Low Duty LCD Segment Drivers

BU97950AFUV MAX 280 segments (SEG35×COM8)

General Description

BU97950AFUV is a $1 / 8$ or $1 / 4$ duty general-purpose LCD driver that can be used for consumer / battery operated products and can drive up to 280 LCD Segments.
It has integrated display RAM for reducing CPU load. Also, it is designed with low power consumption and no external component needed.
It can support LCD contrast adjustment by its EVR function.

Features

- Integrated RAM for Display Data (DDRAM): 35×8 bit (Max 280 Segment)
- $1 / 8$ or $1 / 4$ Can be Selected with The Serial Control Data.
1/8 duty drive: Up to 280 segments
1/4 duty drive: Up to 156 segments
- Integrated Buffer AMP for LCD Driving
- Integrated Oscillator Circuit
- No External Components
- Low Power Consumption Design
- Independent Power Supply for LCD Driving
- Integrated Electrical Volume Register (EVR) function

Applications

- Metering
- Home Automation Goods
- White Goods, Small Appliances
- Healthcare Products

Battery Operated Products
etc.

Key Specifications

	Supply Voltage Range:	+2.5 V to +6.0 V
	LCD Drive Power Supply Range:	+2.5 V to +6.0 V
	Operating Temperature Range:	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\square	Max Segments:	280 Segments
	Display Duty and Bias:	
	1/4 Duty and 1/3 Bias,	
	and	
	Interface:	serial interface

Packages
W (Typ) x D (Typ) x H (Max)

TSSOP-C48V
$8.1 \mathrm{~mm} \times 12.5 \mathrm{~mm} \times 1.0 \mathrm{~mm}$

Typical Application Circuit

Figure 1. Typical Application Circuit

Block Diagram / Pin Configuration / Pin Description

BU97950AFUV (TSSOP-C48V)

Figure 2. Block Diagram

Figure 3. Pin Configuration (TOP VIEW)

Table 1. Pin Description

Terminal	Terminal No	I/O	Handling when unused	
SDA	48	I/O	Serial data input	-
SCL	47	I	Serial data transfer clock	-
VSS	3	I	Ground	-
VDD	1	I	Power supply	-
VLCD	2	I	Power supply for LCD drive	-
SEG0 to SEG34	4 to 24 33 to 46	O	SEGMENT output for LCD drive	OPEN
COM0 to COM3	29 to 32	O	COMMON output for LCD drive	OPEN
COM4/SEG35 to COM7/SEG38	25 to 28	O	COMMON / SEGMENT output for LCD drive	-

Absolute Maximum Ratings (VSS=0V)

Parameter	Symbol	Ratings	Unit	Remarks
Power Supply Voltage1	VDD	-0.5 to +7.0	V	Power Supply
Power Supply Voltage2	VLCD	-0.5 to +7.0	V	LCD Drive Voltage
Allowable Loss	Pd	0.64 (Note)	W	
Input voltage Range	Vin	-0.5 to VDD+0.5	V	
Operational Temperature Range	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

(Note)Derate by $6.40 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ when operating above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (when mounted in ROHM's standard board)
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Recommended Operating Ratings(Ta $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS}=0 \mathrm{~V}$)

Parameter	Symbol	Ratings			Unit	Remarks	
		Min	Typ	Max			
Power Supply Voltage1	VDD	2.5	-	6.0	V	Power Supply	
Power Supply Voltage2	VLCD	2.5	-	6.0	V	LCD Drive Voltage	

Electrical Characteristics

DC Characteristics (VDD $=2.5$ to $6.0 \mathrm{~V}, \mathrm{VLCD}=2.5$ to 6.0 V , $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Limits			Unit	Conditions	
		Min	Typ	Max				
"H" Level Input Voltage			V_{IH}	0.7VDD	-	VDD	V	SDA,SCL
"L" Level Input Voltage		VIL	VSS	-	0.3VDD	V	SDA,SCL	
"H" Level Input Current		$\mathrm{IIH}^{\text {H }}$	-	-	1	$\mu \mathrm{A}$	SDA,SCL	
"L" Level Input Current		IIL	-1	-	-	$\mu \mathrm{A}$	SDA,SCL	
LCD Driver on Resistance	SEG	Ron	-	3.5	-	$\mathrm{k} \Omega$	lload $= \pm 10 \mu \mathrm{~A}$	
	COM	Ron	-	3.5	-	k Ω		
Standby Current		Ist	-	-	5	$\mu \mathrm{A}$	Display off, Oscillation off	
Power Consumption 1		IDD	-	2.5	15	$\mu \mathrm{A}$	$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VLCD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ Power Save Mode1, FR=80Hz 1/4 Bias, Frame Inversion	
Power Consumption 2		ILCD	-	10	20	$\mu \mathrm{A}$	$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VLCD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ Power Save Mode1, FR=80Hz 1/4 Bias, Frame Inversion	

