

## **Technical Note**

For Home Electronics and Security Devices Camera Image Processor Series

Camera Image Processor Compatible with MPEG4 Video

No.09061EBT03

## Description

BU6582GVW is a camera image processor compatible with MPEG4 movies. MPEG4 compatibility enables seamless video transmission with other devices.

#### Features

1)Built-in Camera Module Interface

SXGA size (1280×1024) for input of image data up to 15 fps and VGA size (640×480) for input of image data up to 30 fps (zooming function available).

Input data format for YUV=4:2:2, RGB=4:4:4.

Filter processing (image processing) to input images (2 gradations / gray scale / sepia / emboss / edge enhancement/ negative).

Multi-step size reduction down to 1/16 in X- and Y-direction possible.

Cutting out into an arbitrary size after resizing.

D range enlargement processing of Y (brightness) available in YUV color space to cut images.

Cut images to be stored into an arbitrary position in frame memory in YUV=4:2:2 or RGB=5:6:5 format.

2-line serial interface built in for camera module control.

Image processing of data written by HOST CPU in YUV or RGB format possible through camera module interface.

2)Built-in frame memory / JPEG code memory

Image frame memory built in (160KB to store 1 frame of  $320 \times 240@16bit/pixel$  during normal mode or 50KB/frame to store 2 frames of  $176 \times 144@16bit/pixel$  during MPEG4/H.263 mode).

Display area settable to an arbitrary LCD size.

Data to be stored into image frame memory in YUV=4:2:2 or RGB=5:6:5 (16bit/pixel) format.

Mask data to be stored into mask frame memory in 1bit/2pixels in YUV=4:2:2 or 1bit/1pixels in RGB=5:6:5 format.

An arbitrary position of frame memory to be updated to camera image according to mask memory.

Image frame memory accessible from host CPU (access available both in RGB and YUV).

Rectangular writing function and rectangular reading function for transparent color to image frame memory.

Frame memory usable as JPEG code memory (160KB) to store JPEG compressed images.

Frame memory usable as a ring buffer for JPEG code of 160KB or more.

3)Built-in LCD controller interface

Built-in input/output interface to LCD controller

For display colors of 262144 colors / 65536 colors / 4096 colors.

Up to 2 LCD module controllers controllable.

Arbitrary rectangular selection in frame memory to be transferred to LCD controller.

Multi-step scaling process in the range of  $1/4 \times$  to  $2 \times$  in X- and Y-direction is available to display images from the frame memory to the LCD.

4)Built-in MPEG4 Codec

ISO/IEC14496 conforming simple profile level 0.

ISO/IEC 14496 conforming simple profile level 1 (4 objects can be supported in decode mode).

ITU-T H.263 conforming profile 0 level 10.

ITU-T H.263 conforming profile 3 level 10.

MAX QCIF (176x144), SQCIF (128x96), 96x80.

For input image data up to 15fps.

## 5)Built-in JPEG CODEC

ISO/IEC10918 conforming base line method.

Compression

- For YUV=4:2:2 only.
- Quantization table selectable from 20 built-in tables.
- Decompression

For YUV=4:4:4, 4:2:2(horizontal sub-sampling), 4:2:0, 4:1:1(horizontal sub-sampling), and gray scale.

6) Built-in HOST CPU interface

Adaptable to 16bit bus interface.

Read/ write access to frame memory.

Read/ write access to internal registers (Indirect access with a index register as the address).

Read/ write access to the LCD controller: Parallel/Serial (Direct access available via the LCD interface).

7) Extended overlay function

Supporting overlay of icon-data/font-data of up to two points during LCD data transfer.

Both icon-data and font-data corresponding to 65536 display colors. Possible to setting transparent colors.

## 8) LED interface, GIO function

Built-in PWM output of 4 systems for 3 color LED controls and white LED control.

A total of 19 pins available for the GIO function (7 out of the 19 pins can be shared for other functions.)

9) Clock generation, power management function

Oscillation circuit configuration by XIN and XOUT terminals, or clock input from XIN terminal available. Built-in PLL.

Clock control of IC inside in unit of block (suspend mode available).

10) Key interfaces built in

3 systems of key interfaces built in. Interruption to be generated at key input.

Useable for removing software chattering.

\* Data is prepared separately about each register setup. Please refer to the Development Scheme on page 14.

| System 1 (VDDIO1)                | System 2 (VDDIO2)                                                                       |
|----------------------------------|-----------------------------------------------------------------------------------------|
| P3-P10(D15-8), P13-P14(SGIO3-2), | P37(INT), P39-P43(SGIO11-10, CAMVS, CAMHS, CAMD0), P46-P47(CAMD1-2), P49-P53(SGIO9,     |
| P17(SGIO1), P19(D7),             | CAMD3, GIO2/KEY2, CAMD4, CAMD5), P55-P56(CAMD6, CAMD7), P58-P59(CAMCKI-CAMCKO),         |
| P21-29(D6-5,SGIO0,D4-0,A2),      | P63-P68(SDA, SDC, LEDCNT/GIO1, PWM1/GIO3, PWM2/GIO4, PWM3/GIO5),                        |
| P33-P36(A1,CSB,WRB,RDB),         | P70-P75(VD/GIO6, LCDCS1B, LCDCS2B, KEY0, LCDD16, SGIO8), P77-P79(LCDWRB, SGIO7,         |
| P118-P119(XOUT,XIN)              | LCDRDB), P81-P82(LCDA0, SGIO4), P84-P88(LCDD0-4), P92-98(LCDD5, LCDD6/SCL, SGIO6,       |
|                                  | LCDD7/SI, SGIO5, TEST, LCSS17), P100(LCDD8), P103-105(LCDD9-11), P107-109(LCDD12, KEY1, |
|                                  | LCDD13), P111-P114(LCDD14-15, RESETB, PWM0/GIO0)                                        |

## Application

Security camera, Intercom with camera, Drive recorder, and Web camera etc.

