[^0]For YUV=4:2:2 only.
Quantization table selectable from 20 built-in tables.

- Decompression

For YUV=4:4:4, 4:2:2 (horizontal sub-sampling:BU6566GVW),
4:2:0, 4:1:1(horizontal sub-sampling:BU6566GVW), and gray scale.
5) Built-in HOST CPU interface

For 8-bit/16-bit bus interface in parallel interface.
Read/ write access to frame memory.
Read/ write access to internal registers (Indirect access with a index register as the address).
Read/ write access to the LCD controller: Parallel/Serial (Direct access available via the LCD interface).
6) Extended overlay function

Supporting overlay of icon-data/font-data of up to two points during LCD data transfer.
Both icon-data and font-data corresponding to 65536 display colors. Possible to setting transparent colors.
7) LED interface, GIO function

Built-in PWM output of 4 systems for 3 color LED controls and white LED control.
7 GIO's in total available for the GIO function.
8) Clock generation, power management function

Oscillation circuit configuration by XIN and XOUT terminals, or clock input from XIN terminal available.
Built-in PLL in BU6568GV.
Clock control of IC inside in unit of block (suspend mode available).
9) Key interfaces built in

3 systems of key interfaces built in. Interruption to be generated at key input.
Useable for removing software chattering.

* Data is prepared separately about each register setup. Please refer to the Development Scheme on page 14.

System 1 (VDDIO1)	System 2 (VDDIO2)
P3-P4(D15-14),P6-P11(D13-8),	P34-P44(CAMVS, CAMHS, CAMD0-3, GIO2, CAMD4-7), P46(CAMCKI), P48(CAMCKO),
P14-P18(D7-0),P23(A2),	P53-P65(SDA, SDC, LEDCNT, PWM1-3, VD, LCDCS1B, LCDCS2B, KEY0, LCDWRB,
P28-P31(A1,CSB,WRB,RDB),	LCDRDB, LCDA0)
P97-P98(XOUT,XIN),P33(INT*1)	P67-P69(LCDD0-2), P71-P72(LCDD3-4)
	P78-P87(LCDD5-7, TEST, X16_8, LCDD8-12), P89-P94(KEY1, LCDD13-15,
	RESETB, PWM0)

*1; P33 (INT) terminal is the power source system of VDDIO2 in BU6568GV.
-Application
Security camera, Intercom with camera, Drive recorder, and Web camera etc.

Lineup

Parameter	Power source voltage IO1:HOSTI/F IO2:Camera, LCD	Camera interface	Host CPU interface	$\begin{gathered} \text { LCD } \\ \text { interface } \end{gathered}$	Codec [Image]	Multimedia interface	Package
BU6566GVW	$\begin{aligned} & 1.45-1.55 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}} \text { Core }\right) \\ & 1.70-3.15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}} \mathrm{O}\right) \\ & 2.70-3.15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}} \mathrm{O} 2\right) \end{aligned}$	Supported up to 0.3M pixels. (640×480)	8bit/16bit bus 80 systems CPU Interface	Supported up to QCIF+(232 $\times 176$)	0.3M pixels JPEG Codec Motion-JPEG	-	SBGA099W070
BU6568GV		Supported up to 1.3M pixels. (1280×1024)			1.3M pixels JPEG Codec Motion-JPEG		SBGA099T070

* Although QCIF+ is 220×176 pixels, it is supported to 232×176 pixels by effective use of memory in ROHM products.
-Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Rating	Unit
Applied power source voltage 1	VDDIO1	$-0.3 \sim+4.2$	V
Applied power source voltage 2	VDDIO2	$-0.3 \sim+4.2$	V
Applied power source voltage 3	VDD	$-0.3 \sim+2.1$	V
Other terminals	-	$-0.3 \sim$ VDDIO+0.3	V
Storage temperature range	Tstg	$-40 \sim+150$	${ }^{\circ} \mathrm{C}$
Power dissipation	PD	410	mW

- Recommended operating range

Parameter	Symbol	Rating	Unit
Applied power source voltage 1	VDDIO1	$1.70 \sim 3.15$ (Typ:1.80V)	V
Applied power source voltage 2	VDDIO2	$2.70 \sim 3.15$ (Typ:2.85V)	V
Applied power source voltage 3	VDD	$1.45 \sim 1.55$ (Typ:1.50V)	V
Input voltage range	VIN	$0 \sim$ VDDIO	V
Operating temperature range	Topr	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$

* Please supply power source in order of VDD \rightarrow VDDIO1 \rightarrow VDDIO2.
* In the case exceeding $25^{\circ} \mathrm{C}, 4.1 \mathrm{~mW}$ should be reduced at the rating $1^{\circ} \mathrm{C}$.
- Electric characteristics
(Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=1.50 \mathrm{~V}, \mathrm{VDDIO}=2.85 \mathrm{~V}$, fin $=30.0 \mathrm{MHz}, \mathrm{fSYS}=30.0 \mathrm{MHz} / \mathrm{BU} 6566 \mathrm{GVW}$

