : Switch Long Press Detection Interrupt

When the OR of the register "Switch Long Press Detection" is 1, this bit is set to 1. This bit is cleared by setting 0 to the register "Clear Switch Long Press Detection".

INT_HLDRPT : Switch Repeated Long Press Detection Interrupt
When the OR of the register "Switch Repeated Long Press Detection" is 1, this bit is set to 1 . This bit is cleared by setting 0 to the register "Clear Switch Repeated Long Press Detection".

INT_MULT_ON : Multiple Pattern Switches ON Detection Interrupt
When the OR of the register "Multiple Pattern Switches ON Detection" is 1 , this bit is set to 1 . This bit is cleared by setting 0 to the register "Clear Multiple Pattern Switches ON Detection".

INT_MULT_OFF: Multiple Pattern Switches OFF Detection Interrupt
When the OR of the register "Multiple Pattern Switches OFF Detection" is 1 , this bit is set to 1 . This bit is cleared by setting 0 to the register "Clear Multiple Pattern Switches OFF Detection".

INT_AVDDON : AVDD ON Detection Interrupt
When AVDD voltage outputs, this bit is set to 1 . This bit is cleared by setting 0 to the bit "CLR_INT_AVDDON" in the register "Clear Interrupt Factor". This function is not for failure diagnosis of AVDD.

INT_AVDDOFF : AVDD OFF Detection Interrupt

When AVDD voltage does not output, this bit is set to 1 . This bit is cleared by setting 0 to the bit "CLR_INT_AVDDOFF" in the register "Clear Interrupt Factor". This function is not for failure diagnosis of AVDD.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x40	R	0x01	$\begin{aligned} & \text { INT_- } \\ & \text { NOISE } \end{aligned}$	INT_UNK	-	-	$\begin{gathered} \text { INT }_{-} \\ \text {FALCAL } \end{gathered}$	$\begin{aligned} & \text { INT } \\ & \text { FINCĀL } \end{aligned}$	-	$\begin{aligned} & \text { INT } \\ & \text { FININI } \end{aligned}$
0×41	R	0x00	-	-	$\begin{aligned} & \text { INT_MULT } \\ & \text { _OFF } \\ & \hline \end{aligned}$	$\begin{gathered} \text { INT_MULT } \\ \text { _ON } \\ \hline \end{gathered}$	$\begin{gathered} \text { INT } \\ \text { HLDRPT } \end{gathered}$	INT_HLD	$\begin{gathered} \mathrm{INT}^{-} \\ \text {SW_OFF } \end{gathered}$	$\begin{aligned} & \text { INT } \\ & \text { SW_ON } \end{aligned}$
0×42	R	0x00	-	-	-	-	-	-	$\begin{gathered} \text { INT } \\ \text { AVDDŌFF } \\ \hline \end{gathered}$	$\begin{gathered} \text { INT } \\ \text { AVDDON } \\ \hline \end{gathered}$

0x43-0x45: Switch ON Detection

Name: DET_ON
Address: $0 \times 43-0 \times 45$
Description: These registers show the state of each switch changed from OFF to ON. The bit "INT_SW_ON" in the register "Interrupt Factor" shows the OR of these registers. These are cleared by setting 0 to the register "Clear Switch ON Detection".
0 : ON-undetected
1: ON-detected

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×43	R	0x00	$\begin{gathered} \text { DET_ON } \\ \text { _CS } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS } 6 \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS5 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS4 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS2 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CS } 1 \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CSO } \end{gathered}$
0x44	R	0x00	$\begin{aligned} & \text { DET_ON } \\ & \text { _CS15 } \end{aligned}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS14 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CS13 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { DET_ON } \\ & \text { _CS12 } \end{aligned}$	$\begin{gathered} \text { DET_ON } \\ \text { CS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS9 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \hline \text { CS } 8 \end{gathered}$
0×45	R	0×00	-	-	-	-	$\begin{gathered} \text { DET_ON } \\ \text { CS19 } \end{gathered}$	$\begin{aligned} & \text { DET_ON } \\ & \text { CS18 } \end{aligned}$	$\begin{gathered} \text { DET_ON } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { DET_ON } \\ \text { _CS16 } \end{gathered}$

0x46-0x48: Switch OFF Detection
Name: DET_OFF
Address: $0 \times 46-0 \times 48$
Description: These registers show the state of each switch changed from ON to OFF. The bit "INT_SW_OFF" in the register Interrupt Factor shows the OR of these registers. These are cleared by setting 0 to the register "Clear Switch OFF Detection".

0: OFF-undetected 1: OFF-detected

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×46	R	0x00	$\begin{gathered} \text { DET_OFF } \\ \text { CS7 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS6 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS4 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS2 } \end{gathered}$	DET_OFF	$\begin{gathered} \text { DET_OFF } \\ \text { _CSO } \end{gathered}$
0x47	R	0x00	$\begin{gathered} \text { DET_OFF } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS } 14 \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS } 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS12 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS } 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CS } 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { _CS8 } \end{gathered}$
0×48	R	0x00	-	-	-	-	$\begin{gathered} \text { DET_OFF } \\ \text { CSS19 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CSS18 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CSS17 } \end{gathered}$	$\begin{gathered} \text { DET_OFF } \\ \text { CSS16 } \end{gathered}$

0x49-0x4B: Switch Long Press Detection

Name: DET_HLD
Address: $0 \times 49-0 \times 4 B$
Description: These registers show that long press was detected. The bit "INT_HLD" in the register "Interrupt Factor" shows the OR of these registers. These are cleared by setting 0 to the register "Clear Switch Long Press Detection". The long press detect duration is able to be set up to 7 types from A to G . The durations are set by the register "Long Press Detection Time / Repeated Long Press Detection Time". And the duration types are assigned to each sensor by the register "Long Press Detection Assignment / Unexpected Long Press Detection Assignment".

0: Long Press - undetected
1: Long Press - detected

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x49	R	0x00	$\begin{gathered} \text { DET_HLD } \\ \text { CS7 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { _CS6 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { _CS5 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { _CS4 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { _CS1 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CSO } \end{gathered}$
0x4A	R	0x00	$\begin{gathered} \text { DET_HLD } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CSS14 } \end{gathered}$	$\begin{gathered} \text { DET HLD } \\ \text { CSS13 } \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CSS12 } \end{gathered}$	$\begin{gathered} \text { DET HLD } \\ \text { CS11 } \end{gathered}$	$\begin{aligned} & \text { DET HLD } \\ & \text { CSS10 } \end{aligned}$	$\begin{gathered} \text { DET_HLD } \\ =\mathrm{CS9} \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS8 } \\ \hline \end{gathered}$
0x4B	R	0x00	-	-	-	-	$\begin{gathered} \text { DET_HLD } \\ \text { CS19 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_HLD } \\ \text { CS16 } \\ \hline \end{gathered}$

0x4C-0x4E: Switch Repeated Long Press Detection
$\begin{array}{ll}\text { Name: } & \text { DET_HLDRPT } \\ \text { Address: } & 0 \times 4 \mathrm{C}-0 \times 4 \mathrm{E}\end{array}$
Address: $0 \times 4 \overline{\mathrm{C}}-0 \times 4 \mathrm{E}$
Description: These registers show that repeated long press was detected. The bit "INT_HLD_RPT" in the register "Interrupt Factor" shows the OR of these registers. These are cleared by setting 0 to the register "Clear Switch Repeated Long Press Detection". The repeated long press detect duration is able to be set up to 7 types from A to G. The durations are set by the register "Long Press Detection Time / Repeated Long Press Detection Time". And the duration types are assigned to each sensor by the register "Long Press Detection Assignment / Unexpected Long Press Detection Assignment".