## ●Lineup

| Parameter | Power source<br>voltage<br>IO1:HOST CPU I/F<br>IO2:Camera, LCD                                        | Camera<br>interface                              | HOST CPU<br>interface                    | LCD<br>interface                       | Codec [Image]                                                 | Multimedia<br>interface | Package     |
|-----------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------|-------------|
| BU6582GVW | 1.45-1.55V(V <sub>DD</sub> Core)<br>1.7-3.15V(V <sub>DD</sub> IO1)<br>2.55-3.15V(V <sub>DD</sub> IO2) | Supported up to<br>1.3M pixels.<br>(1280 × 1024) | 16bit bus<br>80 systems<br>CPU Interface | Supported up<br>to QVGA<br>(320 × 240) | MPEG4/H.263 Codec<br>1.3M pixels JPEG<br>Codec<br>Motion-JPEG | -                       | SBGA120W080 |

|                                   | 0 (    | ,               |      |
|-----------------------------------|--------|-----------------|------|
| Parameter                         | Symbol | Rating          | Unit |
| Applied power<br>source voltage 1 | VDDIO1 | -0.3~+4.2       | V    |
| Applied power<br>source voltage 2 | VDDIO2 | -0.3~+4.2       | V    |
| Applied power<br>source voltage 3 | VDD    | -0.3~+2.1       | V    |
| Input voltage1                    | VIN1   | -0.3~VDDIO1+0.3 | V    |
| Input voltage 2                   | VIN2   | -0.3~VDDIO2+0.3 | V    |
| Storage temperature range         | Tstg   | -40~+150        | °C   |
| Power dissipation                 | PD     | 380             | mW   |

## ●Absolute maximum ratings (Ta=25°C)

## Recommended operating range

| Parameter                              | Symbol           | Rating               | Unit |  |  |  |  |
|----------------------------------------|------------------|----------------------|------|--|--|--|--|
| Applied power source<br>voltage 1 (IO) | VDDIO1           | 1.70~3.15(Typ:1.80V) | V    |  |  |  |  |
| Applied power source<br>voltage 2 (IO) | VDDIO2           | 2.55~3.15(Typ:2.85V) | V    |  |  |  |  |
| Applied power source voltage 3 (CORE)  | VDD              | 1.45~1.55(Typ:1.50V) | V    |  |  |  |  |
| Input voltage range                    | VIN-<br>VDDIO1,2 | 0~VDDIO              | V    |  |  |  |  |
| Operating<br>temperature range         | Topr             | -30~+85              | °C   |  |  |  |  |

\* Please supply power source in order of VDD $\rightarrow$ VDDIO1 $\rightarrow$ VDDIO2.

\* IC only. In the case exceeding 25°C, 3.8mW should be reduced at the rating 1°C.

## •Electric characteristics

(Unless otherwise specified, VDDIO=2.85V, GND=0.0V, Ta=25°C, fin=12.0MHz, fSYS=48.0MHz)

| Deremeter                      | Symbol            | Limits         |      |                | Linit | Condition                                                 |  |  |
|--------------------------------|-------------------|----------------|------|----------------|-------|-----------------------------------------------------------|--|--|
| Parameter                      | Symbol            | MIN.           | TYP. | MAX.           | Unit  | Condition                                                 |  |  |
| Input frequency                | f <sub>IN</sub>   | 10.0           | -    | 30.0           | MHz   | XIN(DUTY45%~55%)                                          |  |  |
| Internal operating frequency 1 | f <sub>HSYS</sub> | -              | -    | 66.0           | MHz   | Internal HCLK, ACLK frequency                             |  |  |
| Internal operating frequency 2 | f <sub>SSYS</sub> | -              | -    | 50.0           | MHz   | Internal SCLK frequency                                   |  |  |
| Internal PLL input frequency   | f <sub>PIN</sub>  | 2.5            | -    | 7.5            | MHz   | Internal PLL input frequency                              |  |  |
| Internal PLL output frequency  | f <sub>POUT</sub> | 100            | -    | 200            | MHz   | Internal PLL output frequency                             |  |  |
| Operating consumption          |                   |                | 15   |                | m۸    | At camera ON, LCD display ON                              |  |  |
| current 1                      | ושטו              | -              | 15   | -              | ША    | At viewer operating                                       |  |  |
| Operating consumption          | כחחו              |                | 65   |                | mA    | At camera ON, LCD display ON                              |  |  |
| current 2                      | IDD2              | -              | 05   | -              | IIIA  | At MPEG4 encoding operating (at HCLK=60MHz)               |  |  |
| Static consumption current     | IDDst             | -              | -    | 150            | μΑ    | At suspend mode setting                                   |  |  |
| Input "H" current 1            | IIH1              | -10            | -    | 10             | μΑ    | VIH=VDDIO                                                 |  |  |
| Input "H" current 2            | IIH2              | 25             | 50   | 100            | μA    | Pull-Down terminal, VIH=VDDIO                             |  |  |
| Input "H" current 3            | IIH3              | -10            | -    | 10             | μΑ    | Pull-Up terminal, VIH=VDDIO                               |  |  |
| Input "L" current 1            | IIL1              | -10            | -    | 10             | μA    | VIL=GND                                                   |  |  |
| Input "L" current 2            | IIL2              | -10            | -    | 10             | μA    | Pull-Down terminal, VIL=GND                               |  |  |
| Input "L" current 3            | IIL3              | -160           | -80  | -25            | μA    | Pull-Up terminal, VIL=GND                                 |  |  |
| Input "H" voltago 1            | \/I⊟1             | VDDIO          |      | VDDIO          | V     | Normal input (including input mode of I/O terminal)       |  |  |
|                                | VIIII             | ×0.8           | -    | +0.3           | v     |                                                           |  |  |
| Input "L" voltage 1            | VIL1              | -0.3           | -    | VDDIO<br>×0.2  | V     | Normal input (including input mode of I/O terminal)       |  |  |
| Input "H" voltage 2            | VIH2              | VDDIO<br>×0.85 | -    | VDDIO<br>+0.3  | V     | Hysteresis input (RESETB, CSB, WRB, RDB, XIN)             |  |  |
| Input "L" voltage 2            | VIL2              | -0.3           | -    | VDDIO<br>×0.15 | V     | Hysteresis input (RESETB, CSB, WRB, RDB, XIN)             |  |  |
| Hysteresis voltage width       | Vhys              | -              | 0.7  | -              | V     | Hysteresis input (RESETB, CSB, WRB, RDB, XIN)             |  |  |
| Output "H" voltage 1           | VOH1              | VDDIO<br>-0.4  | -    | VDDIO          | V     | IOH1=-1.0mA(DC)<br>(including input mode of I/O terminal) |  |  |
| Output "L" voltage 1           | VOL1              | 0.0            | -    | 0.4            | V     | IOL1=1.0mA(DC)<br>(including input mode of I/O terminal)  |  |  |
| Output "H" voltage 2           | VOH2              | VDDIO<br>-0.4  | -    | VDDIO          | V     | IOH2=-1.0mA(DC), XOUT terminal                            |  |  |
| Output "L" voltage 2           | VOL2              | 0.0            | -    | 0.4            | V     | IOL2=1.0mA(DC), XOUT terminal                             |  |  |

