LCD Segment Drivers

Multi-function LCD Segment Drivers

BU91530KVT-M
MAX 445 Segment(89SEGx5COM)

General Description

The BU91530KVT-M is $1 / 5,1 / 4,1 / 3$ duty or Static General-purpose LCD driver. The BU91530KVT-M can drive up to 445 LCD Segments directly. The BU91530KVT-M can also control up to 9 General-purpose output pins / 9 PWM output pins. These products also incorporate a key scan circuit that accepts input from up to 30 keys to reduce printed circuit board wring.

Features

- AEC-Q100 Qualified (Note 1)
- Key Input Function for Up to 30 Keys (A key scan is performed only when a key is pressed.)
- Either $1 / 5,1 / 4,1 / 3$ Duty or Static Can be Selected with the Serial Control Data.
1/5 Duty Drive: Up to 445 segments can be Driven 1/4 Duty Drive: Up to 360 segments can be Driven 1/3 Duty Drive: Up to 270 segments can be Driven Static Drive: Up to 90 Segments can be Driven
- Selectable Display Frame Frequency for Common and Segment Output Waveforms.
■ Configurable Output Pin to Segment Output / PWM Output / General-purpose Output.(Max 9 Pins)
- Built-in OSC Circuit

■ Integrated Voltage Detect Type Power on Reset (VDET) Circuit

- No External Component

■ Low Power Consumption Design

- Supports Line and Frame Inversion
(Note 1) Grade 2

Key Specifications

- Supply Voltage Range:
+2.7 V to +6.0 V
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
445 Segments
- Max Segments:
, 1/5 Selectable
1/2, 1/3 Selectable
3wire Serial Interface

Package
$W($ Typ $) \times D($ Typ $) \times H($ Max $)$

Applications

- Car Audio, Home Electrical Appliance, Meter Equipment etc.

Typical Application Circuit

Figure 1. Typical Application Circuit

Block Diagram

Figure 2. Block Diagram
Pin Arrangement

Absolute Maximum Ratings (VSS $=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin / Conditions	Ratings	Unit
Maximum Supply Voltage	VDD	VDD	-0.3 to +7.0	V
Input Voltage	$\mathrm{V}_{\mathrm{IN} 1}$	SCE, SCL, SDI, OSC	-0.3 to +7.0	
	$\mathrm{V}_{\mathrm{IN} 2}$	$\mathrm{KI1}$ to KI5	V	
Allowable Loss	Pd	-	-0.3 to +7.0	
Operating Temperature	Topr	-	$1.49($ Note $)$	V
Storage Temperature	Tstg	-	-40 to +105	${ }^{\circ} \mathrm{C}$

(Note) Derate by $1.49 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ when operating above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (when mounted in ROHM's standard board).
(Board size: $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ material: FR4 board copper foil: land pattern only)
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with power dissipation taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.

Recommended Operating Conditions ($\mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}$, VSS $=\mathbf{0 . 0 \mathrm { V }}$)

Parameter	Symbol	Conditions	Ratings			Unit
			Min	Typ	Max	
Supply Voltage	VDD	-	2.7	5.0	6.0	V

Electrical Characteristics ($\mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 6.0 V , $\mathrm{VSS}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
Hysteresis	$\mathrm{V}_{\mathrm{H} 1}$	SCE, SCL, SDI, OSC	-	-	0.03VDD	-	V
	$\mathrm{V}_{\mathrm{H} 2}$	KI1 to KI5	-	-	0.1VDD	-	
Power-on Detection Voltage	Vdet	VDD	-	1.4	1.8	2.2	V
" H " Level Input Voltage	$\mathrm{V}_{\mathbf{H} 1}$	SCE, SCL, SDI, OSC	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	0.4VDD	-	VDD	V
	$\mathrm{V}_{\mathbf{1 H} 2}$	SCE, SCL, SDI, OSC	$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	0.8VDD	-	VDD	
	$\mathrm{V}_{\mathbf{\prime}}{ }^{\text {¢ }}$	KI1 to KI5	-	0.7VDD	-	VDD	
"L" Level Input Voltage	VIL1	$\begin{aligned} & \text { SCE, SCL, SDI, OSC } \\ & \text { KI1 to KI5 } \end{aligned}$	-	0	-	0.2VDD	V
Input Floating Voltage	$\mathrm{V}_{\text {IF }}$	KI1 to KI5	-	-	-	0.05VDD	V
Pull-down Resistance	RPD	KI1 to KI5	VDD $=5.0 \mathrm{~V}$	50	100	250	k Ω
Output Off Leakage Current	loffy	SDO	$\mathrm{V}_{\mathrm{o}}=6.0 \mathrm{~V}$	-	-	6.0	$\mu \mathrm{A}$
"H" Level Input Current	$\mathrm{l}_{\mathrm{H} 1}$	SCE, SCL, SDI, OSC	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	-	-	5.0	$\mu \mathrm{A}$
"L" Level Input Current	lıL	SCE, SCL, SDI, OSC	$\mathrm{V}_{1}=0 \mathrm{~V}$	-5.0	-	-	$\mu \mathrm{A}$
"H" Level Output Voltage	Vor1	S1 to S90	$\begin{aligned} & \mathrm{lo}=-20 \mu \mathrm{~A}, \\ & \mathrm{VLCD}=1.00 * \mathrm{VDD} \end{aligned}$	VDD-0.9	-	-	V
	Voh2	COM1 to COM5	$\begin{aligned} & \mathrm{lo}=-100 \mu \mathrm{~A}, \\ & \mathrm{VLCD}=1.00 * \mathrm{VDD} \end{aligned}$	VDD-0.9	-	-	
	Vон3	P1/G1 to P9/G9	$\mathrm{lo}=-1 \mathrm{~mA}$	VDD-0.9	-	-	
	Vон4	KS1 to KS6	$\mathrm{lo}=-500 \mu \mathrm{~A}$	VDD-1.0	VDD-0.5	VDD-0.2	
"L" Level Output Voltage	VoL1	S1 to S90	$\mathrm{lo}=20 \mu \mathrm{~A}$	-	-	0.9	V
	Vol2	COM1 to COM5	$\mathrm{lo}=100 \mu \mathrm{~A}$	-	-	0.9	
	Vol3	P1/G1 to P9/G9	$\mathrm{l}=1 \mathrm{~mA}$	-	-	0.9	
	Vol4	KS1 to KS6	$\mathrm{l}=25 \mu \mathrm{~A}$	0.2	0.5	1.5	
	Vols	SDO	$\mathrm{l}=1 \mathrm{~mA}$	-	0.1	0.5	
Middle Level Output Voltage	$V_{\text {MID1 }}$	S1 to S90	$\begin{aligned} & 1 / 2 \text { Bias } I_{0}= \pm 20 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} \hline \text { 1/2VDD } \\ -0.9 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline \text { 1/2VDD } \\ +0.9 \\ \hline \end{gathered}$	V
	$\mathrm{V}_{\text {MID2 }}$	COM1 to COM5	$\begin{aligned} & 1 / 2 \text { Bias } \mathrm{l}_{\mathrm{o}}= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \mathrm{VDD} \end{aligned}$	$\begin{gathered} 1 / 2 \mathrm{VDD} \\ -0.9 \\ \hline \end{gathered}$	-	$\begin{gathered} \text { 1/2VDD } \\ +0.9 \end{gathered}$	
	Vmid3	S1 to S90	$\begin{aligned} & 1 / 3 \text { Bias } \mathrm{Io}= \pm 20 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} \text { 2/3VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} \text { 2/3VDD } \\ +0.9 \end{gathered}$	
	$V_{\text {mid4 }}$	S1 to S90	$\begin{aligned} & \text { 1/3Biaslo }= \pm 20 \mu \mathrm{~A} \\ & \text { VLCD }=1.00 * \text { VDD } \end{aligned}$	$\begin{gathered} \hline \text { 1/3VDD } \\ -0.9 \\ \hline \end{gathered}$	-	$\begin{gathered} \text { 1/3VDD } \\ +0.9 \end{gathered}$	
	$V_{\text {mids }}$	COM1 to COM5	$\begin{aligned} & 1 / 3 \text { Biaslo }= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} \text { 2/3VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} \text { 2/3VDD } \\ +0.9 \end{gathered}$	
	$V_{\text {mid6 }}$	COM1 to COM5	$\begin{aligned} & 1 / 3 \text { Biaslo }= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} \hline 1 / 3 \mathrm{VDD} \\ -0.9 \\ \hline \end{gathered}$	-	$\begin{gathered} \text { 1/3VDD } \\ +0.9 \end{gathered}$	

Electrical Characteristics- continued

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
Current Consumption	ldD1	VDD	Power-saving mode	-	-	15	$\mu \mathrm{A}$
	IDD2	VDD	VDD=5.0V Output open 1/2 Bias Frame frequency $=80 \mathrm{~Hz}$ VLCD $=1.00 *$ VDD	-	100	200	
	ldd3	VDD	$\begin{aligned} & \hline \text { VDD }=5.0 \mathrm{~V} \\ & \text { Output open } \\ & 1 / 3 \text { Bias } \\ & \text { Frame frequency }=80 \mathrm{~Hz} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	-	130	250	

Oscillation Characteristics ($\mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}$, VDD $=2.7 \mathrm{~V}$ to 6.0 V , VSS $=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
Oscillator Frequency 1	fosc1	-	VDD $=2.7 \mathrm{~V}$ to 6.0 V	300	-	720	kHz
Oscillator Frequency 2	fosc2	-	VDD $=5 \mathrm{~V}$	510	600	690	kHz
External Clock Frequency ${ }^{(N o t e)}$	fosc3	OSC/S90	External clock mode$(O C=1)$	30	-	1000	kHz
External Clock Rise Time	tr			-	160	-	ns
External Clock Fall Time	tf			-	160	-	ns
External Clock Duty	$\mathrm{t}_{\text {DTY }}$			30	50	70	\%

(Note) Frame frequency is decided external clock and dividing ratio of FC0,FC1,FC2,FC3 setting.