0: Repeated Long Press - undetected
1: Repeated Long Press - detected

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x4C	R	0×00	DET_HLD							
	R	0×00	RPT_CS7	RPT_CS6	RPT_CS5	RPT_CS4	RPT_CS3	RPT_CS2	RPT_CS1	RPT_CSO
			DET_HLD							
0x4D	R	0x00	RPT_CS15	RPT_CS14	RPT_CS13	RPT_CS12	RPT_CS11	RPT_CS10	RPT_CS9	RPT_CS8
0x4E	R	0x00	-	-	-	-	DET HLD	DETHLD	DET_HLD	DET HLD

0x4F: Multiple Pattern Switches ON Detection

Name: DET_MULT_ON
 Address: $0 \times 4 \mathrm{~F}$

Description: This register shows that the state of multiple pattern switches changed from OFF to ON simultaneously within the fixed time. The bit "INT_MULT_ON" in the register "Interrupt Factor" shows the OR of this register. This is cleared by setting 0 to the register "Clear Multiple Pattern Switches ON Detection". The fixed time is set by the register "Switch Detection Time". The multiple pattern switch combinations are set by the register "Multiple Pattern Switches Assignment".

0: Multiple Pattern Switches ON - undetected 1: Multiple Pattern Switches ON - detected

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x4F	R	0x00	DET_MULT ON H	DET_MULT ON G	$\begin{gathered} \text { DET_MULT } \\ \text { _ON_F } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_E } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_D } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_C } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_B } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { ON_A } \end{gathered}$

0x50: Multiple Pattern Switches OFF Detection

Name:
 DET_MULT_OFF

Address: 0×50
Description: This register shows that that the state of multiple pattern switches changed from ON to OFF simultaneously. The bit "INT_MULT_OFF" in the register "Interrupt Factor" shows the OR of this register. This is cleared by setting 0 to the register "Clear Multiple Pattern Switches OFF Detection".

0: Multiple Pattern Switches OFF - undetected 1: Multiple Pattern Switches OFF - detected

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x50	R	0x00	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_H } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_G } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_F } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_E } \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_D } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_C } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_B } \\ \hline \end{gathered}$	$\begin{gathered} \text { DET_MULT } \\ \text { OFF_A } \\ \hline \end{gathered}$

0x51-0x53: Unexpected Long Press Detection

Name: DET_UNKNOWN
Address: $0 \times 51-0 \times 53$
Description: These registers show that unexpected long press was detected. The bit "INT_UNK" in the register "Interrupt Factor" shows the OR of these registers. These are cleared by setting 0 to the register "Clear Unexpected Long Press Detection". The unexpected long press duration is set by the register "Unexpected Long Press Detection Time".

0: Unexpected Long Press - undetected 1: Unexpected Long Press - detected

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x51	R	0x00	$\begin{gathered} \text { DET_UNK } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS6 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS5 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS4 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS3 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS2 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS1 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CSO } \end{gathered}$
0x52	R	0x00	$\begin{gathered} \text { DET_UNK } \\ \text { CSS15 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS14 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS13 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS12 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS11 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS10 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS9 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CS8 } \end{gathered}$
0x53	R	0x00	-	-	-	-	$\begin{gathered} \text { DET_UNK } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS18 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { _CS17 } \end{gathered}$	$\begin{gathered} \text { DET_UNK } \\ \text { CSS16 } \end{gathered}$

0x54-0x56: Switch ON / OFF State

Name: SW_STATE
Address: $0 \times 5 \overline{4}-0 \times 56$
Description: These registers show ON / OFF state of switch. These states are the result filtered by the register "Oversampling".

$$
0: \text { OFF state } \quad 1: \text { ON state }
$$

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x54	R	0x00	$\begin{gathered} \text { SW_STAT } \\ \text { CS7 } \end{gathered}$	SW_STAT	$\begin{gathered} \text { SW_STAT } \\ \text { CS5 } \end{gathered}$	SW_STAT	$\begin{gathered} \text { SW_STAT } \\ \text { CS3 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS2 } \end{gathered}$	SW_STAT	$\begin{gathered} \text { SW_STAT } \\ \text { CSO } \end{gathered}$
0×55	R	0x00	$\begin{gathered} \text { SW_STAT } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS13 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS12 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \hline \text { CS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \hline \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS8 } \\ \hline \end{gathered}$
0×56	R	0x00	-	-	-	-	$\begin{gathered} \text { SW_STAT } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS18 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { SW_STAT } \\ \text { _CS16 } \end{gathered}$

0×57 : State of IC

Name: RUN_STATE
Address: 0x57
Description: This register shows the state of IC.
RUN_AFE: This bit shows the state of sensor.
0 : Under suspension
1: Under detection

RUN_CAL: This bit shows the state of calibration.
0 : Under no-calibration
1: Under calibration

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×57	R	0×00	-	-	-	-	-	RUN_CAL	RUN_AFE	-

0x58: Calibration Failure Number of Times

Name: NUM_FALCAL
 Address: 0x58

Description: This register shows the number of times of calibration failure. It is incremented every time calibration fails. When it reaches 255 , the next will be 0 .

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×58	R	0×00	NUM_FALCAL[7:0]							

0x5F: Firmware Version

Name: FW_VER
Address: $0 \times 5 \overline{\mathrm{~F}}$
Description: This register shows the firmware version.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1
$0 \times 5 \mathrm{~F}$	R	$0 \times 0 \mathrm{D}$	FW_VER[7:0]						

Configuration Register Description

0x60-0x64: Sensor Function

Name: SW EN CFG
Address: $0 \times 60-0 \times 64$
Description: These registers configure the function of CS pins.
CS*_SCAN_SEL[1:0] = 0x0: The CS pin becomes a capacitive sensor pin.
CS*_SCAN_SEL[1:0] = 0x1: The CS pin outputs low level.
CS*_SCAN_SEL[1:0] = 0x2: The CS pin outputs high level.
CS*_SCAN_SEL[1:0] = 0x3: The CS pin becomes the high impedance.

* represent the sensor number from 0 to 19.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1
0×60	R/W	0×00	CS3_SCAN_SEL[1:0]		CS2_SCAN_SEL[1:0]	CS1_SCAN_SEL[1:0]	CS0_SCAN_SEL[1:0]		
0×61	R/W	0×00	CS7_SCAN_SEL[1:0]	CS6_SCAN_SEL[1:0]	CS5_SCAN_SEL[1:0]	CS4_SCAN_SEL[1:0]			
0×62	R/W	0×50	CS11_SCAN_SEL[1:0]	CS10_SCAN_SEL[1:0]	CS9_SCAN_SEL[1:0]	CS8_SCAN_SEL[1:0]			
0×63	R/W	0×55	CS15_SCAN_SEL[1:0]	CS14_SCAN_SEL[1:0]	CS13_SCAN_SEL[1:0]	CS12_SCAN_SEL[1:0]			
0×64	R/W	0×55	CS19_SCAN_SEL[1:0]	CS18_SCAN_SEL[1:0]	CS17_SCAN_SEL[1:0]	CS16_SCAN_SEL[1:0]			

0x66-0x6F: Sensitivity

Name: VAL GA CFG

Address: $0 \times 66-0 \times 6 \mathrm{~F}$
Description: These registers configure the sensor sensitivity. The sensitivity adjustment is 15 steps. The smaller the setting value is, the higher the sensor sensitivity is. The sensor which has the unallowable setting value is disabled.