Parameter	Symbol	Limits			Unit	Condition	
		MIN.	TYP.	MAX.			
Input frequency	f IN	-	-	$\begin{gathered} 30.0 \\ 130.0 \\ \hline \end{gathered}$	MHz	$\begin{aligned} & \hline \text { BU6566GVW } \\ & \text { BU6568GV } \\ & \hline \end{aligned}$	XIN XIN (Duty 50 $\pm 5 \%$), at PLL OFF
Internal operating frequency	f SYS	-	-	$\begin{aligned} & \hline 30.0 \\ & / 52.0 \end{aligned}$	MHz	BU6566GVW BU6568GV	Internal SCLK frequency
Operating consumption current	IDD	-	$\begin{aligned} & \hline 6.4 \\ & 115 \\ & \hline \end{aligned}$	-	mA	$\begin{gathered} \hline \text { BU6566GVW } \\ \text { BU6568GV } \\ \hline \end{gathered}$	At camera ON, LCD display ON At viewer operating
Static consumption current	IDDst	-	-	$\begin{gathered} \hline 50 \\ / 100 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	$\begin{gathered} \text { BU6566GVW } \\ \text { BU6568GV } \\ \hline \end{gathered}$	At suspend mode setting
Input "H" current 1	IIH1	-10	-	10	$\mu \mathrm{A}$		VIH=VDDIO
Input "H" current 2	IIH2	25	50	100	$\mu \mathrm{A}$		Pull-Down terminal, VIH=VDDIO
Input "H" current 3	IIH3	-10	-	10	$\mu \mathrm{A}$		Pull-Up terminal, VIH=VDDIO
Input "L" current 1	IIL1	-10	-	10	$\mu \mathrm{A}$		VIL=GND
Input "L" current 2	IIL2	-10	-	10	$\mu \mathrm{A}$		Pull-Down terminal, VIL=GND
Input "L" current 3	IIL3	-160	-80	-25	$\mu \mathrm{A}$		Pull-Up terminal, VIL=GND
Input "H" voltage1	VIH1	$\begin{gathered} \text { VDDIO } \\ \times 0.8 \\ \hline \end{gathered}$	-	$\begin{gathered} \text { VDDIO } \\ +0.3 \\ \hline \end{gathered}$	V		Normal input (including input mode of I/O terminal)
Input "L" voltage 1	VIL1	-0.3	-	$\begin{gathered} \hline \text { VDDIO } \\ \times 0.2 \\ \hline \end{gathered}$	V		Normal input (including input mode of I/O terminal)
Input "H" voltage 2	VIH2	$\begin{gathered} \hline \text { VDDIO } \\ \times 0.85 \end{gathered}$	-	$\begin{gathered} \hline \text { VDDIO } \\ +0.3 \end{gathered}$	V		Hysteresis input
Input "L" voltage 2	VIL2	-0.3	-	$\begin{gathered} \hline \text { VDDIO } \\ \times 0.15 \end{gathered}$	V		Hysteresis input
Hysteresis voltage width	Vhys	-	$\begin{gathered} \hline 0.9 \\ 10.6 \end{gathered}$	-	V	$\begin{gathered} \hline \text { BU6566GVW } \\ \text { BU6568GV } \end{gathered}$	Hysteresis input
Output "H" voltage 1	VOH1	$\begin{gathered} \hline \text { VDDIO } \\ -0.4 \\ \hline \end{gathered}$	-	VDDIO	V		$\begin{aligned} & \mathrm{IOH} 1=-1.0 \mathrm{~mA}(\mathrm{DC}) \\ & \text { (Including output mode of } \mathrm{I} / \mathrm{O} \text { terminal) } \end{aligned}$
Output "L" voltage 1	VOL1	0.0	-	0.4	V		$\begin{aligned} & \mathrm{IOL1}=1.0 \mathrm{~mA}(\mathrm{DC}) \\ & \text { (Including output mode of } \mathrm{I} / \mathrm{O} \text { terminal) } \end{aligned}$

- Block Diagram

- Recommended Application Circuit

* Data is prepared separately about each register setup. Please refer to the Development Scheme on page 14.
- Terminal functions