【Reference Data】

Figure 4. Oscillator Frequency Typical Temperature Characteristics

MPU Interface Characteristics ($\mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 6.0 V , $\mathrm{VSS}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
Data Setup Time	tos	SCL, SDI	-	120	-	-	ns
Data Hold Time	tDH	SCL, SDI	-	120	-	-	ns
SCE Wait Time	tcp	SCE, SCL	-	120	-	-	ns
SCE Setup Time	tcs	SCE, SCL	-	120	-	-	ns
SCE Hold Time	tch	SCE, SCL	-	120	-	-	ns
Clock Cycle Time	tccre	SCL	-	320	-	-	ns
High-level Clock Pulse Width	tchw	SCL	-	120	-	-	ns
Low-level Clock Pulse Width (Write)	tclww	SCL	-	120	-	-	ns
Low-Level Clock Pulse Width (Read)	tclwr	SCL	$\begin{aligned} & \mathrm{RPU}_{\mathrm{P}}=4.7 \mathrm{k} \Omega \\ & \left.\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \mathrm{~F}^{\text {Note }}\right) \end{aligned}$	1.6	-	-	$\mu \mathrm{s}$
Rise Time	tr	SCE, SCL, SDI		-	160	-	ns
Fall Time	tf	SCE, SCL, SDI	-	-	160	-	ns
SDO Output Delay Time	toc	SDO	$\begin{aligned} & \mathrm{R}_{\mathrm{Pu}}=4.7 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \mathrm{~F}^{\text {(Note })} \end{aligned}$	-	-	1.5	$\mu \mathrm{s}$
SDO Rise Time	tDR	SDO	$\begin{aligned} & \mathrm{R}_{\mathrm{PU}}=4.7 \mathrm{k} \Omega \\ & \mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF}^{(\text {Note })} \end{aligned}$	-	-	1.5	$\mu \mathrm{s}$

(Note) Since SDO is an open-drain output, "tDc" and "tDR" depend on the resistance of the pull-up resistor RPu and the load capacitance CL. $R_{\text {Pu: }} 1 \mathrm{k} \Omega \leq R_{\text {Pu }} \leq 10 \mathrm{k} \Omega$ is recommended.
C_{L} : A parasitic capacitance to VSS in an application circuit. Any component is not necessary to be attached

1. When SCL is stopped at the low level

2. When SCL is stopped at the high level

Figure 5.Serial Interface Timing

Pin Description

Pin	Pin No.	Function	Active	I/O	Handling when unused
S1/P1/G1 to S9/P9/G9	1 to 9	Segment output for displaying the display data transferred by serial data input. The S1/P1/G1 to S9/P9/G9 pins can also be used as General-purpose or PWM outputs when so set up by the control data.	-	0	OPEN
S10 to S77	10 to 77	Segment output for displaying the display data transferred by serial data input.	-	O	OPEN
$\begin{aligned} & \text { KS1/S79 to } \\ & \text { KS6/S84 } \end{aligned}$	83 to 88	Key scan outputs Although normal key scan timing lines require diodes to be inserted in the timing lines to prevent shorts, since these outputs are unbalanced CMOS transistor outputs, these outputs will not be damaged by shorting when these outputs are used to form a key matrix. The KS1/S79 to KS6/S84 pins can be used as segment outputs when so specified by the control data.	-	0	OPEN
KI1/S85 to KI5/S89	89 to 93	Key scan inputs These pins have built-in pull-down resistors. The KI1/S85 to KI5/S89 pins can be used as segment outputs when so specified by the control data.	-	1 0	$\begin{aligned} & \text { VSS } \\ & \text { OPEN } \end{aligned}$
COM1 to COM4	79 to 82	Common driver output pins. The frame frequency is fo[Hz].	-	O	OPEN
COM5/S78	78	Common / Segment output for LCD driving Assigned as Common output in $1 / 5$ Duty mode and Segment output in Static, 1/3 Duty and 1/4 Duty modes	-	O	OPEN
OSC/S90	97	Segment output for displaying the display data transferred by serial data input. The pin OSC/S90 can be used as external clock input pin when set up by the control data.	-	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { VSS } \\ & \text { OPEN } \end{aligned}$
$\begin{aligned} & \text { SCE } \\ & \text { SCL } \\ & \text { SDI } \end{aligned}$	$\begin{gathered} 98 \\ 99 \\ 100 \end{gathered}$	Serial data transfer inputs. Must be connected to the controller. SCE: Chip enable SCL: Clock for serial data transfer. SDI: Transfer data	$\begin{array}{r} \mathrm{H} \\ -\quad \end{array}$	I	$\begin{aligned} & \text { VSS } \\ & \text { VSS } \\ & \text { VSS } \end{aligned}$
SDO	95	Output data	-	0	OPEN
VDD	94	Power supply pin of the IC A power voltage of 2.7 V to 6.0 V must be applied to this pin.	-	-	-
VSS	96	Power supply pin. Must be connected to ground.	-	-	-

IO Equivalent Circuit

VDD

KI1/S85 to KI5/S89

VSS

Figure 6. I/O Equivalent Circuit

Serial Data Transfer Formats

1. $1 / 5$ Duty
(1)When SCL is stopped at the low level
sff

sa

 $\xrightarrow{2 n}$ amom \qquad

$\substack{\text { dampons } \\ \text { teme }}$
 Control Data
50bits

Figure 7. 3-SPI Data Transfer Format

Serial Data Transfer Formats - continued

(2)When SCL is stopped at the high level

SCE \qquad $\sqrt{4}$

 120 bis \qquad $\underset{\substack{\text { Contol Data } \\ \text { 30bits }}}{ }$ \square

Figure 8. 3-SPI Data Transfer Format

When it is coincident with device code, BU91530KVT-M capture display data and control data at falling edge of SCE.
So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160 bit (Device code: 8bit, Display data and Control data: 150bit, DD: 2bit).

Serial Data Transfer Formats - continued

2. 1/4 Duty
(1)When SCL is stopped at the low level
sf \qquad _
sa

 $\xrightarrow{\sim}$

 Display Ota
$120 b i t s$ \qquad Control Data
30bis

 \qquad | Control Data |
| :---: |
| 50 bits | \qquad

Figure 9. 3-SPI Data Transfer Format

Serial Data Transfer Formats - continued

(2)When SCL is stopped at the high level

SCE \qquad $\sqrt{4}$

 Displav Oits
120bits \qquad $\underset{\substack{\text { Control ata } \\ \text { 30bits }}}{\substack{\text {. } \\ \hline}}$

Figure 10. 3-SPI Data Transfer Format

When it is coincident with device code, BU91530KVT-M capture display data and control data at falling edge of SCE.
So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160 bit (Device code: 8bit, Display data and Control data: 150bit, DD: 2bit).

Serial Data Transfer Formats - continued

3. $1 / 3$ Duty
(1) When SCL is stopped at the low level

SCE \qquad $\sqrt[4]{4}$
sa

 $\longleftarrow{ }^{\text {Win }}$

Figure 11. 3-SPI Data Transfer Format

Serial Data Transfer Formats - continued

(2)When SCL is stopped at the high level
\qquad

Figure 12. 3-SPI Data Transfer Format

When it is coincident with device code, BU91530KVT-M capture display data and control data at falling edge of SCE.
So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160 bit (Device code: 8bit, Display data and Control data: 150bit, DD: 2bit).

Serial Data Transfer Formats - continued

4. Static
(1)When SCL is stopped at the low level
ste \qquad 4
sa

 $\underset{\substack{\text { Disply } \\ \text { gobitisa }}}{\text { O. }}$ \qquad Control Data
60bits \qquad $\underset{\text { 2bits }}{\text { 20 }} \rightarrow$

\qquad | Control otata |
| :---: |
| $150 b i$ is | \qquad $\xrightarrow{20}+$

Figure 13. 3-SPI Data Transfer Format

Serial Data Transfer Formats - continued

(2)When SCL is stopped at the high level
sff \qquad $\longdiv { 4 }$

511 $\xrightarrow{B 0}$

Figure 14. 3-SPI Data Transfer Format

When it is coincident with device code, BU91530KVT-M capture display data and control data at falling edge of SCE.
So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160 bit (Device code: 8bit, Display data and Control data: 150bit, DD: 2bit).

Control Data Functions

1. KM0,KM1 and KM2: Key Scan output pin / Segment output pin switching control data

These control data bits switch the functions of the KS1/S79 to KS6/S84 output pins between key scan output and segment output.

KM0	KM1	KM2								
			KS3/S81	KS4/S82	KS5/S83	KS6/S84	Maximum Number of Input Keys	Reset Condition		
0	0	0	KS1	KS2	KS3	KS4	KS5	KS6	30	-
0	0	1	S79	KS2	KS3	KS4	KS5	KS6	25	-
0	1	0	S79	S80	KS3	KS4	KS5	KS6	20	-
0	1	1	S79	S80	S81	KS4	KS5	KS6	15	-
1	0	0	S79	S80	S81	S82	KS5	KS6	10	-
1	0	1	S79	S80	S81	S82	S83	KS6	5	-
1	1	0	S79	S80	S81	S82	S83	S84	0	-
1	1	1	S79	S80	S81	S82	S83	S84	0	-

2. P0, P1, P2 and P3: Segment / PWM / General-purpose output pin switching control data

These control data bits are used to select the function of the S1/P1/G1 to S9/P9/G9 output pins (Segment Output Pins or PWM Output Pins or General-purpose Output Pins).

P0	P1	P2	P3	S1/P1/G1	S2/P2/G2	S3/P3/G3	S4/P4/G4	S5/P5/G5	S6/P6/G6	S7/P7/G7	S8/P8/G8	S9/P9/G9	Reset Condition
0	0	0	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	\bigcirc
0	0	0	1	P1/G1	S2	S3	S4	S5	S6	S7	S8	S9	-
0	0	1	0	P1/G1	P2/G2	S3	S4	S5	S6	S7	S8	S9	-
0	0	1	1	P1/G1	P2/G2	P3/G3	S4	S5	S6	S7	S8	S9	-
0	1	0	0	P1/G1	P2/G2	P3/G3	P4/G4	S5	S6	S7	S8	S9	-
0	1	0	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	S6	S7	S8	S9	-
0	1	1	0	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	S7	S8	S9	-
0	1	1	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	S8	S9	-
1	0	0	0	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	P8/G8	S9	-
1	0	0	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	P8/G8	P9/S9	-
1	0	1	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	0	1	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	0	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	0	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	1	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	1	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	-

PWM output or General-purpose output pin is selected by $\operatorname{PGx}(\mathrm{x}=1$ to 9$)$ control data bit.
When the General-purpose Output Pin Function is selected, the correspondence between the output pins and the respective display data is given in the table below.