## Block Diagram



\* Data is prepared separately about each register setup. Please refer to the Development Scheme on page 14.

## •Terminal functions

| PIN<br>No. | Land<br>No. | PIN Name | In<br>/Out | Active<br>Level | Init  | Function explanation                                           | Power<br>source<br>system | Function division | I/O<br>type |
|------------|-------------|----------|------------|-----------------|-------|----------------------------------------------------------------|---------------------------|-------------------|-------------|
| 1          | A1          | N.C.     | -          | -               | -     | -                                                              | -                         | -                 | -           |
| 2          | C3          | VDDIO1   | -          | PWR             | -     | Digital I/O power source (system 1)                            | 1                         | -                 | -           |
| 3          | B2          | D15      | In/Out     | DATA            | ln *1 | Host data bus bit 15                                           | 1                         | HOST              | F*3         |
| 4          | B1          | D14      | In/Out     | DATA            | ln *1 | Host data bus bit 14                                           | 1                         | HOST              | F*3         |
| 5          | C2          | D13      | In/Out     | DATA            | ln *1 | Host data bus bit 13                                           | 1                         | HOST              | F*3         |
| 6          | D3          | D12      | In/Out     | DATA            | ln *1 | Host data bus bit 12                                           | 1                         | HOST              | F*3         |
| 7          | D2          | D11      | In/Out     | DATA            | ln *1 | Host data bus bit 11                                           | 1                         | HOST              | F*3         |
| 8          | D1          | D10      | In/Out     | DATA            | ln *1 | Host data bus bit 10                                           | 1                         | HOST              | F*3         |
| 9          | E3          | D9       | In/Out     | DATA            | ln *1 | Host data bus bit 9                                            | 1                         | HOST              | F*3         |
| 10         | E2          | D8       | In/Out     | DATA            | ln *1 | Host data bus bit 8                                            | 1                         | HOST              | F*3         |
| 11         | E1          | GND      | -          | GND             | -     | Common ground                                                  | -                         | -                 | -           |
| 12         | E5          | N.C.     | -          | -               | -     | -                                                              | -                         | -                 | -           |
| 13         | E4          | SGIO3    | In/Out     | -               | ln *4 | General-purpose I/O port                                       | 1                         | SYS               | Н           |
| 14         | F2          | SGIO2    | In/Out     | -               | ln *4 | General-purpose I/O port                                       | 1                         | SYS               | Н           |
| 15         | F1          | VDD      | -          | PWR             | -     | Core power supply                                              | -                         | -                 | -           |
| 16         | F5          | N.C.     | -          | -               | -     | -                                                              | -                         | -                 | -           |
| 17         | F4          | SGIO1    | In/Out     | -               | ln *4 | General-purpose I/O port                                       | 1                         | SYS               | Н           |
| 18         | F3          | N.C.     | -          | -               | -     | -                                                              | -                         | -                 | -           |
| 19         | G1          | D7       | In/Out     | DATA            | ln *1 | Host data bus / bit 7                                          | 1                         | HOST              | F*3         |
| 20         | G2          | GND      | -          | GND             | -     | Common ground                                                  | -                         | -                 | -           |
| 21         | G3          | D6       | In/Out     | DATA            | ln *1 | Host data bus / bit 6                                          | 1                         | HOST              | F*3         |
| 22         | G4          | D5       | In/Out     | DATA            | ln *1 | Host data bus / bit 5                                          | 1                         | HOST              | F*3         |
| 23         | H1          | SGIO0    | In/Out     | -               | In *4 | General-purpose I/O port                                       | 1                         | SYS               | Н           |
| 24         | H3          | D4       | In/Out     | DATA            | ln *1 | Host data bus / bit 4                                          | 1                         | HOST              | F*3         |
| 25         | J1          | D3       | In/Out     | DATA            | ln *1 | Host data bus / bit 3                                          | 1                         | HOST              | F*3         |
| 26         | J2          | D2       | In/Out     | DATA            | ln *1 | Host data bus / bit 2                                          | 1                         | HOST              | F*3         |
| 27         | H4          | D1       | In/Out     | DATA            | ln *1 | Host data bus / bit 1                                          | 1                         | HOST              | F*3         |
| 28         | H2          | D0       | In/Out     | DATA            | ln *1 | Host data bus / bit 0                                          | 1                         | HOST              | F*3         |
| 29         | K1          | A2       | In         | DATA            | -     | Host address bus / bit 2                                       | 1                         | HOST              | F*5         |
| 30         | G5          | GND      | -          | GND             | -     | Common ground                                                  | -                         | -                 | -           |
| 31         | L1          | N.C.     | -          | -               | -     | -                                                              | -                         | -                 | -           |
| 32         | L2          | VDDIO1   | -          | PWR             | -     | Digital I/O power supply (System 1)                            | 1                         | -                 | -           |
| 33         | K3          | A1       | In         | DATA            | -     | Host address bus / bit 1                                       | 1                         | HOST              | F *5        |
| 34         | H5          | CSB      | In         | Low             | -     | Chip select signal                                             | 1                         | HOST              | K*6         |
| 35         | K2          | WRB      | In         | Low             | -     | Write enable signal                                            | 1                         | HOST              | K           |
| 36         | J3          | RDB      | In         | Low             | -     | Read enable signal                                             | 1                         | HOST              | К           |
| 37         | K4          | INT      | Out        | *               | Low   | Interrupt signal                                               | 2                         | HOST              | E           |
| 38         | L3          | VDD      | -          | PWR             | -     | Core power supply                                              | -                         | -                 | -           |
| 39         | F6          | SGIO11   | In/Out     | -               | In *4 | General-purpose I/O port                                       | 2                         | SYS               | H           |
| 40         | G6          | SGIO10   | In/Out     | -               | In *4 | General-purpose I/O port                                       | 2                         | SYS               | H           |
| 41         | J4          | CAMVS    | In         | *               | -     | Camera vertical timing signal (Pull-down during CAMOFF mode)   | 2                         | CAM               | B           |
| 42         | L4          | CAMHS    | In         | *               | -     | Camera horizontal timing signal (Pull-down during CAMOFF mode) | 2                         | CAM               | B           |
| 43         | K5          | CAMD0    | In         | DATA            | -     | Camera data input / bit 0 (Pull-down in CAMOFF mode)           | 2                         | CAM               | В           |
| 44         | H6          | GND      | -          | GND             | -     |                                                                | -                         | -                 | -           |
| 45         | J5          | VDDIO2   | -          | PWR             | -     | Digital I/O power supply (System 2)                            | 2                         | -                 | -           |