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	Land No.	PIN Name	$\begin{aligned} & \text { In } \\ & \text { /Out } \end{aligned}$	Active Level	Init	Function explanation	Function division	I/O type BU6566GV W	$\begin{gathered} \text { I/O } \\ \text { type } \\ \hline \text { BU6568G } \\ \mathrm{V} \\ \hline \end{gathered}$
1	A1	N.C.	-	-	-	-	-	-	-
2	B2	VDDIO1	-	PWR	-	Digital I/O power source (system 1)	-	-	-
3	B1	D15HOST MODE	In/Out	DATA	IN *1	Switch parallel / Serial of HOST I/F (BU6566GVW	HOST IF	F*	-
		D15/EXGIO7	In/Out	DATA	IN *1	Host data bus bit 15		-	H
4	C2	D14IEXGIO6	In/Out	DATA	IN *1	Host data bus bit 14	HOST IF	F	H
5	C1	N.C.	-	-	-	-	-	-	-
6	D3	D13/EXGIO5	In/Out	DATA	IN *1	Host data bus bit 13	HOST IF	F	H
7	D2	D12/EXGIO4	In/Out	DATA	IN *1	Host data bus bit 12	HOSTIF	F	H
8	D1	D11/EXGIO3	In/Out	DATA	IN *1	Host data bus bit 11	HOST IF	F	H
9	E1	D10/EXGIO2	In/Out	DATA	IN *1	Host data bus bit 10	HOST IF	F	H
10	E2	D9/EXGIO1	In/Out	DATA	IN *1	Host data bus bit 9	HOSTIF	F	H
11	E3	D8/EXGIO0	In/Out	DATA	IN *1	Host data bus bit 8	HOST IF	F	H
12	E4	GND	-	GND	-	Common ground	-	-	-
13	F5	VDD	-	PWR	-	Digital core power source	-	-	-
14	F4	D7	In/Out	DATA	IN *1	Host data bus bit 7	HOST IF	E	G
15	F3	D6	In/Out	DATA	IN *1	Host data bus bit 6	HOST IF	E	G
16	F2	D5	In/Out	DATA	IN *1	Host data bus bit 5	HOST IF	E	G
17	F1	D4	In/Out	DATA	IN *1	Host data bus bit 4	HOST IF	E	G
18	G1	D3	In/Out	DATA	IN *1	Host data bus bit 3	HOST IF	E	G
19	G2	D2	In/Out	DATA	IN *1	Host data bus bit 2	HOSTIF	E	G
20	G3	D1/SIF_RD	In/Out	DATA	IN *1	Host data bus bit 1 Serial data from BU6566GVW to HOST	HOST IF	E	-
		D1	In/Out	DATA	IN *1	Host data bus bit 1		-	G
21	H1	DO/SIF/WD	In/Out	DATA	IN *1	Host data bus bit 0 Serial data from HOST to BU6566GVW	HOST IF	E	-
		D0	In/Out	DATA	IN *1	Host data bus bit 0		-	G
22	H2	N.C.	-	-	-	-	-	-	-
23	J1	A2	In	DATA	- *2	Host data bus bit 2	HOST IF	A	A
24	G4	GND	-	GND	-	Common ground			
25	H3	N.C.	-	-	-	-	-	-	-
26	K1	N.C.	-	-	-	-	-	-	-
27	J2	VDDIO1	-	PWR	-	Digital I/O power source (system 1)	-	-	-
28	K2	A1/SIF_CD	In	DATA	-	Host address bus bit 1 signal Command I data identification in HOST serial I/F(BU6566GVW	HOST IF	A	-
		A1	In	DATA	-	Host address bus bit 1		-	A
29	J3	CSB/SIF_CS1	In	Low		Chip select signal Chip select signal in HOST serial I/F(BU6566GVW only)	HOST IF	A	-
		CSB	In	Low		Chip select signal		-	K
30	K3	WRB/SIF_SCK	In	Low		Write enable signal Serial clock in HOST serial I/F(BU6566GWW only)	HOST IF	C	-
		WRB	In	Low		Write enable signal		-	K
31	H4	RDB	In	Low	-*2	Read enable signal	HOST IF	C	K
32	J4	N.C.	-	-	-	-	-	-	-
33	K4	INT	Out	*	Low	Interruption signal	HOST IF	D	D
34	K5	CAMVS	In	*	-	Camera vertical timing signal (pull down at CAMOFF)	CAMERA	B	B
35	J5	CAMHS	In	*	-	Camera horizontal timing signal (pull down at CAMOFF)	CAMERA	B	B
36	H5	CAMDO	In	DATA	-	Camera data input bit0 (pull down at CAMOFF)	CAMERA	B	B
37	G5	CAMD1	In	DATA	-	Camera data input bit1 (pull down at CAMOFF)	CAMERA	B	B
38	F6	CAMD2	In	DATA	-	Camera data input bit2 (pull down at CAMOFF)	CAMERA	B	B
39	G6	CAMD3	In	DATA	-	Camera data input bit3 (pull down at CAMOFF)	CAMERA	B	B
40	H6	$\begin{aligned} & \mathrm{GIO2} \\ & \text { / KEY2 } \end{aligned}$	In/Out	DATA	$\begin{gathered} \hline \text { Out/Lo } \\ \mathrm{w} \end{gathered}$	General purpose I/O2 / Key input2 (pull down for register control)	SYSTEM	H	H
41	J6	CAMD4	In	DATA	-	Camera data input bit4 (pull down at CAMOFF)	CAMERA	B	B
42	K6	CAMD5	In	DATA	-	Camera data input bit5 (pull down at CAMOFF)	CAMERA	B	B
43	K7	CAMD6	In	DATA	-	Camera data input bit6 (pull down at CAMOFF)	CAMERA	B	B
44	J7	CAMD7	In	DATA	-	Camera data input bit7 (pull down at CAMOFF)	CAMERA	B	B
45	H7	VDDIO2	-	PWR	-	Digital I/O power source (system 2)	-	-	-
46	K8	CAMCKI	In	CLK	-	Camera clock input (pull down at CAMOFF)	CAMERA	B	B
47	J8	N.C.	-	-	-	-	-	-	-
48	K9	CAMCKO	Out	CLK	Low	Camera clock output	CAMERA	D	D