Allowable setting range: 0×1 (high sensitivity) \leq VAL_GA_CS* $\leq 0 \times F$ (low sensitivity)
Recommended setting range: 0×3 (high sensitivity) \leq VAL_GA_CS* $\leq 0 \times F$ (low sensitivity)

* represent the sensor number from 0 to 19.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×66	R/W	0x7F		VAL_GA_CS1[3:0]				VAL_GA_CS0[3:0]		
0×67	R/W	0x77		VAL_GA_CS3[3:0]				VAL_GA_CS2[3:0]		
0×68	R/W	0x77		VAL_GA_CS5[3:0]				VAL_GA_CS4[3:0]		
0×69	R/W	0x77		VAL_GA_CS7[3:0]				VAL_GA_CS6[3:0]		
$0 \times 6 \mathrm{~A}$	R/W	0x77		VAL_GA_CS9[3:0]				VAL_GA_CS8[3:0]		
$0 \times 6 \mathrm{~B}$	R/W	0xFF		VAL_GA_CS11[3:0]				VAL_GA_CS10[3:0]		
$0 \times 6 \mathrm{C}$	R/W	0xFF		VAL_GA_CS13[3:0]				VAL_GA_CS12[3:0]		
$0 \times 6 \mathrm{D}$	R/W	0xFF		VAL_GA_CS15[3:0]				VAL_GA_CS14[3:0]		
$0 \times 6 \mathrm{E}$	R/W	0xFF		VAL_GA_CS17[3:0]				VAL_GA_CS16[3:0]		
$0 \times 6 \mathrm{~F}$	R/W	0xFF		VAL_GA_CS19[3:0]				VAL_GA_CS18[3:0]		

0x70-0x97: Switch ON Threshold / Switch OFF Threshold

Name: VAL_TH_ON_CFG / VAL_TH_OFF_CFG
Address: 0x70-0x97
Description: These registers configure the threshold to judge the state of switch. The register "Sensor Data" is compared with these registers. The state of switch is ON when the register "Sensor Data" is larger than VAL_TH_ON_CS*. And the state of switch is OFF when the register "Sensor Data" is smaller than VAL_TH_OFF_CS*. The sensor which has the unallowable setting value is disabled.

Allowable setting value range: 0×03 < VAL_TH_OFF_CS* < VAL_TH_ON_CS* < OxFF
Recommended setting value range: $0 \times 40 \leq$ VAL_TH_ON_CS* $\leq 0 \times E 0$

$$
0 \times 20 \leq \text { VAL_TH_OFF_CS* }
$$

* represent the sensor number from 0 to 19.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x70	R/W	0xC8	VAL_TH_ON_CSO[7:0]							
0x71	R/W	0x64	VAL_TH_OFF_CSO[7:0]							
0x72	R/W	0xC8	VAL_TH_ON_CS1[7:0]							
0x73	R/W	0x64	VAL_TH_OFF_CS1[7:0]							
0x74	R/W	0xC8	VAL_TH_ON_CS2[7:0]							
0x75	R/W	0x64	VAL_TH_OFF_CS2[7:0]							
0x76	R/W	0xC8	VAL_TH_ON_CS3[7:0]							
0x77	R/W	0x64	VAL_TH_OFF_CS3[7:0]							
0x78	R/W	0xC8	VAL_TH_ON_CS4[7:0]							
0x79	R/W	0x64	VAL_TH_OFF_CS4[7:0]							
0x7A	R/W	0xC8	VAL_TH_ON_CS5[7:0]							
$0 \times 7 \mathrm{~B}$	R/W	0x64	VAL_TH_OFF_CS5[7:0]							
0x7C	R/W	0xC8	VAL_TH_ON_CS6[7:0]							
0x7D	R/W	0x64	VAL_TH_OFF_CS6[7:0]							
0x7E	R/W	0xC8	VAL_TH_ON_CS7[7:0]							
0x7F	R/W	0x64	VAL_TH_OFF_CS7[7:0]							
0x80	R/W	0xC8	VAL_TH_ON_CS8[7:0]							
0×81	R/W	0x64	VAL_TH_OFF_CS8[7:0]							
0×82	R/W	0xC8	VAL_TH_ON_CS9[7:0]							
0×83	R/W	0x64	VAL_TH_OFF_CS9[7:0]							
0×84	R/W	0xC8	VAL_TH_ON_CS10[7:0]							
0×85	R/W	0x64	VAL_TH_OFF_CS10[7:0]							
0×86	R/W	0xC8	VAL_TH_ON_CS11[7:0]							
0x87	R/W	0x64	VAL_TH_OFF_CS11[7:0]							
0×88	R/W	0xC8	VAL_TH_ON_CS12[7:0]							
0x89	R/W	0x64	VAL_TH_OFF_CS12[7:0]							
$0 \times 8 \mathrm{~A}$	R/W	0xC8	VAL_TH_ON_CS13[7:0]							
$0 \times 8 \mathrm{~B}$	R/W	0x64	VAL_TH_OFF_CS13[7:0]							
$0 \times 8 \mathrm{C}$	R/W	0xC8	VAL_TH_ON_CS14[7:0]							
$0 \times 8 \mathrm{D}$	R/W	0x64	VAL_TH_OFF_CS14[7:0]							
$0 \times 8 \mathrm{E}$	R/W	0xC8	VAL_TH_ON_CS15[7:0]							
0x8F	R/W	0x64	VAL_TH_OFF_CS15[7:0]							
0x90	R/W	0xC8	VAL_TH_ON_CS16[7:0]							
0×91	R/W	0x64	VAL_TH_OFF_CS16[7:0]							
0×92	R/W	0xC8	VAL_TH_ON_CS17[7:0]							
0x93	R/W	0x64	VAL_TH_OFF_CS17[7:0]							
0×94	R/W	0xC8	VAL_TH_ON_CS18[7:0]							
0x95	R/W	0x64	VAL_TH_OFF_CS18[7:0]							
0x96	R/W	0xC8	VAL_TH_ON_CS19[7:0]							
0x97	R/W	0x64	VAL_TH_OFF_CS19[7:0]							

0x98: Digital Gain

Name: GA_DIGI_CFG
Address: 0x98
Description: This register configures low sensitivity. This is used to set lower sensitivity than the setting value of the register "Sensitivity".

The register "Sensor Data" =
[(The register "Filter Sensor Data" - 2500) - ($315 \div$ The register "Sensitivity")] \div (The register "Digital Gain" +1)

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×98	R/W	0×30	VAL_ADJ_DAT[3:0]					-	-	-

0x99: Sampling Frequency

Name: SENS_CFG

Address: 0x99
Description: This register configures the sampling frequency.
TIM_AFE[2:0]: The Setting of Sampling Frequency
The detect duration per one sensor is like below.

TIM_AFE[2:0]=0x0 : Sampling frequency $=1563 \mathrm{kHz}$
TIM_AFE[2:0]=0x1 : Sampling frequency $=1024 \mathrm{kHz}$
TIM_AFE[2:0]=0x2 : Sampling frequency $=781 \mathrm{kHz}$
TIM_AFE[2:0]=0x3: Sampling frequency $=391 \mathrm{kHz}$
TIM_AFE[2:0]=0x4 : Sampling frequency $=298 \mathrm{kHz}$
TIM_AFE[2:0]=0x5 : Sampling frequency $=195 \mathrm{kHz}$
TIM_AFE[2:0]=0x6 : Sampling frequency $=156 \mathrm{kHz}$
TIM_AFE[2:0]=0x7 : Sampling frequency $=130 \mathrm{kHz}$

Detection duration per one sensor $=0.2054 \mathrm{~ms}$
Detection duration per one sensor $=0.3082 \mathrm{~ms}$ Detection duration per one sensor $=0.4109 \mathrm{~ms}$ Detection duration per one sensor $=0.8218 \mathrm{~ms}$ Detection duration per one sensor $=1.0786 \mathrm{~ms}$ Detection duration per one sensor $=1.6435 \mathrm{~ms}$ Detection duration per one sensor $=2.0544 \mathrm{~ms}$ Detection duration per one sensor $=2.4653 \mathrm{~ms}$

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×99	R/W	0x50	-		TIM_AFE[2:0]				-	-

0x9A: Filter Tap
Name: FIL_CFG
Address: 0x9A
Description: This register configures the filter for the register "Sensor Data". This configures the median filter tap and the kinds of sampling frequency. The sampling frequencies are modulated from the base frequency set by the register "Sampling Frequency".