| PIN<br>No. | Land<br>No. | PIN Name    | In<br>/Out | Active<br>Level | Init    | Function explanation                                           | Power<br>source<br>system | Function division | I/O<br>type |
|------------|-------------|-------------|------------|-----------------|---------|----------------------------------------------------------------|---------------------------|-------------------|-------------|
| 46         | L5          | CAMD1       | In         | DATA            | -       | Camera data input / bit 1 (Pull-down during CAMOFF mode)       | 2                         | CAM               | В           |
| 47         | K6          | CAMD2       | In         | DATA            | -       | Camera data input / bit 2 (Pull-down during CAMOFF mode)       | 2                         | CAM               | В           |
| 48         | F7          | GND         | -          | GND             | -       | Common ground                                                  | -                         | -                 | -           |
| 49         | G7          | SGIO9       | In/Out     | -               | ln *4   | General-purpose I/O port                                       | 2                         | SYS               | Н           |
| 50         | L6          | CAMD3       | In         | DATA            | -       | Camera data input / bit 3 (Pull-down during CAMOFF mode)       | 2                         | CAM               | В           |
| 51         | H7          | GIO2/KEY2   | In/Out     | DATA            | Out/Low | General-purpose I/O port/key input                             | 2                         | SYS               | Н           |
| 52         | K7          | CAMD4       | In         | DATA            | -       | Camera data input / bit 4 (Pull-down during CAMOFF mode)       | 2                         | CAM               | В           |
| 53         | J6          | CAMD5       | In         | DATA            | -       | Camera data input / bit 5 (Pull-down during CAMOFF mode)       | 2                         | CAM               | В           |
| 54         | L7          | N.C.        | -          | -               | -       | -                                                              | -                         | -                 | -           |
| 55         | F8          | CAMD6       | In         | DATA            | -       | Camera data input / bit 6 (Pull-down during CAMOFF mode)       | 2                         | CAM               | В           |
| 56         | G8          | CAMD7       | In         | DATA            | -       | Camera data input / bit 7 (Pull-down during CAMOFF mode)       | 2                         | CAM               | В           |
| 57         | L8          | VDDIO2      | -          | PWR             | -       | Digital I/O power supply (System 2)                            | 2                         | -                 | -           |
| 58         | K8          | CAMCKI      | In         | CLK             | -       | Camera clock input (Pull-down during CAMOFF mode)              | 2                         | CAM               | В           |
| 59         | J7          | CAMCKO      | Out        | CLK             | Low     | Camera clock output                                            | 2                         | CAM               | Е           |
| 60         | L9          | GND         | -          | GND             | -       | Common ground                                                  | -                         | -                 | -           |
| 61         | L10         | VDD         | -          | PWR             | -       | Core power supply                                              | -                         | -                 | -           |
| 62         | L11         | N.C.        | -          | -               | -       | -                                                              | -                         | -                 | -           |
| 63         | H8          | SDA         | In/Out     | DATA            | Out/Low | I/O serial data                                                | 2                         | SYS               | J           |
| 64         | K9          | SDC         | In/Out     | CLK             | Out/Low | I/O serial clock                                               | 2                         | SYS               | J           |
| 65         | K10         | LEDCNT/GIO1 | In/Out     | *               | ln *4   | LED PWM control signal from melody IC/general-purpose I/O port | 2                         | SYS               | Н           |
| 66         | K11         | PWM1/GIO3   | In/Out     | -               | ln *4   | LED PWM control signal/general-purpose I/O port                | 2                         | SYS               | Н           |
| 67         | J8          | PWM2/GIO4   | In/Out     | -               | ln *4   | LED PWM control signal/general-purpose I/O port                | 2                         | SYS               | Н           |
| 68         | J9          | PWM3/GIO5   | In/Out     | -               | ln *4   | LED PWM control signal/general-purpose I/O port                | 2                         | SYS               | Н           |
| 69         | J11         | GND         | -          | GND             | -       | Common ground                                                  | -                         | -                 | -           |
| 70         | J10         | VD/GIO6     | In/Out     | *               | ln *4   | LCD controller vertical sync signal/general-purpose I/O port   | 2                         | LCD               | Н           |
| 71         | H9          | LCDCS1B     | Out        | Low             | -       | LCD controller chip select signal 1                            | 2                         | LCD               | G *2        |
| 72         | H10         | LCDCS2B     | Out        | Low             | High    | LCD controller chip select signal 2                            | 2                         | LCD               | G *2        |
| 73         | H11         | KEY0        | In         | *               | -       | Key input                                                      | 2                         | SYS               | H *7        |
| 74         | G11         | LCDD16      | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 16                               | 2                         | LCD               | Н           |
| 75         | F11         | SGIO8       | In/Out     | -               | ln *4   | General-purpose I/O port                                       | 2                         | SYS               | Н           |
| 76         | G10         | VDD         | -          | PWR             | -       | Core power supply                                              | -                         | -                 | -           |
| 77         | F10         | LCDWRB      | Out        | Low             | -       | LCD controller write enable signal                             | 2                         | LCD               | G *2        |
| 78         | E11         | SGIO7       | In/Out     | -               | ln *4   | General-purpose I/O port                                       | 2                         | SYS               | Н           |
| 79         | G9          | LCDRDB      | Out        | Low             | -       | LCD controller read enable signal                              | 2                         | LCD               | G *2        |
| 80         | F9          | GND         | -          | GND             | -       | Common ground                                                  | -                         | -                 | -           |
| 81         | D11         | LCDA0       | Out        | *               | -       | LCD controller command parameter identification                | 2                         | LCD               | G *2        |
| 82         | E10         | SGIO4       | In/Out     | -               | ln *4   | General-purpose I/O port                                       | 2                         | SYS               | Н           |
| 83         | C11         | VDDIO2      | -          | PWR             | -       | Digital I/O power supply (System 2)                            | 2                         | -                 | -           |
| 84         | D10         | LCDD0       | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 0                                | 2                         | LCD               | Н           |
| 85         | C10         | LCDD1       | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 1                                | 2                         | LCD               | Н           |
| 86         | B11         | LCDD2       | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 2                                | 2                         | LCD               | Н           |
| 87         | E9          | LCDD3       | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 3                                | 2                         | LCD               | Н           |
| 88         | E8          | LCDD4       | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 4                                | 2                         | LCD               | Н           |
| 89         | B10         | GND         | -          | GND             | -       | Common ground                                                  | -                         | -                 | -           |
| 90         | A11         | N.C.        | -          | -               | -       | -                                                              | -                         | -                 | -           |