PIN	Land	PIN Name	In	Active	Init	Function explanation	Function division	I/O type	I/O
No.	No.		/Out	Level				BU6566GV	BU6568G
49	G7	GND	-	GND	-	Common ground	-	-	-
50		N.C.	-	-	-	-	-	-	-
51	K10	N.C.	-	-	-	-	-	-	-
52	J9	VDD	-	PWR	-	Digital core power source	-	-	-
53	J10	SDA	In/Out	DATA	Out/Lo	Serial control input / output	CAMERA	J	J
54	H9	SDC	In/Out	CLK	Out/Lo	Serial clock output	CAMERA	J	J
55	H10	LEDCNT/GIO1	In/Out	*	In *5	LED PWM control signal / General purpose input1	SYSTEM	H	H
56	G8	PWM1/GIO3	In/Out	-	In *5	LED PWM control signal1/ General purpose input3	SYSTEM	H	H
57	G9	PWM2/GIO4	In/Out	-	In *5	LED PWM control signal2/ General purpose input4	SYSTEM	H	H
58	G10	PWM3/GIO5	In/Out	-	In *5	LED PWM control signal3/ General purpose input5	SYSTEM	H	H
59	F10	VD/GIO6	In/Out	*	In *5	LCD controller vertical synchronization signal/ general purpose	LCD IF	H	H
60	F9	LCDCS1B	Out	Low	-	LCD controller chip select 1	LCD IF	D	D
61	F8	LCDCS2B	Out	Low	High	LCD controller chip select 2	LCD IF	D	D
62	F7	KEYO	In	*	-	KEY input	SYSTEM	H^{+6}	$\mathrm{H}^{*} 6$
63	E6	LCDWRB	Out	Low	-	LCD controller write enable signal	LCD IF	G*4	G*4
64	E7	LCDRDB	Out	Low	-	LCD controller read enable signal	LCD IF	G*4	G*4
65	E8	LCDAO	Out	*	-	LCD controller command parameter identification signal	LCD IF	G*4	G*4
66	E9	VDDIO2	-	PWR	-	Digital IO power source (system 2)	-	-	-
67	E10	LCDD0	In/Out	DATA	Out/Lo	LCD controller data bus bit 0	LCD IF	H	H
68	D10	LCDD1	In/Out	DATA	Out/Lo	LCD controller data bus bit 1	LCD IF	H	H
69	D9	LCDD2	In/Out	DATA	Out/Lo	LCD controller data bus bit 2	LCD IF	H	H
70	D8	N.C.	-	-	-	-	-	-	-
71	C10	LCDD3	In/Out	DATA	Out/Lo	LCD controller data bus bit 3	LCD IF	H	H
72	C9	LCDD4	In/Out	DATA	Out/Lo	LCD controller data bus bit 4	LCD IF	H	H
73	B10	N.C.	-	-	-	-	-	-	-
74	D7	GND	-	GND	-	Common ground	-	-	-
75	C8	N.C.	-	-	-	-	-	-	-
76	A10	N.C.	-	-	-	-	-	-	-
77	B9	VDD	-	PWR	-	Digital core power source	-	-	-
78	A9	LCDD5	In/Out	DATA	Out/Lo	LCD controller data bus bit 5	LCD IF	H	H
79	B8	LCDD6	In/Out	DATA	Out/Lo	LCD controller data bus bit 6	LCD IF	H	H
		/ SCL	In/Out	DATA	Out/Lo	LCD clock of serial transmission (BU6566GVW		H	H
80	A8	LCDD7	In/Out	DATA	Out/Lo	LCD controller data bus bit 7	LCD IF	H	H
		/ SI	In/Out	DATA	Out/Lo	LCD data of serial transmission (BU6566GVW only)		H	H
81	C7	TEST	In	Low	-	Test mode terminal (Connect with GND)	SYSTEM	B	B
82	B7	X16_8	In	-	-	Host data bus 16-bit / 8-bit selection	SYSTEM	A	A
83	A7	LCDD8	In/Out	DATA	Out/Lo	LCD controller data bus bit 8	LCD IF	H	H
84	A6	LCDD9	In/Out	DATA	Out/Lo	LCD controller data bus bit 9	LCD IF	H	H
85	B6	LCDD10	In/Out	DATA	Out/Lo	LCD controller data bus bit 10	LCD IF	H	H
86	C6	LCDD11	In/Out	DATA	Out/Lo	LCD controller data bus bit 11	LCD IF	H	H
87	D6	LCDD12	In/Out	DATA	Out/Lo	LCD controller data bus bit 12	LCD IF	H	H
88	E5	N.C.	-	-	-	-	-	-	-
89	D5	KEY1	In	-	-	Key input	SYSTEM	H^{+6}	H*6
90	C5	LCDD13	In/Out	DATA	Out/Lo	LCD controller data bus bit 13	LCD IF	H	H
91	B5	LCDD14	In/Out	DATA	Out/Lo	LCD controller data bus bit 14	LCD IF	H	H
92	A5	LCDD15	In/Out	DATA	Out/Lo	LCD controller data bus bit 15	LCD IF	H	H
93	A4	RESETB	In	Low	-	System reset signal	SYSTEM	C	K
94	B4	PWMO/GIOO	In/Out	DATA	In *5	LED PWM control signal0/ General purpose input /	SYSTEM	H	H
95	C4	VDDIO1	-	PWR	-	Digital IO power source (system 1)	-	-	-
96	A3	N.C.	-	-	-	-	-	-	-
97	B3	XOUT	Out	CLK	High	Clock output (always HIGH output at setting of external input)	SYSTEM	1	1
98	A2	XIN	In	CLK	-	Clock input *7	SYSTEM	C, I	K, I
99	D4	GND	-	GND	-	Common ground	-	-	-
100	C3	N.C.	-	-	-	-	-	-	-