FIL_CFG[2:0]=0x0: 1 kind (base frequency) of sampling frequency is used.
Median filter tap length=1
FIL_CFG[2:0]=0x1: 3 kinds $(+6 \%, \pm 0 \%,-6 \%)$ of sampling frequency is used.
Median filter tap length=3
FIL_CFG[2:0]=0x2 : 5 kinds(+6\%, $+3 \%, \pm 0 \%,-3 \%,-6 \%)$ of sampling frequency is used.
Median filter tap length $=5$
FIL_CFG[2:0]=0x3: 7 kinds $(+6 \%,+4 \%,+2 \%, \pm 0 \%,-2 \%,-4 \%,-6 \%)$ of sampling frequency is used. Median filter tap length=7
FIL_CFG[2:0]=0x4: 7 kinds $(+6 \%,+4 \%,+2 \%, \pm 0 \%,-2 \%,-4 \%,-6 \%)$ of sampling frequency is used. Median filter tap length=9
FIL_CFG[2:0] $=0 \times 5: \quad 7$ kinds $(+6 \%,+4 \%,+2 \%, \pm 0 \%,-2 \%,-4 \%,-6 \%)$ of sampling frequency is used. Median filter tap length=11
FIL_CFG[2:0]=0x6: 7 kinds $(+6 \%,+4 \%,+2 \%, \pm 0 \%,-2 \%,-4 \%,-6 \%)$ of sampling frequency is used. Median filter tap length=13
FIL_CFG[2:0]=0x7: 7 kinds $(+6 \%,+4 \%,+2 \%, \pm 0 \%,-2 \%,-4 \%,-6 \%)$ of sampling frequency is used. Median filter tap length $=15$

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1
0x9A	R/W	0×03	-	-	-	-	-	Bit0	

0x9B: Control Mode

Name: MODE_CFG
Address: 0x9B
Description: This register configures the functions for calibration and sensor.
SCAN_SEL: Sensor High Impedance
This bit configures the states of enabled sensors during the other sensor is sensing.
0 : Sensor outputs low.
1: Sensor becomes high impedance.

ADJ_OFS_ENB: Offset Calibration
This bit configures whether the offset calibration to the register "Filter Sensor Data" is performed or not.
0 : Offset calibration is enabled.
1: Offset calibration is disabled.

UNK_CAL_EN: Unexpected Long Press Calibration
This bit configures whether automatic calibration is performed when unexpected long press is detected. This calibration is effective only to the unexpected long press switches.

0: Unexpected Long Press Calibration is disabled. 1: Unexpected Long Press Calibration is enabled.

LOWER_CAL_EN: Lower Calibration

This bit configures whether automatic calibration is performed when the data of the register "Filter Sensor Data" is smaller than the reference value. When the offset calibration is enabled, this calibration is disabled.

$$
\text { 0: Lower Calibration is disabled. } 1 \text { : Lower Calibration is enabled. }
$$

CAL_SFT_EN: Sampling Frequency Modulation

This bit configures whether frequency modulation is performed when calibration fails.
$0:$ Frequency modulation is disabled. 1: Frequency modulation is enabled.
MLT_SW_EN: Multiple Switches Control
This bit configures whether multiple switches are usable at the same time. In the case multiple switches are usable, the register "Switch Detection Time" and "Multiple Pattern Switches Assignment" are disabled.

0 : Multiple switches are unusable. $1:$ Multiple switches are usable.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
$0 \times 9 \mathrm{~B}$	R/W	0x80	$\begin{gathered} \text { MLT_SW } \\ \text { EN } \end{gathered}$	-	-	$\begin{gathered} \text { CAL_SFT } \\ \text { EN } \end{gathered}$	LOWER CAL_EN	$\begin{gathered} \text { UNK_CAL } \\ \text { EN } \end{gathered}$	$\begin{gathered} \text { ADJ_OFS } \\ \text { ENB } \end{gathered}$	SCAN_SEL

0x9C: Oversampling

Name: OST_CFG
Address: 0x9C
Description: This register configures the number of oversampling to reject chattering. The result is reflected to the register "Switch ON Detection" and "Switch OFF Detection" when ON / OFF judgment is same as "OST[3:0]+1" times.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×9C	R/W	0×03	-	-	-	-		OST[3:0]		

0x9D: Drift Calibration

Name: DRIFT_CAL_CFG
Address: 0x9D
Description: This register configures the calibration to be performed at detecting the drift state.

ADJ_DET_NUM[4:0]: Drift Calibration Condition

When the register "Sensor Data" is larger than a quarter value of the register "Switch ON Threshold" or a value of the register "Switch OFF Threshold", the sensor is recognized as the drift state sensor. When the number of the drift state sensors is larger than ADJ_DET_NUM[4:0], drift state is detected and calibration is performed.

ADJ_ALL_EN: Drift Calibration Selection

In the case this bit is set to 0 , the drift calibration is performed except the sensor with switch ON state. In the case this bit is set to 1 , the drift calibration is performed for all sensors regardless of switch ON / OFF state.

0: The drift calibration is performed except the sensors with switch ON state.
1: The drift calibration is performed for all sensors regardless of switch ON / OFF state.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0×9D	R/W	0×09	ADJ_ALL EN	-	-		ADJ_DET_NUM[4:0]			

0x9E: Noise Calibration

Name: NOISE_CAL_CFG
Address: 0x9E
Description: This register configures the calibration to be performed at detecting the noise state.
NOISE_DET_NUM[4:0]: Noise Calibration Condition
When the plural sensors are simultaneously the switch ON state, the sensors are recognized as the noise state sensor. When the number of the noise state sensors is larger than ADJ_DET_NUM[4:0], noise state is detected and calibration is performed.

NOISE_SFT_EN: Noise Shift Configuration
The noise calibration is performed without the shift of sampling frequency in the case this bit is set to 0 . The calibration is performed after shifting sampling frequency in the case this bit is set to 1 .

0 : Only noise calibration is performed.
1: The noise calibration is performed after shifting sampling frequency.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1
$0 \times 9 E$	R/W	0×89	NOISE _SFT_EN	-	-		BOIS0		

0x9F: Periodical Calibration
Name: TIME_PERCAL_CFG
Address: 0x9F
Description: This register configures the interval time of the periodical calibration. In the case this register is set to 0 , the periodical calibration is not performed. The periodical calibration is performed for the sensors whose the register "Sensor Data" is not larger than the register "Switch ON Threshold".

Interval time of the periodical calibration = TIME_PERCAL[7:0] x Approximately 5s

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x9F	R/W	0x3C				TIME PERCAL[7:0]				

0xA2-0xA3: Unexpected Long Press Detection Time

Name: TIME_UNKNOWN_CFG
Address: 0xA2-0xA3
Description: These registers configure the time until detecting unexpected long press. The data 1 is set to the register "Unexpected Long Press Detection" when unexpected long press is detected. Until unexpected long press is avoided, the unexpected long press is repeatedly detected each configured time.

The time until detecting unexpected long press = TIME_UNKNOWN_*[7:0] x Approximately 1s In the case TIME_UNKNOWN_*[7:0] is set to 0 , unexpected long press is not detected.

* represent the setting number A and B.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
$0 \times A 2$	R/W	0x00	TIME_UNKNOWN_A[7:0]							
$0 \times A 3$	R/W	0x00	TIME_UNKNOWN_B[7:0]							

0xA4-0xB1: Long Press Detection Time / Repeated Long Press Detection Time
Name: TIME_HLD_CFG
Address: 0xA4-0xB1
Description: Pressing the switch for a fixed time is referred to as "long press". After first long press is detected, subsequent long pressing is referred to as "repeated long press". These registers configure the time until detecting long press and repeated long press. The data 1 is set to the register "Switch Long Press Detection" when long press is detected. And the data 1 is set to the register "Switch Repeated Long Press Detection" when repeated long press is detected.