Output Pins	Corresponding Display Data			
	$1 / 5$ Duty Mode	$1 / 4$ Duty Mode	$1 / 3$ Duty Mode	Static Mode
S1/P1/G1	D1	D1	D1	D1
S2/P2/G2	D6	D5	D4	D2
S3/P3/G3	D11	D9	D7	D3
S4/P4/G4	D16	D13	D10	D4
S5/P5/G5	D21	D17	D13	D4
S6/P6/G6	D26	D21	D16	D5
S7/P7/G7	D31	D25	D19	D7
S8/P8/G8	D36	D29	D22	D8
S9/P9/G9	D41	D33	D25	D9

When the General-purpose Output Pin Function is selected, the respective output pin outputs a "HIGH" level when its corresponding display data is set to " 1 ". Likewise, it will output a "LOW" level, if its corresponding display data is set to " 0 ". For example, S4/P4/G4 is used as a General-purpose Output Pin in case of $1 / 4$ Duty, if its corresponding display data D13is set to " 1 ", then S4/P4/G4 will output "HIGH(VDD)" level. Likewise, if D13 is set to "0", then S4/P4/G4 will output "LOW(VSS)" level.
3. FL: Line Inversion or Frame Inversion switching control data

This control data bit selects either line inversion mode or frame inversion mode

FL	Inversion Mode	Reset Condition
0	Line Inversion	0
1	Frame Inversion	-

Typically, when driving large capacitance LCD, Line inversion will increase the influence of crosstalk.
Regarding driving waveform, refer to LCD Driving Waveforms.

Control Data Functions - continued

4. DR: $1 / 3$ Bias drive or $1 / 2$ Bias drive switching control data

This control data bit selects either $1 / 3$ Bias drive or $1 / 2$ Bias drive.

DR	Bias Drive Scheme	Reset Condition
0	$1 / 3$ Bias drive	0
1	$1 / 2$ Bias drive	-

5. DT: $1 / 5$ Duty drive, $1 / 4$ Duty drive, $1 / 3$ Duty drive or Static drive switching control data

These control data bits select either $1 / 5$ Duty drive, $1 / 4$ Duty drive, $1 / 3$ Duty drive or Static drive

DT0	DT1	Duty Drive Scheme	Reset Condition
0	0	Static drive	\circ
0	1	1/3 Duty drive	-
1	0	1/4 Duty drive	-
1	1	1/5 Duty drive	-

6. FC0, FC1, FC2 and FC3: Common / Segment output waveform frame frequency switching control data These control data bits set the display frame frequency.

FC0	FC1	FC2	FC3	$\begin{gathered} \text { Display Frame Frequency } \\ \mathrm{fo}(\mathrm{~Hz}) \end{gathered}$	Reset Condition
0	0	0	0	$\mathrm{fosc}^{(\text {Note }}$ / 12288	\bigcirc
0	0	0	1	fosc / 10752	-
0	0		0	fosc / 9216	-
0	0	1	1	fosc / 7680	-
0	1	0	0	fosc / 6144	-
0	1	0	1	fosc / 4608	-
0	1	1	0	fosc / 3840	-
0	1	1	1	fosc / 3072	-
1	0	0	0	fosc / 2880	-
1	0	0	1	fosc / 2688	-
1	0	1	0	fosc / 2496	-
1	0	1	1	fosc / 2304	-
1	1	0	0	fosc / 2112	-
1	1	0	1	fosc / 1920	-
1	1	1	0	fosc / 1728	-
1	1	1	1	fosc / 1536	-

7. OC: Internal oscillator operating mode / External clock operating mode switching control data

OC	Operating Mode	In/Out Pin(OSC/S90) Status	Reset Condition
0	Internal oscillator	S90 (segment output)	\circ
1	External Clock	OSC (clock input)	-

$\mathrm{OC}=1$: $\mathrm{OSC} / \mathrm{S} 90$ pin can be used as input clock pin when External Clock is set by the control data.
<External Clock input timing function>
Internal oscillation / external clock select signal behavior is below.
Please input external clock after serial data sending.

8. SC: Segment on/off switching control data

This control data bit controls the on/off state of the segments.

SC	Display State	Reset Condition
0	On	-
1	Off	0

Note that when the segments are turned off by setting SC to "1", the segments are turned off by outputting segment off waveforms from the segment output pins.

Control Data Functions - continued

9. BU0,BU1 and BU2: Normal mode / Power-saving mode switching control data

These control data bits select either normal mode or power-saving mode.

BU0	BU1	BU2	Mode	OSC Oscillator	Segment Outputs	Output Pin States During Key Scan Standby						Reset Condition
					Common Outputs	KS1	KS2	KS3	KS4	KS5	KS6	
0	0	0	Normal	Operating	Operating	H	H	H	H	H	H	-
0	0	1	Power -saving	Stopped	Low (VSS)	L	L	L	L	L	H	-
0	1	0				L	L	L	L	H	H	-
0	1	1				L	L	L	H	H	H	-
1	0	0				L	L	H	H	H	H	-
1	0	1				L	H	H	H	H	H	-
1	1	0				H	H	H	H	H	H	-
1	1	1				H	H	H	H	H	H	\bigcirc

Power-saving mode status: S1/P1/G1 to S9/P9/G9=active only General-purpose output S10 to OSC/S90=low (VSS)
COM1 to COM5=low (VSS)
Stop the LCD drive bias voltage generation circuit
Stop the Internal oscillation circuit
However, serial data transfer is possible when at Power-saving mode.
10. PG1, PG2, PG3, PG4, PG5, PG6, PG7, PG8 and PG9: PWM / General-purpose output switching control data This control data bit select either PWM output or General-purpose output of Sx/Px/Gx pins. ($x=1$ to 9)

$\operatorname{PGx}(\mathrm{x}=1$ to 9$)$	Mode	Reset Condition
0	PWM output	0
1	General-purpose output	-

<PWM<->GPO Changing function>
Normal behavior of changing GPO to PWM is below.

- PWM operation is started by command import timing of DD: 01 during GPO $-\rightarrow$ PWM change.
- Please take care of reflect timing of new duty setting of DD: 10 and DD: 11 is from the next PWM.

In order to avoid this operation, please input commands in reverse as below.

Control Data Functions - continued

11. PF0, PF1, PF2, and PF3: PWM output waveform frame frequency switching control data

These control data bits set the frame frequency for PWM output waveforms.

PF0	PF1	PF2	PF3	PWM Output Frame Frequency fp (Hz)	Reset Condition
0	0	0	0	fosc/4096	-
0	0	0	1	fosc/3840	-
0	0	1	0	fosc/3584	-
0	0	1	1	fosc/3328	-
0	1	0	0	fosc/3072	-
0	1	0	1	fosc/2816	-
0	1	1	0	fosc/2560	-
0	1	1	1	fosc/2304	-
1	0	0	0	fosc/2048	-
1	0	0	1	fosc/1792	-
1	0	1	0	fosc/1536	-
1	0	1	1	fosc/1280	-
1	1	0	0	fosc/1024	-
1	1	0	1	fosc/768	-
1	1	1	0	fosc/512	-
1	1	1	1	fosc/256	-

12. CT0, CT1, CT2 and CT3: LCD display contrast switching control data

These control data bits set display contrast

CT0	CT1	CT2	CT3	LCD Drive Bias Voltage for VLCD Level	Reset Condition
0	0	0	0	1.000^{*} VDD	-
0	0	0	1	0.975^{*} VDD	

This control data bit set VLCD maximum voltage for LCD drive voltage.
(Note) [CT0,CT1,CT2,CT3] = [0,0,0,1], [0,0,1,0], [0,0,1,1] are disabled settings.
Avoid setting VLCD voltage under 2.5 V .
And ensure "VDD - VLCD >0.6 " condition is satisfied.
Unstable IC output voltage may result if the above conditions are not satisfied.
The relationship of LCD display contrast setting and VLCD voltage

CT Setting	Formula	VDD $=6.000$	$\mathrm{VDD}=5.500$	VDD $=5.000$	$\mathrm{VDD}=4.500$	$\mathrm{VDD}=4.000$	$V D D=3.000$	Unit
0	VDD	VLCD $=6.000$	VLCD $=5.500$	$\mathrm{VLCD}=5.000$	VLCD $=4.500$	$\mathrm{VLCD}=4.000$	VLCD $=3.000$	V
1	0.975*VDD	$\mathrm{VLCD}=5.850$	VLCD $=5.363$	VLCD $=4.875$	$\mathrm{VLCD}=4.388$	VLCD $=3.900$	$\mathrm{VLCD}=2.925$	V
2	0.950*VDD	$\mathrm{VLCD}=5.700$	$\mathrm{VLCD}=5.225$	$\mathrm{VLCD}=4.750$	VLCD $=4.275$	$\mathrm{VLCD}=3.800$	$\mathrm{VLCD}=2.850$	V
3	0.925*VDD	$\mathrm{VLCD}=5.550$	$\mathrm{VLCD}=5.088$	$\mathrm{VLCD}=4.625$	$\mathrm{VLCD}=4.163$	$\mathrm{VLCD}=3.700$	VLCD $=2.775$	V
4	0.900*VDD	$\mathrm{VLCD}=5.400$	$\mathrm{VLCD}=4.950$	$\mathrm{VLCD}=4.500$	$\mathrm{VLCD}=4.050$	$\mathrm{VLCD}=3.600$	$\mathrm{VLCD}=2.700$	V
5	0.875*VDD	VLCD $=5.250$	VLCD $=4.813$	$\mathrm{VLCD}=4.375$	$\mathrm{VLCD}=3.938$	$\mathrm{VLCD}=3.500$	VLCD $=2.625$	V
6	0.850*VDD	$\mathrm{VLCD}=5.100$	VLCD $=4.675$	$\mathrm{VLCD}=4.250$	$\mathrm{VLCD}=3.825$	$\mathrm{VLCD}=3.400$	VLCD $=2.550$	V
7	0.825*VDD	$\mathrm{VLCD}=4.950$	VLCD $=4.538$	$\mathrm{VLCD}=4.125$	VLCD $=3.713$	VLCD $=3.300$	VLCD $=2.475$	V
8	0.800*VDD	$\mathrm{VLCD}=4.800$	VLCD $=4.400$	$\mathrm{VLCD}=4.000$	VLCD $=3.600$	VLCD $=3.200$	VLCD $=2.400$	V
9	0.775*VDD	$\mathrm{VLCD}=4.650$	VLCD $=4.263$	$\mathrm{VLCD}=3.875$	$\mathrm{VLCD}=3.488$	VLCD $=3.100$	VLCD $=2.325$	V
10	0.750*VDD	$\mathrm{VLCD}=4.500$	VLCD $=4.125$	$\mathrm{VLCD}=3.750$	VLCD $=3.375$	$\mathrm{VLCD}=3.000$	$\mathrm{VLCD}=2.250$	V
11	0.725*VDD	VLCD $=4.350$	VLCD $=3.988$	$\mathrm{VLCD}=3.625$	VLCD $=3.263$	$\mathrm{VLCD}=2.900$	$\mathrm{VLCD}=2.175$	V
12	0.700*VDD	VLCD $=4.200$	VLCD $=3.850$	$\mathrm{VLCD}=3.500$	$V L C D=3.150$	$\mathrm{VLCD}=2.800$	VLCD $=2.100$	V
13	0.675*VDD	$\mathrm{VLCD}=4.050$	VLCD $=3.713$	$\mathrm{VLCD}=3.375$	VLCD $=3.038$	$\mathrm{VLCD}=2.700$	$\mathrm{VLCD}=2.025$	V
14	0.650*VDD	$\mathrm{VLCD}=3.900$	VLCD $=3.575$	$\mathrm{VLCD}=3.250$	VLCD $=2.925$	$\mathrm{VLCD}=2.600$	$\mathrm{VLCD}=1.950$	V
15	0.625*VDD	VLCD $=3.750$	VLCD $=3.438$	$\mathrm{VLCD}=3.125$	$\mathrm{VLCD}=2.813$	$\mathrm{VLCD}=2.500$	VLCD $=1.87$	V