* " *" in Active Level column means active level can be changed by setting of register. Moreover, Init is a pin state at the time of reset release.
*1: Under the condition of RESETB="L" or CSB= "H".
*2: Please connect A2 and RDB to GND when to use Host serial I/F.
*3: Pull down only except for a test mode.
*4: Input only except for a test mode.
*5: Pull down while RESETB='L'(initial state).
*6: Output only except for a test mode.
*7: The crystal oscillation circuit does not include a return resistance, so it is needed to examine an external circuit including return resistance.

Equivalent Circuit Structures of input / output pins.

Type	Equivalent circuit structure	Type	Equivalent circuit structure
A		B	PULL-DOWN Input terminal
C	Hysteresis input terminal with SUSPEND	D	
E		F	PULL-DOWN I/O terminal with SUSPEND
G		H	PULL-DOWN I/O terminal
I		J	

Type

OTiming Chart

1. HOST interface timing

1.1 System timing

Table 1.1-1 BU6566GVW timing conditions (system)

Symbol	Details	MIN.	TYP.	MAX.	Unit	Conditions
tXIN	Clock input cycle	33.0	-	-	ns	
DutyXIN	Clock duty	45.0	50.0	55.0	$\%$	" H " width/cycle
tSCLK	System clock cycle	33.0	-	-	ns	
DutySCLK	System clock duty	33.3	50.0	66.7	$\%$	" H " width/cycle
tCAMCKO	Camera clock output cycle	33.0	-	-	ns	
DutyCAMCKO	Camera clock output duty	33.3	50.0	66.7	$\%$	"" H " width / cycle
tCAMCKI	Camera clock input cycle	66.0	-	-	ns	
DutyCAMCKI	Camera clock input duty	40.0	50.0	60.0	$\%$	" H " width/cycle
tRESETB	RESETB "L" pulse width	1.0	-	-	us	

*Regulation all at threshold of VDDIO×1/2
Table 1.1-2 BU6568GV timing conditions (system)

Symbol	Details	MIN.	TYP.	MAX.	Unit	Conditions
tXIN	Clock input cycle	33.0	-	-	ns	
DutyXIN	Clock duty	45.0	50.0	55.0	$\%$	"H" width/cycle
tSCLK	System clock cycle	19.2	-	-	ns	
DutySCLK	System clock duty	33.3	50.0	66.7	$\%$	"H" width/ cycle
tCAMCKO	Camera clock output cycle	19.2	-	-	ns	
DutyCAMCKO	Camera clock output duty	45.0	50.0	55.0	$\%$	"H" width / cycle
tCAMCKI	Camera clock input cycle	19.2	-	-	ns	
DutyCAMCKI	Camera clock input duty	45.0	50.0	55.0	$\%$	"H" width/cycle
tRESETB	RESETB "L" pulse width	1.0	-	-	us	

* Regulation all at threshold of VDDIO×1/2

1.2 Register (including RAM via register) write timing.

A2,A1
CSB (WRB)
WRB (CSB)
RDB

D [15:0]

Table 1.2-1 BU6566GVW timing conditions (RAM, register write cycle)

Symbol	Details	MIN.	TYP.	MAX.	Unit
tWC	Write cycle time	70	-	-	ns
tAS	Address setup time before WRB(CSB) falling	-5	-	-	ns
tAH	Address hold time after WRB(CSB) rising	-1	-	-	ns
tCS	CSB(WRB) input setup time before WRB(CSB) falling	0	-	-	ns
tCH	CSB(WRB) input hold time after WRB(CSB) rising	0	-	-	ns
tWW	WRB(CSB) active time width	40	-	-	ns
tWAIT	Wait time from WRB(CSB) rising to the next WRB(CSB) or to RDB falling	30	-	-	ns
tDS	Data setup time before WRB(CSB) rising	35	-	-	ns
tDH	Data hold time after WRB(CSB) rising	-1	-	-	ns

* Regulation all at threshold of $\mathrm{VDDIO} \times 1 / 2$ (VDD $=1.50 \mathrm{~V}, \mathrm{VDDIO}=2.85 \mathrm{~V}, \mathrm{GND}=0.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)
* It is possible to use it with either CSB or WRB active. However, either of them must do LOW pulse operation.