Electrical Characteristics - continued

Oscillation Characteristics(VDD $=2.5$ to $6.0 \mathrm{~V}, \mathrm{VLCD}=2.5$ to $6.0 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Limits			Unit	Conditions
		Min	Typ	Max		
Frame Frequency 1	fclk	56	80	104	Hz	$\mathrm{FR}=80 \mathrm{~Hz}$ setting, $\mathrm{VDD}=2.5 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Frame Frequency 2	fCLK2	72	80	88	Hz	$\mathrm{FR}=80 \mathrm{~Hz}$ setting, $\mathrm{VDD}=3.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

[Reference Data]

Figure 4. Frame Frequency Typical Temperature Characteristics

Electrical Characteristics - continued

MPU interface Characteristics (VDD $=2.5$ to $6.0 \mathrm{~V}, \mathrm{VLCD}=2.5$ to 6.0 V , $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Limits			Unit	Conditions
		Min	Typ	Max		
Input Rise Time	tr	-	-	0.3	$\mu \mathrm{s}$	
Input Fall Time	tf	-	-	0.3	$\mu \mathrm{s}$	
SCL Cycle Time	tscyc	2.5	-	-	$\mu \mathrm{s}$	
"H" SCL Pulse Width	tshw	0.6	-	-	$\mu \mathrm{s}$	
"L" SCL Pulse Width	tslw	1.3	-	-	$\mu \mathrm{s}$	
SDA Setup Time	tsbs	100	-	-	ns	
SDA Hold Time	tsDH	100	-	-	ns	
Bus Free Time	tbuf	1.3	-	-	$\mu \mathrm{s}$	
START Condition Hold Time	thd; STA	0.6	-	-	$\mu \mathrm{s}$	
START Condition Setup Time	tsu;sTA	0.6	-	-	$\mu \mathrm{s}$	
STOP Condition Setup Time	tsu;sto	0.6	-	-	$\mu \mathrm{s}$	

Figure 5. Serial Interface Timing

I/O Equivalent Circuit

SDA

Figure 6. I/O Equivalent Circuit

Function Description

Command / Data Transfer Method

BU97950AFUV is controlled by 2-wire signal (SDA, SCL).

Figure 7. 2 wire Command/Data Transfer Format
It is necessary to generate START and STOP condition when sending Command or Display Data through this 2 wire serial interface.

Slave Address

Figure 8. Interface Protocol
The following procedure shows how to transfer Command and Display Data.
(1) Generate "START condition".
(2) Issue Slave Address.
(3) Transfer Command and Display Data.
(4) Generate "STOP condition

Acknowledge

Data format is comprised of 8 bits, Acknowledge bit is returned after sending 8-bit data.
After the transfer of 8 -bit data (Slave Address, Command, Display Data), release the SDA line at the falling edge of the $8^{\text {th }}$ clock. The SDA line is then pulled "Low" until the falling edge of the 9th clock SCL.
(Output cannot be pulled "High" because of open drain NMOS).
If acknowledge function is not required, keep SDA line at "Low" level from 8th falling edge to 9th falling edge of SCL.

Figure 9. Acknowledge timing

Function Description - continued

Command Transfer Method

Issue Slave Address ("01111100") after generate "START condition".
The $1^{\text {st }}$ byte after Slave Address always becomes command input.
MSB ("Command or Data judgement bit") of command decide to next data is Command or Display Data.
When set "Command or Data judgement bit"='1', next byte will be command.
When set "Command or Data judgement bit"='0', next byte data is Display Data.

It cannot accept input command once it enters into Display Data transfer state.
In order to input command again it is necessary to generate "START condition".
If "START condition" or "STOP condition" is sent in the middle of command transmission, command will be cancelled.
If Slave Address is continuously sent following "START condition", it remains in command input state.
"Slave Address" must be sent right after the "START condition".
When Slave Address cannot be recognized in the first data transmission, no Acknowledge bit is generated and next transmission will be invalid. When data is invalid status, if "START condition" is transmitted again, it will return to valid status.

Consider the MPU interface characteristic such as Input rise time and Setup/Hold time when transferring command and data (Refer to MPU Interface Characteristics).

Write Display and Transfer Method

BU97950AFUV enters "Write mode" when R/W bit of Slave address is ' 0 '
BU97950AFUV has Display Data RAM (DDRAM) of $35 \times 8=280$ bits.
The relationship between data input and Display Data, DDRAM data and address are as follows.