| PIN<br>No. | Land<br>No. | PIN Name  | In<br>/Out | Active<br>Level | Init    | Function explanation                                                        | Power<br>source<br>system | Function division | I/O<br>type |
|------------|-------------|-----------|------------|-----------------|---------|-----------------------------------------------------------------------------|---------------------------|-------------------|-------------|
| 91         | A10         | VDD       | -          | PWR             | -       | Core power supply                                                           | -                         | -                 | -           |
| 92         | D9          | LCDD5     | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 5                                             | 2                         | LCD               | Н           |
| 93         | C9          | LCDD6/SCL | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 6                                             | 2                         | LCD               | Н           |
| 94         | B9          | SGIO6     | In/Out     | -               | ln *4   | General-purpose I/O port                                                    | 2                         | SYS               | Н           |
| 95         | A9          | LCDD7/SI  | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 7                                             | 2                         | LCD               | Н           |
| 96         | D8          | SGIO5     | In/Out     | -               | ln *4   | General-purpose I/O port                                                    | 2                         | SYS               | Н           |
| 97         | C8          | TEST      | In         | Low             | -       | Test mode terminal (Connect to GND.)                                        | 2                         | SYS               | В           |
| 98         | A8          | LCDD17    | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 17                                            | 2                         | LCD               | Н           |
| 99         | B8          | GND       | -          | GND             | -       | Common ground                                                               | -                         | -                 | -           |
| 100        | A7          | LCDD8     | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 8                                             | 2                         | LCD               | Н           |
| 101        | E7          | N.C.      | -          | -               | -       | -                                                                           | -                         | -                 | -           |
| 102        | D7          | VDDIO2    | -          | PWR             | -       | Digital I/O power supply (System 2)                                         | 2                         | -                 | -           |
| 103        | C7          | LCDD9     | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 9                                             | 2                         | LCD               | Н           |
| 104        | A6          | LCDD10    | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 10                                            | 2                         | LCD               | Н           |
| 105        | B7          | LCDD11    | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 11                                            | 2                         | LCD               | Н           |
| 106        | B6          | GND       | -          | GND             | -       | Common ground                                                               | -                         | -                 | -           |
| 107        | A5          | LCDD12    | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 12                                            | 2                         | LCD               | Н           |
| 108        | C6          | KEY1      | In         | -               | -       | Key input                                                                   | 2                         | SYS               | H *7        |
| 109        | D6          | LCDD13    | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 13                                            | 2                         | LCD               | Н           |
| 110        | E6          | N.C.      | -          | -               | -       | -                                                                           | -                         | -                 | -           |
| 111        | A4          | LCDD14    | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 14                                            | 2                         | LCD               | Н           |
| 112        | B5          | LCDD15    | In/Out     | DATA            | Out/Low | LCD controller data bus / bit 15                                            | 2                         | LCD               | Н           |
| 113        | B3          | RESETB    | In         | Low             | -       | System reset signal                                                         | 2                         | SYS               | С           |
| 114        | C5          | PWM0/GIO0 | In/Out     | DATA            | ln *4   | LED PWM control signal/general-purpose I/O port                             | 2                         | SYS               | Н           |
| 115        | D5          | N.C.      | -          | -               | -       | -                                                                           | -                         | -                 | -           |
| 116        | A3          | VDD       | -          | PWR             | -       | Core power supply                                                           | -                         | -                 | -           |
| 117        | B4          | VDDIO1    | -          | PWR             | -       | Digital I/O power supply (System 1)                                         | 1                         | -                 | -           |
| 118        | C4          | XOUT      | Out        | CLK             | High    | Clock output<br>(Normally HIGH output while in external input setting mode) | 1                         | SYS               | Ι           |
| 119        | D4          | XIN       | In         | CLK             | -       | Clock input *8                                                              | 1                         | SYS               | I, K *9     |
| 120        | A2          | GND       | -          | GND             | -       | Common ground                                                               | -                         | -                 | -           |