The time until detecting long press $=$ TIME_HLD_*[7:0] x Approximately 0.1 s In the case TIME_HLD_*[7:0] is set to 0 , long press is not detected.

The time until detecting repeated long press = TIME_HLD_RPT_*[7:0] x Approximately 0.1 s In the case TIME_HLD_RPT_*[7:0] is set to 0 , repeated long press is not detected.

* represent the setting number from A to G .

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xA4	R/W	0x00	TIME_HLD_A[7:0]							
0xA5	R/W	0x00	TIME_HLD_RPT_A[7:0]							
0xA6	R/W	0x00	TIME_HLD_B[7:0]							
0xA7	R/W	0x00	TIME_HLD_RPT_B[7:0]							
0xA8	R/W	0x00	TIME_HLD_C[7:0]							
$0 \times A 9$	R/W	0x00	TIME_HLD_RPT_C[7:0]							
0xAA	R/W	0x00	TIME_HLD_D[7:0]							
$0 \times A B$	R/W	0x00	TIME_HLD_RPT_D[7:0]							
$0 \times A C$	R/W	0x00	TIME_HLD_E[7:0]							
OxAD	R/W	0x00	TIME_HLD_RPT_E[7:0]							
0xAE	R/W	0x00	TIME_HLD_F[7:0]							
0xAF	R/W	0x00	TIME_HLD_RPT_F[7:0]							
$0 \times B 0$	R/W	0x00	TIME_HLD_G[7:0]							
0xB1	R/W	0x00	TIME_HLD_RPT_G[7:0]							

0xB2-0xBB: Long Press Detection Assignment / Unexpected Long Press Detection Assignment
Name: SENS_HLD_CFG
Address: 0xB2-0xBB
Description: These registers assign the settings of the register "Long Press Detection Time / Repeated Long Press Detection Time" and "Unexpected Long Press Detection Time" to each sensor.

HLD_CS*[2:0] = 0x0: Long press and repeated long press are not detected to CS*. = 0x1: Long press A and repeated long press A are assigned to CS*. $=0 \times 2$: Long press B and repeated long press B are assigned to CS*. $=0 \times 3$: Long press C and repeated long press C are assigned to CS** $=0 \times 4$: Long press D and repeated long press D are assigned to CS* *. $=0 \times 5$: Long press E and repeated long press E are assigned to CS*. $=0 \times 6$: Long press F and repeated long press F are assigned to CS*. $=0 x 7$: Long press G and repeated long press G are assigned to CS*.

UNK_CS* $=0 \times 0$: Unexpected long press A is assigned to CS^{*}. $=0 \times 1$: Unexpected long press B is assigned to CS*.

* represent the sensor number from 0 to 19.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xB2	R/W	0x00	UNK_CS1		HLD_CS1[2:0]		UNK_CS0		HLD_CSO[2:0]	
$0 \times B 3$	R/W	0x00	UNK_CS3		HLD_CS3[2:0]		UNK_CS2		HLD_CS2[2:0]	
0xB4	R/W	0x00	UNK_CS5		HLD_CS5[2:0]		UNK_CS4		HLD_CS4[2:0]	
$0 \times B 5$	R/W	0x00	UNK_CS7		HLD_CS7[2:0]		UNK_CS6		HLD_CS6[2:0]	
$0 \times B 6$	R/W	0x00	UNK_CS9		HLD_CS9[2:0]		UNK_CS8		HLD_CS8[2:0]	
$0 \times B 7$	R/W	0x00	UNK_CS11		HLD_CS11[2:0]		UNK_CS10		HLD_CS10[2:0]	
$0 \times B 8$	R/W	0x00	UNK_CS13		HLD_CS12[2:0]		UNK_CS12		HLD_CS12[2:0]	
$0 \times B 9$	R/W	0x00	UNK_CS15		HLD_CS15[2:0]		UNK_CS14		HLD_CS14[2:0]	
0xBA	R/W	0x00	UNK_CS17		HLD_CS17[2:0]		UNK_CS16		HLD_CS16[2:0]	
0xBB	R/W	0×00	UNK_CS19		HLD_CS19[2:0]		UNK_CS18		HLD_CS18[2:0]	

0xBC: Switch Detection Time

Name: TIME_DET_CFG
Address: 0xBC
Description: This register configures the time until detecting ON state. IC recognizes the ON state after the delay time by median filter and this function. Second touch is not detected until clearing the interrupt of first touch. Pressing simultaneously within the time is detected as a multiple pattern switch.

The time until detecting the ON state of switch = TIME_DET[7:0] x Approximately 10 ms

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0xBC	R/W	0×00										

0xBD-0xD4: Multiple Pattern Switches Assignment

Name:
 SENS_MULT_CFG

Address: 0xBD-0xD4
Description: These registers configure the combinations of multiple pattern switches detection. The multiple pattern switch combinations are able to be set up to 8 types from A to H . In the case the same combinations are set in 8 types, the combination settings are invalid.

MULT_A_CS* $=0$: CS* * is not assigned to multiple pattern switches A. MULT_A_CS* $=1$: CS* is assigned to multiple pattern switches A.
MULT_B_CS* $=0$: CS* is not assigned to multiple pattern switches B. MULT_B_CS* $=1: C^{*}$ is assigned to multiple pattern switches B.
MULT_C_CS* $=0$: CS* is not assigned to multiple pattern switches C. MULT_C_CS* $=1$: C^{*} is assigned to multiple pattern switches C.
MULT_D_CS* $=0$: CS* * is not assigned to multiple pattern switches D. MULT_D_CS* $=1: C^{*}$ is assigned to multiple pattern switches D.
MULT_E_CS* $=0$: CS* is not assigned to multiple pattern switches E . MULT_E_CS* $=1$: CS * is assigned to multiple pattern switches E.
MULT_F_CS* $=0$: CS* is not assigned to multiple pattern switches F. MULT_F_CS* $=1:$ CS* * is assigned to multiple pattern switches F.
MULT_G_CS* $=0$: CS * is not assigned to multiple pattern switches G. MULT_G_CS* $=1:$ CS* * is assigned to multiple pattern switches G.
MULT_H_CS* $=0$: CS* is not assigned to multiple pattern switches H . MULT_H_CS*=1: CS* is assigned to multiple pattern switches H .