In 1/8 Duty Mode
8 -bit data is stored in DDRAM. ADSET command specifies the address to be written, and address is automatically incremented in every 8 -bit data.
Data can be continuously written in DDRAM by transmitting data continuously.

	DDRAM Address												
		Oh	1h	2h	3h	4h	5h	6h	7h		21h	22h	
	0	a	i										COMO
	1	b	j										COM1
	2	c	k										COM2
	3	d	1										COM3
	4	e	m										COM4
	5	f	n										COM5
	6	g	0										COM6
	7	h	p										COM7
		SEGO	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7		SEG33	SEG34	

Display data is written to DDRAM every 8-bit data.
No need to wait for ACK bit to complete data transfer.

Function Description - continued

In 1/4 Duty Mode

4-bit data is stored in DDRAM. ADSET command specifies the address to be written, and address is automatically incremented in every 8 -bit data.
Data can be continuously written in DDRAM by transmitting data continuously.

Display data is written to DDRAM every 4-bit data.
No need to wait for ACK bit to complete data transfer

Function Description - continued

Read Command Register and Transfer Method

BU97950AFUV enters "Read mode" when R/W bit of Slave Address is ' 1 '
During Read mode the command registers can be read.
The sequence for the command register read is shown below.

The following register settings can be read in this mode.
Only one register setting can be read at once, after reading register setting, BU97950 will exit from read mode and wait for slave Address. If all register setting needs to be read, please make sequence for "REG1" and "REG2", respectively.

Register	D7	D6	D5	D4	D3	D2	D1	D0	Address
REG1	P7	P6	P5	P4	P3	P2	P1	P0	23 h
REG2	P7	P6	P5	P4	P3	P2	P1	P0	24 h

REG1:P7 = Frame Frequency setting
P6 = Duty and Bias setting
P5 = Software Reset condition
P4 to P0 = EVR setting
REG2: P7 to P6 = Frame Frequency (FR) setting
P5 to P4 = Power Save Mode (SR) setting
P3 = LCD drive waveform setting
P2 = Display ON/OFF setting
$\mathrm{P} 1=\mathrm{APON}$ setting
$P 0=A P O F F$ setting
An example of the command register read sequence is shown below.

LCD Driver Bias Circuit

BU97950AFUV generates LCD driving voltage with on-chip Buffer AMP.
And it can drive LCD at low power consumption.
$1 / 4$ or $1 / 3$ Bias can be set by MODESET command.
Line or frame inversion can be set by DISCTL command.
Refer to the "LCD driving waveform" for each LCD Bias setting.

Reset Initialize Condition

Initial condition after executing Software Reset is as follows.
-Display is OFF.
-DDRAM address is initialized (DDRAM Data is not initialized).
Refer to Command Description for initialize value of registers.

Function Description - continued

Command / Function List

Description List of Command / Function

No.	Command	Function
1	Address Set (ADSET)	DDRAM Address setting (00h to 22h) Command register address setting (23h, 24h)
2	EVR Set (EVRSET)	EVR setting (0 to 31)
3	Display Control (DISCTL)	Frame Frequency, Power Save Mode setting
4	IC Operation Set (ICSET)	LCD drive mode, Software Reset, display on/off
5	All Pixel Control (APCTL)	All pixel control during display ON
6	Mode Set (MODESET)	Frame Frequency, Duty and Bias setting

Detailed command Description

D7 (MSB) is a Command or Data judgment bit. Refer to Command / Data transfer method.

C: 0: Next byte is RAM write data.
1: Next byte is command.

Address Set (ADSET)

MSB D7	D6	D5	D4	D3	D2	D1	
DSB							
C	0	P5	P4	P3	P2	P1	P0

Address data is specified in $\mathrm{P}[5: 0]$.
The address range can be set as $00 \mathrm{~h}(000000 \mathrm{~b})$ to $22 \mathrm{~h}(100010 \mathrm{~b})$ for Write mode. When the specified address is out of range, the address will be set to "Oh(000000b)".
The default value of the DDRAM Address is " $0 \mathrm{~h}(000000 \mathrm{~b})$ "
The address can be set $23 \mathrm{~h}(100011 \mathrm{~b}$) and $24 \mathrm{~h}(100100 \mathrm{~b})$ for Read mode.
It is prohibited to set other address.
$\mathrm{P}[5: 0]=23 \mathrm{~h}$ (100011b) - REG1
Register address for Software Reset condition and EVR setting
$P[5: 0]=24 \mathrm{~h}$ (100100b) - REG2
Register address for the other settings
(For more detailed information, please refer to "Read Command Register and Transfer Method")