Concerning function category, HOST represents HOST IF, SYS->SYSTEM, CAM->CAMERA IF, and LCD->LCD IF.

"1" of the power source system represents System 1 (VDDIO1) and "2" of that represents System 2 (VDDIO2).

\* \* \* " in Active Level column means active level can be changed by setting of register. Moreover, Init is a pin state at the time of reset release.

\*1: RESETB='L'

\*2: Input only except for a test mode.

\*3: Pull down only except for a test mode.

\*4: Pull down while RESETB='L'(initial state).

\*5: Output status or pull-down function are only enabled during test mode.

\*6: Suspend function is only enabled during test mode.

\*7: Output only except for a test mode.

\*8: The crystal oscillation circuit does not include a return resistance, so it is needed to examine an external circuit including return resistance.

\*9: I/O type is I at oscillation mode, it is K at external clock input mode.

## Equivalent Circuit Structures of input / output pins





## Terminal Layout



(Bottom View)

## Timing Chart

# 1. HOST interface timing 1.1 System timing

| Table 1.1-1 BU6582GVW timing conditions (system) |                             |       |      |       |      |                    |  |  |  |
|--------------------------------------------------|-----------------------------|-------|------|-------|------|--------------------|--|--|--|
| Symbol                                           | Details                     | MIN.  | TYP. | MAX.  | Unit | Conditions         |  |  |  |
| tXIN                                             | BU6582GVW Clock input cycle | 33.3  | -    | 100.0 | ns   |                    |  |  |  |
| DutyXIN                                          | BU6582GVW Clock duty        | 45.0  | 50.0 | 55.0  | %    | "H" width / cycle  |  |  |  |
| tHCLK                                            | BU6582GVW HCLK clock cycle  | 15.15 | -    | -     | ns   |                    |  |  |  |
| DutyHCLK                                         | BU6582GVW HCLK clock duty   | 33.3  | 50.0 | 66.6  | %    | "H" width / cycle  |  |  |  |
| tSCLK                                            | BU6582GVW SCLK clock cycle  | 20.0  | -    | -     | ns   |                    |  |  |  |
| DutySCLK                                         | BU6582GVW SCLK clock duty   | 33.3  | 50.0 | 66.6  | %    | "H" width / cycle  |  |  |  |
| tCAMCKO                                          | Camera clock output cycle   | 20.0  | -    | -     | ns   |                    |  |  |  |
| DutyCAMCKO                                       | Camera clock output duty    | 33.3  | 50.0 | 66.6  | %    | ""H" width / cycle |  |  |  |
| tCAMCKI                                          | Camera clock input cycle    | 20.0  | -    | -     | ns   |                    |  |  |  |
| DutyCAMCKI                                       | Camera clock input duty     | 40.0  | 50.0 | 60.0  | %    | "H" width / cycle  |  |  |  |
| tRESETB                                          | RESETB "L" pulse width      | 1.0   | -    | -     | us   |                    |  |  |  |
| Regulation all at                                | threshold of VDDIO×1/2      |       |      |       |      |                    |  |  |  |

## 1.2 Register (including RAM via register) write timing.



## Table 1.2-1 BU6582GVW timing conditions (RAM, register write cycle)

| Symbol | Details                                                               | MIN. | TYP. | MAX. | Unit |
|--------|-----------------------------------------------------------------------|------|------|------|------|
| tWC    | Write cycle time                                                      | 75   | -    | -    | ns   |
| tAS    | Address setup time before WRB(CSB) falling                            | -7   | -    | -    | ns   |
| tAH    | Address hold time after WRB(CSB) rising                               | -1   | -    | -    | ns   |
| tCS    | CSB(WRB) input setup time before WRB(CSB) falling                     | 0    | -    | -    | ns   |
| tCH    | CSB(WRB) input hold time after WRB(CSB) falling                       | 0    | -    | -    | ns   |
| tWW    | WRB(CSB) active time width                                            | 45   | -    | -    | ns   |
| tWAIT  | Wait time from WRB(CSB) rising to the next WRB(CSB) or to RDB falling | 5.5  | -    | -    | ns   |
| tDS    | Data setup time before WRB(CSB) rising                                | 40   | -    | -    | ns   |
| tDH    | Data hold time after WRB(CSB) rising                                  | -1   | -    | -    | ns   |

\* Regulation all at threshold of VDDIO1×1/2 (VDD=1.50V,VDDIO=2.85V,GND=0.0V,Ta=25°C)

\* It is possible to use it with either CSB or WRB active. However, either of them must do LOW pulse operation.