* represent the sensor number from 0 to 19.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xBD	R/W	0x00	$\begin{gathered} \text { MULT_A } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { MULT-A } \\ \text { _CS } 6 \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS5 }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS } 4 \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS } 3 \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS1 }^{-1} \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CSO }^{\mathrm{A}} \end{gathered}$
0xBE	R/W	0x00	$\begin{aligned} & \text { MULT_A } \\ & \text { CS15 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { MULT_A } \\ \text { CS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS13 } \\ \hline \end{gathered}$	MULT_A CS12	$\begin{gathered} \text { MULT_A } \\ \text { CS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \hline \text { CS9 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS8 } \end{gathered}$
0xBF	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_A } \\ \text { CS19 } \end{gathered}$	MULT_A CS18	$\begin{gathered} \text { MULT_A } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { MULT_A } \\ \text { CS16 } \end{gathered}$
0xC0	R/W	0x00	$\begin{gathered} \text { MULT_B } \\ \hline \mathrm{CS}^{2} \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \mathrm{CS}^{\mathrm{CS}} \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ C^{\text {CS5 }} \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \quad \text { CS } 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \mathrm{CS}^{3} \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ { }^{\text {CS } 2} \end{gathered}$	MULT_B CS1	$\begin{gathered} \text { MULT_B } \\ C^{\text {CSO }} \end{gathered}$
$0 x C 1$	R/W	0x00	$\begin{gathered} \text { MULT_B } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS12 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ { }^{\text {CS9 }} \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { CS8 } \end{gathered}$
0xC2	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_B } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_B } \\ \text { _CS18 } \end{gathered}$	$\begin{aligned} & \text { MULT_B } \\ & \text { CS17 } \end{aligned}$	$\begin{gathered} \text { MULT_B } \\ \text { CS16 } \end{gathered}$
$0 \times C 3$	R/W	0x00	$\begin{gathered} \mathrm{MULT}=\mathrm{C} \\ \mathrm{CSF}^{2} \end{gathered}$	$\begin{gathered} \mathrm{MULT}-\mathrm{C} \\ \mathrm{CS}_{6} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS5 }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }^{\text {CS }} 4 \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }_{C S}{ }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }_{\text {_CS2 }} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { _CS }^{-1} \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ { }_{C S O}^{0} \end{gathered}$
0xC4	R/W	0x00	$\begin{gathered} \text { MULT_C } \\ \text { CS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS12 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \hline \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \hline \mathrm{CS9} 9 \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CSS } 8 \end{gathered}$
0xC5	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_C } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \hline \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_C } \\ \text { CS16 } \end{gathered}$
0xC6	R/W	0x00	$\begin{gathered} \text { MULT_D } \\ { }^{\text {CS7 }} \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS5 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \hline \text { CS4 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \quad \text { CS3 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ =\mathrm{CS} 1 \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ C^{C S 0} \end{gathered}$
0xC7	R/W	0x00	$\begin{aligned} & \text { MULT_D } \\ & \text { CSS15 } \end{aligned}$	$\begin{gathered} \text { MULT_D } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CSS12 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS11 } \end{gathered}$	$\begin{aligned} & \text { MULT_D } \\ & \text { _CS10 } \end{aligned}$	$\begin{gathered} \text { MULT_D } \\ \mathrm{CSO}^{-1} \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ C^{\text {CS }} \end{gathered}$
0xC8	R/W	0x00	-	-	-	-	$\begin{gathered} \hline \text { MULT_D } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS18 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { MULT_D } \\ \text { CS16 } \end{gathered}$
0xC9	R/W	0x00	$\begin{gathered} \text { MULT_E } \\ \mathrm{CS}^{2} \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ C^{C S} \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS5 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ { }^{\text {CS } 4} \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS } 3 \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CSO } \\ \hline \end{gathered}$
0xCA	R/W	0x00	$\begin{gathered} \text { MULT_E } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ C^{C S 9} \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { CS } 8 \end{gathered}$
0xCB	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_E } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_E } \\ \text { _CS18 } \end{gathered}$	$\begin{aligned} & \text { MULT_E } \\ & \text { CS17 } \end{aligned}$	$\begin{gathered} \text { MULT_E } \\ \text { CS16 } \end{gathered}$
0xCC	R/W	0x00	$\begin{gathered} \text { MULT_F } \\ \text { _CS7 } \end{gathered}$	$\begin{gathered} \text { MULT-F } \\ \text { CSS6 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS5 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { _CS } 4 \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \mathrm{CS}^{\mathrm{CS}} \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { _CS2 }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ { }^{\text {CS } 1} \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ C^{C S} \overline{0} \end{gathered}$
0xCD	R/W	0x00	$\begin{gathered} \text { MULT_F } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { _CS9 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ { }_{C S} \mathrm{CS} \end{gathered}$
0xCE	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_F } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ { }^{\text {CS17 }} \end{gathered}$	$\begin{gathered} \text { MULT_F } \\ \text { CS16 } \end{gathered}$
0xCF	R/W	0x00	$\begin{gathered} \text { MULT_G } \\ { }^{\text {CS7 }} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CSS5 }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \hline \text { CS } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \mathrm{CS}^{\mathrm{CS}} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ C^{C S} 2 \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ C^{C S 1} \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \mathrm{CSO}^{-1} \end{gathered}$
0xD0	R/W	0x00	$\begin{gathered} \text { MULT_G } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS9 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CSS }^{\text {C }} \end{gathered}$
$0 x D 1$	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_G } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS18 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { MULT_G } \\ \text { CS16 } \end{gathered}$
0xD2	R/W	0x00	$\begin{gathered} \text { MULT_H } \\ \mathrm{CSF}^{2} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CS}_{6} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS5 }^{2} \end{gathered}$	$\underset{\text { _MULT_H }}{\substack{\text { CS }}}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CS}_{3} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CS}^{1} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CSO}^{-} \end{gathered}$
0xD3	R/W	0×00	$\begin{gathered} \text { MULT_H } \\ { }_{C S S}{ }^{2} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \text { CS13 } \end{gathered}$	$\begin{aligned} & \text { MULT_H } \\ & \text { CS12 } \end{aligned}$	$\begin{gathered} \text { MULT_H } \\ C_{C S 11} \end{gathered}$	$\begin{aligned} & \text { MULT_H } \\ & \text { CS10 } \end{aligned}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CS}^{\mathrm{CS}} \end{gathered}$	$\begin{gathered} \text { MULT_H } \\ \mathrm{CS}^{\mathrm{CS}} \end{gathered}$
$0 x D 4$	R/W	0x00	-	-	-	-	$\begin{gathered} \text { MULT_H } \\ \text { CS19 } \end{gathered}$	$\begin{aligned} & \text { MULT_H } \\ & \text { _CS18 } \end{aligned}$	$\begin{aligned} & \text { MULT_H } \\ & \text { _CS17 } \end{aligned}$	$\begin{aligned} & \text { MULT_H } \\ & \text { CS16 } \end{aligned}$

0xD5-0xD6: Mask Interrupt Factor

Name: MSK_INTERRUPT_CFG

Address: 0xD5-0xD6
Description: These registers are for masking the interrupt of the register "Interrupt Factor". In the case mask is set to 1, Interrupt is not reflected to the register "Interrupt Factor".

0 : Interrupt is not masked 1 : Interrupt is masked
MSK_INT_FINCAL : Mask Software Calibration Completion Interrupt In the case this bit is set to 1, interrupt is not reflected to the bit "INT_FINCAL" in the register "Interrupt Factor".

MSK_INT_FALCAL
: Mask Software Calibration Failure Interrupt
In the case this bit is set to 1 , interrupt is not reflected to the bit "INT_FALCAL" in the register "Interrupt Factor".

MSK_INT_NOISE

MSK_INT_AVDDON

MSK_INT_AVDDOFF

: Mask Noise Detection Interrupt

In the case this bit is set to 1 , interrupt is not reflected to the bit "INT_NOISE" in the register "Interrupt Factor".

: Mask AVDD ON Detection Interrupt

In the case this bit is set to 1, interrupt is not reflected to the bit "INT_AVDDON" in the register "Interrupt Factor".

Mask AVDD OFF Detection Interrupt
In the case this bit is set to 1 interrupt is not reflected to the bit "INT_AVDDOFF" in the register "Interrupt Factor".

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xD5	R/W	0×00	MSK_INT NOISE	-	-	-	MSK_INT FALCAL	MSK_INT FINCAL	-	
$0 \times D 6$	R/W	0×00	-	-	-	-	-	-	MSK_INT AVDDOFF	MSK_INT AVDDON

0xD7-0xD9: Mask Switch ON Detection

Name: MSK_DET_ON_CFG
Address: 0xD7-0xD9
Description: These register are for masking the interrupt of the register "Switch ON Detection". If these bits are set to 1, interrupt is not reflected to the register "Switch ON Detection".