Control Data Functions - continued

13. W11 to W18 (Note), W21 to W28, W31 to W38, W41 to W48, W51 to W58, W61 to W68, W71 to W78, W81 to W88 and W91 to W98: PWM output waveform duty setting control data.

These control data bits set the high level pulse width (duty) for PWM output waveforms.

Wn1	Wn2	Wn3	Wn4	Wn5	Wn6	Wn7	Wn8	PWM Duty	Reset Condition
0	0	0	0	0	0	0	0	(0/256) x Tp	\bigcirc
0	0	0	0	0	0	0	1	(1/256) \times Tp	-
0	0	0	0	0	0	1	0	(2/256) \times Tp	-
0	0	0	0	0	0	1	1	(3/256) \times Tp	-
0	0	0	0	0	1	0	0	(4/256) \times Tp	-
0	0	0	0	0	1	0	1	(5/256) \times Tp	-
0	0	0	0	0	1	1	0	(6/256) \times Tp	-
0	0	0	0	0	1	1	1	(7/256) \times Tp	-
0	0	0	0	1	0	0	0	(8/256) \times Tp	-
0	0	0	0	1	0	0	1	(9/256) \times Tp	-
0	0	0	0	1	0	1	0	(10/256) \times Tp	-
0	0	0	0	1	0	1	1	(11/256) \times Tp	-
0	0	0	0	1	1	0	0	(12/256) \times Tp	-
0	0	0	0	1	1	0	1	$(13 / 256) \times \mathrm{Tp}$	-
0	0	0	0	1	1	1	0	$(14 / 256) \times \mathrm{Tp}$	-
0	0	0	0	1	1	1	1	(15/256) \times Tp	-
0	0	0	1	0	0	0	0	$(16 / 256) \times \mathrm{Tp}$	-
0	0	0	1	0	0	0	1	(17/256) \times Tp	-
0	0	0	1	0	0	1	0	$(18 / 256) \times$ Tp	-
0	0	0	1	0	0	1	1	(19/256) \times Tp	-
0	0	0	1	0	1	0	0	(20/256) \times Tp	-
\ldots		...							
1	1	1	0	1	0	1	1	(235/256) \times Tp	-
1	1	1	0	1	1	0	0	(236/256) \times Tp	-
1	1	1	0	1	1	0	1	(237/256) \times Tp	-
1	1	1	0	1	1	1	0	(238/256) \times Tp	-
1	1	1	0	1	1	1	1	(239/256) \times Tp	-
1	1	1	1	0	0	0	0	(240/256) \times Tp	
1	1	1	1	0	0	0	1	(241/256) \times Tp	-
1	1	1	1	0	0	1	0	(242/256) \times Tp	-
1	1	1	1	0	0	1	1	(243/256) \times Tp	-
1	1	1	1	0	1	0	0	(244/256) \times Tp	-
1	1	1	1	0	1	0	1	$(245 / 256) \times \mathrm{Tp}$	-
1	1	1	1	0	1	1	0	(246/256) \times Tp	-
1	1	1	1	0	1	1	1	(247/256) \times Tp	-
1	1	1	1	1	0	0	0	(248/256) \times Tp	-
1	1	1	1	1	0	0	1	(249/256) \times Tp	-
1	1	1	1	1	0	1	0	(250/256) \times Tp	-
1	1	1	1	1	0	1	1	(251/256) \times Tp	-
1	1	1	1	1	1	0	0	(252/256) \times Tp	-
1	1	1	1	1	1	0	1	(253/256) \times Tp	-
1	1	1	1	1	1	1	0	(254/256) \times Tp	-
1	1	1	1	1	1	1	1	(255/256) \times Tp	-

(Note) W11 to W18:S1/P1/G1 pwm duty data
W21 to W28:S2/P2/G2 pwm duty data
W31 to W38:S3/P3/G3 pwm duty data W41 to W48:S4/P4/G4 pwm duty data W51 to W58:S5/P5/G5 pwm duty data W61 to W68:S6/P6/G6 pwm duty data W71 to W78:S7/P7/G7 pwm duty data W81 to W88:S8/P8/G8 pwm duty data W91 to W98:S9/P9/G9 pwm duty data

Display Data and Output Pin Correspondence

Output Pin ${ }^{\text {(Note) }}$	COM1	COM2	COM3	COM4	COM5
S1/P1/G1	D1	D2	D3	D4	D5
S2/P2/G2	D6	D7	D8	D9	D10
S3/P3/G3	D11	D12	D13	D14	D15
S4/P4/G4	D16	D17	D18	D19	D20
S5/P5/G5	D21	D22	D23	D24	D25
S6/P6/G6	D26	D27	D28	D29	D30
S7/P7/G7	D31	D32	D33	D34	D35
S8/P8/G8	D36	D37	D38	D39	D40
S9/P9/G9	D41	D42	D43	D44	D45
S10	D46	D47	D48	D49	D50
S11	D51	D52	D53	D54	D55
S12	D56	D57	D58	D59	D60
S13	D61	D62	D63	D64	D65
S14	D66	D67	D68	D69	D70
S15	D71	D72	D73	D74	D75
S16	D76	D77	D78	D79	D80
S17	D81	D82	D83	D84	D85
S18	D86	D87	D88	D89	D90
S19	D91	D92	D93	D94	D95
S20	D96	D97	D98	D99	D100
S21	D101	D102	D103	D104	D105
S22	D106	D107	D108	D109	D110
S23	D111	D112	D113	D114	D115
S24	D116	D117	D118	D119	D120
S25	D121	D122	D123	D124	D125
S26	D126	D127	D128	D129	D130
S27	D131	D132	D133	D134	D135
S28	D136	D137	D138	D139	D140
S29	D141	D142	D143	D144	D145
S30	D146	D147	D148	D149	D150
S31	D151	D152	D153	D154	D155
S32	D156	D157	D158	D159	D160
S33	D161	D162	D163	D164	D165
S34	D166	D167	D168	D169	D170
S35	D171	D172	D173	D174	D175
S36	D176	D177	D178	D179	D180
S37	D181	D182	D183	D184	D185
S38	D186	D187	D188	D189	D190
S39	D191	D192	D193	D194	D195
S40	D196	D197	D198	D199	D200
S41	D201	D202	D203	D204	D205
S42	D206	D207	D208	D209	D210
S43	D211	D212	D213	D214	D215
S44	D216	D217	D218	D219	D220
S45	D221	D222	D223	D224	D225
S46	D226	D227	D228	D229	D230
S47	D231	D232	D233	D234	D235
S48	D236	D237	D238	D239	D240
S49	D241	D242	D243	D244	D245
S50	D246	D247	D248	D249	D250
S51	D251	D252	D253	D254	D255
S52	D256	D257	D258	D259	D260
S53	D261	D262	D263	D264	D265
S54	D266	D267	D268	D269	D270
S55	D271	D272	D273	D274	D275
S56	D276	D277	D278	D279	D280
S57	D281	D282	D283	D284	D285
S58	D286	D287	D288	D289	D290
S59	D291	D292	D293	D294	D295
S60	D296	D297	D298	D299	D300
S61	D301	D302	D303	D304	D305
S62	D306	D307	D308	D309	D310
S63	D311	D312	D313	D314	D315

(Note) The Segment Output Pin function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, KS1/S79 to KS6/S84, $\mathrm{KI1} / \mathrm{S} 85$ to $\mathrm{KI} 5 / \mathrm{S} 89$, and $\mathrm{OSC} / \mathrm{S} 90$. Also, COM5/S78 pin is used as Common output.