EVR Set (EVRSET)

BU97950AFUV has 32-step Electrical Volume Register (EVR) that can set the best V0 voltage level (Maximum LCD driving voltage).
Electrical Volume Register (EVR) is set to " 00000 " in reset initialize condition.
In " 0000 " condition, V0 output voltage is equal to VLCD input voltage.
Keep Contrast Setting for V0 voltage more than 2.5 V only.
Refer to the below table for V0 voltage.
And ensure "VLCD - V0 >0.6 " condition is satisfied.
Unstable IC output voltage may result if the above conditions are not satisfied.

Function Description - continued

The relationship of electrical volume register (EVR) setting and V0 voltage

EVR	Calculation formula	$\begin{gathered} \text { VLCD } \\ =6.000 \end{gathered}$	$\begin{gathered} \text { VLCD } \\ =5.500 \end{gathered}$	$\begin{gathered} \text { VLCD } \\ =5.000 \end{gathered}$	$\begin{gathered} \text { VLCD } \\ =4.000 \end{gathered}$	$\begin{gathered} \text { VLCD } \\ =3.500 \end{gathered}$	$\begin{gathered} \text { VLCD } \\ =3.000 \end{gathered}$	$\begin{gathered} \text { VLCD } \\ =2.500 \end{gathered}$	Unit
0	VLCD	$\mathrm{V} 0=6.000$	$\mathrm{V} 0=5.500$	$\mathrm{V} 0=5.000$	$\mathrm{V} 0=4.000$	$\mathrm{V} 0=3.500$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.500$	V
1	0.967*VLCD	$\mathrm{V} 0=5.802$	$\mathrm{V} 0=5.323$	$\mathrm{V} 0=4.839$	$\mathrm{V} 0=3.871$	$\mathrm{V} 0=3.387$	$\mathrm{V} 0=2.903$	$\mathrm{V} 0=2.419$	V
2	0.937*VLCD	$\mathrm{V} 0=5.622$	$\mathrm{V} 0=5.156$	$\mathrm{V} 0=4.688$	$\mathrm{V} 0=3.750$	$\mathrm{V} 0=3.281$	$\mathrm{V} 0=2.813$	$\mathrm{V} 0=2.344$	V
3	0.909*VLCD	$\mathrm{V} 0=5.454$	$\mathrm{V} 0=5.000$	$\mathrm{V} 0=4.545$	$\mathrm{V} 0=3.636$	$\mathrm{V} 0=3.182$	$\mathrm{V} 0=2.727$	$\mathrm{V} 0=2.273$	V
4	0.882^{*} VLCD	$\mathrm{V} 0=5.292$	$\mathrm{V} 0=4.853$	$\mathrm{V} 0=4.412$	$\mathrm{V} 0=3.529$	$V 0=3.088$	$\mathrm{V} 0=2.647$	$\mathrm{V} 0=2.206$	V
5	0.857*VLCD	$\mathrm{V} 0=5.142$	$\mathrm{V} 0=4.714$	$\mathrm{V} 0=4.286$	$\mathrm{V} 0=3.429$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.571$	$\mathrm{V} 0=2.143$	V
6	0.833*VLCD	$\mathrm{V} 0=4.998$	$\mathrm{V} 0=4.583$	$\mathrm{V} 0=4.167$	$\mathrm{V} 0=3.333$	$\mathrm{V} 0=2.917$	$\mathrm{V} 0=2.500$	$\mathrm{V} 0=2.083$	V
7	0.810*VLCD	$\mathrm{V} 0=4.860$	$\mathrm{V} 0=4.459$	$\mathrm{V} 0=4.054$	$\mathrm{V} 0=3.243$	$\mathrm{V} 0=2.838$	$\mathrm{V} 0=2.432$	$\mathrm{V} 0=2.027$	V
8	0.789*VLCD	$\mathrm{V} 0=4.734$	$\mathrm{V} 0=4.342$	$\mathrm{V} 0=3.947$	$\mathrm{V} 0=3.158$	$\mathrm{V} 0=2.763$	$\mathrm{V} 0=2.368$	$\mathrm{V} 0=1.974$	V
9	0.769*VLCD	$\mathrm{V} 0=4.614$	$\mathrm{V} 0=4.231$	$\mathrm{V} 0=3.846$	$\mathrm{V} 0=3.077$	$\mathrm{V} 0=2.692$	$\mathrm{V} 0=2.308$	$\mathrm{V} 0=1.923$	V
10	0.750*VLCD	$\mathrm{V} 0=4.500$	$\mathrm{V} 0=4.125$	$\mathrm{V} 0=3.750$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.625$	$\mathrm{V} 0=2.250$	$\mathrm{V} 0=1.875$	V
11	0.731*VLCD	$\mathrm{V} 0=4.386$	$\mathrm{V} 0=4.024$	$\mathrm{V} 0=3.659$	$\mathrm{V} 0=2.927$	$\mathrm{V} 0=2.561$	$\mathrm{V} 0=2.195$	$\mathrm{V} 0=1.829$	V