0 : Interrupt is not masked $\quad 1$: Interrupt is masked

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xD7	R/W	0x00	$\begin{aligned} & \hline \text { MSK_DET } \\ & \hline \text { ON_CS7 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { MSK_DET } \\ \text { ON_CS6 } \end{gathered}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \hline \text { ON_CS5 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { MSK_DET } \\ \text { ON_CS4 } \end{gathered}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { _ON_CS3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { _ON_CS2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { _ON_CS1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { ON_CSO } \\ & \hline \end{aligned}$
0xD8	R/W	0x00	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS15 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS14 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS13 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS12 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS11 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \hline \text { ON_CS9 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _ON_CS8 } \\ & \hline \end{aligned}$
0xD9	R/W	0x00	-	-	-	-	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { _ON_CS19 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS18 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS17 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { ON_CS16 } \end{aligned}$

0xDA-0xDC: Mask Switch OFF Detection

Name: MSK_DET_OFF_CFG
Address: 0xDA-0xDC
Description: These register are for masking the interrupt of the register "Switch OFF Detection". If these bits are set to 1, interrupt is not reflected to the register "Switch OFF Detection".

0 : Interrupt is not masked
1: Interrupt is masked

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xDA	R/W	0×00	$\begin{aligned} & \text { MSK_DET } \\ & \text { _OFF_CS7 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _OFF_CS6 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS5 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _OFF_CS4 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _OFF_CS3 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { _OFF_CS2 } \\ & \hline \end{aligned}$	MSK_DET OFF_CS1	$\begin{aligned} & \text { MSK_DET } \\ & \text { _OFF_CS0 } \end{aligned}$
0xDB	R/W	0x00	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { _OFF_CS15 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS14 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { OFF_CS13 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS12 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS11 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS10 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { _OFF_CS9 } \end{aligned}$	$\begin{aligned} & \hline \text { MSK_DET } \\ & \text { _OFF_CS8 } \end{aligned}$
0xDC	R/W	0x00	-	-	-	-	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS19 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS18 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS17 } \end{aligned}$	$\begin{aligned} & \text { MSK_DET } \\ & \text { OFF_CS16 } \end{aligned}$

0xDD-0xDF: Mask Unexpected Long Press Detection

Name: MSK_DET_UNKNOWN_CFG
Address: 0xDD-0xDF
Description: These registers are for masking the interrupt are the register "Unexpected Long Press Detection". If these bits are set to 1, interrupt is not reflected to the register "Unexpected Long Press Detection".

0 : Interrupt is not masked $\quad 1$: Interrupt is masked

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
$0 \times D \mathrm{D}$	R/W	0x00	$\begin{gathered} \text { MSK_UNK } \\ \text { _CS7 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { _CS6 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS5 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSK_UNK } \\ \text { CS4 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { _CS3 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { _CS1 } \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CSO } \end{gathered}$
0xDE	R/W	0x00	$\begin{gathered} \text { MSK_UNK } \\ \text { CSS15 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CSS14 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS13 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSK_UNK } \\ \text { CS12 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSK_UNK } \\ \text { CSS11 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS10 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS8 } \\ \hline \end{gathered}$
0xDF	R/W	0x00	-	- -			$\begin{gathered} \text { MSK_UNK } \\ \text { CSS19 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CSS18 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS17 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSK_UNK } \\ \text { CS16 } \\ \hline \end{gathered}$

Command Register Description

0xE0-0xE1: Clear Interrupt Factor
Name: CLR_INTERRUPT_CMD
Address: 0xE0-0xE1
Description: These are for clearing the interrupt of the register "Interrupt Factor".
0 : Interrupt is cleared 1 : Interrupt is not cleared
CLR_INT_FININI : Clear Initialization Completion Interrupt
This bit is for clearing the bit "INT_FININI" in the register "Interrupt Factor".
CLR_INT_FINCAL : Clear Software Calibration Completion Interrupt
This bit is for clearing the bit "INT_FINCAL" in the register "Interrupt Factor".
CLR_INT_FALCAL : Clear Software Calibration Failure Interrupt
This bit is for clearing the bit "INT_FALCAL" in the register "Interrupt Factor".
CLR_INT_NOISE : Clear Noise Detection Interrupt
This bit is for clearing the bit "INT_NOISE" in the register "Interrupt Factor".
CLR_INT_AVDDON : Clear AVDD ON Detection Interrupt
This bit is for clearing the bit "INT_AVDDON" in the register "Interrupt Factor".
CLR_INT_AVDDOFF : Clear AVDD OFF Detection Interrupt
This bit is for clearing the bit "INT_AVDDOFF" in the register "Interrupt Factor".

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE0	R/W	0x00	CLR INT NOISE	-	-	-	CLR INT FALCAL	CLR INT FINCAL	-	CLR_INT FININI
0xE1	R/W	0x00	-	-	-	-	-	-	$\begin{aligned} & \text { CLR_INT } \\ & \text { AVDEDOFF } \\ & \hline \end{aligned}$	CLR_INT AVDDON

0xE2-0xE4: Clear Switch ON Detection
Name: CLR_DET_ON_CMD
Address: $0 \times E \overline{2-0 x E} \overline{4}$
Description: These registers are for clearing the interrupt of the register "Switch ON Detection".
0 : Interrupt is cleared 1 : Interrupt is not cleared

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE2	R/W	0x00	$\begin{aligned} & \text { CLR_DET } \\ & \text { _ON_CS7 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { _ON_CS6 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { _ON_CS5 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { _ON_CS4 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { _ON_CS3 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { _ON_CS2 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { _ON_CS1 } \end{aligned}$	$\begin{aligned} & \hline \text { CLR_DET } \\ & \text { _ON_CSO } \end{aligned}$
0xE3	R/W	0x00	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS15 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS14 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS13 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS12 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS11 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS10 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS9 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS8 } \\ & \hline \end{aligned}$
0xE4	R/W	0x00	-	-	-	-	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS19 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS18 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS17 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { ON_CS16 } \end{aligned}$

0xE5-0xE7: Clear Switch OFF Detection
Name: CLR_DET_OFF_CMD
Address: $0 \times \mathrm{E} 5-0 \times \mathrm{E} \overline{7}$
Description: These registers are for clearing the interrupt of the register "Switch OFF Detection".
0 : Interrupt is cleared 1 : Interrupt is not cleared

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE5	R/W	0x00	CLR_DET OFF CS7	CLR_DET OFF CS6	CLR_DET OFF_CS5	CLR_DET OFF CS4	CLR_DET OFF CS3	CLR_DET OFF CS2	$\begin{aligned} & \text { CLR_DET } \\ & \text { _OFF_CS1 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { _OFF_CSO } \end{aligned}$
0xE6	R/W	0x00	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS15 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS14 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS13 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS12 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS11 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS10 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { _OFF_CS9 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS8 } \end{aligned}$
0xE7	R/W	0x00	-	-		-	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS19 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS18 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { _OFF_CS17 } \end{aligned}$	$\begin{aligned} & \text { CLR_DET } \\ & \text { OFF_CS16 } \end{aligned}$

0xE8-0xEA: Clear Switch Long Press Detection

Name: CLR_DET_HLD_CMD
Address: 0xE8-0xEA
Description: These registers are for clearing the interrupt of the register "Switch Long Press Detection".
0 : Interrupt is cleared
1: Interrupt is not cleared

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xE8	R/W	0x00	$\begin{gathered} \text { CLR_HLD } \\ \text { CS7 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS5 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS4 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS3 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS2 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS1 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CSO } \end{gathered}$
0xE9	R/W	0x00	$\begin{gathered} \text { CLR_HLD } \\ \text { CS15 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS13 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS12 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS11 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS10 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS9 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS8 } \end{gathered}$
0xEA	R/W	0x00	-	-	-	-	$\begin{gathered} \text { CLR_HLD } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { _CS18 } \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CSS17 }^{2} \end{gathered}$	$\begin{gathered} \text { CLR_HLD } \\ \text { CS } 16 \end{gathered}$