## 1.3 Register (including RAM via register) read timing.



## Table 1.3-1 BU6582GVW timing conditions (RAM, register read cycle)

| Symbol    | Details                                                                                        | MIN. | TYP. | MAX. | Unit |
|-----------|------------------------------------------------------------------------------------------------|------|------|------|------|
| tRC       | Read cycle time                                                                                | 75.5 | -    | -    | ns   |
| tAS       | Address setup time before RDB(CSB) falling                                                     | -7   | -    | -    | ns   |
| tAH       | Address hold time after RDB(CSB) rising                                                        | -1   | -    | -    | ns   |
| tCS       | CSB(RDB) input setup time before RDB(CSB) falling                                              | 0    | -    | -    | ns   |
| tCH       | CSB(RDB) input hold time after RDB(CSB) rising                                                 | 0    | -    | -    | ns   |
| tRD       | Access time after RDB(CSB) falling                                                             | -    | -    | 70   | ns   |
| tWAIT     | Wait time from RDB(CSB) falling to the next RDB(CSB) falling or to WRB falling                 | 5.5  | -    | -    | ns   |
| tROE,tROD | Data output enable time after RDB(CSB) rising, Data output disable time after RDB(CSB) falling | -    | -    | 15   | ns   |

\* Regulation all at threshold of VDDIO1×1/2 (VDD=1.80V,VDDIO1,2=2.85V,GND=0.0V,Ta=25°C)

\* It is possible to use it with either CSB or WRB active. However, either of them must do LOW pulse operation.

## 2. Camera Module Interface Timing

## 2.1. System clock and camera clock

BU6582GVW external clock input (XIN) can be divided set and supplied as CAMCKO clock to camera module. (As for division setting, refer to 3.2.2.)

The relation between data synchronization CAMCKI clock from camera and system clock SCLK must be set in order to meet the following formula by setting of ACTSW (IDX:0D3h CLKDIV3[5:4]).

(note) fCAMCKI > fSCLK, 2×fCAMCKI > fSCLK > fCAMCKI is forbidden.

## 2.2. Camera module interface timing

The timing of the camera image signal in camera I/F is shown in Table 2.2-1.



 Table
 2.2-1
 BU6582GVW timing (camera data)

| Symbol | Details                                  | MIN. | TYP. | MAX. | Unit |
|--------|------------------------------------------|------|------|------|------|
| tCMS   | CAMCKI rising/falling camera set up time | 4    | -    | -    | ns   |
| tCMH   | CAMCKI rising/falling camera hold time   | 4    | -    | -    | ns   |

## 3. LCD direct access

### · Transparent terminal timing at LCD module direct access



| Table 3-1 | BU6582GVW timing conditions    | (LCD direct access) |
|-----------|--------------------------------|---------------------|
|           | Becceler in anning contaitione |                     |

| Symbol | Details                           | MIN. | TYP. | MAX. | Unit |
|--------|-----------------------------------|------|------|------|------|
| tCSf1  | Delay from CSB to LCDCSB falling  | 2.5  | -    | 12.2 | ns   |
| tCSr1  | Delay from CSB to LCDCSB rising   | 2.1  | -    | 11.3 | ns   |
| tWRf1  | Delay from WRB to LCDWRB falling  | 2.3  | -    | 12.2 | ns   |
| tWRr1  | Delay from WRB to LCDWRB rising   | 1.9  | -    | 11.0 | ns   |
| tRDf1  | Delay from RDB to LCDRDB falling  | 2.5  | -    | 12.2 | ns   |
| tRDr1  | Delay from RDB to LCDRDB rising   | 2.2  | -    | 11.1 | ns   |
| tAD1   | Delay from A1 to LCDA0            | 2.6  | -    | 12.1 | ns   |
| tDTw1  | Delay from D0~D15 to LCDD0~LCDD17 | 2.7  | -    | 11.0 | ns   |
| tDTr1  | Delay from LCDD0~LCDD17 to D0~D15 | 2.3  | -    | 13.8 | ns   |

## 4. LCD transfer timing

Transfer timing to LCD is shown below.





## Development Scheme

This technical note is aimed at trying the connectivity in the hardware between customer's system and our camera image processor series.

We prepare various data and tools for every development STEP as follows other than this technical note, please contact the sales staff in your duty also including the support system.

#### (1) Demonstration STEP

#### (You can try the standard image processing functions by the standard Demonstration kit at once.)

You can confirm the standard functions such as camera image preview, memory data display to LCD, camera image composition JPEG compression/ expansion, frame composition, divided display, and LED lighting, and so forth on the Demonstration board.

Standard Demonstration board kit

ODemonstration board

(LCD module provided by ROHM, Camera module provided by ROHM, Check board equipped with the camera image processor, ARM-equipped controller board)

ODemonstration board operation manual

©Demonstration software

If the software for the trial board is installed in your Windows PC(Windows 2000/XP/ME/98), more detailed setting is possible.

(Execution tools for the macro command, sample macro command file)

©USB cable

## (2) Confirmation STEP

#### (We will respond to customer's camera module, LCD module, HOST CPU.)

Specifications

- We will provide specifications for camera image processor according to customer's requirements.
- Function explanation
  - We will deliver you the function explanation describing detailed functions, register settings, external interfaces, timing, and so forth of camera image processor according to your requests.
- Application note

We will deliver you the detailed explanation data on application development of camera image processor according to your requests.

#### (3) System check STEP

(You can check the application operation as a system by the kit of system check tools and your module(camera/LCD).)

ROHM creates the system check board using your camera/LCD module.

You can check the interface with your module and the application operation on the system check board using the tools for user's only.