12	0.714*VLCD	$\mathrm{V} 0=4.284$	$\mathrm{V} 0=3.929$	$\mathrm{V} 0=3.571$	$\mathrm{V} 0=2.857$	$\mathrm{V} 0=2.500$	$\mathrm{V} 0=2.143$	$\mathrm{V} 0=1.786$	V
13	0.697*VLCD	$\mathrm{V} 0=4.182$	$\mathrm{V} 0=3.837$	$\mathrm{V} 0=3.488$	$\mathrm{V} 0=2.791$	$\mathrm{V} 0=2.442$	$\mathrm{V} 0=2.093$	$\mathrm{V} 0=1.744$	V
14	0.681*VLCD	$\mathrm{V} 0=4.086$	$\mathrm{V} 0=3.750$	$\mathrm{V} 0=3.409$	$\mathrm{V} 0=2.727$	$\mathrm{V} 0=2.386$	$\mathrm{V} 0=2.045$	$\mathrm{V} 0=1.705$	V
15	0.666*VLCD	$\mathrm{V} 0=3.996$	$\mathrm{V} 0=3.667$	$\mathrm{V} 0=3.333$	$\mathrm{V} 0=2.667$	$\mathrm{V} 0=2.333$	$\mathrm{V} 0=2.000$	$\mathrm{V} 0=1.667$	V
16	0.652*VLCD	$\mathrm{V} 0=3.912$	$\mathrm{V} 0=3.587$	$\mathrm{V} 0=3.261$	$\mathrm{V} 0=2.609$	$\mathrm{V} 0=2.283$	$\mathrm{V} 0=1.957$	$\mathrm{V} 0=1.630$	V
17	0.638*VLCD	$\mathrm{V} 0=3.828$	$\mathrm{V} 0=3.511$	$\mathrm{V} 0=3.191$	$\mathrm{V} 0=2.553$	$\mathrm{V} 0=2.234$	$\mathrm{V} 0=1.915$	$\mathrm{V} 0=1.596$	V
18	0.625*VLCD	$\mathrm{V} 0=3.750$	$\mathrm{V} 0=3.438$	$\mathrm{V} 0=3.125$	$\mathrm{V} 0=2.500$	$\mathrm{V} 0=2.188$	$\mathrm{V} 0=1.875$	$\mathrm{V} 0=1.563$	V
19	0.612*VLCD	$\mathrm{V} 0=3.672$	$\mathrm{V} 0=3.367$	$\mathrm{V} 0=3.061$	$\mathrm{V} 0=2.449$	$V 0=2.143$	$\mathrm{V} 0=1.837$	$\mathrm{V} 0=1.531$	V
20	0.600*VLCD	$\mathrm{V} 0=3.600$	$\mathrm{V} 0=3.300$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.400$	$\mathrm{V} 0=2.100$	$\mathrm{V} 0=1.800$	$\mathrm{V} 0=1.500$	V
21	0.588*VLCD	$\mathrm{V} 0=3.528$	$\mathrm{V} 0=3.235$	$\mathrm{V} 0=2.941$	$\mathrm{V} 0=2.353$	$\mathrm{V} 0=2.059$	$\mathrm{V} 0=1.765$	$\mathrm{V} 0=1.471$	V
22	$0.576 *$ VLCD	$\mathrm{V} 0=3.456$	$\mathrm{V} 0=3.173$	$\mathrm{V} 0=2.885$	$\mathrm{V} 0=2.308$	$\mathrm{V} 0=2.019$	$V 0=1.731$	$V 0=1.442$	V
23	0.566*VLCD	$\mathrm{V} 0=3.396$	$\mathrm{V} 0=3.113$	$\mathrm{V} 0=2.830$	$\mathrm{V} 0=2.264$	$\mathrm{V} 0=1.981$	$\mathrm{V} 0=1.698$	$V 0=1.415$	V
24	0.555*VLCD	$\mathrm{V} 0=3.330$	$\mathrm{V} 0=3.056$	$\mathrm{V} 0=2.778$	$\mathrm{V} 0=2.222$	$\mathrm{V} 0=1.944$	$\mathrm{V} 0=1.667$	$V 0=1.389$	V
25	0.545*VLCD	$\mathrm{V} 0=3.270$	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.727$	$\mathrm{V} 0=2.182$	$V 0=1.909$	$\mathrm{V} 0=1.636$	$\mathrm{V} 0=1.364$	V
26	0.535*VLCD	$\mathrm{V} 0=3.210$	$\mathrm{V} 0=2.946$	$\mathrm{V} 0=2.679$	$\mathrm{V} 0=2.143$	$\mathrm{V} 0=1.875$	$\mathrm{V} 0=1.607$	$\mathrm{V} 0=1.339$	V
27	0.526*VLCD	$\mathrm{V} 0=3.156$	$\mathrm{V} 0=2.895$	$\mathrm{V} 0=2.632$	$\mathrm{V} 0=2.105$	$\mathrm{V} 0=1.842$	$\mathrm{V} 0=1.579$	$\mathrm{V} 0=1.316$	V
28	0.517*VLCD	$\mathrm{V} 0=3.102$	$\mathrm{V} 0=2.845$	$\mathrm{V} 0=2.586$	$\mathrm{V} 0=2.069$	$\mathrm{V} 0=1.810$	$\mathrm{V} 0=1.552$	$\mathrm{V} 0=1.293$	V
29	0.508*VLCD	$\mathrm{V} 0=3.048$	$\mathrm{V} 0=2.797$	$\mathrm{V} 0=2.542$	$\mathrm{V} 0=2.034$	$\mathrm{V} 0=1.780$	$V 0=1.525$	$\mathrm{V} 0=1.271$	V
30	0.500*VLCD	$\mathrm{V} 0=3.000$	$\mathrm{V} 0=2.750$	$\mathrm{V} 0=2.500$	$\mathrm{V} 0=2.000$	$\mathrm{V} 0=1.750$	$\mathrm{V} 0=1.500$	$\mathrm{V} 0=1.250$	V
31	0.491*VLCD	$\mathrm{V} 0=2.946$	$\mathrm{V} 0=2.705$	$\mathrm{V} 0=2.459$	$\mathrm{V} 0=1.967$	$\mathrm{V} 0=1.721$	$\mathrm{V} 0=1.475$	$\mathrm{V} 0=1.230$	V