Display Data and Output Pin Correspondence - continued

Output Pin ${ }^{\text {(Note) }}$	COM1	COM2	COM3	COM4	COM5
S64	D316	D317	D318	D319	D320
S65	D321	D322	D323	D324	D325
S66	D326	D327	D328	D329	D330
S67	D331	D332	D333	D334	D335
S68	D336	D337	D338	D339	D340
S69	D341	D342	D343	D344	D345
S70	D346	D347	D348	D349	D350
S71	D351	D352	D353	D354	D355
S72	D356	D357	D358	D359	D360
S73	D361	D362	D363	D364	D365
S74	D366	D367	D368	D369	D370
S75	D371	D372	D373	D374	D375
S76	D376	D377	D378	D379	D380
S77	D381	D382	D383	D384	D385
KS1/S79	D386	D387	D388	D389	D390
KS2/S80	D391	D392	D393	D394	D395
KS3/S81	D396	D397	D398	D399	D400
KS4/S82	D401	D402	D403	D404	D405
KS5/S83	D406	D407	D408	D409	D410
KS6/S84	D411	D412	D413	D414	D415
KI1/S85	D416	D417	D418	D419	D420
KI2/S86	D421	D422	D423	D424	D425
KI3/S87	D426	D427	D428	D429	D430
KI4/S88	D431	D432	D433	D434	D435
KI5/S89	D436	D437	D438	D439	D440
OSC/S90	D441	D442	D443	D444	D445

(Note) The Segment Output Pin function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, KS1/S79 to KS6/S84, KI1/S85 to KI5/S89 and OSC/S90. Also, COM5/S78 pin is used as Common output.

To illustrate further, the states of the S21 output pin is given in the table below.

Display Data					State of S21 Output Pin
D101	D102	D103	D104	D105	
0	0	0	0	0	LCD Segments corresponding to COM1 to COM5 are OFF.
0	0	0	0	1	LCD Segment corresponding to COM5 is ON.
0	0	0	1	0	LCD Segment corresponding to COM4 is ON.
0	0	0	1	1	LCD Segments corresponding to COM4 and COM5 are ON.
0	0	1	0	0	LCD Segment corresponding to COM3 is ON.
0	0	1	0	1	LCD Segments corresponding to COM3 and COM5 are ON.
0	0	1	1	0	LCD Segments corresponding to COM3 and COM4 are ON.
0	0	1	1	1	LCD Segments corresponding to COM3, COM4 and COM5 are ON.
0	1	0	0	0	LCD Segment corresponding to COM2 is ON.
0	1	0	0	1	LCD Segments corresponding to COM2 and COM5 are ON.
0	1	0	1	0	LCD Segments corresponding to COM2 and COM4 are ON.
0	1	0	1	1	LCD Segments corresponding to COM2, COM4 and COM5 are ON.
0	1	1	0	0	LCD Segments corresponding to COM2 and COM3 are ON.
0	1	1	0	1	LCD Segments corresponding to COM2, COM3, and COM5 are ON.
0	1	1	1	0	LCD Segments corresponding to COM2, COM3, and COM4 are ON.
0	1	1	1	1	LCD Segments corresponding to COM2, COM3, COM4 and COM5 are ON.
1	0	0	0	0	LCD Segment corresponding to COM1 is ON.
1	0	0	0	1	LCD Segments corresponding to COM1 and COM5 are ON.
1	0	0	1	0	LCD Segments corresponding to COM1 and COM4 are ON.
1	0	0	1	1	LCD Segments corresponding to COM1, COM4 and COM5 are ON.
1	0	1	0	0	LCD Segments corresponding to COM1 and COM3 are ON.
1	0	1	0	1	LCD Segments corresponding to COM1, COM3 and COM5 are ON.
1	0	1	1	0	LCD Segments corresponding to COM1, COM3 and COM4 are ON.
1	0	1	1	1	LCD Segments corresponding to COM1, COM3, COM4 and COM5 are ON.
1	1	0	0	0	LCD Segments corresponding to COM1 and COM2 are ON.
1	1	0	0	1	LCD Segments corresponding to COM1, COM2 and COM5 are ON.
1	1	0	1	0	LCD Segments corresponding to COM1, COM2 and COM4 are ON.
1	1	0	1	1	LCD Segments corresponding to COM1, COM2, COM4 and COM5 are ON.
1	1	1	0	0	LCD Segments corresponding to COM1, COM2 and COM3 are ON.
1	1	1	0	1	LCD Segments corresponding to COM1, COM2, COM3 and COM5 are ON.
1	1	1	1	0	LCD Segments corresponding to COM1, COM2, COM3 and COM4 are ON.
1	1	1	1	1	LCD Segments corresponding to COM1, COM2, COM3, COM4 and COM5 are ON.

Display Data and Output Pin Correspondence - continued

1/4 Duty				
Output Pin ${ }^{\text {(Note) }}$	COM1	COM2	COM3	COM4
S1/P1/G1	D1	D2	D3	D4
S2/P2/G2	D5	D6	D7	D8
S3/P3/G3	D9	D10	D11	D12
S4/P4/G4	D13	D14	D15	D16
S5/P5/G5	D17	D18	D19	D20
S6/P6/G6	D21	D22	D23	D24
S7/P7/G7	D25	D26	D27	D28
S8/P8/G8	D29	D30	D31	D32
S9/P9/G9	D33	D34	D35	D36
S10	D37	D38	D39	D40
S11	D41	D42	D43	D44
S12	D45	D46	D47	D48
S13	D49	D50	D51	D52
S14	D53	D54	D55	D56
S15	D57	D58	D59	D60
S16	D61	D62	D63	D64
S17	D65	D66	D67	D68
S18	D69	D70	D71	D72
S19	D73	D74	D75	D76
S20	D77	D78	D79	D80
S21	D81	D82	D83	D84
S22	D85	D86	D87	D88
S23	D89	D90	D91	D92
S24	D93	D94	D95	D96
S25	D97	D98	D99	D100
S26	D101	D102	D103	D104
S27	D105	D106	D107	D108
S28	D109	D110	D111	D112
S29	D113	D114	D115	D116
S30	D117	D118	D119	D120
S31	D121	D122	D123	D124
S32	D125	D126	D127	D128
S33	D129	D130	D131	D132
S34	D133	D134	D135	D136
S35	D137	D138	D139	D140
S36	D141	D142	D143	D144
S37	D145	D146	D147	D148
S38	D149	D150	D151	D152
S39	D153	D154	D155	D156
S40	D157	D158	D159	D160
S41	D161	D162	D163	D164
S42	D165	D166	D167	D168
S43	D169	D170	D171	D172
S44	D173	D174	D175	D176
S45	D177	D178	D179	D180
S46	D181	D182	D183	D184
S47	D185	D186	D187	D188
S48	D189	D190	D191	D192
S49	D193	D194	D195	D196
S50	D197	D198	D199	D200
S51	D201	D202	D203	D204
S52	D205	D206	D207	D208
S53	D209	D210	D211	D212
S54	D213	D214	D215	D216
S55	D217	D218	D219	D220
S56	D221	D222	D223	D224
S57	D225	D226	D227	D228
S58	D229	D230	D231	D232
S59	D233	D234	D235	D236
S60	D237	D238	D239	D240
S61	D241	D242	D243	D244
S62	D245	D246	D247	D248
S63	D249	D250	D251	D252

(Note) The Segment Output Pin function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, COM5/S78, KS1/S79 to KS6/S84, $\mathrm{KI1} / \mathrm{S} 85$ to $\mathrm{KI} 5 / \mathrm{S} 89$ and OSC/S90.

Display Data and Output Pin Correspondence - continued

Output Pin ${ }^{\text {(Note) }}$	COM1	COM2	COM3	COM4
S64	D253	D254	D255	D256
S65	D257	D258	D259	D260
S66	D261	D262	D263	D264
S67	D265	D266	D267	D268
S68	D269	D270	D271	D272
S69	D273	D274	D275	D276
S70	D277	D278	D279	D280
S71	D281	D282	D283	D284
S72	D285	D286	D287	D288
S73	D289	D290	D291	D292
S74	D293	D294	D295	D296
S75	D297	D298	D299	D300
S76	D301	D302	D303	D304
S77	D305	D306	D307	D308
COM5/S78	D309	D310	D311	D312
KS1/S79	D313	D314	D315	D316
KS2/S80	D317	D318	D319	D320
KS3/S81	D321	D322	D323	D324
KS4/S82	D325	D326	D327	D328
KS5/S83	D329	D330	D331	D332
KS6/S84	D333	D334	D335	D336
KI1/S85	D337	D338	D339	D340
KI2/S86	D341	D342	D343	D344
KI3/S87	D345	D346	D347	D348
K14/S88	D349	D350	D351	D352
KI5/S89	D353	D354	D355	D356
OSC/S90	D357	D358	D359	D360

(Note) The Segment Output Pin function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, COM5/S78, KS1/S79 to KS6/S84, KI1/S85 to KI5/S89 and OSC/S90

To illustrate further, the states of the S21 output pin is given in the table below.

Display data				State of S21 Output Pin	
D81	D82	D83	D84		
0	0	0	0	LCD Segments corresponding to COM1 to COM4 are OFF.	
0	0	0	1	LCD Segment corresponding to COM4 is ON.	
0	0	1	0	LCD Segment corresponding to COM3 is ON.	
0	0	1	1	LCD Segments corresponding to COM3 and COM4 are ON.	
0	1	0	0	LCD Segment corresponding to COM2 is ON.	
0	1	0	1	LCD Segments corresponding to COM2 and COM4 are ON.	
0	1	1	0	LCD Segments corresponding to COM2 and COM3 are ON.	
0	1	1	1	LCD Segments corresponding to COM2, COM3 and COM4 are ON.	
1	0	0	0	LCD Segment corresponding to COM1 is ON.	
1	0	0	1	LCD Segments corresponding to COM1 and COM4 are ON.	
1	0	1	0	LCD Segments corresponding to COM1 and COM3 are ON.	
1	0	1	1	LCD Segments corresponding to COM1, COM3 and COM4 are ON.	
1	1	0	0	LCD Segments corresponding to COM1 and COM2 are ON.	
1	1	0	1	LCD Segments corresponding to COM1, COM2, and COM4 are ON.	
1	1	1	0	LCD Segments corresponding to COM1, COM2, and COM3 are ON.	
1	1	1	1	LCD Segments corresponding to COM1, COM2, COM3 and COM4 are ON.	