- System check tools kit
- System check software (For Windows PC)
  - ©Reference C source code summarizing ARM –compatible application program interface(API)
  - ©The application software (API) as a reference C source code
  - ©The execution tools for the macro command (BU65XX\_USB) for the check by your PC.
  - ©The macro command file for the check by your PC.
- System check document
  - ©System check board manual
  - ©BU65XX Demo\_Board Application using API
  - OBoard circuit diagram

\*You can check the detailed functions of the application operation by your PC using the macro command file.

## (4) Integrated check STEP with user's system

## (You can check the application operation as a system on your system check board using the integrated check software.)

You can check the application operation on the sample LSI-equipped system check board by your camera / LCD module using the integrated check software.

· On line Support ; We will answer your questions about the software development.

- How to use the macro command file, API file, and APL file.
- Setting flow of the camera function (camera JPEG, preview, etc.)
- Interface setting of the camera module, LCD module and the camera image processor.
- Header analysis method oh JPEG decode, etc.
- On site Support ; We will help you clarify the questions about the software development on site together on spot. Check of the operation of each function and the basic operation at each register setting, etc. based on the specification.

Explanation about the specific usage of the macro command file, API file and APL file and relative questions.

How to develop the overlay or special functions, etc.

#### Cautions on use

#### (1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

#### (2)Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.

#### (3)Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC's power supply terminal.

#### (4)Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.

In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.

Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.

#### (5)GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.

#### (6)Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.

#### (7)Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.

#### (8)Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.

#### (9)Input terminals

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.

#### (10)Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.

#### (11)External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.

## Order Model Name Selection



## Tape and Reel information

## SBGA120W080



|                    | Notes                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| No copy<br>consent | ying or reproduction of this document, in part or in whole, is permitted without the of ROHM Co.,Ltd.                                |
| The con            | tent specified herein is subject to change for improvement without notice.                                                           |
| The con            | ntent specified herein is for the purpose of introducing ROHM's products (hereinafte                                                 |
| "Produc            | its"). If you wish to use any such Product, please be sure to refer to the specifications                                            |
| which ca           | an be obtained from ROHM upon request.                                                                                               |
| Example            | es of application circuits, circuit constants and any other information contained hereir                                             |
| illustrate         | e the standard usage and operations of the Products. The peripheral conditions mus                                                   |
| be taker           | n into account when designing circuits for mass production.                                                                          |
| Great ca           | are was taken in ensuring the accuracy of the information specified in this document                                                 |
| Howeve             | r, should you incur any damage arising from any inaccuracy or misprint of such                                                       |
| informat           | tion, ROHM shall bear no responsibility for such damage.                                                                             |
| The tech           | nnical information specified herein is intended only to show the typical functions of and                                            |
| example            | es of application circuits for the Products. ROHM does not grant you, explicitly o                                                   |
| implicitly         | y, any license to use or exercise intellectual property or other rights held by ROHM and                                             |
| other pa           | arties. ROHM shall bear no responsibility whatsoever for any dispute arising from the                                                |
| use of se          | uch technical information.                                                                                                           |
| The Pro            | ducts specified in this document are intended to be used with general-use electronic                                                 |
| equipment          | ent or devices (such as audio visual equipment, office-automation equipment, commu-                                                  |
| nication           | devices, electronic appliances and amusement devices).                                                                               |
| The Pro            | ducts specified in this document are not designed to be radiation tolerant.                                                          |
| While R<br>Product | OHM always makes efforts to enhance the quality and reliability of its Products, a may fail or malfunction for a variety of reasons. |
| Please b           | be sure to implement in your equipment using the Products safety measures to guard                                                   |
| against            | the possibility of physical injury, fire or any other damage caused in the event of the                                              |
| failure o          | f any Product, such as derating, redundancy, fire control and fail-safe designs. ROHN                                                |
| shall be           | ar no responsibility whatsoever for your use of any Product outside of the prescribed                                                |
| scope o            | r not in accordance with the instruction manual.                                                                                     |
| The Pro            | ducts are not designed or manufactured to be used with any equipment, device or                                                      |
| system             | which requires an extremely high level of reliability the failure or malfunction of which                                            |
| may res            | ult in a direct threat to human life or create a risk of human injury (such as a medica                                              |
| instrume           | ent, transportation equipment, aerospace machinery, nuclear-reactor controller                                                       |
| fuel-con           | troller or other safety device). ROHM shall bear no responsibility in any way for use o                                              |
| any of th          | ne Products for the above special purposes. If a Product is intended to be used for any                                              |
| such sp            | ecial purpose, please contact a ROHM sales representative before purchasing.                                                         |
| If you in          | tend to export or ship overseas any Product or technology specified herein that may                                                  |
| be contr           | rolled under the Foreign Exchange and the Foreign Trade Law, you will be required to                                                 |
| obtain a           | license or permit under the Law.                                                                                                     |



Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

## ROHM Customer Support System

http://www.rohm.com/contact/

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video ICs category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :

M21328G-12 ISL79985ARZ-T TW2964-LA2-CR TW9903-FB TW9919-PE1-GR ADV8003KBCZ-7T PI3HDX511DZLEX M23428G-33 PI7VD9008ABHFDE ADV7186BBCZ-TL ADV7186BBCZ-T-RL ADV8003KBCZ-7C PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX BH76912GU-E2 CM5100-01CP TVP5160PNP TVP5151PBSR BA7603F-E2 BH76361FV-E2 ADV7391WBCPZ-RL MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7179WBCPZ ADV7611BSWZ-P-RL ADV7180KCP32Z ADV7180WBCP32Z ADV7280KCPZ ADV7280WBCPZ-M ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7282WBCPZ-M ADV7280KCPZ-M ADV7280WBCPZ ADV7180KCP32Z-RL ADV7282AWBCPZ ADV7182AWBCPZ AD723ARUZ ADV7611BSWZ ADV7181DWBCPZ-RL ADV7173KSTZ-REEL ADV7180WBST48Z-RL ADA4411-3ARQZ ADA4411-3ARQZ-R7 ADA4417-3ARMZ