Table 1.2-2 BU6568GV timing conditions (RAM, register write cycle)

Symbol	Details	MIN.	TYP.	MAX	Unit
tWC	Write cycle time	55	-	-	ns
tAS	Address setup time before WRB(CSB) falling	-4	-	-	ns
tAH	Address hold time after WRB(CSB) rising	0	-	-	ns
tCS	CSB(WRB) input setup time before WRB(CSB) falling	0	-	-	ns
tCH	CSB(WRB) input hold time after WRB(CSB) rising	0	-	-	ns
tWW	WRB(CSB) active time width	40	-	-	ns
tWAIT	Wait time from WRB(CSB) rising to the next WRB(CSB) or to RDB falling	15	-	-	ns
tDS	Data setup time before WRB(CSB) rising	30	-	-	ns
tDH	Data hold time after WRB(CSB) rising	0	-	-	ns

* Regulation all at threshold of $\mathrm{VDDIO} \times 1 / 2$ (VDD=1.50V,VDDIO $=2.85 \mathrm{~V}, \mathrm{GND}=0.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)
* It is possible to use it with either CSB or WRB active. However, either of them must do LOW pulse operation.
1.3 Register (including RAM via register) read timing.

A2,A1
CSB (RDB)
WRB
RDB (CSB)
$D[15: 0]$

Table 1.3-1 BU6566GVW timing conditions (RAM, register read cycle)

Symbol	Details	MIN.	TYP.	MAX.
Unit				
tRC	Read cycle time	100	-	-
tAS	Address setup time before RDB(CSB) falling	-5	-	-
tAH	Address hold time after RDB(CSB) rising	ns		
tCS	CSB(RDB) input setup time before RDB(CSB) falling	-1	-	-
tCH	CSB(RDB) input hold time after RDB(CSB) rising	ns		
tRD	Access time after RDB(CSB) falling	-	-	ns
tWAIT	Wait time from RDB(CSB) rising to the next RDB(CSB) falling or to WRB falling	-	-	-
tROE,tROD	Data output enable time after RDB(CSB) falling, Data output disable time after RDB(CSB) rising	-	-	ns

*Regulation all at threshold of $\mathrm{VDDIO} 1 \times 1 / 2$ (VDD $\left.=1.50 \mathrm{~V}, \mathrm{VDDIO}=2.85 \mathrm{~V}, \mathrm{GND}=0.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

* It is possible to use it with either CSB or RDB active. However, either of them must do LOW pulse operation.

Table 1.3-2 BU6568GV timing conditions (RAM, register read cycle)

Symbol	Details	MIN.	TYP.	MAX.	Unit
tRC	Read cycle time	74.5	-	-	ns
tAS	Address setup time before RDB(CSB) falling	-4	-	-	ns
tAH	Address hold time after RDB(CSB) rising	0	-	-	ns
tCS	CSB(RDB) input setup time before RDB(CSB) falling	0	-	-	ns
tCH	CSB(RDB) input hold time after RDB(CSB) rising	0	-	-	ns
tRD	Access time after RDB(CSB) falling	-	-	70	ns
tWAIT	Wait time from RDB(CSB) rising to the next RDB(CSB) falling or to WRB falling	30	-	-	ns
tROE,tROD	Data output enable time after RDB(CSB) falling, Data output disable time after RDB(CSB) rising	8	-	-	ns

* Regulation all at threshold of $\mathrm{VDDIO} \times 1 / 2$ (VDD $\left.=1.50 \mathrm{~V}, \mathrm{VDDIO}=2.85 \mathrm{~V}, \mathrm{GND}=0.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
* It is possible to use it with either CSB or RDB active. However, either of them must do LOW pulse operation.

2. Camera Module Interface Timing

2.1. System clock and camera clock

External input clock (XIN) may be divided set and supplied as CAMCKO clock to camera module.
The relation of data synchronization clock CAMCKI clock from camera and system clock SCLK must be set so as to meet the following formula.

fSCLK \geq			
	$2 \times$ fCAMCKI		
	fSCLK		
fCAMCKI		\quad	System clock frequency
:---			
Camera clock frequency input to CAMCKI terminal			

Moreover, [Camera timing 1] or [Camera timing 2] shown below must be satisfied.
[Camera timing 1] (In the case when CAMCKI signal is as asynchronous as CAMCKO)
tCAMCKIH $>$ tSCLK +1 ns and tCAMCKIL $>$ tSCLK $+1 \mathrm{~ns} \ldots \ldots .(2.1-2)$ tCAMCKIH CAMCKI High interval tCAMCKIL CAMCKI Low interval
[Camera timing 2] (In the case when CAMCKI signal is as synchronous as CAMCKO) total delay + margin (10 ns) < tSCLK(2.1-3) total delay delay from CAMCKO change point to CAMCKI change point

The clock relation in $\mathrm{fSCLK}=\mathrm{fCAMCKO}=2 \times \mathrm{fCAMCKI}$ is shown in Figure.2.1-1.
[fSCLK=fCAMCKO $=2 \times f C A M C K I]$

Figure .2.1-1 Relation between system clock and camera clock

2.2. Camera module interface timing

The timing of the camera image signal in camera I/F is shown in Table 2.2-1.