Function Description - continued
Display Control (DISCTL)

$\begin{gathered} \text { MSB } \\ \text { D7 } \end{gathered}$	D6	D5	D4	D3	D2	D1	$\begin{gathered} \text { LSB } \\ \text { D0 } \end{gathered}$
C	1	1	0	P3	P2	P1	P0

Set Frame Frequency

Setting $^{(\text {Note 1) }}$	P3	P2	FRSEL $^{\text {(Note 2) }}$	Reset initialize condition
80 Hz	0	0	0	0
71 Hz	0	1	0	
64 Hz	1	0	0	
50 Hz	1	1	0	
233 Hz	0	0	1	
197 Hz	0	1	1	
160 Hz	1	0	1	
122 Hz	1	1	1	

(Note 1) The frame frequency varies according to the characteristics of fclk when internal oscillation circuit is used. (Refer to oscillation characteristics for $f_{C L K}$ properties).
(Note 2) Please refer to MODESET for FRSEL
Set Power Save Mode SR.

Setup	P1	P0	Reset initialize condition
Power Save Mode 1	0	0	
Power Save Mode 2	0	1	
Normal Mode	1	0	
High Power Mode	1	1	

Function Description - continued

Set IC Operation (ICSET)

$\begin{gathered} \text { MSB } \\ \text { D7 } \end{gathered}$	D6	D5	D4	D3	D2	D1	LSB
C	1	1	1	0	P2	P1	P0

Set LCD drive Waveform.

Setup	P2	Reset initialize condition
Line Inversion Mode	0	
Frame Inversion Mode	1	\circ

Power consumption is reduced in the following order:
Line Inversion > Frame Inversion
Typically, when driving large capacitance LCD, Line inversion is more susceptible to influence of crosstalk.
Regarding driving waveform, refer to LCD driving waveform.

Set Software Reset execution

Setup	P1	Reset initialize condition
Software Reset Not Execute	0	\circ
Software Reset Execute	1	

When "Software Reset" is executed, BU97950AFUV is reset to initial condition.
Don't set Software Reset (P1) with P2, P0 at the same time.
Set Display ON and OFF

Setup	P0	Reset initialize condition
Display off(DISPOFF)	0	\circ
Display on(DISPON)	1	

Display off: Regardless of DDRAM data, all SEGMENT and COMMON output will be stopped after 1 frame of data write. Display OFF mode will be disabled after Display ON command.
Display on: SEGMENT and COMMON output will be active and start to read the display data from DDRAM.

