

LVDS Interface ICs

4bit LVDS Driver

BU90LV047A No.12057EAT02

Description

LVDS Interface IC of ROHM "Serializer" "Deserializer" operate from 8MHz to 150MHz wide clock range, and number of bits range is from 35 to 70. Data is transmitted seven times (7X) stream and reduce cable number by 3(1/3) or less. The ROHM's LVDS has low swing mode to be able to expect further low EMI.

Driver and Receiver of 4 bits operate to 250MHz. It can be used for a variety of purposes, home appliances such as LCD-TV, business machines such as decoders, instruments, and medical equipment.

Features

- 1) >500 Mbps (250 MHz) switching rates
- 2) Flow-through pinout simplifies PCB layout.
- 3) 300 ps typical differential skew
- 4) 400 ps maximum differential skew
- 5) 2.8 ns maximum propagation delay
- 6) 3.3V power supply design
- 7) ±200mV and ±350mV Selectable differential signaling
- 8) Interoperable with existing 5V LVDS receivers
- 9) High impedance on LVDS outputs on power down
- 10) Conforms to TIA/EIA-644 LVDS Standard
- 11) Industrial operating temperature range (-40°C to +85°C)

Applications

Car Navigation System
Copier
Digital TV (Signal System)
FA equipment
Medical equipment
Vending machine, Ticket vending machine

Precaution

- \blacksquare This chip is not designed to protect from radioactivity.
- ■This document may be used as strategic technical data which subjects to COCOM regulations.

BU90LV047A Technical Note

●Block Diagram

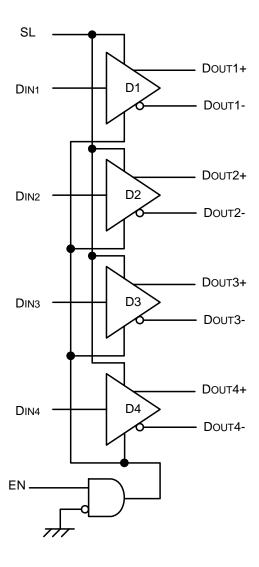


Fig.1. Block Diagram

●SSOP-B16 Package Outline and Specification

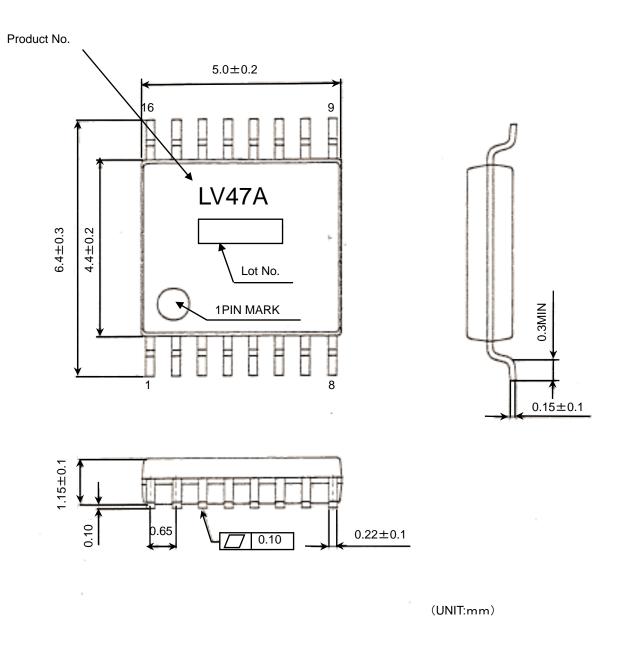


Fig.2. SSOP-B16 Package Outline and Specification

BU90LV047A Technical Note

●Pin Configuration

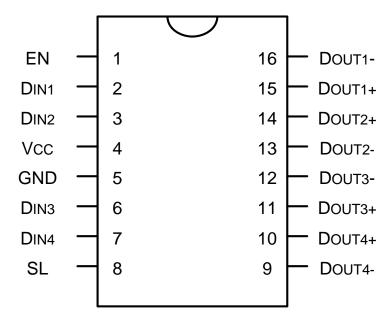


Fig.3. Pin Diagram (Top View)

●Pin Description

Table 1 : Pin Description

Pin Name	Pin No.	Туре	Descriptions	
DIN	2, 3, 6, 7	LVCMOS In	Driver input pin, LVCMOS compatible	
DOUT+	10, 11, 14, 15	LVDS Out	Non-inverting driver output pin, LVDS levels	
DOUT-	9, 12, 13, 16	LVDS Out	Inverting driver output pin, LVDS levels	
SL	8	LVCMOS In	Swing Level select pin: When SL is high, the driver is reduce swing level (200mV). When SL is low or open, the driver is normal swing level (350mV).	
EN	1	LVCMOS In	Driver enable pin: When EN is low or open, the driver is disabled. When EN is high, the driver is enabled.	
VCC	4	Power	Power supply pin, 3.3V±0.3V	
GND	5	GND	Ground pin	