Display Data and Output Pin Correspondence - continued

Output Pin ${ }^{\text {(Note) }}$	COM1	COM2	COM3
S1/P1/G1	D1	D2	D3
S2/P2/G2	D4	D5	D6
S3/P3/G3	D7	D8	D9
S4/P4/G4	D10	D11	D12
S5/P5/G5	D13	D14	D15
S6/P6/G6	D16	D17	D18
S7/P7/G7	D19	D20	D21
S8/P8/G8	D22	D23	D24
S9/P9/G9	D25	D26	D27
S10	D28	D29	D30
S11	D31	D32	D33
S12	D34	D35	D36
S13	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
S18	D52	D53	D54
S19	D55	D56	D57
S20	D58	D59	D60
S21	D61	D62	D63
S22	D64	D65	D66
S23	D67	D68	D69
S24	D70	D71	D72
S25	D73	D74	D75
S26	D76	D77	D78
S27	D79	D80	D81
S28	D82	D83	D84
S29	D85	D85	D87
S30	D88	D89	D90
S31	D91	D92	D93
S32	D94	D95	D96
S33	D97	D98	D99
S34	D100	D101	D102
S35	D103	D104	D105
S36	D106	D107	D108
S37	D109	D110	D111
S38	D112	D113	D114
S39	D115	D116	D117
S40	D118	D119	D120
S41	D121	D122	D123
S42	D124	D125	D126
S43	D127	D128	D129
S44	D130	D131	D132
S45	D133	D134	D135
S46	D136	D137	D138
S47	D139	D140	D141
S48	D142	D143	D144
S49	D145	D146	D147
S50	D148	D149	D150
S51	D151	D152	D153
S52	D154	D155	D156
S53	D157	D158	D159
S54	D160	D161	D162
S55	D163	D164	D165
S56	D166	D167	D168
S57	D169	D170	D171
S58	D172	D173	D174
S59	D175	D176	D177
S60	D178	D179	D180
S61	D181	D182	D183
S62	D184	D185	D186
S63	D187	D188	D189

(Note) The Segment Output Pin function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, COM5/S78, KS1/S79 to KS6/S84, KI1/S85 to KI5/S89 and OSC/S90

Display Data and Output Pin Correspondence - continued

Output Pin ${ }^{\text {(Note) }}$	COM1	COM2	COM3
S64	D190	D191	D192
S65	D193	D194	D195
S66	D196	D197	D198
S67	D199	D200	D201
S68	D202	D203	D204
S69	D205	D206	D207
S70	D208	D209	D210
S71	D211	D212	D213
S72	D214	D215	D216
S73	D217	D218	D219
S74	D220	D221	D222
S75	D223	D224	D225
S76	D226	D227	D228
S77	D229	D230	D231
COM5/S78	D232	D233	D234
KS1/S79	D235	D236	D237
KS2/S80	D238	D239	D240
KS3/S81	D241	D242	D243
KS4/S82	D244	D245	D246
KS5/S83	D247	D248	D249
KS6/S84	D250	D251	D252
KI1/S85	D253	D254	D255
KI2/S86	D256	D257	D258
KI3/S87	D259	D260	D261
KI4/S88	D262	D263	D264
OSC/S90	D268	D266	D267
These9	D269	D270	

(Note) The Segment Output Port function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, COM5/S78, KS1/S79 to KS6/S84, KI1/S85 to KI5/S89 and OSC/S90

To illustrate further, the states of the S 21 output pin is given in the table below.

Display data			State of S21 Output Pin	
D61	D62	D63		
0	0	0	LCD Segments corresponding to COM1 to COM3 are OFF.	
0	0	1	LCD Segment corresponding to COM3 is ON.	
0	1	0	LCD Segment corresponding to COM2 is ON.	
0	1	1	LCD Segments corresponding to COM2 and COM3 are ON.	
1	0	0	LCD Segment corresponding to COM1 is ON.	
1	0	1	LCD Segments corresponding to COM1 and COM3 are ON.	
1	1	0	LCD Segments corresponding to COM1 and COM2 are ON.	
1	1	1	LCD Segments corresponding to COM1, COM2 and COM3 are ON.	

Display Data and Output Pin Correspondence - continued

Output Pin ${ }^{\text {(Note) }}$	COM1
S1/P1/G1	D1
S2/P2/G2	D2
S3/P3/G3	D3
S4/P4/G4	D4
S5/P5/G5	D5
S6/P6/G6	D6
S7/P7/G7	D7
S8/P8/G8	D8
S9/P9/G9	D9
S10	D10
S11	D11
S12	D12
S13	D13
S14	D14
S15	D15
S16	D16
S17	D17
S18	D18
S19	D19
S20	D20
S21	D21
S22	D22
S23	D23
S24	D24
S25	D25
S26	D26
S27	D27
S28	D28
S29	D29
S30	D30
S31	D31
S32	D32
S33	D33
S34	D34
S35	D35
S36	D36
S37	D37
S38	D38
S39	D39
S40	D40
S41	D41
S42	D42
S43	D43
S44	D44
S45	D45
S46	D46
S47	D47
S48	D48
S49	D49
S50	D50
S51	D51
S52	D52
S53	D53
S54	D54
S55	D55
S56	D56
S57	D57
S58	D58
S59	D59
S60	D60
S61	D61
S62	D62
S63	D63

(Note) The Segment Output Pin function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, COM5/S78, KS1/S79 to KS6/S84, KI1/S85 to KI5/S89 and OSC/S90.

Display Data and Output Pin Correspondence - continued

Output Pin	(Note)
S64	COM1
S65	D64
S66	D66
S67	D67
S68	D68
S69	D69
S70	D70
S71	D71
S72	D72
S73	D73
S74	D74
S75	D75
S76	D76
S77	D77
COM5/S78	D78
KS1/S79	D79
KS2/S80	D80
KS3/S81	D81
KS4/S82	D82
KS5/S83	D83
KS6/S84	D84
KI1/S85	D85
KI2/S86	D86
KI3/S87	D87
KI4/S88	D88
KI5/S89	D89
OSC/S90	D90

(Note) The Segment Output Port function is assumed to be selected for the output pins - S1/P1/G1 to S9/P9/G9, COM5/S78, KS1/S79 to KS6/S84, KI1/S85 to KI5/S89 and OSC/S90

To illustrate further, the states of the S 21 output pin is given in the table below.

Display data	State of S21 Output Pin	
D21	LCD Segment corresponding to COM1 is OFF.	
0		
1		

Serial Data Output

1. When SCL is stopped at the low level(Note 1)

Figure 15. Serial Data Output Format
(Note 1)

1. $X=$ Don't care
2. B0 to B3, A0 to A3: Serial Interface address
3. Serial Interface address: 43H
4. KD1 to KD30: Key data
5. PA: Power-saving acknowledge data
6. If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge data (PA) will be invalid.
7. When SCL is stopped at the high level ${ }^{(\text {Note 2) }}$

Figure 16. Serial Data Output Format
(Note 2)

1. $X=$ Don't care
2. B0 to B3, A0 to A3: Serial Interface address
3. Serial Interface address: 43H
4. KD1 to KD30: Key data
5. PA: Power-saving acknowledge data
6. If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge data (PA) will be invalid.

Output Data

1. KD1 to KD30: Key Date

When a key matrix of up to 30 keys is formed from the KS1 to KS6 output pins and the KI1 to KI5 input pins and one of those keys is pressed, the key output data corresponding to that key will be set to 1 . The table shows the relationship between those pins and the key data bits.

Item	KI1	K12	KI3	K14	K15
KS1	KD1	KD2	KD3	KD4	KD5
KS2	KD6	KD7	KD8	KD9	KD10
KS3	KD11	KD12	KD13	KD14	KD15
KS4	KD16	KD17	KD18	KD19	KD20
KS5	KD21	KD22	KD23	KD24	KD25
KS6	KD26	KD27	KD28	KD29	KD30

2. PA: Power-saving Acknowledge Data

This output data is set to the state when the key is pressed. In that case SDO will go to the low level. If serial data is input during this period and the mode is set (normal mode or power-saving mode), the IC will be set to that mode. PA is set to 1 in the power-saving mode and to 0 in the normal mode.

Power-saving Mode

Power-saving mode is set up by setting at least one of control data BUO, BU1 or BU2 set to 1 . The segment outputs will all go low and the common outputs will also go low, and the oscillator on the OSC pin will stop (it will be started by a key press). This reduces power dissipation. This mode is cleared by sending control data with all the BU0 BU1 and BU2 set to 0 . However, note that the S1/P1/G1 to S9/P9/G9 outputs can be used as General-purpose output pins according to the state of the P0 to P3 control data bits, even in Power-saving mode. (See the Control Data Functions.)

Key Scan Operation Function

1. Key scan timing

The key scan period is $4608 \mathrm{~T}(\mathrm{~s})$. To reliably determine the on/off state of the keys, the BU91530KVT-M scans the keys twice and determines that a key has been pressed when the key data agrees. It outputs a key data read request (a low level on SDO) $9840 \mathrm{~T}(\mathrm{~s})$ after starting a key scan. If the key data does not agree and a key was pressed at that point, it scans the keys again. Thus the BU91530KVT-M cannot detect a key press shorter than 9840T(s).

Figure 17. Key Scan Timing ${ }^{\text {(Note) }}$
(Note) In sleep mode the high/low state of these pins is determined by the BUO to BU2 bits in the control data. Key scan output signals are not output from pins that are set "L".
2. In Normal Mode

The pins KS1 to KS6 are set "H".
When a key is pressed a key scan is started and the keys are scanned until all keys are released. Multiple key presses are recognized by determining whether multiple key data bits are set.
If a key is pressed for longer than 9840T(s) (Where T=1/fosc) the BU91530KVT-M outputs a key data read request (a low level on SDO) to the controller. The controller acknowledges this request and reads the key data. However, if SCE is high during a serial data transfer, SDO will be set " H ".
After the controller reads the key data, the key data read request is cleared (SDO is set high) and the BU91530KVT-M performs another key scan. Also note that SDO, being an open-drain output, requires a pull-up resistor (between $1 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$)

Figure 18. Key Scan Operation in Normal Mode

Key Scan Operation Function - continued

3. In Power-saving mode

The pins KS1 to KS6 are set to high or low by the BU0 to BU2 bits in the control data. (See the Control Data Functions for details.)
If a key on one of the lines corresponding to a KS1 to KS6 pin which is set high is pressed, the oscillator is started and a key scan is performed. Keys are scanned until all keys are released. Multiple key presses are recognized by determining whether multiple key data bits are set.
If a key is pressed for longer than 9840T(s)(Where $\mathrm{T}=1 / \mathrm{fosc}$) the BU91530KVT-M outputs a key data read request (a low level on SDO) to the controller. The controller acknowledges this request and reads the key data. However, if SCE is high during a serial data transfer, SDO will be set high.
After the controller reads the key data, the key data read request is cleared (SDO is set high) and the BU91530KVT-M performs another key scan. However, this does not clear sleep mode. Also note that SDO, being an open-drain output, requires a pull-up resistor (between $1 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$).