All Pixel control (APCTL)

MSB	D6	D5	D4	D3	D2	D1	LSB
C	1	1	1	1	0	P1	P0

All display set on, off

Setup	P1	Reset initialize condition
Normal	0	\circ
All pixel on	1	

Setup	P0	Reset initialize condition
Normal	0	\circ
All pixel off	1	
All		

All pixels on: All pixels are on regardless of DDRAM data.
All pixels off: All pixels are off regardless of DDRAM data.
This command is valid in Display on status. The data of DDRAM is not changed by this command.
If set both P 1 and $\mathrm{P} 0=" 1 "$, All Pixels OFF will be selected.

Function Description - continued
Mode Set (MODE SET)
MSB

D7 D6 \quad D5 \quad D4 \quad D3 \quad D2 \quad D1 \begin{tabular}{c}
LSB

D0							
C	1	1	1	1	1	P1	P0

\end{tabular}

(* : Don't care)
Set Frame Frequency Setting

Setup	P1	Reset initialize condition
Normal	0	\circ
200 Hz Mode	1	

Set Duty and Bias Level

Setup	P0	Reset initialize condition
$1 / 8$ Duty and $1 / 4$ Bias	0	\circ
$1 / 4$ Duty and $1 / 3$ Bias	1	

Please refer to LCD drive waveform, for example of SEG and COM output waveform

LCD Driving Waveform

(1/4 Bias, $1 / 8$ Duty) Line Inversion Mode

Figure 10. Wave form of line inversion

LCD Driving Waveform- continued

(1/4 Bias, 1/8 Duty) Frame Inversion Mode

Figure 11. Wave form of frame inversion

LCD Driving Waveform- continued

(1/3 Bias, 1/4 Duty) Line Inversion Mode

Figure 12. Wave form of frame inversion

LCD Driving Waveform- continued
(1/3 Bias, $1 / 4$ Duty) Frame Inversion Mode

Figure 13. Wave form of Frame Inversion

Initialize sequence

Follow the Power-on sequence below to initialize condition.
Power on
\downarrow
STOP condition
\downarrow
START condition
\downarrow
Issue
\downarrow
Exave Address
Execute Software Reset by ICSET command
After Power-on and before sending initialize sequence, each register value, DDRAM Address and DDRAM Data are random.

Start sequence

Start sequence example

No.	Input	D7	D6	D5	D4	D3	D2	D1	D0	Descriptions
1	Power on									$\mathrm{VDD}=0 \mathrm{~V}$ to $5 \mathrm{~V}(\mathrm{Tr}=0.1 \mathrm{~ms})$
	\downarrow									
2	wait min $100 \mu \mathrm{~s}$									Initialize IC
	\downarrow									
3	STOP									STOP condition
	\downarrow									
4	START									START condition
5	Slave Address	0	1	1	1	1	1	0	0	Issue Slave Address
	\downarrow									
6	ICSET	1	1	1	1	0	*	1	*	Execute Software Reset
	\downarrow									
7	DISCTL	1	1	1	0	0	0	1	0	
	\downarrow									
8	EVRSET	1	1	0	0	0	0	0	0	
	\downarrow									
9	ADSET	0	0	0	0	0	0	0	0	DDRAM Address set
	\downarrow									
10	Display Data	*	*	*	*	*	*	*	*	Address 00h
	\vdots									!
	Display Data	*	*	*	*	*	*	*	*	Address 22h
	\downarrow									
11	STOP									STOP condition
	\downarrow									
12	START									START condition
13	Slave Address	0	1	1	1	1	1	0	0	Issue Slave Address
	\downarrow									
14	ICSET	1	1	1	1	0	*	0	1	Display on

Cautions in Power ON/OFF

To prevent incorrect display, malfunction and abnormal current, follow Power On/Off sequence shown in waveform below. VDD must be turned on before VLCD during power up sequence.
VDD must be turned off after VLCD during power down sequence.
Set VDD-2.4 \geq VLCD, $\mathrm{t} 1>0 \mathrm{~ns}$ and $\mathrm{t} 2>0 \mathrm{~ns}$.
To refrain from data transmission is strongly recommended while power supply is rising up or falling down to prevent from the occurrence of disturbances on transmission and reception.