● Function Description

		INPUT	OUTPUTS		Swing Lovel
EN	SL	DIN	Dout+	D оит-	Swing Level
Н			L	Н	350mV
П	L or Open	Н	Н	L	350111
		L	L	Н	200>/
Н	Н	Н	Н	L	200mV
All other combinations of EN, SL inputs		Х	Z	Z	

●Absolute Maximum Ratings

Item	Cumbal	Valu	Unit		
nem	Symbol	Min.	Max.	Offic	
Supply voltage	VCC	-0.3	4.0	V	
Input voltage	VIN	-0.3	VCC+0.3	V	
Output voltage	VOUT	-0.3	VCC+0.3	V	
Storage temperature range	Tstg	-55	125	°C	

● Package Power

_	9									
	Package	PD(mW)	DERATING(mW/°C) **1							
	CCOD D46	400	4.0							
	SSOP-B16	450 ^{*2}	4.5 ^{**2}							

%1 At temperature Ta > 25°C

%2 Package power when mounting on the PCB board.

The size of PCB board :70 × 70 × 1.6 (mm³)

 $:70 \times 70 \times 1.6 \text{ (mm}^3)$

The material of PCB board :The FR4 glass epoxy board.(3% or less copper foil area)

Recommended Operating Conditions

Itam	Symbol	Value			Unit	Condition		
Item	Symbol	Min.	Тур.	Max.	Onit	Condition		
Supply voltage	VCC	3.0	3.3	3.6	V			
Operating temperature range	Topr	-40	-	85	°C			

DC Characteristics

Parameter	Symbol	Conditions	Pin	Min	Тур	Max	Units
Differential Output Voltage	V _{OD1}			250	350	450	mV
Output High Voltage	V _{OH 1}	SL= GND, $R_L = 100 \Omega$ (Fig.4)		-	1.42	1.6	V
Output Low Voltage	V _{OL1}			0.90	1.08	-	V
Differential Output Voltage	V_{OD2}			120	200	300	mV
Output High Voltage	V _{OH2}	$SL=V_{CC}$, $R_L=100\Omega$ (Fig.4)	D _{OUT-}	-	1.35	1.50	V
Output Low Voltage	V _{OL2}			1.00	1.15	-	V
Change in Magnitude of V _{OD} for Complementary Output States	ΔV_{OD}			-	1	35	mV
Offset Voltage	Vos	$SL = V_{CC}$ or GND , $R_L = 100 \Omega$ (Fig.4)		1.125	1.25	1.375	V
Change in Magnitude of Vos for Complementary Output States	ΔV _{OS}			-	1	25	mV
Input High Voltage	V _{IH}		D _{IN,}	V _{CC} × 0.8	-	V _{CC}	V
Input Low Voltage	V _{IL}		SL	GND	-	V _{CC} × 0.2	V
Input Current	I _I	$V_{IN} = 0V$ or V_{CC} , Other Input = V_{CC} or GND	EN	-10	-	+10	μΑ
Input Clamp Voltage	V _{CL}	I _{CL} = -18mA		-1.5	-0.8	-	V
Output Short Circuit Current	los	ENABLED, $D_{IN} = V_{CC}$, $D_{OUT+} = 0V$ or $D_{IN} = GND$, $D_{OUT-} = 0V$		-	-5.4	-9.0	mA
Differential Output Short Circuit Current	I _{OSD}	ENABLED, $V_{OD} = 0V$		-	-5.4	-9.0	mA
Power-off Leakage	I _{OFF}	V _{OUT} = 0V or 3.6V, V _{CC} =0V or Open		-20	±1	+20	μΑ
No Load Supply Current Drivers Enabled	I _{CC}	D _{IN} = V _{CC} or GND		-	20	-	mA
Load Supply Current Drivers Enabled	I _{CCL}	$R_L = 100 \Omega$ All Channels, $D_{IN} = V_{CC}$ or GND (all outputs)	V _{CC}	-	20	-	mA
No Load Supply Current Drivers Disabled	I _{CCZ}	$D_{IN} = V_{CC}$ or GND, EN = GND, SL = GND		-	3	-	mA

Switching Characteristics

 $V_{CC} = +3.3V \pm 0.3V$, $T_{opr} = -40^{\circ}C$ to $+85^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Differential Propagation Delay High to Low	t _{PHLD}		0.5	1.7	2.8	ns
Differential Propagation Delay Low to High	t _{PLHD}		0.5	1.7	2.8	ns
Differential Pulse Skew tphld - tplhd	t _{SKD1}		0	0.3	0.4	ns
Channel-to-Channel Skew	t _{SKD2}	$R_{L} = 100 \Omega$, $C_{L} = 15 pF$	0	0.4	0.5	ns
Differential Part to Part Skew	t _{SKD3}	(Fig.5 and Fig.6)	0	-	1.0	ns
Differential Part to Part Skew	t _{SKD4}		0	-	1.2	ns
Rise Time	t _{TLH}		-	0.5	1.5	ns
Fall Time	t _{THL}		-	0.5	1.5	ns
Disable Time High to Z	t _{PHZ}		-	2	5	ns
Disable Time Low to Z	t _{PLZ}	$R_L = 100 \Omega$, $C_L = 15 pF$	-	2	5	ns
Enable Time Z to High	t _{PZH}	(Fig.7 and Fig.8)	-	3	7	ns
Enable Time Z to Low	t _{PZL}		-	3	7	ns
Maximum Operating Frequency	f _{Max}		250	-	-	MHz