Table 2.2-1 BU6566GVW/BU6568GV timing (camera data)

Symbol	Details	MIN.	TYP.	MAX.	Unit	Remarks
tCMS	CAMCKI rising/falling camera set up time	$1 / 5$	-	-	ns	BU6566GVW/BU6568GV
tCMH	CAMCKI rising/falling camera hold time	$1 / 5$	-	-	ns	BU6566GVW/BU6568GV

3. LCD direct access

When to set up with $A 2=" L "$, direct access to LCD module is set up, and HOST CPU signal penetrated to LCD signal.

Table 3-1 BU6566GVW timing conditions (LCD direct access)

Symbol	Details	MIN.	TYP.	MAX.	Unit
tCSf1	Delay from CSB to LCDCSB falling	3.5	-	12.0	ns
tCSr1	Delay from CSB to LCDCSB rising	2.1	-	9.3	ns
tWRf1	Delay from WRB to LCDWRB falling	3.0	-	11.2	ns
tWRr1	Delay from WRB to LCDWRB rising	2.0	-	9.2	ns
tRDf1	Delay from RDB to LCDRDB falling	3.0	-	11.8	ns
tRDr1	Delay from RDB to LCDRDB rising	2.0	-	9.1	ns
tAD1	Delay from A1 to LCDA0	1.8	-	9.6	ns
tDTw1	Delay from D0~D15 to LCDD0~LCDD15	7.4	-	22.3	ns
tDTr1	Delay from LCDD0~LCDD15 to D0~D15	3.0	-	13.35	ns

Table 3-2 BU6568GV timing conditions (LCD direct access)

Symbol	Details	MIN.	TYP.	MAX.	Unit
tCSf1	Delay from CSB to LCDCSB falling	3.0	-	12.0	ns
tCSr1	Delay from CSB to LCDCSB rising	2.5	-	10.0	ns
tWRf1	Delay from WRB to LCDWRB falling	3.0	-	12.0	ns
tWRr1	Delay from WRB to LCDWRB rising	2.5	-	10.0	ns
tRDf1	Delay from RDB to LCDRDB falling	3.0	-	12.0	ns
tRDr1	Delay from RDB to LCDRDB rising	2.5	-	10.0	ns
tAD1	Delay from A1 to LCDA0	2.5	-	10.0	ns
tAD2	Delay from A1 to LCDA0	6.0		24.0	ns
tDTw1	Delay from D0~D15 to LCDD0~LCDD15	4.0	-	16.0	ns
tDTr1	Delay from LCDD0~LCDD15 to D0~D15	4.0	-	16.0	ns

4. LCD transfer timing

Transfer timing to LCD is shown below.

RESO	Nwrb	Npix	Tseq	Th_rest
0	2	1	$(\mathrm{WL}+\mathrm{WH}+2) \times 2$	0
1	2	1	$(\mathrm{WL}+\mathrm{WH}+2) \times 2$	0
2	3	2	$(\mathrm{WL}+\mathrm{WH}+\mathrm{max}(\mathrm{WL}, \mathrm{WH})+3) \times 2$	abs $(\mathrm{WL}-\mathrm{WH})$
3	1	1	$(\mathrm{WL}+\mathrm{WH}+2)$	0
4	2	1	$(\mathrm{WL}+\mathrm{WH}+2) \times 2$	0
5	3	1	$(\mathrm{WL}+\mathrm{WH}+2) \times 3$	0
6	3	1	$(\mathrm{WL}+\mathrm{WH}+2) \times 3$	0
7	2	1	$(\mathrm{WL}+\mathrm{WH}+2) \times 2$	0

* RESO(IDX:42h bit [2:0]) shows a color resolution setting of LCD.
* Nwrb, Npix, Tseq, and Th_rest are the parameters determined by RESO.
* WL, WH are the value of LCDWL, LCDWH of Register MLCDWAV (IDX:49h), respectively.
* max (WL, WH) shows the maximum of WL and WH.
* abs(WL-WH) shows the absolute value of (WL-WH).

TRN_CMD=1

Waveform at command transfer ($T_{\text {sclk }}$ for all unit)
 EXCMD=0

TRN_CMD=0
Waveform at data transfer ($\mathrm{T}_{\text {scLk }}$ for all unit)

Nwrb=3

EXCMD=1-7

(Note1) In LCD_DELAY[1:0](IDX:49h bit [9:8]) ="00", LCDA0 and LCDD change in LCDWRB falling, and are held to the next LCDWRB falling. (Note2) Change of LCDWRB is late for LCDAO and LCDD 15-0 according to a setup of LCD_DELAY [1:0] (at the time of output no-load). Typ. delays 10 ns in LCD_DELAY[1:0] ="01." 1tSCLK in LCD_DELAY[1:0] ="10". 1tSCLK + Typ. 10 ns in LCD_DELAY[1:0] ="11".

Figure 4-1 MAIN LCD data transfer waveform (Unit : tSCLK)

- Development Scheme

This technical note is aimed at trying the connectivity in the hardware between customer's system and our camera image processor series.
We prepare various data and tools for every development STEP as follows other than this technical note, please contact the sales staff in your duty also including the support system.
(1) Demonstration STEP
(You can try the standard image processing functions by the standard Demonstration kit at once.)
You can confirm the standard functions such as camera image preview, memory data display to LCD, camera image composition JPEG compression/ expansion, frame composition, divided display, and LED lighting, and so forth on the Demonstration board.