Power-saving mode key scan example
Example: $\mathrm{BU} 0=0, \mathrm{BU} 1=0, \mathrm{BU} 2=1$ (only KS 6 high level output)

(Note)

These diodes are required to reliable recognize multiple key presses on the KS6 line when sleep mode state with only KS6 high, as in the above example. That is, these diodes prevent incorrect operations due to sneak currents in the KS6 key scan output signal when keys on the KS1 to KS5 lines are pressed at the same time.

Figure 19. Key Scan Operation in Sleep Mode

Multiple Key Presses

Although the BU91530KVT-M is capable of key scanning without inserting diodes for dual key presses, triple key presses on the KI1 to KI5 input pin lines, or multiple key presses on the KS1 to KS6 output pin lines, multiple presses other than these cases may result in keys that were not pressed recognized as having been pressed. Therefore, a diode must be inserted in series with each key. Applications that do not recognize multiple key presses of three or more keys should ignore the key data if it contains three or more bits that has a value of " 1 ".

Controller Key Data Read Technique

When the controller receives a key data read request from BU91530KVT-M, it performs a key data read acquisition operation
using either the Timer Based Key Data Acquisition or the Interrupt Based Key Data Acquisition.

1. Timer Based Key Data Acquisition Technique

Under the Timer Based Key Data Acquisition Technique, the controller uses a timer to determine the states of the keys (on or off) and read the key data. Please refer to the flowchart below.

Key data read processing: Refer to "Serial Data Output"
Figure 20. Flowchart
In this technique, the controller uses a timer to determine key on/off states and read the key data. The controller must check the SDO state when SCE is low every t 7 period without fail. If SDO is low, the controller recognizes that a key has been pressed and executes the key data read operation.

The period t 7 in this technique must satisfy the following condition.
t7>t4+t5+t6
If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge data (PA) will be invalid.

t3: Key scan execution time when the key data agreed for two key scans. (9840T[s])
t4: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again.
(19680T[s]) T = $1 /$ fosc
t5: Key address (43H) transfer time
t6: Key data read time
Figure 21. Timer based key data read operation

Controller Key Data Read Technique - continued

2. Interrupt Based Key Data Acquisition Technique

Under the Interrupt Based Key Data Acquisition Technique, the controller uses interrupts to determine the state of the keys (on or off) and read the key data. Please refer to the flow chart diagram below.

Key data read processing: Refer to "Serial Data Output"
Figure 22. Flowchart

Controller Key Data Read Technique - continued

In this technique, the controller uses interrupts to determine key on/off states and read the key data. The controller must check the SDO state when SCE is low. If SDO is low, the controller recognizes that a key has been pressed and executes the key data read operation. After that the next key on/off determination is performed after the time t8 has elapsed by checking the SDO state when SCE is low and reading the key data. The period t8 in this technique must satisfy t8 > t4.

If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge data (PA) will be invalid.

t3: Key scan execution time when the key data agreed for two key scans. (9840T[s])
t4: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again. (19680T[s]) T = $1 /$ fosc
t5: Key address (43H) transfer time
t6: Key data read time
Figure 23. Interrupt Based Key Data Read Operation

LCD Driving Waveforms

1. Line Inversion $1 / 5$ Duty $1 / 3$ Bias Drive Scheme

COM1

COM2

COM3

COM4

COM5

LCD driver output when all LCD segments corresponding to COM1, COM2, COM3, COM4 and COM5 are off

LCD driver output w hen only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM2 is on

LCD driver output when LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM3 is on

LCD driver output w hen only LCD segment corresponding to COM4 is on

LCD driver output w hen only LCD segment corresponding to COM5 is on

LCD driver output when LCD segments corresponding to COM1, COM2 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM1, COM2, COM3 and COM4 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3, COM4 and COM5 are on

Figure 24. LCD Waveform (Line Inversion, 1/5 Duty, 1/3 Bias)

LCD Driving Waveforms - continued

2. Line Inversion $1 / 5$ Duty $1 / 2$ Bias Drive Scheme

COM1

COM2

СОМз

COM4

COM5

LCD driver output when all LCD
segments corresponding to COM1,
COM2, СОM3, COM4 and COM5 are off

LCD driver output when only LCD segment corresponding to COM1 is on

LCD driver output when only LCD segment corresponding to COM2 is on

LCD driver output when LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM3 is on

LCD driver output when LCD segments corresponding to COM1 and COM3 are on

LCD driver output when LCD segments corresponding to COM2 and COM3 are on

LCD driver output when LCD segments corresponding to COM1, COM2 and COM3 are on

LCD driver output when only LCD segment corresponding to COM4 is on

LCD driver output when only LCD segment corresponding to COM5 is on

LCD driver output when LCD segments corresponding to COM1, COM2, COM3 and COM4 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3, COM4 and COM5 are on

Figure 25. LCD Waveform (Line Inversion, 1/5 Duty, 1/2 Bias)

LCD Driving Waveforms - continued

3. Line Inversion $1 / 4$ Duty $1 / 3$ Bias Drive Scheme

COM1

COM2

COM3

COM4

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are off

LCD driver output when only LCD segment
corresponding to COM1 is on

LCD driver output when only LCD segment
corresponding to COM2 is on

LCD driver output when LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM3 is on

LCD driver output when only LCD segment corresponding to COM4 is on

LCD driver output when LCD segments corresponding to COM2 and COM3 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are on

Figure 26. LCD Waveform (Line Inversion, 1/4 Duty, 1/3 Bias)

LCD Driving Waveforms - continued

4. Line Inversion 1/4 Duty $1 / 2$ Bias Drive Scheme

COM1

COM2

COM3

COM4

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are off

LCD driver output w hen only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM2 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM3 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM2 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM1, COM2 and COM3 are on

LCD driver output w hen only LCD segment corresponding to COM4 is on

LCD driver output w hen LCD segments corresponding to COM2 and COM4 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are on

Figure 27. LCD Waveform (Line Inversion, 1/4 Duty, 1/2 Bias)

LCD Driving Waveforms - continued

5. Line Inversion $1 / 3$ Duty $1 / 3$ Bias Drive Scheme

COM1

COM2

COM3

LCD driver output when all LCD
segments corresponding to COM1,
COM2 and COM3 are off

LCD driver output when only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM2 is on

LCD driver output when LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM3 is on

LCD driver output when LCD segments corresponding to COM1 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM2 and COM3 are on

LCD driver output when all LCD segments corresponding to COM1, COM2 and COM3 are on

Figure 28. LCD Waveform (Line Inversion, $1 / 3$ Duty, $1 / 3$ Bias) ${ }^{(N o t e)}$

[^0]
LCD Driving Waveforms - continued

6. Line Inversion $1 / 3$ Duty $1 / 2$ Bias Drive Scheme)

COM1

COM2

COM3

LCD driver output when all LCD
segments corresponding to COM1,
COM2 and COM3 are off

LCD driver output when only LCD segment
corresponding to COM1 is on

LCD driver output w hen only LCD segment
corresponding to COM2 is on

LCD driver output when LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM3 is on

LCD driver output when LCD segments corresponding to COM1 and COM3 are on

LCD driver output when LCD segments corresponding to COM2 and COM3 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2 and COM3 are on

Figure 29. LCD Waveform (Line Inversion, 1/3 Duty, 1/2 Bias) ${ }^{(\text {Note })}$
(Note) COM4 function is same as COM1 at $1 / 3$ duty.

LCD Driving Waveforms - continued

7. Line Inversion Static Drive Scheme

COM1

LCD driver output when LCD
segment corresponding to COM1 is off

LCD driver output w hen LCD
segment corresponding to COM1 is on

Figure 30. LCD Waveform (Line Inversion,Static) ${ }^{(\text {Note })}$
(Note) COM2, COM3 and COM4 function are same as COM1 at Static

LCD Driving Waveforms - continued
8. Frame Inversion $1 / 5$ Duty $1 / 3$ Bias Drive Scheme

COM1

COM2

COM3

COM4

COM5

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3, COM4 and COM5 are off

LCD driver output w hen only LCD segment
corresponding to COM1 is on

LCD driver output w hen only LCD segment
corresponding to COM2 is on

LCD driver output when LCD segments corresponding to COM1 and COM2 are on

LCD driver output when only LCD segment corresponding to COM3 is on

LCD driver output w hen only LCD segment corresponding to COM4 is on

LCD driver output when only LCD segment corresponding to COM5 is on

LCD driver output w hen LCD segments corresponding to COM1, COM2 and COM3 are on

LCD driver output w hen LCD segments
corresponding to COM1, COM2, COM3 and COM4 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3, COM4 and COM5 are on

Figure 31. LCD Waveform (Frame Inversion, 1/5 Duty, 1/3 Bias)

LCD Driving Waveforms - continued

9. Frame Inversion $1 / 5$ Duty $1 / 2$ Bias Drive Scheme

COM1

COM2

COM3

COM4

COM5

LCD driver output when all LCD segments corresponding to COM1, COM2, COM3, COM4 and COM5 are off

LCD driver output when only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM2 is on

LCD driver output when LCD segments corresponding to COM1 and COM2 are on

LCD driver output when only LCD segment corresponding to COM3 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM3 are on

LCD driver output when LCD segments
corresponding to COM2 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM1, COM2 and COM3 are on

LCD driver output when only LCD segment corresponding to COM4 is on

LCD driver output w hen only LCD segment corresponding to COM5 is on

LCD driver output w hen LCD segments corresponding to COM1, COM2, СОM3 and COM4 are on

LCD driver output w hen LCD segments corresponding to COM1, COM2, COM3, COM4 and COM5 are on

Figure 32. LCD Waveform (Frame Inversion, 1/5 Duty, 1/2 Bias)

LCD Driving Waveforms - continued
10. Frame Inversion $1 / 4$ Duty $1 / 3$ Bias Drive Scheme

COM1

COM2

COM3

COM4

LCD driver output w hen all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are off

LCD driver output w hen only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM2 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segmen corresponding to COM3 is on

LCD driver output w hen only LCD segment corresponding to COM4 is on

LCD driver output w hen LCD segments corresponding to COM2 and COM3 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are on