0xEB-0xED: Clear Switch Repeated Long Press Detection

Name: CLR_DET_HLDRPT
Address: $0 x E \bar{B}-0 x E \bar{D}$
Description: These registers are for clearing the interrupt of the register "Switch Repeated Long Press Detection".
0 : Interrupt is cleared 1 : Interrupt is not cleared

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xEB	R/W	0×00	CLR_HLD							
OxEB	R/W	0×00	RPT_CS7	RPT_CS6	RPT_CS5	RPT_CS4	RPT_CS3	RPT_CS2	RPT_CS1	RPT_CS0
0xEC	R/W	0×00	CLR_HLD							
OxEC	R/W	0×00	RPT_CS15	RPT_CS14	RPT_CS13	RPT_CS12	RPT_CS11	RPT_CS10	RPT_CS9	RPT_CS8
0xED	R/W	0×00	-	-	-	-	CLR_HLD	CLR_HLD	CLR_HLD	CLR_HLD

0xEE: Clear Multiple Pattern Switches ON Detection

Name: CLR DET_MULT_ON
 Address: 0xEE

Description: This register is for clearing the interrupt of the register "Multiple Pattern Switches ON Detection".
0 : Interrupt is cleared
1: Interrupt is not cleared

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xEE	R/W	0×00	CLR_MULT ON_H	CLR_MULT						
ON_F	ON_E	ON_D	ON_C	ON_B	ON_A					

0xEF: Clear Multiple Pattern Switches OFF Detection

$\begin{array}{ll}\text { Name: } & \text { CLR_DET_MULT_OFF } \\ \text { Address: } & 0 \times E F\end{array}$
Description: This register is for clearing clear the interrupt of the register "Multiple Pattern Switches OFF Detection".
0 : Interrupt is cleared
1: Interrupt is not cleared

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xEE	R/W	0x00	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_H } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_G } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_F } \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_E } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_D } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_C } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_B } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_MULT } \\ \text { OFF_A } \end{gathered}$

0xF0-0xF2: Clear Unexpected Long Press Detection

Name: CLR_DET_UNKNOWN
Address: 0xF0-0xF2
Description: These registers are for clearing the interrupt of the register "Unexpected Long Press Detection".
0 : Interrupt is cleared.
1 : Interrupt is not cleared

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xF0	R/W	0×00	$\begin{gathered} \text { CLR_UNK } \\ \text { CS7 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \hline \text { CS6 } \end{gathered}$	$\underset{\substack{\text { CLR_UNK } \\ \text { CS5 }}}{ }$	$\begin{gathered} \text { CLR_UNK } \\ \hline \end{gathered}$	$\underset{\substack{\text { CLR_UNK } \\ \text { CS3 }}}{ }$	$\begin{gathered} \text { CLR_UNK } \\ \text { _CS2 } \end{gathered}$		$\begin{gathered} \text { CLR_UNK } \\ \hline \end{gathered}$
0xF1	R/W	0x00	$\begin{gathered} \hline \text { CLR_UNK } \\ \text { CSS15 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS14 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS } 13 \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \hline \text { CS12 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS } 11 \end{gathered}$	$\begin{gathered} \hline \text { CLR_UNK } \\ \text { CSS10 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \hline \end{gathered}$
0xF2	R/W	0x00	-	-	-	-	$\begin{gathered} \hline \text { CR_UNKK } \\ \text { CS19 } \end{gathered}$	$\begin{gathered} \hline \text { CLR_UNK } \\ \text { CS } 18 \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS17 } \end{gathered}$	$\begin{gathered} \text { CLR_UNK } \\ \text { CS16 } \end{gathered}$

0xF3-0xF4: Software Reset

Name: SWRST_CMD
Address: 0xF3-0xF4
Description: These registers are used for software reset. When the data of register $0 \times F 3$ is set to 0×55 and the data of register $0 \times F 4$ is set to $0 \times A A$, IC is initialized and all registers are cleared.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1			
0xF3	R/W	0×00		Sit0								
0xF4	R/W	0×00										

0xFE: AVDD LDO Control

Name:
AVDD_CMD
Address: 0xFE
Description: This register controls AVDD LDO.

AVDD_ON : AVDD LDO Control

0 : AVDD is disable
1 : AVDD is enable

SEL_AVDD [1:0]: AVDD LDO Output Voltage

$$
\begin{aligned}
\text { SEL_AVDD [1:0] } & =0 \times 0: \text { AVDD voltage }=2.8 \mathrm{~V} \\
& =0 \times 1: \text { AVDD voltage }=2.7 \mathrm{~V} \\
& =0 \times 2: \text { AVDD voltage }=2.6 \mathrm{~V} \\
& =0 \times 3: \text { AVDD voltage }=2.5 \mathrm{~V}
\end{aligned}
$$

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xFE	R/W	0×00	-	-	SEL_AVDD[1:0]	-	-	-	AVDD_ON	

0xFF: Sensor Control

Name:	SENS_CMD
Address:	OxFF
Description:	This register controls the sensor.

STR_AFE : Control Sensor
0: Detection stops
1: Detection starts

STR_CAL : Software Calibration Control
0 : Calibration is not performed
1: Calibration is performed

STR_CFG : Update Configuration Registers
This bit is for updating configuration register. Set 1 to this bit after changing configuration registers.

Address	R/W	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0xFF	R/W	0×00	-	-	-	-	-	STR_CFG	STR_CAL	STR_AFE

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.
2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.
5. Recommended Operating Conditions

The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.
6. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

7. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
8. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.
9. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

Operational Notes - continued

10. Regarding the Input Pin of the IC

In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC.

11. Ceramic Capacitor

When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.
12. Over Current Protection Circuit (OCP)

This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit.

Ordering Information

Marking Diagram

SSOP-A32(TOP VIEW)

Physical Dimension and Packing Information

Package Name	SSOP-A32

0. 15 ± 0.1
(UN I T : mm)
PKG: SSOP-A32
Drawing No. EX134-5001-1
<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2000 pcs
Direction of feed	E2 The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand

Revision History

Date	Revision	
05.Feb.2019	001	New Release

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl_{2}, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO} 2$, and NO 2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}$, and NO_{2}
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Capacitive Touch Sensors category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
FK 8-1 SMBTASK3KIT6 LC717A30UR-NH CR12CN04DPO-E2 CR30SCF10ATO CR30SCF10DPO BCS M30BBI2-PSC15D-S04K CR18SCF05DPO CDWM3020ZPM MTCH6301-I/ML CAP1133-1-AIA-TR BCS M12B4G2-PSC40D-S04K BCS M12B4I1-PSC40D-EP02 CFAK 12P1103 CFAK 12P1140/L CFAK 18P1100 CFAK 18P1200 CFAK 30P1100 CFAM 12P1600 CFAM 18P1600 CFAM 30P1600 CQ28-10NPP-KW1 CR12CN04DNC KN056050 KN086050 KN186050 KV750450 KV750455 17-9291-226 98-0003-3048-4 CR12CN04DNO-E2 PROXISWITCH CR12CN04DPO BCS M12BBG1-PSC80H-EP02 BCS M30B4I1-PSC15D-EP02 BCS M18B4G2-PSC15H-S04K CR18CF05DPO-E2 CM30-25NPP-EW1 CM30-25NNP-EW1 CM30-16BPP-EW1 CM30-16BNP-EW1 CM18-12NPP-EW1 CM18-12NPP-EC1 CM18-12NNP-EW1 CM18-12NNP-EC1 CM18-08BPP-EW1 CM18-08BNP-EW1 CM30-25NNP-EC1 CM18-08BPPEC1 BCS M30B4E1-PSC25H-EP02