Figure 14. Recommended Power ON/OFF Sequence

Caution in P.O.R Circuit Use

BU97950AFUV has "P.O.R" (Power-On Reset) circuit and Software Reset function.
Keep the following recommended Power-On conditions in order to power up properly.
Set power up conditions to meet the recommended t_{R}, t_{F}, $t_{F F}$, and $\mathrm{V}_{\text {BOT }}$ specification below in order to ensure P.O.R operation.

Recommended condition of $\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}, \mathrm{tofF}}, \mathrm{V}_{\mathrm{BOT}}\left(\mathrm{Ta}=25{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

t_{R}	t_{F}	toFF	$\mathrm{V}_{\mathrm{BOT}}$
Less than	Less than	More than	Less than
5 ms	5 ms	20 ms	0.3 V

Figure 15. Power ON/OFF waveform

When it is difficult to keep above conditions, it is possibility to cause meaningless display due to no IC initialization.
Please execute the IC initialization as quickly as possible after Power-on to reduce such an affect.
See the IC initialization flow as below.
Setting TEST2="H" disables the POR circuit, in such case, execute the following sequence.
Note however that it cannot accept command while supply is unstable or below the minimum supply range.
Note also that Software Reset is not a complete alternative to POR function.
(1) Generate STOP condition

Figure 16. STOP condition
(2) Generate START condition.

Figure 17. START condition
(3) Issue Slave Address.
(4) Execute Software Reset (ICSET) command.

Note on the Multiple Devices be Connected to 2 Wire Interface

Do not access the other device without power supply (VDD) to the BU97950AFUV.

Figure 18. Example of BUS connection

To control the slope of the falling edge, a capacitor is connected between gate and drain of a NMOS transistor (Refer toFigure19).
The gate is in a high-impedance state if the power supply (VDD) is not supplied.
In this condition, the gate voltage is pulled up by the current flow through the capacitance as a result of the SDA signal's transition from LOW to HIGH.

The NMOS transistor turns on and draws some current (Ids) from the SDA port if the gate voltage (Vg) is higher than the threshold voltage (Vth).

An external resistor (R) is connected between the power line and SDA line to keep the SDA line as logic HIGH.
But the line cannot be kept as logic HGH if the voltage drop (R^{*} Ids) is large.
Access the other LSIs with power supply to BU97950AFUV to control the gate voltage as logic level of 1 or 0 if the number of LSIs are connected to the same bus.

Figure 19. SDA output cell structure

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.
2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.
3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.

6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.

7. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.
8. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
9. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
10. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

Operational Notes - continued

11. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.
12. Regarding the Input Pin of the IC

In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC.

Ordering Information

\square
Part Number
Package FUV : TSSOP-C48V

Packaging and forming specification E2: Embossed tape and reel

Lineup

Package		Orderable Part Number
TSSOP-C48V	Reel of 2000	BU97950AFUV-E2

Marking Diagram

Physical Dimension, Tape and Reel Information
Package Name

<Tape and Reel information>
<Tape and Reel information>

Tape	Embossed carrier tape (with dry pack)
Quantity	2000 pcs
Direction of feed	E2 The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand

Revision History

Date	Revision		Changes
31.July.2017	001	New Release	

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ${ }^{\text {(Note 1) }}$, transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl_{2}, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO} 2$, and NO 2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl} 2, \mathrm{H} 2 \mathrm{~S}, \mathrm{NH} 3, \mathrm{SO} 2$, and NO 2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the la test information with a ROHM sale s representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by ROHM manufacturer:
Other Similar products are found below :
LC75836WH-E CD4056BE LC75829PW-H LC75852W-E LC79430KNE-E LC79431KNE-E FAN7317BMX LC75839PW-H LC75884W-
E LC75814VS-TLM-E MAX25520ATEC/V + MAX25520ATEB/VY + BU9795AFV-E2 PCF8566T/1.118 TPS65132A0YFFR
BU9795AKV-E2 34801000 BU97510CKV-ME2 BU97520AKV-ME2 ICL7136CM44Z BL55070 BL55066 MAX1605ETT+T MAX16928BGUP/V+ ICL7129ACPL+ MAX131CMHD MAX138CMH+D MAX1491CAI+ MAX1518BETJ+ MAX1606EUA+ MAX138CQH+TD MAX25520ATEB/V+ MAX16929AGUI/V+ MAX16929CGUI/V+ MAX16929DGUI/V+ MAX8570ELT+T MAX8570EUT+T MAX8571EUT+T MAX8575EUT+T MAX8795AGCJ/V+ MAX138CPL+ AY0438-I/L AY0438/L HV66PG-G $\underline{\text { HV881K7-G TC7106CKW TC7106CPL TC7116CPL TC7126CLW TC7126CPL }}$