Figure 33. LCD Waveform (Frame Inversion, 1/4 Duty, 1/3 Bias)

LCD Driving Waveforms - continued
11. Frame Inversion 1/4 Duty $1 / 2$ Bias Drive Scheme

COM1

COM2

COM3

COM4

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are off

LCD driver output w hen only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM2 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM3 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM2 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM1, COM2 and COM3 are on

LCD driver output w hen only LCD segment corresponding to COM4 is on

LCD driver output when LCD segments corresponding to COM2 and COM4 are on

LCD driver output when all LCD
segments corresponding to COM1,
COM2, COM3 and COM4 are on

Figure 34. LCD Waveform (Frame Inversion, 1/4 Duty, 1/2 Bias)

LCD Driving Waveforms - continued
12. Frame Inversion $1 / 3$ Duty $1 / 3$ Bias Drive Scheme

COM1

COM2

COM3

LCD driver output w hen all LCD
segments corresponding to COM1, COM2 and COM3 are off

LCD driver output w hen only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM2 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment corresponding to COM 3 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM2 and COM3 are on

LCD driver output when all LCD segments corresponding to COM1, COM2 and COM3 are on

Figure 35. LCD Waveform (Frame Inversion, 1/3 Duty, 1/3 Bias) ${ }^{(\text {Note) }}$

[^1]
LCD Driving Waveforms - continued

13. Frame Inversion $1 / 3$ Duty $1 / 2$ Bias Drive Scheme

COM1

COM2

COM3

LCD driver output w hen all LCD segments corresponding to COM1,

COM2 and COM3 are off

LCD driver output w hen only LCD segment corresponding to COM1 is on

LCD driver output w hen only LCD segment corresponding to COM 2 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM2 are on

LCD driver output w hen only LCD segment
corresponding to COM3 is on

LCD driver output w hen LCD segments corresponding to COM1 and COM3 are on

LCD driver output w hen LCD segments corresponding to COM 2 and COM 3 are on

LCD driver output w hen all LCD
segments corresponding to COM1,
COM2 and COM3 are on

Figure 36. LCD Waveform (Frame Inversion, 1/3 Duty, 1/2 Bias) ${ }^{\text {(Note) }}$

[^2]
LCD Driving Waveforms - continued

14. Frame Inversion Static

Figure 37. LCD Waveform (Frame Inversion Static) ${ }^{\text {(Note) }}$
(Note) COM2, COM3 and COM4 function are same as COM1 at Static

Oscillation Stabilization Time

It must be noted that the oscillation of the internal oscillation circuit is unstable for a maximum of $100 \mu \mathrm{~s}$ (oscillation stabilization time) after oscillation has started.

Power-saving Mode Operation in External Clock Mode

After receiving [BU0,BU1,BU2]=[1,1,1], BU91530KVT-M enter to power saving mode synchronized with frame then Segment and Common pins output VSS level.

Therefore, in external clock mode, it is necessary to input the external clock based on each frame frequency setting after sending [BU0,BU1,BU2]=[1,1,1].
For the required number of clock, refer to " 6 . FC0, FC1, FC2 and FC3: Common / Segment output waveform frame frequency switching control data".

For example, please input the external clock as below.
[FC0,FC1,FC2,FC3]=[0,0,0,0]: In case of fosc/12288 setting, it needs over 12288clk, [FC0,FC1,FC2,FC3]=[0,1,0,1]: In case of fosc/4608 setting, it needs over 4608clk, [FC0,FC1,FC2,FC3]=[1,1,1,1]: In case of fosc/1536 setting, it needs over 1536clk

Please refer to the timing chart below.

Figure 39. External Clock Stop Timing(1/4 Duty)

Voltage Detection Type Reset Circuit (VDET)

The Voltage Detection Type Reset Circuit generates an output signal that resets the system when power is applied for the first time and when the power supply voltage drops (that is, for example, the power supply voltage is less than or equal to the power down detection voltage ($\mathrm{V}_{\mathrm{DET}}=1.8 \mathrm{~V}$ Typ.). To ensure that this reset function works properly, it is recommended that a capacitor be connected to the power supply line so that both the power supply voltage (VDD) rise time when power is first applied and the power supply voltage (VDD) fall time when the voltage drops are at least 1 ms .

To refrain from data transmission is strongly recommended while power supply is rising up or falling down to prevent from the occurrence of disturbances on transmission and reception.

Figure 40. VDET Detection Timing

Power supply voltage VDD rise time: $\mathrm{t} 1>1 \mathrm{~ms}$
Power supply voltage VDD fall time: $\mathrm{t} 2>1 \mathrm{~ms}$
Internal reset power supply retain time: $\mathrm{t} 3>1 \mathrm{~ms}$
When it is difficult to keep above conditions, it is possibility to cause meaningless display due to no IC initialization.
Please execute the IC initialization as quickly as possible after Power-on to reduce such an affect.
See the IC initialization flow as below.
But since commands are not received when the power is OFF, the IC initialization flow is not the same function as POR.
Set $[B U 0, B U 1, B U 2]=[1,1,1]$ (power-saving mode) and $S C=1$ (Display Off) as quickly as possible after Power-on. BU91530KVT-M can receive commands in Ons after Power-on(VDD level is 90%).

Reset Condition

When BU91530KVT-M is initialized, the internal status after power supply has been reset as the following table.

Instruction	At Reset Condition
Key Scan Mode	[KM0,KM1,KM2]=[1,1,1]:Keyscan no use
S1/P1/G1 to S9/P9/G9 Pin	[P0,P1,P2,P3]=[0,0,0,0]:all segment output
Bias Setting	DR=0:1/3 Bias
Duty Setting	[DT0,DT1]=[1,0]:1/4 Duty
Line / Frame Inversion Mode	FL=0:Line Inversion
Display Frame Frequency	[FC0,FC1,FC2,FC3]=[0,0,0,0]:fosc /12288
Display Clock Mode	OC=0:Internal oscillator
LCD Display	SC=1:OFF
Power Mode	[BU0, BU1, BU2]=[1,1,1]:Power saving mode
PWM / GPO Output	PGx=0:PWM output($\mathrm{x}=1$ to 9)
PWM Frequency	[PF0,PF1,PF2,PF3]=[0,0,0,0]:fosc /4096
PWM Duty	$[W n 1$ to $W n 8]=[0,0,0,0,0,0,0,0]: 0 / 256) \times T p$ $(\mathrm{n}=1$ to $9 \mathrm{Tp}=1 / \mathrm{fp})$
Display Contrast Setting	[CT0,CT1,CT2,CT3]=[0,0,0,0]: VLCD Level is 1.00^{*} VDD

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.
2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.
3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.
6. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.
7. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
8. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
9. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

Operational Notes - continued

10. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

11. Regarding the Input Pin of the IC

In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC.

Marking Diagram

TQFP100V (TOP VIEW)

Physical Dimension, Tape and Reel Information

Version / Revision History

Version	date	description
001	19. Aug. 2015	New Release
002	26. Jan. 2018	Page 1. Typo Modification Operating Temperature Range in Key Specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \rightarrow$ $-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}$ Page 1. Typo Modification AEC-Q100 Grade in Features Grade3 \rightarrow Grade 2 Page 3. Modify Temperature condition in Absolute Maximum Ratings. Ta $=25^{\circ} \mathrm{C} \rightarrow$ Removed Page 3. Modify Maximum Supply Voltage in Absolute Maximum Ratings. -0.3 to $+6.5 \rightarrow-0.3$ to $+7.0$ Page 3. Modify Input Voltage in Absolute Maximum Ratings. -0.3 to $+6.5 \rightarrow-0.3$ to +7.0 . Page 3. Add OSC in Absolute Maximum Ratings Input Voltage. Page 3. Typo Modification Operating Temperature in Absolute Maximum Ratings condition -40 to $+85 \rightarrow-40 \text { to }+105$ Page 3. Add Caution2 in Absolute Maximum Ratings condition. (Moved from Operational Notes) Page 3. Typo Modification Temperature condition in Recommended Operating Conditions $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}$ Page 3. Typo Modification Temperature condition in Electrical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \rightarrow$ $-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}$ Page 3. Add OSC pin in Electrical Characteristics table. Page 4. Typo Modification Temperature condition in Oscillation Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \rightarrow$ $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Page 4. Add External Clock Rise Time, External Clock Fall Time and External Clock Duty in Oscillation Characteristics. Page 6. Add KI1/S85 to KI5/S89 in Pin Description I/O and Handling when unused Input terminal description. Page 6. Add OSC/S90 in Pin Description I/O and Handling when unused Input terminal description Page 16 to 20. Add Reset condition in Control Data Functions. Page 16. Add 3. FL: Line Inversion or Frame Inversion control data explanation. Page 17. Add External Clock input timing function in 7. OC: Internal oscillator operating mode / External clock operating mode control data. Page 50. Add Power-saving mode operation in external clock mode. Page 51. Add Voltage Detection Type Reset Circuit (VDET) explanation.
003	02. Aug. 2019	Page. 9,11,13 and 15 Add Description

Notice

Precaution on using ROHM Products

1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl_{2}, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}$, and NO_{2}
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}$, and NO_{2}
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884W-
E LC75814VS-TLM-E MAX25520ATEC/V + MAX25520ATEB/VY + BU9795AFV-E2 PCF8566T/1.118 TPS65132A0YFFR
BU9795AKV-E2 34801000 BU97510CKV-ME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 MAX1605ETT+T MAX16928BGUP/V+ ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI+ MAX1518BETJ+ MAX1606EUA+ MAX138CQH+TD MAX25520ATEB/V+ MAX16929AGUI/V+ MAX16929CGUI/V+ MAX16929DGUI/V+ BU97530KVT-E2 MAX8570ELT+T MAX8570EUT+T MAX8571EUT+T MAX8575EUT+T MAX8795AGCJ/V+ MAX138CPL+ AY0438-I/L AY0438/L HV66PG-G HV881K7-G TC7106CKW TC7106CPL TC7116CPL TC7126CLW

[^0]: (Note) COM4 function is same as COM1 at $1 / 3$ duty.

[^1]: (Note) COM4 function is same as COM1 at $1 / 3$ duty.

[^2]: (Note) COM4 function is same as COM1 at $1 / 3$ duty.