- Standard Demonstration board kit

©Demonstration board

(LCD module provided by ROHM, Camera module provided by ROHM, Check board equipped with the camera image processor, ARM-equipped controller board)
©Demonstration board operation manual
©Demonstration software
If the software for the trial board is installed in your Windows PC(Windows 2000/XP/ME/98), more detailed setting is possible.
(Execution tools for the macro command, sample macro command file)
OUSB cable
(2) Confirmation STEP
(We will respond to customer's camera module, LCD module, HOST CPU.)

- Specifications

We will provide specifications for camera image processor according to customer's requirements.

- Function explanation

We will deliver you the function explanation describing detailed functions, register settings, external interfaces, timing, and so forth of camera image processor according to your requests.

- Application note

We will deliver you the detailed explanation data on application development of camera image processor according to your requests.
(3) System check STEP
(You can check the application operation as a system by the kit of system check tools and your module(camera/LCD).)
ROHM creates the system check board using your camera/LCD module.
You can check the interface with your module and the application operation on the system check board using the tools for user's only.

- System check tools kit
- System check software (For Windows PC)

OReference C source code summarizing ARM -compatible application program interface(API)
OThe application software (API) as a reference C source code
©The execution tools for the macro command (BU65XX_USB) for the check by your PC.
OThe macro command file for the check by your PC.

- System check document
© System check board manual
©BU65XX Demo_Board Application using API
© Board circuit diagram
*You can check the detailed functions of the application operation by your PC using the macro command file.

(4) Integrated check STEP with user's system

(You can check the application operation as a system on your system check board using the integrated check software.)

You can check the application operation on the sample LSI-equipped system check board by your camera / LCD module using the integrated check software.

- On line Support ; We will answer your questions about the software development.

How to use the macro command file, API file, and APL file.
Setting flow of the camera function (camera JPEG, preview, etc.)
Interface setting of the camera module, LCD module and the camera image processor.
Header analysis method oh JPEG decode, etc.

- On site Support ; We will help you clarify the questions about the software development on site together on spot. Check of the operation of each function and the basic operation at each register setting, etc. based on the specification.
Explanation about the specific usage of the macro command file, API file and APL file and relative questions.
How to develop the overlay or special functions, etc.

Cautions on use
(1)Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.
(2)Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.
(3)Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC's power supply terminal.
(4)Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.
In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(5)GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
(6)Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.
(7)Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.
(8)Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.
(9)Input terminals

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(10)Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
(11)External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
-Order Model Name Selection

ROHM model name

Product number

Package type
GVW:SBGA099W070
GV:SBGA099T070

Taping model name
E2: Embossed reel tape

- Tape and Reel information

SBGA099W070

SBGA099T070

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33
PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX
M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2
BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z
ADV7182WBCPZ ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-
M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ
$\underline{\text { ADA4417-3ARMZ-R7 ADA4424-6ARUZ ADA4431-1YCPZ-R7 }}$

[^0]: - Description

 BU6566GVW/BU6568GV is a camera image processor compatible with standard JPEG.
 Pin-to-Pin compatibility enable support for both standard and high-resolution cameras.

 ## - Features

 1)Built-in Camera Module Interface

 VGA size (640×480)/BU6566GVW, SXGA size (1280×1024)/BU6568GV for input of image data up to 15 fps (zooming function is available).
 Input data format for $\mathrm{YUV}=4: 2: 2, \mathrm{RGB}=4: 4: 4$.
 Filter processing (image processing) to input images (2 gradations / gray scale / sepia / emboss / edge enhancement/ negative).
 Multi-step size reduction down to 1/8 (BU6566GVW), 1/16 (BU6568GV) in X - and Y -direction possible.
 Cutting out into an arbitrary size after resizing.
 D range enlargement processing of Y (brightness) available in YUV color space to cut images.
 Cut images to be stored into an arbitrary position in frame memory in YUV=4:2:2 format.
 2-line serial interface built in for camera module control.
 2) Built-in frame memory / JPEG code memory

 Image frame memory built in (80KB for storing 1 frame of 176×232 @16 bits/pixel).
 Display area settable to an arbitrary LCD size.
 Data to be stored into image frame memory in YUV=4:2:2 format.
 Mask data to be stored into mask frame memory in 1bit/2pixels in YUV=4:2:2 format.
 An arbitrary position of frame memory to be updated to camera image according to mask memory.
 Image frame memory accessible from HOST CPU (access available both in RGB and YUV).
 Rectangular writing function and rectangular reading function for transparent color to image frame memory.
 Frame memory usable as JPEG code memory (80 KB) to store JPEG compressed images.
 Frame memory usable as a ring buffer for JPEG code of 80 KB or more.
 3)Built-in LCD controller interface

 Built-in input/output interface to LCD controller
 For display colors of 262144 colors / 65536 colors / 4096 colors.
 Up to 2 LCD module controllers controllable.
 Arbitrary rectangular selection in frame memory to be transferred to LCD controller.
 4)Built-in JPEG CODEC

 ISO/IEC10918 conforming base line method.
 -Compression