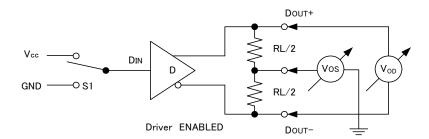


Fig.4. Driver VOD and VOS Test Circuit

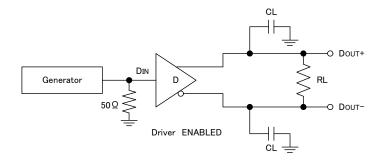


Fig.5. Driver Propagation Delay and Transition Time Test Circuit

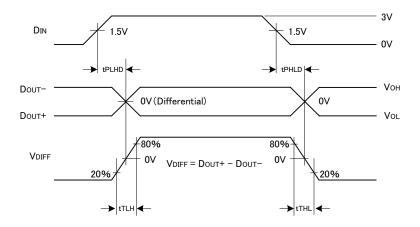


Fig.6. Driver Propagation Delay and Transition Time Waveforms

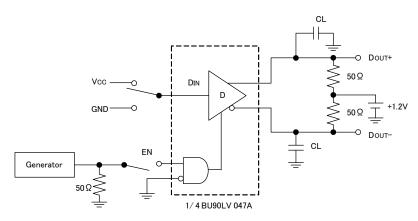


Fig.7. Driver 3-STATE Delay Test Circuit

Parameter Measurement Information (Continued)

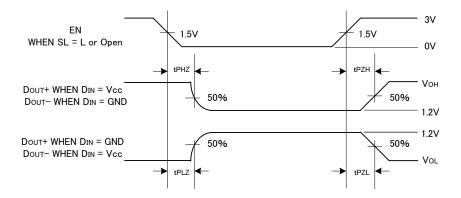


Fig.8. Driver 3-STATE Delay Waveform

Typical Application

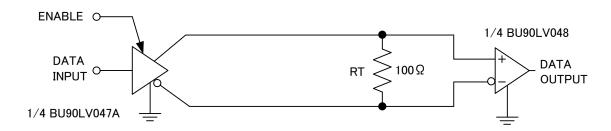
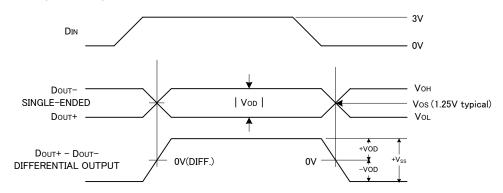
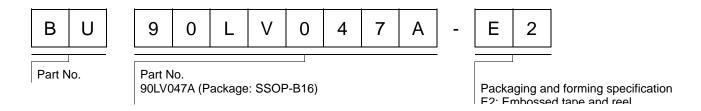
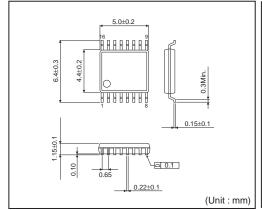
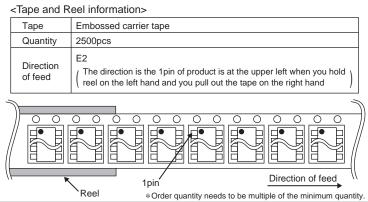


Fig.9. Point-to-Point Application

Typical Application (Continued)


Fig.10. Driver Output Levels

Ordering part number

SSOP-B16

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSⅢ	CLASSⅢ	CLASS II b	СГУССШ
CLASSIV	CLASSIII	CLASSⅢ	CLASSⅢ

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Rev.001

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LVDS Interface IC category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

FIN224ACMLX 8T49N2083NLGI# MAX9135GHJ+ MS1224 SN65LVP16DRFT SN65MLVD200D MAX9176EUB+
DS90LV047ATMX/NOPB DS90LV018ATM DS90LT012AHMF DS90LV049TMT DS90LV047ATM DS90LV032ATMTC
DS90C383MTDX/NOPB DS90C383MTD DS90LV031ATMTC DS90C402M SN65LVDS051PWRQ1 DS90C387VJDXNOPB
SN65LVDT32BDR ADN4665ARUZ ADN4666ARUZ ADN4666ARZ-REEL7 ADN4692EBRZ ADN4693EBRZ ADN4697EBRZ
ADN4695EBRZ ADN4692EBRZ-RL7 ADN4665ARZ ADN4666ARZ ADN4667ARZ ADN4667ARZ-REEL7 ADN4668ARZ
ADN4670BSTZ ADN4670BCPZ ADN4661BRZ ADN4663BRZ-REEL7 ADN4694EBRZ-RL7 ADN4662BRZ-REEL7 ADN4662BRZ
ADN4691EBRZ ADN4694EBRZ ADN4690EBRZ ADN4661BRZ-REEL7 ADN4696EBRZ-RL7 MAX9113ESA+ GM8285BGA
MAX9113ESA+T MAX9111ESA+T MAX9112ESA+T